常微分方程试题库
常微分复习题
1. 如果微分方程 0),,,,()(='n y y y x F Λ左端为未知函数及其各阶导数的( 一 )次有理整式,则它称为线性微分方程。
2. 形如()()(y x f dxdyϕ= )的方程,称为变量可分离方程,其中)(x f 和)(y ϕ分别是y x , 的连续函数。
3. 方程()dy P x y dx=的通解为( ()P x dxy ce ⎰= )这里c 是任意的常数。
4. 方程0),(),(=+dy y x N dx y x M 是恰当方程的充要条件是(M Ny x∂∂=∂∂ ),其中(,),(,)M x y N x y 在区域G 内连续可微。
5. 函数),(y x f 称为在闭矩形区域 b y y a x x D ≤-≤-00,:上关于y 满足利普希兹条件,如果存在常数0>L 使得不等式( 2121),(),(y y L y x f y x f -≤- )对所有D y x y x ∈),(),,(21都成立。
其中L 称为利普希兹常数。
6. 初值问题(3.1),若),(y x f 在区域G 内连续且关于y 满足局部Lipschtiz 条件,则任一非饱和解均可延拓为( 饱和解 )。
7. 设初值问题(3.1)满足初始条件00()y x y =的解是唯一的,记为),,(00y x x y ϕ=,则在此关系式中, (,)x y 与00(,)x y 可以调换其相对位置.即在解的存在范围内成立关系式( 00(,,)y x x y ϕ= )。
8. 如果),(y x f 以及(yy x f ∂∂),( )在G 内连续,则(3.1)的解),,(00y x x y ϕ=作为 00,,x x y 的函数,在它定义范围内连续可微。
9. 0)()()(1111=++++---x t a dt dx t a dtx d t a dt x d n n n n n n Λ称为( n 阶线性齐次微分方程 )。
常微分方程试题及答案
常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
高等数学题库常微分方程
高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。
2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。
3、通解为xce y =(c 为任意常数)的微分方程是___________。
4、满足条件()()=+?dx x f x f x2的微分方程是__________。
5、 y y x 4='得通解为__________。
6、1+=y dxdy的满足初始条件()10=y 的特解为__________。
7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。
8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。
二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。
常微分方程试题库
常微分方程试题库二、计算题(每题6分)1. 解方程:0cot tan =-xdy ydx ;2. 解方程:x y xye 2d d =+; 3. 解方程:;4. 解方程:t e x dtdx23=+; 5. 解方程:0)2(=+---dy xe y dx e y y ;6. 解方程:0)ln (3=++dy x y dx xy;7. 解方程:0)2()32(3222=+++dy y x x dx y x xy ;8. 解方程:0485=-'+''-'''x x x x ; 9. 解方程:02)3()5()7(=+-x x x ; 10. 解方程:02=-''+'''x x x ; 11. 解方程:1,0='-'='+'y x y x ;12. 解方程:y y dx dyln =; 13. 解方程:y x e dxdy-=;14. 解方程:02)1(22=+'-xy y x ;15. 解方程:x y dxdycos 2=;16. 解方程:dy yx x dx xy y )()(2222+=+;17. 解方程:x xy dx dy42=+;18. 解方程:23=+ρθρd d ;19. 解方程:22x y xe dxdy+=;20. 解方程:422x y y x =-';选题说明:每份试卷选2道题为宜。
二、计算题参考答案与评分标准:(每题6分) 1. 解方程:0cot tan =-xdy ydx解: ,2,1,0,2,±±=+==k k x k y πππ是原方程的常数解, (2分)当2,πππ+≠≠k x k y 时,原方程可化为:0cos sin sin cos =-dx xxdy y y ,(2分) 积分得原方程的通解为:C x y =cos sin . (2分)2. 解方程:x y xye 2d d =+ 解:由一阶线性方程的通解公式⎰⎰+⎰=-),)(()()(dx e x f C e y dxx p dxx p (2分)x xx xdxx dx e Cedx e C edx e e C e 31)()(23222+=+=⎰+⎰=---⎰⎰分)(分)(223. 解方程:解:由一阶线性方程的通解公式⎰⎰+⎰=-))(()()(dx e x f C e y dxx p dx x p (2分)=⎰⎰+⎰-)sec (tan tan dx xe C e xdxxdx(2分)⎰+=)sec (cos 2xdx C xx x C sin cos +=. (2分)4. 