单片机系统的设计

合集下载

单片机控制系统的设计与调试方法

单片机控制系统的设计与调试方法

单片机控制系统的设计与调试方法一、前言单片机控制系统是现代电子技术中的一种重要的应用,它具有体积小、功耗低、成本低等优点,被广泛应用于各种领域。

本文将介绍单片机控制系统的设计与调试方法。

二、硬件设计1. 确定系统功能需求在进行单片机控制系统的硬件设计前,需要确定系统的功能需求。

这包括了系统所要实现的功能以及所需要使用的传感器和执行器等。

2. 选择适当的单片机芯片根据系统的功能需求和性能要求,选择适当的单片机芯片。

常见的单片机芯片有8051系列、PIC系列、AVR系列等。

3. 设计电路图根据所选单片机芯片和外围器件,设计电路图。

电路图应包括主控芯片、外设接口电路、时钟电路等。

4. PCB设计根据电路图进行PCB布局和布线设计。

在进行PCB设计时应注意防止信号干扰和功率噪声等问题。

5. 制作PCB板完成PCB设计后,可以通过打样或委托加工来制作PCB板。

6. 组装调试将所选单片机芯片及外围器件进行组装,并进行调试。

在调试时需要注意电路连接是否正确、电源电压是否稳定等问题。

三、软件设计1. 确定系统的软件功能需求在进行单片机控制系统的软件设计前,需要确定系统的软件功能需求。

这包括了系统所要实现的功能以及所需要使用的算法和数据结构等。

2. 编写程序框架根据所选单片机芯片和外围器件,编写程序框架。

程序框架应包括初始化函数、主循环函数等。

3. 编写具体功能模块根据系统的软件功能需求,编写具体功能模块。

例如,如果系统需要测量温度,则需要编写一个测量温度的函数。

4. 调试程序完成程序编写后,进行调试。

在调试时需要注意程序是否能够正确运行、是否存在死循环等问题。

四、系统调试1. 确定测试方法在进行单片机控制系统的调试前,需要确定测试方法。

测试方法应包括了测试步骤和测试工具等。

2. 进行硬件测试对单片机控制系统进行硬件测试。

硬件测试应包括了电路连接是否正确、电源电压是否稳定等问题。

3. 进行软件测试对单片机控制系统进行软件测试。

单片机原理及应用系统设计

单片机原理及应用系统设计

单片机原理及应用系统设计单片机原理及应用系统设计单片机(Microcontroller,简称MCU)是集成了微处理器、存储器、输入/输出接口及其他功能模块的一种集成电路芯片,其内部包含了CPU、RAM、ROM、定时器/计数器、串口、ADC/DAC、中断控制器等多个功能模块,可用于控制系统、数据采集、嵌入式系统、家用电器、汽车电子等许多领域中。

单片机的组成结构主要包括中央处理器(CPU)、存储器(ROM、RAM、EEPROM)、输入/输出接口(I/O)、时钟/定时器、中断/外部中断、串口通信、模拟输入/输出等模块。

其中,中央处理器是单片机的“心脏”,它执行单片机内部各种指令,进行逻辑运算、算术运算等操作;存储器用来存储程序和数据,ROM主要存储程序代码,RAM用来存储程序运行时所需的数据和临时变量;输入/输出接口是单片机和外部设备(如LED、LCD、继电器等)的链接带,通过输入输出接口可以实现单片机对外部设备的控制和监测;时钟/定时器用来产生精确定时信号,对于实时控制、时间测量、定时定量控制等应用非常重要;中断/外部中断是单片机的一种高效机制,在单片机运行过程中,如碰到紧急事件需要优先处理,可以启用中断机制,优先处理中断程序;串口通信用来实现单片机与另一台设备之间的通信功能,是单片机进行通信应用中较常用的接口;模拟输入/输出可实现单片机对外部采集信号的转换。

单片机的应用系统设计是单片机在应用领域中所体现出来的具体项目,包括了硬件和软件两个方面的内容。

硬件设计主要包括单片机的选型、外设的选择、电源设计、信号输入/输出设计等;软件设计则主要是对单片机进行编程,构造出相应的应用程序,实现对硬件系统的控制。

单片机在嵌入式系统中应用非常广泛,包括家用电器、工业自动化、汽车电子、医疗器械、安防监控等多个领域。

在家用电器中,单片机能够实现家电的自动控制、显示、调节等多种功能,如洗衣机控制、空调控制、电磁灶控制、电子钟表控制等;在工业自动化中,单片机的功能应用更为广泛,应用于生产线的控制、物流系统的管理、环保系统的监测、电子银行等多个领域;在汽车电子中,单片机的功能主要体现在行车电子控制系统、车载音响、泊车雷达系统等方面,具有多种控制、监测、显示、操作等功能;在医疗器械领域中,单片机主要应用于病人监测、给药控制、设备控制等多个方面,通过单片机系统的运行,实现对病情的掌控;在安防监控领域中,单片机系统具备事件监测、报警输出、视频监视等多种功能,使得安防系统可以实现更加精确、高效、智能的控制。