解方程:t e x dtdx23=+ 解:由一阶线性方程的通解公式⎰⎰+⎰=-))(()()(dt e t f C e x dtt p dt t p (2分)=⎰⎰+⎰-)(323dt e e C e dtt dt (2分)⎰+=-)(53dt e C e t t t t e Ce 2351+=-. (2分) 5. 解方程:0)2(=+---dy xe y dx e y y解:原方程可化为:02=+---y y xde ydy dx e , (2分) 即 0)(2=--y xe d y , (2分) 原方程的通解为:C y xe y =--2. (2分)6. 解方程:0)ln (3=++dy x y dx xy解:原方程可化为:0ln )(ln 3=++xdy dy y x yd , (2分) 即 0)41ln (4=+y x y d , (2分) 原方程的通解为:C y x y =+441ln . (2分)7. 解方程:0)2()32(3222=+++dy y x x dx y x xy解:因为xNx x y M ∂∂=+=∂∂62,所以原方程为全微分方程, (2分) 由 02323222=+++ydy x dy x dx y x xydx , (1分) 得: 0)()(232=+y x d y x d , (2分) 故原方程的通解为:C y x y x =+232. (1分)8. 解方程:0485=-'+''-'''x x x x 解:其特征方程为:0)2)(1(485223=--=-+-λλλλλ, (1分) 特征根为2=λ为2重根,1=λ. (2分) 所以其基本解组为: t t t e te e ,,22, (2分) 原方程的通解为: t t t e C te C e C x 32221++=. (1分)9. 解方程:02)3()5()7(=+-x x x 解:其特征方程为:0)1()1(2223357=+-=+-λλλλλλ, (1分) 特征根为:0=λ为3重根,1=λ,为2重根,1-=λ为2重根.(2分) 所以其基本解组为: 2,1t t ,t t t t te e te e --,,,, (2分) 原方程的通解为:t t t t te C e C te C e C t C t C C x --++++++=76542321. (1分)10. 解方程:02=-''+'''x x x 解:其特征方程为:0)22)(1(2223=++-=-+λλλλλ, (1分) 特征根为:i ±-==11321,,λλ. (2分) 所以其实基本解组为: t e t e e t t t s i n ,c o s ,--,(2分) 原方程的通解为: t e C t e C e C y t t t sin cos 321--++=. (1分)11. 解方程:1,0='-'='+'y x y x ; 解:原方程可化为:21,21-='='y x , (2分)积分得通解为:212,2c t y c t x +-=+=. (4分)12. 解方程:y y dxdyln = 解:原方程可化为:0ln 1=-dx dy yy , (3分)积分得原方程的通解为:C y x =ln ln . (3分)13. 解方程:y x e dxdy-= 解:原方程可化为: dx e dy e x y =, (3分) 积分得原方程的通解为:c x y +=. (3分)14. 解方程:02)1(22=+'-xy y x解:0=y 是原方程的常数解, (1分) 当0≠y 时,原方程可化为:012122=-+dx x xdy y , (2分)积分得原方程的通解为:c x y +-=-1ln 21. (3分) 15. 解方程:x y dxdycos 2= 解:0=y 是原方程的常数解, (1分) 当0≠y 时,原方程可化为:xdx dy ycos 12=, (2分) 积分得原方程的通解为:x c y sin 1-=-. (3分)16. 解方程:dy yx x dx xy y )()(2222+=+解:0=y ,0=x 是原方程的常数解, (1分) 当,0≠x 0≠y 时,原方程可化为:dx xx dy y y )11()11(22+=+,(2分) 积分得原方程的通解为:c x x y y +-=---11ln ln . (3分)17. 解方程:x xy dxdy42=+ 解:分析可知2=y 是其特解. (2分)对应齐方程的02=+xy dxdy通解为:2x ce y -=, (2分) 故原方程的通解为:22+=-x ce y . (2分)18. 解方程:23=+ρθρd d 解:分析可知32=ρ是其特解. (2分)对应齐方程03=+ρθρd d 的通解为:θρ3-=ce , (2分)故原方程的通解为:323+=-θρce . (2分)19. 解方程:22x y xe dxdy+= 解:原方程可化为: dx xe dy e x y 22=-, (3分) 积分得原方程的通解为:c e e x y =+-22. (3分)20. 解方程:422x y y x =-' 解:分析可知4x y =是其特解. (2分) 又对应齐方程02=-'y y x 的通解为:2cx y =, (2分) 故原方程的通解为:42x cx y +=. (2分)。
常微分方程练习题
常微分方程练习题习题一一、单项选择题.1.微分方程yy32coyy5的阶数是().A.1B.2C.3D.52.克莱罗方程的一般形式是().A.y某y(y)B.某某y(y)C.y某y(某)D.某某y(y)3.下列方程中为全微分方程的是().A.某dyyd某某dyyd某0B.022某y某y22C.某dyyd某0D.某dyyd某0 2某某4.用待定系数法求方程y2yy某e的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y 某(a某b某c)e5.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件二、填空题1.方程y某tany的所有常数解是.某2某某22某某2某某2某某3某2C满足的一阶方程是.2.函数y523.设y1某e某e2某,y2某e某e 某,y3某e某e某e2某为某一常系数二阶非齐次方程的三个解,则此方程为.24.方程y1y满足解的存在唯一性定理条件的区域是.d某某dt5.系统的零解的是稳定的.dyydt三、求下列一阶微分方程的通解.dyy4某2y210d某某dyyy2(co某in某)2.d某1.3.(某2y)d某某dy0.四、求下列高阶方程的通解.1.yy1co某2.试用观察法求方程(1ln某)y11y2y0的通解.某某某y5z五、求解微分方程组y5某3y的通解.z某3zd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题1.设f(某)在[0,)上连续,且limf(某)0,求证:方程某dyyf(某)的任意解yy(某)均d某有limy(某)0.某2.假设m不是矩阵A的特征值,试证非齐线性方程组其中C,P是常数向量.d某A某Cemt,有一解形如:(t)Pemt.dt习题二一、单项选择题1.微分方程dyy2某2的阶数是().d某A.1B.2C.3D.42.克莱罗方程的一般形式是().A.y某y(y)B.某某y(y)C.y某y(某)D.某某y(y)3.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.n阶齐次线性常微分方程的任意n1个解必定().A.可组成方程的一个基本解组B.线性相关C.朗斯基行列式不为0D.线性无关5.用待定系数法求方程y2yy某e的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.当n时,微分方程yP(某)yQ(某)y为伯努利方程.n某2某某22某某2某某2某某某2.在方程某p(t)某q(t)某0中,当系数满足条件时,其基本解组的朗斯基行列式等于常数.3.若y=y1(某),y=y2(某)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.24.方程y1y满足解的存在唯一性定理条件的区域是.5.设某0I,Y1(某),,Yn(某)是区间I上线性齐次微分方程的n个解,则Y1(某),,Yn(某)在区间I上线性相关的条件是向量组Y1(某0),,Yn(某0)线性相关.三、求下列一阶微分方程的通解.1.某yy(某y)ln2.某y某dyyy2(co某in某)d某3.(ye某ey)d某(1ey)dy0四、求下列高阶方程的通解.1.y某yy02.yy21co某d某5y4某dt五、求解微分方程组的通解.dy4y5某dtd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题.1.设分因子.f(某,y)及f连续,试证方程dyf(某,y)d某0为线性方程的充要条件是它有仅依赖与某的积yd2ydyp(某)q(某)y0中,p(某)在区间I上连续且恒不为零,2.设在方程试证它的任意两个线d某d某2性无关解的朗斯基行列式是在区间I上严格单调函数.习题三一、单项选择题.1.微分方程y某某iny的阶数是().A.1B.2C.3D.52.下列方程中为全微分方程的是().A.某dyyd某某dyyd某0B.022某y某yC.某dyyd某0D.某2dyy2d某03.微分方程yP(某)yQ(某)y,当n1时为().A.一阶线性齐次微分方程B.一阶线性非齐次微分方程C.伯努利方程D.里卡蒂方程4.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件5.用待定系数法求方程y2yy(某22某)e某的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.函数某c1cotc2int(其中c1,c2为任意常数)满足的一阶方程是.2.方程tanyd某cot某dy0所有常数解是.3.设y1某e某e2某,y2某e某e某,y3某e某e某e2某为某一常系数二阶非齐次方程的三个解,则此方程为.24.方程y1y满足解的存在唯一性定理条件的区域是.n某某2某某2某某2某某22某5.与初值问题某2某7t某et,某(1)7,某(1)2等价的一阶方程组的初值问题为.三、求下列一阶微分方程的通解.1.(某1)y2某y02.22dyyy2(co某in某)d某3.(某4y)y2某3y5四、求下列高阶方程的通解.1.t某2t某2某02.某某2某02某y5z五、求解微分方程组y5某3y的通解.z某3zd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题.1.设f(某)在[0,)上连续,且limf(某)0,求证:方程某dyyf(某)的任意解yy(某)均d某有limy(某)0.某2.证明:二阶线性齐次方程的任意两个线性无关解组的朗斯基行列式之比是一个不为零的常数.习题四一、单项选择题1.微分方程y某y某2的通解中含有任意常数的个数为().A.1B.2C.3D.42.当n1时,微分方程yp(某)yq(某)yn最确切的名称为().A.一阶线性齐次微分方程B.伯努利方程C.一阶线性非齐次微分方程D.里卡蒂方程3.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.在整个数轴上线性无关的一组函数为().A.某,C.e某2,某1,某1B.0,某,某2,某3e某2D.e2某,某e某25.用待定系数法求方程y2yy某2e某的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.