简述单片机系统的开发流程

简述单片机系统的开发流程

简述单片机系统的开发流程单片机系统是指由单片机芯片、外围电路和软件程序组成的一种嵌入式系统。

单片机系统的开发流程包括硬件设计、软件开发和系统调试等多个阶段。

1. 硬件设计阶段硬件设计是单片机系统开发的第一步,主要包括电路设计和PCB设计两个部分。

(1) 电路设计:根据系统需求,选择合适的单片机芯片和外围器件,设计电路原理图。

在电路设计过程中,需要考虑功耗、时钟频率、IO口数量、通信接口等因素,并根据需求进行电源供应、时钟电路、外设接口电路等设计。

(2) PCB设计:根据电路原理图,进行PCB的布线设计。

通过布线设计,将电路原理图中的元器件进行合理的布局和连接,以满足信号传输、电源供应等要求。

在PCB设计过程中,需要注意信号完整性、电源稳定性、阻抗匹配等问题。

2. 软件开发阶段软件开发是单片机系统开发的核心部分,主要包括编写程序和调试两个环节。

(1) 编写程序:根据系统需求和硬件设计,选择合适的开发工具和编程语言,编写单片机的软件程序。

在编写程序过程中,需要了解单片机的指令集、寄存器配置、中断处理等相关知识,并根据需求实现系统的各项功能。

(2) 调试:将编写好的软件程序下载到单片机芯片中,通过调试工具进行调试。

调试过程中,可以通过单步执行、断点调试等方式,逐步检查程序的运行情况,发现并解决程序中的错误和问题。

调试完成后,可以对系统的功能进行验证和优化。

3. 系统调试阶段系统调试是单片机系统开发的最后一步,主要包括硬件调试和软件调试两个环节。

(1) 硬件调试:通过仪器设备和测试工具,对硬件电路进行测试和验证。

主要包括电源稳定性、信号传输、外设功能等方面的测试。

在硬件调试过程中,可以使用示波器、逻辑分析仪等工具对信号进行观测和分析,发现并解决硬件电路中的问题。

(2) 软件调试:在硬件调试完成后,对软件程序进行全面的功能测试。

通过输入不同的参数和数据,验证系统的各项功能是否正常运行。

在软件调试过程中,可以使用调试工具和仿真器对程序进行调试和测试,以确保系统的稳定性和可靠性。

单片机系统的设计课程设计

单片机系统的设计课程设计

单片机系统的设计课程设计一、课程目标知识目标:1. 让学生理解单片机系统的基本原理和组成,掌握其设计流程和方法。

2. 使学生掌握单片机编程的基础知识,能运用C语言或汇编语言进行简单程序编写。

3. 帮助学生了解单片机系统在实际应用中的功能与作用,如智能家居、机器人等。

技能目标:1. 培养学生具备独立设计单片机系统的能力,包括硬件电路设计和软件编程。

2. 提高学生运用单片机解决实际问题的能力,如数据采集、信号处理等。

3. 培养学生动手实践和团队协作的能力,能够完成课程项目的设计与实施。

情感态度价值观目标:1. 培养学生对单片机系统设计和开发产生兴趣,提高其学习积极性和主动性。

2. 培养学生具备创新精神和实践意识,敢于尝试新方法,解决实际问题。

3. 培养学生具备良好的团队合作精神和沟通能力,能够在团队中发挥积极作用。

课程性质:本课程为实践性较强的学科,要求学生在理解理论知识的基础上,动手实践,完成单片机系统的设计与实现。

学生特点:学生具备一定的电子技术基础和编程能力,对单片机系统有一定了解,但实践经验不足。

教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的积极性,培养其创新能力和实践能力。

通过课程学习,使学生能够达到上述课程目标,为后续专业课程学习和实际工程应用打下坚实基础。

二、教学内容1. 单片机系统概述:介绍单片机的基本概念、发展历程、应用领域及未来发展趋势。

- 教材章节:第一章 单片机概述2. 单片机硬件结构:讲解单片机的内部结构、工作原理、主要性能指标及硬件连接方式。

- 教材章节:第二章 单片机硬件结构3. 单片机编程语言:学习单片机编程所需的基础知识,包括C语言和汇编语言。

- 教材章节:第三章 单片机编程语言4. 单片机I/O口编程:介绍I/O口的基本操作方法,包括输入、输出、中断等。

- 教材章节:第四章 单片机I/O口编程5. 单片机系统设计流程与方法:讲解单片机系统设计的步骤、方法及注意事项。

单片机温度控制系统设计及实现

单片机温度控制系统设计及实现

单片机温度控制系统设计及实现温度控制是很多自动化系统中的重要部分,可以应用于许多场景,如家用空调系统、工业加热系统等。

本文将介绍如何利用单片机设计和实现一个简单的温度控制系统。

一、系统设计1. 硬件设计首先,我们需要选择合适的硬件来搭建我们的温度控制系统。

一个基本的温度控制系统由以下几个组件组成:- 传感器:用于检测环境的温度。

常见的温度传感器有热敏电阻和温度传感器。

- 控制器:我们选择的是单片机,可以根据传感器的读数进行逻辑判断,并控制输出的信号。

- 执行器:用于根据控制器的指令执行具体的动作,例如开启或关闭空调。

2. 软件设计温度控制系统的软件部分主要包括,传感器读取、温度控制逻辑和执行器控制。

我们可以使用C语言来编写单片机的软件。

- 传感器读取:通过串口或者模拟输入端口来读取传感器的数据,可以利用类似的库函数或者自己编写读取传感器数据的函数。

- 温度控制逻辑:根据读取到的温度值,判断当前环境是否需要进行温度调节,并生成相应的控制信号。

- 执行器控制:将控制信号发送到执行器上,实现对温度的调节。

二、系统实施1. 硬件连接首先,将传感器连接到单片机的输入端口,这样单片机就可以读取传感器的数据。

然后,将执行器连接到单片机的输出端口,单片机可以通过控制输出端口的电平来控制执行器的开关。

2. 软件实现编写单片机的软件程序,根据前面设计的软件逻辑,实现温度的读取和控制。

首先,读取传感器的数据,可以定义一个函数来读取传感器的数据并返回温度值。

其次,根据读取到的温度值,编写逻辑判断代码,判断当前环境是否需要进行温度调节。

如果需要进行温度调节,可以根据温度的高低来控制执行器的开关。

最后,循环执行上述代码,实现实时的温度检测和控制。

三、系统测试和优化完成软硬件的实施之后,需要对温度控制系统进行测试和优化。

1. 测试通过模拟不同的温度情况,并观察控制器的输出是否能够正确地控制执行器的开关。

可以使用温度模拟器或者改变环境温度来进行测试。

单片机原理及应用系统设计

单片机原理及应用系统设计

单片机原理及应用系统设计单片机是一种集成电路芯片,其中包含了微处理器、存储器、输入输出接口等功能模块。

它具有体积小、功耗低、性能高、可编程性强等特点,被广泛应用于各种电子设备和嵌入式系统中。

单片机原理和应用系统设计主要包括以下几个方面:1. 单片机的基本原理:单片机通常由CPU、存储器和外设接口等组成。

CPU负责执行指令,存储器用于储存指令和数据,外设接口用于与外部设备的连接。

2. 单片机的编程:单片机可以通过编写程序来实现各种功能。

常用的编程语言有汇编语言和高级语言(如C语言)。

编程时,需要先了解单片机的指令集和寄存器等硬件特性,然后使用适当的编译器将程序转换成机器码,最后通过下载工具将程序下载到单片机中执行。

3. 单片机应用系统的设计方法:在设计单片机应用系统时,首先需要明确系统的功能需求和硬件资源限制。

然后,依据需求选择适当的单片机型号,并设计硬件电路连接与外设接口。

接着,进行软件设计,编写相应的程序。

最后,通过仿真和测试验证系统的功能和性能。

4. 单片机应用系统案例:单片机在各个领域都有广泛的应用。

以家电控制为例,可以通过单片机设计实现智能家居系统。

通过单片机控制开关、传感器、驱动器等,实现家电设备的自动控制和远程控制,提高生活的便利性和舒适度。

5. 单片机的优点和挑战:单片机具有体积小、功耗低、成本低、可编程性强等优点,使得它在嵌入式系统中得到广泛应用。

但单片机的资源有限,编程和调试难度较大,对程序的效率和硬件资源的合理利用要求较高。

综上所述,单片机原理及应用系统设计涉及到单片机的原理、编程、应用系统设计方法、案例等方面内容。

掌握这些知识,可以帮助我们更好地理解和应用单片机技术,实现各种电子设备和嵌入式系统的设计与开发。

基于单片机的自动化控制系统设计和实现

基于单片机的自动化控制系统设计和实现

基于单片机的自动化控制系统设计和实现随着科技的不断发展,自动化控制系统越来越成为人们生产和生活中的必需品。

而基于单片机的自动化控制系统,由于其稳定性、可靠性、便携性等特点,也越来越被人们所重视。

在本文中,我将介绍一个基于单片机的自动化控制系统的设计和实现的过程。

一、概述该自动化控制系统采用ATmega328P单片机作为控制核心,具有8个输入输出端口,可控制8个外设设备的启动和停止,其中包括电机、电磁阀、蜂鸣器等。

系统还集成了温湿度传感器、红外遥控器等模块,可实现对温度、湿度的实时监测,同时支持遥控器对设备的控制。

该系统能够实现自动化控制和远程控制的功能,具有很高的实用性。

二、硬件设计该系统的硬件设计采用了ATmega328P单片机,该单片机具有8个输入输出端口,可控制外设设备的启动和停止。

同时,为了实现对环境的实时监测,系统还集成了温湿度传感器,具有较高的精度和稳定性。

在硬件设计过程中,我们需要注意以下几个方面:1.电压稳定:由于单片机工作时需要稳定的电压,因此需要提供稳定的电源,以防止设备运行过程中因电压不稳定而导致系统崩溃。