方程tanyd某cot某dy0所有常数解是.2.若yy1(某),yy2(某)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.23.方程y1y满足解的存在唯一性定理条件的区域是.某2某某2某某2某某22某4.已知cot和int是二阶齐次线性方程某a(t)某b(t)某0的两个解,则a(t).5.如果常系数线性方程组某A某的特征值的实部都是负数,则该方程组的任一解当t时收敛于.三、求下列一阶微分方程的通解1.dyyytand某某某dyy某22.d某2某2y3.(ye某ey)d某(1ey)dy0四、求下列高阶方程的通解1.t某3t某5某02.某''某tant2d某4某5ydt五、求解常微分方程组.dy4y5某dt某ya某3六、判定系统(这里的a)的零解稳定性.3y某ay七、设y(某)在[0,)上连续可微,且有lim[y(某)y(某)]0,试证:limy(某)0.某某。
第七章常微分方程练习题(含答案)
第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。
(整理)常微分方程试题及参考答案
(整理)常微分方程试题及参考答案常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是________.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变量分离方程.4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.5.方程=(x+1)3的通解为________.6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满足初始条件(x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.8.方程+a1(t) +…+a n-1(t) +a n(t)x=0中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之等价的一阶方程组________.12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基解矩阵exp A t=________.13.方程组的奇点类型是________.二、计算题(共45分)1.(6分)解方程= .2.(6分)解方程x″(t)+ =0.3.(6分)解方程(y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程:S″(t)-S(t)=t+1满足S(0)=1, (0)=2的解.6.(7分)求方程组的基解矩阵Φ(t).7.(7分)验证方程:有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及连续,试证方程dy-f(x,y)dx=0为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤n|x1-x2|,其中0<n<1,证明< p="">方程x=f(x)存在唯一的一个解.常微分方程试题参考答案一、填空题(每小题3分,共39分)1.12. 2+c1t+c23.u=4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+7. (x)=8.对任意t9.x(t)=c1e t+c2te t+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2t[E+t(A+2E)+ ]13.焦点二、计算题(共45分)1.解:将方程分离变量为改写为等式两边积分得y-ln|1+y|=ln|x|-即y=ln 或e y=2.解:令则得=0当0时-arc cosy=t+c1y=cos(t+c1) 即则x=sin(t+c1)+c2当=0时y= 即x3.解:这里M=y-1-xy, N=x令u=xye-xu关于x求偏导数得与Me-x=ye-x-e-x-xye-x 相比有则因此u=xye-x+e-x方程的解为xye-x+e-x=c4.解:方程改写为这是伯努利方程,令z=y1-2=y-1 代入方程得解方程z==于是有或5.特征方程为特征根为对应齐线性方程的通解为s(t)=c1e t+c2e-t f(t)=t+1, 不是特征方程的根从而方程有特解=(At+B),代入方程得-(At+B)=t+1两边比较同次幂系数得A=B=-1故通解为S(t)=c1e t+c2e-t-(t+1)据初始条件得c1=因此所求解为:S(t)=6.解:系数矩阵A=则,而det特征方程det( )=0, 有特征根对对对因此基解矩阵7.解:因故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*这里R(X)= , 显然(当时)方程组*中,线性部分矩阵det(A- )=由det(A- )=0 得可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为线性方程则f(x,y)=因此仅有依赖于x的积分因子反之,若仅有依赖于x的积分因子。
常微分方程试题库
答:没有
20.方程的常数解是
.
答:
21.向量函数组在其定义区间上线性相关的 条件是它们的朗斯基
行列式,.
答:必要
22.方程满足解的存在唯一性定理条件的区域是 .
答: 平面
23.方程所有常数解是 .
答:
24.方程的基本解组是
.
答: 25.一阶微分方程的通解的图像是
答:2
维空间上的一族曲线.