2.元器件的选择:在硬件设计中,我们需要选择质量稳定、品质有保证的元器件,以确保系统的稳定性和可靠性。

3.连线的检查:在连线过程中,需要实时检查连线是否正确,以避免因误接、漏接等情况导致系统无法正常工作。

三、软件设计在软件设计中,我们需要编写一份程序来实现控制模块的功能。

程序中需要实现控制算法、温湿度传感器的读取、数据存储和远程控制等功能。

以下是该系统的软件流程:1.初始化:对控制模块进行初始化的操作,包括控制端口初始化、温湿度传感器初始化等。

2.读取传感器数据:读取温湿度传感器所监测的温度和湿度值。

3.数据处理:对传感器读取的数据进行处理,通过控制算法计算出需要控制的设备的开启时间和关闭时间。

4.设备控制:按照计算出的开启时间和关闭时间,对设备进行控制。

5.数据存储:将读取的温湿度数据存储到存储器中。

单片机控制系统的设计与实现

单片机控制系统的设计与实现

单片机控制系统的设计与实现单片机在现代电子产品中应用日益广泛。

通过对某一控制系统的设计与实现,本文旨在介绍单片机控制系统的基本原理、流程、结构及其开发环境。

一、单片机控制系统基本原理单片机控制系统是指通过单片机对某一设备或系统进行控制和管理的系统。

其基本原理是:将外部传感器或信号通过单片机的输入端口获取,并进行加工处理和逻辑运算。

然后根据控制程序的指令,通过单片机的输出端口输出控制信号,给被控制的设备或系统达到控制目的。

二、单片机控制系统流程单片机控制系统的具体流程如下:1.设计控制程序:控制程序通常由C语言编写,根据控制要求设计程序的基本架构和逻辑。

2.硬件设计:包括外部接口电路的设计及连接方式、输入信号的滤波和处理电路以及输出信号的放大和保护电路等。

3.编译烧录:将编写好的C语言程序编译成单片机自己的机器语言,并烧录到单片机的存储器中。

4.系统调试:包括单片机的上电复位、外设初始化和相关寄存器设置,调试控制程序中的代码和参数,检查控制效果和系统稳定性,以及修正问题和改进控制系统的功能。

三、单片机控制系统结构单片机控制系统的结构一般包括以下三个部分:1.外设部分:包括外部传感器或信号的采集部分、显示设备的输出部分等。

2.单片机微控制器:通常采用8051、PIC、AVR等微控制器。

它是整个控制系统的核心,用于执行控制程序,完成信号输出和输入等任务。

3.电源和供电模块:为整个单片机控制系统提供电源和电压稳定模块。

四、单片机控制系统开发环境单片机控制系统的开发环境一般包括以下几个方面:1.开发工具:包括集成开发环境(IDE)、编译器、调试器等。

2.仿真工具:可用于模拟单片机和外设,可提前进行系统调试和优化。

3.实验板设计:为单片机实现软硬件开发提供平台,实现系统的可靠性和稳定性。

4.资料和学习资源:这包括参考资料、电子书、教程、样例程序以及相关技术社区等。

五、总结单片机控制系统的设计和实现是一个复杂的过程,需要综合考虑软硬件平台、系统要求、环境因素和操作特点等因素。

单片机最小系统设计

单片机最小系统设计

单片机最小系统设计单片机最小系统是指由单片机与外围电路构成的最小功能完整的系统。

在单片机设计中,最小系统起到了连接单片机和外界外设的桥梁作用。

本文将从电源、晶振、复位电路以及外设接口等方面详细讨论单片机最小系统的设计。

一、电源设计在单片机系统中,合理的电源设计对于保证系统正常运行非常重要。

通常情况下,单片机系统需要提供稳定的电压供给,并且需要考虑到不同功耗的模块之间的电源隔离。

为了满足这些需求,可以使用稳压芯片对电源进行调整和稳定,同时添加滤波电容以保证电源的稳定性。

二、晶振电路设计单片机系统需要一个可靠的时钟源来提供精确的计时功能。

晶振电路是实现单片机时钟源的重要组成部分。

一般来说,晶振电路由晶体振荡器和负载电容构成。

在设计晶振电路时,需要注意选择合适的晶振频率以及相应的负载电容。

三、复位电路设计复位电路是单片机系统中不可或缺的一部分,它能够在系统上电或异常情况下将单片机恢复到初始状态。

常见的复位电路包括电源按键复位电路和复位电路。

在设计复位电路时,需要考虑到稳定的复位电平、合适的延时电路以及可靠的触发条件。

四、外设接口设计外设接口设计是单片机最小系统中的重要环节。

通过合适的外设接口设计,可以实现单片机与外界设备的连接和通信。

常见的外设接口包括串口、并口、I2C接口等。

在设计外设接口时,需要充分考虑接口的稳定性、兼容性以及通信速率的要求。

五、系统调试与测试在完成单片机最小系统的硬件设计后,需要进行系统的调试和测试。

通过合理的调试和测试措施,可以保证系统的稳定性和可靠性。

常见的调试工具包括示波器、逻辑分析仪等。

通过这些工具,可以对单片机系统进行信号捕获、时序分析等操作,以确保系统的正常运行。

六、总结单片机最小系统设计是单片机开发中的重要环节。

通过合理的电源设计、晶振电路设计、复位电路设计以及外设接口设计,可以实现单片机与外界设备的连接和通信。

在系统设计完成后,需要进行系统的调试和测试,以确保系统的稳定性和可靠性。

单片机系统设计报告范文

单片机系统设计报告范文

单片机系统设计报告范文1. 引言本报告介绍了一个基于单片机的系统设计。

本项目旨在设计一个可靠、高效的控制系统,能够实现某一特定功能。

本报告将详细介绍系统的设计目标、硬件设计和软件设计,并对系统进行评估和讨论。

2. 设计目标本项目的设计目标是实现一个智能温湿度控制系统。

系统的主要功能包括实时监测环境的温度和湿度,并根据设定的阈值自动控制温湿度,保持舒适的环境条件。

3. 硬件设计3.1. 主控单元本系统选择了常用的基于单片机的主控单元,采用XMC4500系列单片机。

此单片机具有高性能、低功耗和多种外设接口的特点,非常适合本项目的需求。

3.2. 传感器模块为了实时监测环境的温湿度,我们选择了DHT11温湿度传感器。

该传感器具有较高的精确度和良好的稳定性,可以通过串口和单片机进行数据交互。

3.3. 人机交互模块为了方便用户对系统进行设定和操作,本系统设计了一个人机交互模块。

该模块包括一个液晶显示屏和几个按键,通过显示屏和按键可以实现菜单显示和参数设定功能。

3.4. 控制模块为了控制温湿度,本系统设计了一个控制模块。

该模块通过与主控单元的通信,接收来自传感器模块的数据,并实施相应的控制策略,如开关空调、加湿器等来维持设定的温湿度。

4. 软件设计4.1. 软件架构本系统的软件设计采用了模块化的结构。

主控单元的软件主要分为三个模块:传感器模块、人机交互模块和控制模块。

每个模块都有相应的功能函数,通过调用这些函数来实现不同的功能。

4.2. 传感器模块传感器模块负责实时读取温湿度传感器的数据,并将数据发送给主控单元。

为了增加系统的稳定性,我们设计了数据校验和容错机制。

4.3. 人机交互模块人机交互模块负责显示菜单和接收用户的操作。

用户可以通过按键来选择菜单和设定参数。

我们设计了一个菜单管理器和按键管理器来实现该模块的功能。

4.4. 控制模块控制模块根据传感器模块提供的数据和用户设定的参数,实施相应的控制策略。

例如,当温度超过设定值时,控制模块会发送控制信号给空调,打开空调降低室内温度。

单片机应用系统设计方法

单片机应用系统设计方法
单片机原理与应用
单片机应用系统设计方法
单片机应用系统设 计过程一般包括需求 分析、可行性分析、 系统体系结构设计、 软/硬件设计、综合调 试等几个步骤。
1.2 可行性分析
可行性分析是从原理、技术、需求、资金、材料、环境、研发/生产条 件等方面分析论证产品开发研制的必要性及可行性,论证产品的经济效 益、社会效益和生态效益,决定产品的开发研制工作是否需要继续进行 下去
在单面板和双面板设计中,电源线和地线尽量粗些,以确保能通过大电流。
1.4 硬件设计
元器件选择原则
在硬件电路成本允许的情况下,尽可能选择集成度高、功能完备的芯片 对于需要大批量生产的产品,一定要选用通用性强、供货渠道充足的元器件 整个系统中相关的器件要尽可能做到性能匹配 选择元器件时应遵从以下原则
选择可靠性高的专用器件。这是保护系统安全运行的有效手段。 对输入输出通道进行光电隔离,以防止干扰信号从I/O通道进入系统而导致系
统程序跑飞(死机)。 对于闲置的I/O口或输入引脚,不要悬空,可直接接地或接电源。
1.4 硬件设计
PCB设计原则
晶振必须尽可能靠近CPU晶振引脚,且晶振电路下方不能走线,最好在晶振电 路下方放置一个与地线相连的屏蔽层。
在双面印制板上,电源线和地线应安排在不同的面上,且平行走线,这样寄生 电容将起滤波作用。对于功耗较大的数字电路芯片,如CPU、驱动器等应采用 单点接地方式,即这类芯片电源、地线应单独走线,并直接接到印制板电源、 地线入口处。电源线和地线宽度尽可能大一些。模拟信号和数字信号不能共地, 即采用单点接地方式。
1.4 硬件设计
电源系统采用稳压、隔离、滤波、屏蔽和去耦措施。采用交流稳压器,以防止 电网欠压或过压;采用初次级双层屏蔽的隔离变压器,以提高系统抗共模干扰 的能力;采用低通滤波器,以除去电网中的高次谐波;滤波器要加屏蔽外壳, 以防止感应和辐射耦合;在电源的不同部分(如每个芯片的电源)配置去耦电 容,消除以各种途径进入电源中的高频干扰。