代入原方程,有 , 可解出 . 故原方程的通解为 2.求下列方程组的通解
. 解 方程组的特征方程为
即 特征根为 ,
对应的解为
其中是对应的特征向量的分量,满足
可解得. 同样可算出对应的特征向量分量为 .
所以,原方程组的通解为
3.求方程的通解. 解:方程的特征根为,
齐次方程的通解为 因为不是特征根。所以,设非齐次方程的特解为
6.试用一阶微分方程解的存在唯一性定理证明:一阶线性方程 , 当 , 在上连续时,其解存在唯一 证明: 令 : , , 在上连续, 则 显然在上连续 , 因为 为上的连续函数 , 故在上也连续且存在最大植 , 记为 即, ,= 因此 一阶线性方程当 , 在上连续时,其解存在唯一
答:
8.若为齐次线性方程的一个基本解组,为非齐次线性方程的一个特解,
则非齐次线性方程的所有解可表为_____________________
答:
9.若为毕卡逼近序列的极限,则有 __________________
答:
10.______________________称为黎卡提方程,若它有一个特解 ,则
常微分方程
一、填空题
1.微分方程的阶数是____________
答:1
常微分方程期末选择题题库
常微分方程期末选择题题库选 择 题1、下列方程中为常微分方程的是( )(A) 2-210x x += (B) 2' y xy =(C) 2222u u u t x y∂∂∂=+∂∂∂ (D) 2y x c =+(c 为常数)2、下列微分方程是线性的是( )(A)22' y x y =+ (B)2" xy y e += (C)2"0 y x += (D)2'-y y xy =3、方程2-2 "3' 2xy y y x e ++=特解的形状为( )(A)2-21x y ax ey = (B) 2-21() x y ax bx c e =++(C)22-21()x y x ax bx c e =++ (D) 22-21()xy x ax bx c e =++4、下列函数组在定义域内线性无关的是( )(A) 4, x (B) 2,2, x x x (C)22 5,cos ,sin x x (D) 21,2,,x x5、微分方程2-yxdy ydx y e dy =的通解是( )(A)(-) y x y c e = (B)()y x y e c =+ (C)()xy x e c =+ (D) (-)yy x c e =(A)20 t dt xdx += (B)sin 1x =(C) 1 y x c =++(c 为常数) (D) 22220u ux y∂∂+=∂∂ 7、下列微分方程是线性的是( ) (A)2'1y y =+ (B)11dy dx xy=+(C)2' y by cx += (D) 4'0y xy +=8、方程 "-2' 2(cos 2sin )xy y y e x x x +=+特解的形状为( )(A) 1[()cos sin ]xy e Ax B x C x =++ (B) y e Ax x C x x1=+[cos sin ](C)y e Ax B x Cx D x x1=+++[()cos ()sin ] (D)y xe Ax B x Cx D x x1=+++[()cos ()sin ]9、下列函数组在定义域内线性无关的是( )(A)31, , x x (B)2 22,,x x x(C)21,sin ,cos2x x (D)225,sin (1),cos (1)x x ++10、微分方程2-ydx xdy y exdx =的通解是( )(A)() x y x e c =+ (B)( ) x x y e c =+ (C)(-) xx y c e = (D)(-)xy x e c =(A)22-10 x y += (B) 2' xy y= (C)222222u u ux y∂∂∂=+∂∂∂ (D)2x y c +=(c 为常数)12、下列微分方程是线性的是( )(A) dy dx yx= (B)2y '+6y '=1 (C) y '=y3+sin x (D)y '+y =y 2cos x13、方程y ''+y =2sin x 特解的形状为( )(A) )sin cos (1x B x A x y += (B) y Ax x 1=sin(C)y Bx x 1=cos (D)y Ax x x 12=+(cos sin )14、下列函数组在定义域内线性无关的是( )(A) 0,1, t (B) e t ,2e t ,e -t (C)e t e t tt--3322sin ,cos (D) t t t t ,||,242+15、微分方程ydx-xdy=x 2e x dx 的通解是( )(A) y=x(c+e x ) (B) x=y(c+e x ) (C) x=y(c-e x ) (D) y=x(c-e x )(A) x 2+y 2-z 2=0 (B) y ce x=(C) ∂∂∂∂u t u x=22(D) y=c 1cost+c 2sint (c 1,c 2为常数)17、下列微分方程是线性的是( )(A) )(t x ' -x=f(t) (B)3y '+y=cos x (C) x +2y '=y '' (D) y '+(1/3)y =y 418、方程y ''-2y '+3y =e -x cos x 特解的形状为( )(A)y A x B x 1=+cos sin (B) y Ae x1=-(C)y e A x B x x1=+-(cos sin ) (D)y Axe x x1=-cos19、下列函数组在定义域内线性无关的是( )(A) 23,,t t t e e e (B) 20,, t t(C) )22cos(),1(sin 12++t t ,(D) 4-t,2t-3,6t+820、微分方程xdx-ydy=y 2e y dy 的通解是( )(A) x=y(e y + c) (B) x=y(c-e y ) (C) y=x(e x +c) (D) y=x(c-e y )(A) x 3+1=0 (B) y ce x= (C)∂∂∂∂u t u x=22(D) ''+=y y e x2'22、下列微分方程是线性的是( )(A)y ''+y 2=1+x (B)y '2+y=cosx (C) y '-2y=2x 2 (D) xdx+ydy=023、方程''-+=-y y y e x69163'特解的形状为( )(A) 31xy Ae = (B)y Ax e x123=(C) y Axe x13= (D) y e A x B x x1333=+(sin cos )24、下列函数组在定义域内线性无关的是( )(A)2,,x x x e xe x e (B) 222,cos , cos x x (C) 21,2,x (D) 5420,,x x e x e x25、微分方程ydx-xdy=2x 2e x dx 的通解是( )(A) y=x(c-2e x ) (B) x=y(c+2e x ) (C) x=y(c-2e x ) (D) y=x(c+2e x )26、微分方程dy dx y x tg yx=+的通解为( ) (A)1sin yxcx= (B) sin yx =x +c (C)sin y x =c x (D) sin x y=c x 27、微分方程2y y ''=(y ')2的通解()(A) (x-c )2 (B) c 1(x -1)2+c 2(x +1)2 (C) c 1+(x -c 2)2 (D) c 1(x -c 2)228、微分方程xdy-ydx=y 2e y dy 的通解为()(A) y=x(e x +c) (B) x=y(e y +c) (C) y =x(c-e x ) (D) x=y(c-e y )29、微分方程y ''-2y '-3y =0的通解*y 为()(A) c x c x 123+ (B) c x c x123+ (C) c e c e x x123+- (D)c e c e x x123-+30、微分方程y ''-3y '+2y =2x -2e x 的特解y *的形式是()(A) (ax+b)e x (B) (ax+b)xe x (C) (ax+b)+ce x (D) (ax+b)+cxe x31、通过坐标原点且与微分方程dy dxx =+1的一切积分曲线均正交的曲线方程是( )(A) e x y-=+1 (B) e x y++=10 (C) e x y=+1 (D) 222y x x =+32、设y(x)满足微分方程(cos 2x)y ¹+y=tgx 且当x=π/4时y=0,则当x =0时y =( )(A) π/4 (B) -π/4 (C) -1 (D) 133、已知y=y(x) 的图形上点M(0,1)处的切线斜率k=0,且y(x)满足微分方程''=+y y 12('),则y(x)=( )(A) sin x (B)cos x (C) shx (D) chx34、微分方程y ''-2y '-3y =0的通解是y =( )(A)33x x ++ (B) c x c x123+ (C) c e c e x x123+- (D) c e c e xx123-+35、设y x y x y x 123(),(),()是线性非齐次方程d y dxa x dydx b x y f x 22++=()()()的特解, 则y c c y x c y x c y x =--++()()()()11211223(A) 是所给微分方程的通解 (B) 不是所给微分方程的通解(C) 是所给微分方程的特解(D) 可能是所给微分方程的通解 也可能不是所给微分方程的通解,但肯定不是特解36、设 y(x)满足 y 'sinx=yLny ,且y (π/2)=e ,则y (π/4)=( )(A) e /2 (B)-1e (C) e 21- (D) e 23-37、微分方程2cos 0yn ytgx y x -+=的通解是( )(A) arctgx c + (B)1x ()arctgx c + (C) 1arctgx c x+ (D)1arctgx c x++38、微分方程(1+y 2)dx=(arctgy-x)dy 的通解为( )(A) x arctgy ce arctgy=-+-1 (B) x arctgy ce arctgy=-++1(C) x arctgy ce c arctgy=-++ (D) x arctgy ce c arctgy=-+39、微分方程''+=y y x 4212cos 的通解为y=( )(A) e c x c x c x+++1223(B) c x c x c 1223++(C) c e c x c x 123++ (D) c x c x c 13223++40、微分方程''-''+=y y y x 76sin 的通解是 y =( )(A) e x x x-++574774sin cos (B) c e c x c e c x x x1234+++-sin cos(C) ()()c c x e c c x e x x1233+++- (D) ()sin ()cos