单片机控制系统的硬件设计与软件调试教程

单片机控制系统的硬件设计与软件调试教程

单片机控制系统的硬件设计与软件调试教程单片机控制系统是现代电子技术中常见的一种嵌入式控制系统,其具有体积小、功耗低、成本低等优点,因而在各个领域得到广泛应用。

本文将介绍如何进行单片机控制系统的硬件设计与软件调试,帮助读者快速掌握相关知识,并实际应用于项目当中。

一、硬件设计1. 系统需求分析在进行硬件设计之前,首先需要明确单片机控制系统的需求。

这包括功能需求、性能需求、输入输出接口需求等。

根据需求分析的结果,确定采用的单片机型号、外围芯片以及必要的传感器、执行机构等。

2. 系统框图设计根据系统需求,绘制系统框图。

框图主要包括单片机、外围芯片、传感器、执行机构之间的连接关系,并标明各接口引脚。

3. 电源设计单片机控制系统的电源设计至关重要。

需要根据单片机和外围芯片的工作电压要求,选择合适的电源模块,并进行电源稳压电路的设计,以确保系统工作的稳定性。

4. 电路设计与布局根据系统框图,进行电路设计与布局。

需要注意的是,对于模拟信号和数字信号的处理需要有一定的隔离和滤波措施,以减少干扰。

此外,对于输入输出接口,需要进行保护设计,以防止过电压或过电流的损坏。

5. PCB设计完成电路设计后,可以进行PCB设计。

首先,在PCB软件中绘制原理图,然后进行元器件布局和走线。

在进行布局时,应考虑到信号传输的长度和走线的阻抗匹配;在进行走线时,应考虑到信号的干扰和电源的分布。

完成布局和走线后,进行电网设计和最后的校对。

6. PCB制板完成PCB设计后,可以将设计好的原理图和布局文件发送给PCB厂家进行制板。

制板完成后,检查排线是否正确,无误后进行焊接。

二、软件调试1. 开发环境搭建首先需要搭建开发环境。

根据单片机型号,选择合适的开发环境,如Keil、IAR等,并将其安装到计算机上。

接下来,将单片机与计算机连接,并进行相应的驱动安装。

2. 系统初始化在软件调试过程中,首先需要进行系统的初始化。

这包括设置时钟源、配置IO口、初始化外设等。

单片机远程控制系统的设计及其应用

单片机远程控制系统的设计及其应用

单片机远程控制系统的设计及其应用一、引言单片机远程控制系统是一种基于单片机技术的智能化控制系统,可以通过无线通信手段实现对各种设备的远程控制。

本文将详细介绍单片机远程控制系统的设计原理、系统组成、通信方式、远程控制协议以及应用领域等内容,旨在帮助读者更好地理解和应用该技术。

二、设计原理单片机远程控制系统的设计原理是基于单片机通过接收器和发射器与外部设备进行无线通信,通过控制信号的发送和接收以实现对设备的远程控制。

整个系统由控制端和被控制端组成,控制端负责发出控制信号,被控制端负责接收控制信号并执行相应操作。

三、系统组成1. 单片机:作为控制端和被控制端的核心控制器,负责接收、处理和发送控制信号。

2. 无线模块:提供无线通信功能,如蓝牙模块、Wi-Fi模块等。

3. 传感器:用于获取环境信息和设备状态,如温度传感器、光敏传感器等。

4. 执行器:负责执行被控制设备的操作,如电机、继电器等。

四、通信方式单片机远程控制系统可以采用多种通信方式,如蓝牙通信、Wi-Fi通信、红外通信等,具体选择通信方式需要根据实际需求和系统成本进行权衡。

1. 蓝牙通信:蓝牙通信是一种短距离无线通信方式,具有低功耗、易于使用的特点。

可以通过手机、平板电脑等设备与单片机进行蓝牙通信,实现对设备的远程控制。

2. Wi-Fi通信:Wi-Fi通信是一种较为常用的无线通信方式,具有较高的传输速度和较长的通信距离。

可以通过路由器或者Wi-Fi模块连接到互联网,实现对设备的远程控制。

3. 红外通信:红外通信是一种无线通信方式,常用于家电遥控、智能家居等领域。

通过红外发射器和红外接收器,可以实现对设备的远程控制。

五、远程控制协议为了保证单片机远程控制系统的稳定性和安全性,需要定义相应的远程控制协议。

远程控制协议规定了控制信号的格式、传输方式以及安全验证等内容,以确保通信的准确性和可靠性。

1. 控制信号格式:远程控制协议需要定义控制信号的格式,包括起始位、数据位、校验位等信息。

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计引言:随着技术的不断发展,人们对于生活质量的要求也越来越高。

在许多领域中,温度控制是一项非常重要的任务。

例如,室内温度控制、工业过程中的温度控制等等。

基于单片机的温度控制系统能够实现智能控制,提高控制精度,降低能耗,提高生产效率。

一、系统设计原理系统设计的原理是通过传感器检测环境温度,并将温度值传递给单片机。

单片机根据设定的温度值和当前的温度值进行比较,然后根据比较结果控制执行器实现温度控制。

二、硬件设计1.传感器:常见的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。

可以根据具体需求选择适合的传感器。

2. 单片机:常见的单片机有ATmega、PIC等。

选择单片机时需要考虑性能和接口的需求。

3.执行器:执行器可以是继电器、电机、气动元件等。

根据具体需求选择合适的执行器。

三、软件设计1.初始化:设置单片机的工作频率、引脚输入输出等。

2.温度读取:通过传感器读取环境温度,并将温度值存储到变量中。

3.设定温度:在系统中设置一个目标温度值,可以通过按键输入或者通过串口通信等方式进行设置。

4.温度控制:将设定温度和实际温度进行比较,根据比较结果控制执行器的开关状态。

如果实际温度高于设定温度,执行器关闭,反之打开。

5.显示:将实时温度和设定温度通过LCD或者LED等显示出来,方便用户直观判断当前状态。

四、系统优化1.控制算法优化:可以采用PID控制算法对温度进行控制,通过调节KP、KI、KD等参数来提高控制精度和稳定性。

2.能耗优化:根据实际需求,通过设置合理的控制策略来降低能耗。

例如,在温度达到目标设定值之后,可以将执行器关闭,避免过多能量的消耗。

3.系统可靠性:在系统设计中可以考虑加入故障检测和自动切换等功能,以提高系统的可靠性。

总结:基于单片机的温度控制系统设计可以实现智能温度控制,提高生活质量和工作效率。

设计过程中需要考虑硬件和软件的设计,通过合理的算法和控制策略来优化系统性能,提高控制精度和稳定性。

单片机最小系统的设计

单片机最小系统的设计

单片机最小系统的设计
单片机最小系统是指由单片机芯片、电源、复位电路、时钟电路和最小外围电路组成的基本系统。

它是单片机应用的基础,是进行单片机学习和开发的起点。

设计单片机最小系统需要考虑以下几个方面: 1. 选择合适的单片机芯片
根据应用需求选择合适的单片机型号,考虑存储空间、/接口数量、功耗等因素。

常用的单片机芯片有51系列、系列、 -系列等。

2. 设计电源电路
为单片机提供稳定的工作电压,通常使用线性稳压器或开关电源模块。

需要注意电源滤波、防反接等设计。

3. 设计复位电路
复位电路用于在上电或异常情况下将单片机重新复位,常用电阻-电容复位电路或监视电路。

4. 设计时钟电路
为单片机提供稳定的时钟信号,可使用外部晶振电路或内部振荡器。

晶振电路需要根据单片机要求选择合适的晶振频率。

5. 设计最小外围电路
根据应用需求设计最小外围电路,如显示电路、按键输入电路、串行通信电路等。

6. 设计程序下载电路
为了将程序下载到单片机,需要设计相应的下载电路,如下载电路或下载电路。

7. 设计布局
将上述电路合理布局在印制电路板上,注意走线布局、元器件摆放、电磁兼容性等因素。

设计单片机最小系统需要掌握单片机原理、电路设计和布局知识。

通过搭建最小系统,可以熟悉单片机的工作原理和编程方法,为后续的应用开发奠定基础。

单片机控制系统的设计和实现

单片机控制系统的设计和实现

单片机控制系统的设计和实现单片机是一种集成电路,经常被用于设计和实现各种控制系统。

这篇文章将深入讨论单片机控制系统的设计和实现。

一、单片机控制系统的基础知识单片机控制系统的基础是单片机的控制功能。

单片机是一种集成电路芯片,它集成了微处理器、存储器和输入输出接口等组件,可以通过编程控制其输入输出,完成各种控制功能。

单片机一般采用汇编语言或高级编程语言进行编程,将程序保存在存储器中,通过输入输出接口与外部设备交互。

单片机控制系统一般包括硬件和软件两个部分。

硬件部分包括单片机芯片、外设、传感器等,软件部分则为程序设计和开发。

二、单片机控制系统的设计步骤1. 确定系统需求:首先要明确需要控制什么,控制什么范围以及需要什么样的控制效果,从而确定控制系统的需求。

2. 选定合适的单片机:根据控制系统的需求,选择功能强大、接口丰富且价格合理的单片机,以便实现复杂的控制功能。

3. 确定硬件电路:根据单片机的控制需求设计相应的硬件电路,包括传感器、执行器、通信接口等。

4. 编写程序代码:将控制逻辑转化为编程指令,使用汇编语言或高级编程语言编写程序代码。

5. 完成程序烧录:将编写好的程序代码烧录到单片机芯片中,使它能够正确地执行控制任务。

6. 测试调试:将单片机控制系统连接至外设并进行测试和调试,优化程序代码及硬件电路,确保系统正常运行。

三、实例:智能家电控制系统的设计和实现以智能家电控制系统为例,介绍单片机控制系统的设计和实现。

智能家电控制系统主要负责监测家庭环境,对家用电器进行自动化控制,为用户提供便利。

1. 硬件设计:智能家电控制系统的硬件设计主要包括传感器、执行器和通信接口等。

传感器:设计温度传感器、湿度传感器、气压传感器、烟雾传感器等,用于监测家庭环境的变化情况。

执行器:通过单片机控制继电器、电机等执行器,实现对室内照明、风扇、空调等家电的自动控制。

通信接口:通过单片机的网络通信模块,实现系统与家庭无线网络连接,允许用户通过访问互联网从外部对家电进行远程控制。

单片机系统设计与实现

单片机系统设计与实现

单片机系统设计与实现单片机系统是一种基于单片机的微控制系统,在现代电子技术领域广泛应用。

它可以对外界信号进行采集、处理和控制,实现各种自动化控制和智能化功能。

单片机系统设计和实现是一项综合性工程,需要掌握硬件设计、软件编程等多方面知识和技能。

本文将介绍单片机系统的基本原理、设计流程和实现方法,并分享一些设计和实现的技巧和经验。

一、单片机系统原理单片机系统由单片机、外围设备和外界环境三部分组成。

其中单片机是系统的核心,负责进行数据处理和控制。

外围设备包括传感器、执行器、显示器等,用于与外界进行交互和控制。

外界环境则是单片机系统所处的物理环境和电气环境。

单片机是一种集成了处理器、存储器、输入输出口和各种外设接口的芯片,具有体积小、速度快、功耗低等优点。

单片机可以通过编程实现不同的功能,如测量温度、控制电机、播放音乐等。

常见的单片机有51系列、AVR系列、ARM系列、STM32系列等。

外围设备和外界环境对单片机系统的性能和稳定性有重要影响。

传感器用于采集各种模拟量信号,如温度、湿度、光照等。

执行器用于控制各种机械、电气和液压装置,如电机、阀门、泵站等。

显示器用于显示各种文本和图形信息,如LCD显示器、LED灯等。

外界环境包括电源、噪声、电磁干扰等,会影响单片机系统的电路设计和信号处理。

二、单片机系统设计流程单片机系统设计包括硬件设计和软件编程两部分,它们是相互独立但又相互关联的。

硬件设计包括电路设计、PCB设计和电源设计等;软件编程包括程序设计、调试和优化等。

1.需求分析在进行单片机系统设计之前,需要进行需求分析,明确系统的功能和性能要求。

需求分析包括系统的输入输出、运算速度、存储容量、接口类型和通讯方式等。

对于不同的应用场景和要求,需要选择不同的单片机型号、外围设备和外界环境。

2.硬件设计硬件设计是单片机系统设计的重要组成部分。

它包括电路设计、PCB设计和电源设计等。

电路设计是根据系统的功能需求和信号特性设计电路图,并选用合适的电子元器件。

基于STC89C52单片机最小系统的设计

基于STC89C52单片机最小系统的设计

基于STC89C52单片机最小系统的设计在现代电子技术领域,单片机的应用无处不在,从家用电器到工业自动化,从智能仪器仪表到航空航天设备,都能看到单片机的身影。

STC89C52 单片机作为一款经典的 8 位单片机,以其高性能、低功耗、易于开发等优点,被广泛应用于各种电子系统中。

而要让 STC89C52 单片机正常工作,就需要设计一个可靠的最小系统。

一、STC89C52 单片机简介STC89C52 单片机是由宏晶科技生产的一款增强型 8051 单片机,它具有 8K 字节的 Flash 程序存储器、512 字节的 RAM、4 个 8 位并行I/O 口(P0、P1、P2、P3)、3 个 16 位定时器/计数器、1 个全双工串行通信口等资源。