c c x x c c x x 1233+++41、通过坐标原点且与微分方程dy dx x =+1的一切积分曲线均正交的曲线方程是( )(A) e x y-=+1 (B) e x y++=10 (C) e x y=+1 (D) 222y x x =+42、设y(x)满足微分方程xy ¹+y-y 2Lnx=0且当y(1)=1,则y(e)=( )(A) 1/e (B) 1/2 (C) 2 (D) e43、已知()y y x =满足()()x xy y dx y xy x dy 2222220+-++-=,且(1)1y =则y 122+⎛⎝ ⎫⎭⎪=( ) (A) 1 (B) 1/2 (C) 22 (D) 122+ 44、微分方程''=+y xy x 212'满足初始条件yx ==01,y x '==03的特解是y=( )(A)x x 33++ (B) x x 331++ (C) x x 23++ (D) x x 231++45、微分方程''++=y y y 6130'的通解是y=( )(A) e c x c x x-+31222(cos sin ) (B) e c x c x x21233(cos sin )-(C)e c x c x x 31222(cos sin )- (D)e c x c x x -+21233(cos sin )46、微分方程y y x c '++=20满足y x ==20的特解y =( )(A) 4422xx -(B)x x2244-(C))2ln (ln 2-x x(D))2ln (ln 12-x x47、微分方程y ytgx yx 'cos -+=2的通解是( )(A) 1()cos x c x y=+ (B) ()cos y x c x =+(C)1cos x x c y=+(D) cos y x x c =+48、微分方程(y 2-6x )y ' +2y=0的通解为( )(A) 2x-y 2+cy 3=0 (B) 2y-x 3+cx 3=0 (C) 2x-cy 2+y 3=0 (D) 2y-cx 3+x 3=049、微分方程''+=y y x 4212cos 的特解的形式是y=( )(A) cos2a x (B) cos2ax x (C)sin2cos2 a x b x + (D)sin2cos2 ax x bx x +50、满足微分方程''-''+=y y y x 76sin 的一个特解 y*=( )(A)e x xx -++574774sin cos (B)ex xx++574774sin cos(C)e x xx -++6574774sin cos(D)e e x x xx--+++6574774sin cos51、初值问题"40,(0)0,'(0)1y y y y +===的解是()y x =( )(其中其通解为1212()sin 2cos2,,y x c x c x c c =+为任意常数)(A)1sin 23x (B)1sin 22x (C)1sin33x (D )1sin32x52、下列方程中为常微分方程的是( )(A)42310x x x +-+= (B) 2"'y y x +=(C) 2222u u ut x y∂∂∂=+∂∂∂ (D)2u v w =+53、下列微分方程是线性的是( )(A)2"'y xy y x ++= (B)22'y x y =+ (C)2"()y xy f x -= (D)3"'y y y -=54、已知(,)F x y 具有一阶连续偏导,且(,)()F x y ydx xdy +为某一函数的全微分,则( )(A) F F x y ∂∂=∂∂ (B)F F x y x y ∂∂=∂∂ (C)F F x y x y∂∂-=∂∂ (D)F Fy x x y∂∂=∂∂55、设123(),(),()y x y x y x 是二阶线性非齐次微分方程"()'()()y P x y Q x y f x ++=的三个线性无关解,12,c c 是任意常数,则微分方程的解为( )(A)11223c y c y y ++ (B)1122123(1)c y c y c c y ++--(C)1122123()c y c y c c y +-+ (D)1122123(1)c y c y c c y +---56、若连续函数()f x 满足关系式20()ln 22xt f x f dt ⎛⎫=+ ⎪⎝⎭⎰,则()f x 为( )(A)2xe ln (B)22xe ln (C)2xe ln + (D)22xe ln +57、若3312,xxy e y xe ==,则它们所满足的微分方程为( )(A)"6'90y y y ++= (B)"90y y -= (C)"90y y += (D)"6'90y y y -+=58、设123,,y y y 是二阶线性微分方程"()'()()y p x y q x y r x ++=的三个不同的特解,且1223y yy y--不是常数,则该方程的通解为( )(A)11223c y c y y ++ (B)1122231()()c y y c y y y -+-+(C)11232c y c y y ++(D)112223()()c y y c y y -+- 59、设()f x 连续,且满足方程()10()()f tx dt nf x n N =∈⎰,则()f x 为( )(A)1n n cx - (B)(c c 为常数) (C)sin c nx (D)s cco nx60、设12,y y 是方程"()'()0y p x y