其工作电压为 5V,工作频率可达 35MHz,能够满足大多数应用场景的需求。

二、最小系统的组成一个完整的 STC89C52 单片机最小系统通常包括以下几个部分:1、电源电路电源是整个系统的动力源泉,STC89C52 单片机的工作电压为 5V,因此需要一个稳定的 5V 电源为其供电。

可以使用线性稳压器(如7805)将输入的电压(如 9V 或 12V)转换为 5V 输出,也可以使用USB 接口直接提供 5V 电源。

2、复位电路复位电路的作用是在系统上电或出现异常时,将单片机的内部状态恢复到初始状态,使其能够正常工作。

常见的复位电路有上电复位和手动复位两种。

上电复位电路通过电容充电实现,手动复位电路则通过按键实现。

3、时钟电路时钟电路为单片机提供工作所需的时钟信号,决定了单片机的运行速度。

STC89C52 单片机可以使用内部时钟,也可以使用外部时钟。

内部时钟通过在单片机的 XTAL1 和 XTAL2 引脚之间连接一个晶振和两个电容来实现,晶振的频率通常为 110592MHz 或 12MHz。

4、下载电路为了将编写好的程序下载到单片机中,需要设计一个下载电路。

STC89C52 单片机支持通过串口下载程序,可以使用 MAX232 芯片将单片机的 TTL 电平转换为 RS232 电平,然后通过串口线与计算机连接进行程序下载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机系统的设计 The Standardization Office was revised on the afternoon of December 13, 2020第4章 单片机系统的设计引言用V/F 变换器作A/D 转换时,通常由一些硬件电路如振荡器、二分频器、计数器和门电路组成,而由计数器计得的计数值即A/D 转换结果再通过接口电路送入微计算机进行处理,较为复杂和不便,或者采用F/BCD 变换电路将V/F 变换器输出的频率信号变为BCD 码再通过接口电路送入微计算机,也较为复杂,而且还要对BCD 码进行变换。

这些方法成本都较高。

本设计介绍一种以单片机直接与V/F 变换器接口进行A/D 转换的方法,不须额外的硬件电路,完全利用单片机内部的硬件资源,简单方便,成本最低,大大地提高了V/F 变换器作为A/D 转换电路的可行性。

当前,单片机特别是Intel 公司的MCS-51系列单片机已在智能仪器仪表和过程控制等方面得到广泛应用,大有取代Z80之势,因此A/D 转换电路与单片机的接口方法也是人们所关注的。

下面将主要介绍MCS-51系列的单片机8031为主控器件的硬件电路。

主控器Intel 8031简介P1.1P1.2P1.3P1.4P1.5P1.6P1.7P3.0P3.1P3.2P3.3P3.4P3.5P3.6P3.7XTAL 1XTAL 2V SS RST/VPD RXD TXD T0T10INT P0.0P0.1P0.2P0.3P0.4P0.5P0.6P0.7P2.7P2.6P2.5P2.4P2.3P2.2P2.1P2.01INT WRRD EA /V P PALEV CCPSEN403938373635343332313029282726252423222120191817161514131211109876543218031P1.0图4-1 8031引脚图 8031 cite-feet figure根据应用系统功能要求,考虑低成本、小体积等因素,本设计采用Intel8031单片微计算机。

Intel 8031是MCS-51系列单片机目前使用最多的一种基本产品,在它的内部包括一个8位的CPU,128个字节的RAM,21个特殊功能寄存器(SFR),4个8位并行I/O口,1个全双工的串行口,2个16位的定时器、计数器。

但Intel 8031片内无程序存储器,因此,必须外扩EOPROM芯片存放用户程序。

Intel 8031的引脚配置如图4-1所示,40条引脚按功能来分,可分为三部分。

Intel 8031的引脚电源及时钟引脚包括电源引脚V CC、V SS,时钟引脚XTAL1、XTAL2。

电源引脚接入单片机的工作电源。

V CC(40脚):接+5 V电源;V SS(20脚):接地。

时钟引脚外接晶体时与片内的反相放大器构成一个振荡器,它提供单片机的是时钟控制信号。

时钟引脚也可外接晶体振荡器。

XTAL1(19脚):接外部晶体的一个引脚。

在单片机内部,它是一个反相放大器的输入端。

当采用外接晶体振荡器时,此引脚外接地。

XTAL2(18脚):接外部晶体的另一端在单片机内部接至反相放大器的输出端。

若采用外部振荡器时,该引脚接收振荡器的信号,即把此信号直接接到内部时钟发生器的输入端。

控制引脚包括RESET(即RST)、ALE、PSEN、EA,此类引脚提供控制信号,有些引脚具有复杂功能。

(1)RST/VPD(9脚) 当振荡器运行时,在此引脚加上两个机器周期的高电平将使单片机复位(RST)。

复位后应使此引脚电平为≤ V的低电平,以保证单片机正常工作。

掉电期间,此引脚可接上备用电源(VPD),以保值内部RAM中的数据不流失。

当V CC下降到低于规定值,而VPD在其规定的电压范围内(5±)时,VPD就向内部RAM提供备用电源。

(2)ALE/PROG(30脚) 当单片机访问外部存储器时,ALE(地址锁促允许)输出脉冲的下降沿用于锁存16位地址的低8位。

即使不访问外部存储器,ALE端有周期性正脉冲输出,其频率为振荡器频率的1/6。

但是,每当访问外部数据存储器时,在两个机器周期中ALE只出现一次,即丢失一个ALE脉冲。

ALE端可以驱动8个TTL负载。

对于片内具有EPROM型的单片机8751,在EPROM编程期间,此引脚用于输入编程脉冲PROG。

(3)PSEN(29脚) 此输出为单片内访问外部程序存储器的读选通信号。

在从外部程序存储器取指令(或常数)期间,每个机器周期PSEN信号将不出现。

PSEN同样可以驱动8个TTL负载.(4)EA /V PP(31脚) 当EA端保持高电平时,单片机访问内部程序存储器,但在PC(程序计数器)值超过OFFFH时,将自动转向执行外部程序存储器内的程序。

当EA端保持低电平时,则只访问外部程序存储器,不管是否有内部程序存储器。

对8031来说,因其无内部程序存储器,所以该脚必须接地,这样只能选择外部程序存储器。

输入/输出引脚输入/输出(I/O)口引脚包括P0口、P1口、P2口和P3口。

(1)P0口(~)双向8位三态I/O口,此口为地址总线低8位及数据总线分时复用口,可带8个LS TTL负载。

(2)P1口(~)8位准双向I/O口(作为输入时,口锁存器置1),可带4个LS TTL负载。

(3)P2口(~)8位准双向I/O口,与地址总线高8位复用,可驱动4个LS TTL负载。

(4)P3口(~)8位准双向I/O口,为双功能复用口,可带4个LS TTL负载。

Intel 8031的内部结构单片机8031内部总体结构如图4-2所示。

按功能划分,它由8个部分组成,即微处理器(CPU)、程序存储器(ROM/EPROM)、特殊功能寄存器(SFR)、I/O口、(P0口、P1口、P2口、P3口)、串行口、定时器/计数器及中断系统,它们是通过片内单一总线连接起来的。

由于本设计选用的单片机为8031,所以它的片内无程序存储器。

考虑到本设计的需要下面仅对8031的时钟和复位电路、存储器的扩展作详细的介绍。

XTAL1XTAL2CCSS图4-2 8031单片机内部总体结构Collectivity structure of SCM 8031Intel 8031的时钟和复位电路(1)8031的时钟可以由内部方式或外部方式产生。

内部方式的时钟电路如图4-3(a)所示,利用8031内部的振荡电路,并在XTAL1和XTAL2两引脚间外接晶体以及电容CX1和CX2可以在20~100pF之间选择,电容的大小对振荡频率有微小影响,可起频率微调作用。

外部方式的时钟电路如图4-3(b)所示,XTAL1接地,XTAL2接外部振荡器。

外部振荡器的振荡信号应为低于12MHz的方波信号。

为保证XTAL1的电平为TTL逻辑,故外接一个~10kΩ的上拉电阻。

外部振(a)(b)图4-3 8031时钟电路Clock circuit of SCM 8031(a)内部方式时钟电路;(b)外部方式时钟电路(a) Inside mode clock circuit;(b) Exterior mode clock circuit(2)8031的复位方式通常有上电自动复位和按钮复位两种,上电复位电路原理如图4-4(a)所示,而图4-4(b)为兼有上电复位和按钮复位的复位电路。

(a)(b)图4-4复位电路Replacement circuit上电复位的工作原理是:通电瞬间,RC电路充电,RST端出现正脉冲,只要RST端保持10ms以上的高电平,就能使单片机有效复位。

当振荡频率选用6MHz时,C取22 μF,R取1 KΩ。

在需要人工复位大的情况下,按动按钮,RST端出现高电平,便能可靠的实现复位。

此时R S 取200Ω,R K取1 KΩ。

在实际的应用系统中,若有外部扩展的I/O接口电路也需要初始复位,如果它们的复位端与8031的复位端相连,复位电路中的R、C参数要受到影响,此时需要重新调整R、C参数以保证可靠的复位。

如果8031的复位与外部I/O口的复位不要求同步,外围I/O接口的复位端可以不和8031的复位端相连,外围I/O接口电路可采用独立的上电复位电路。

Intel 8031存储器的扩展8031单片机的程序存储器空间,数据存储器空间是相互独立的。

8031内部无程序存储器,外部程序存储空间最大可扩展至64 KB。

外部数据存储器(简称外部RAM)的地址空间最大也可扩至64 KB。

由于8031的数据存储器和I/O地址空间是统一编址的,在64 KB的外部RAM 空间内,可划出一定的区间作为外部扩展接口的地址空间。

程序存储器的扩展:由于选用的单片机Intel 8031片内无程序存储器,所以必须接在单片机Intel 8031的外部扩展一片程序存储器作为程序的存储单元。

在本设计中,选用EPROM 作为单片机Intel 8031的外部扩展程序存储器。

EPROM 是可擦除、可编程只读存储器,由独立的编程器进行编程(烧程序)。

EPROM 可重新改写程序,但通常要把EPROM 芯片从系统中折下来,放到紫外线下照射才能擦除,然后才能重写。

常用的EPROM 程序存储器的芯片有:2716( 2 K ×8)、2732(4 K ×8)、2764(8 K ×8)、27128(16 K ×8)、27256(32 K ×8)、27512(64 K ×8)。

图4-5和表4-1给出了2716芯片的端子图和常见的EPROM 芯片的主要技术指标。

A 10 Q 7Q 3CS A 8 A 9 OE ~V CC V PP A 7~A 0 Q 0 ~Q 2 GND图4-5 芯片2716的引脚图 Cite-feet of 2713 CMOS chip 表4-1 常见的EPROM 芯片的主要技术指标Table4-1 Mostly technique guideline of familiar chip EPROM①EPROM 的读出时间按型号而定,一般在100-300 ns 间,表中列出的为典型值。

图4-5中涉及的端子符号的意义如下: (1)A 0~A i 地址输入线,i =10~11;(2)Q 0~Q 7 三态数据总线,读或编程校验时为数据输出线,编程时为数据输入线。

维持或编程禁止时呈高阻态。

(3)CE 选片信号输入线,“0”(即TTL 低电平)有效。

(4)PGM 编程脉冲输入线。

(5)OE 读选通信号输入线,“0”有效。

(6)V PP 编程电源输入线,V PP 值因芯片型号和制造厂商而异。

(7)V CC电源输入线,V CC一般为+5 V。

(8)GND线路地。

程序存储器的扩展时,除必须有EPROM芯片,还必须有锁存器芯片。

相关文档
最新文档