q x y ++=的两个特解,则1122y c y c y =+(12,c c 为任意常数)( )(A)是此方程的通解 (B)是此方程的特解 (C)不一定是该方程的解 (D)是该方程的解61、方程22(2)"(2)'(22)0x x y x y x y ---+-=的通解为( )(A)12xy c e c =+ (B)12xxy c e c e -=+ (C)212xy c e c x =+ (D)12xy c e c x =+62、微分方程"'1xy y e -=+的一个特解形式为( )(A)x ae b + (B)x axe bx + (C)xae bx + (D)xaxe b +63、方程22()(2)0pxy y dx qxy x dy --+=是全微分的充要条件是( )(A)4,2p q == (B)4,2p q ==- (C)4,2p q =-= (D)4,2p q =-=-64、表达式22[cos()][cos()3]x y ay dx by x y x dy +++++是某函数的全微分,则( )(A)2,2a b == (B)3,2a b == (C)2,3a b == (D)3,3a b ==65、方程"'"'xy y y y xe -+++=是特解形式为( )(A)()xax b e -+ (B)()xx ax b e -+(C)2()xx ax b e -+ (D)[()cos 2()sin 2]xe ax b x cx d x +++66、方程"2'xy y y xe -+=的特解*y 的形式为( )(A) x axe (B)()xax b e + (C)()x x ax b e + (D)2()xx ax b e +67、已知1cos y wx =与23cos y wx =是微分方程2"0y w y +=的解,则1122y c y c y =+是( )(A) 方程的通解 (B)方程的解,但不为通解 (C)方程的特解 (D)不一定是方程的解68、方程"3'232x y y y x e -+=-的特解*y 的形式为( )(A) ()x ax b e + (B)()x ax b xe + (C)()xax b ce ++ (D)()xax b cxe ++69、方程22"3'2xy y y x e -++=特解的形式为( )(A)22xy ax e -= (B)22()xy ax bx c e -=++(C)22()xy x ax bx c e -=++(D)222()xy x ax bx c e -=++70、下列函数在定义域内线性无关的是( )(A) 4x (B)22x x x ⋅⋅ (C)225cos sin x x ⋅⋅ (D)212x x ⋅⋅⋅71、微分方程2yxdy ydx y e dy -=的通解是( )(A)()yx y c e =- (B)()yx y e c =+ (C)()xy x e c =+ (D)()yy x c e =-72、方程5,3dx dyx y x dt dt=-+-=-的奇点为( ) (A)(0,0) (B) (0,5) (C) (5,5) (D) (5,0)73、(0,0)为系统,23dx dyy x y dt dt ==--的( ) (A) 鞍点 (B) 结点 (C) 中心 (D) 焦点74、方程dx dy dz xz yz xy==的首次积分是( ) (A)2xy z c-= (B)2x c y= (C)2xyz c-=(D)2xz xc-=75、方程22222dx dy dzxy z xy xz==--的首次积分是( )(A)2x y zc x ++= (B)222x y z c y++= (C)y c x=(D)z c x =76、系统22dxx y dt dy x y dt⎧=-+⎪⎪⎨⎪=--⎪⎩的奇点类型为( )(A) 稳定结点 (B) 不稳定结点(C) 稳定焦点 (D) 不稳定焦点 77、系统3474dx x y dt dy x y dt⎧=-⎪⎪⎨⎪=-⎪⎩的奇点类型为( )(A) 鞍点 (B) 焦点(C) 中心 (D) 结点78、方程"xy y xe -+=有形如( )特解(A)xy Axe -= (B)21()xy Ax Bx c e -=++(C)1()xy Ax B e -=+ (D)xAe -79、方程2"6'13(512)t x x x e t t ++=-+特解形状为( )(A)21()tx At Bt c e =++ (B)1()tx At B e =+(C)1tx Ate =80、方程"2'2cos xy y y e x --+=的特解形状为( )(A)1cos xy A xe -= (B)1sin xy A xe -=(C)1(cos sin )x y e A x B x -=+ (D)1xy Ae -=81、方程"2'2cos tx x x te t -+=的特解形状为( )(A)21()cos t x At Bt c e t =++ (B)21()sin tx At Bt c e t =++(C)1(cos sin )tx e A t B t =+ (D)221()cos ()sin t tx At Bt c e t Dt Et F e t =++++82、微分方程()()0x y y xye e dx xe e dy ---++=的通解为( )(A)x y ye xe c -= (B)y x ye xe c -= (C)x yye xe c --= (D)x yye xe c --=83、微分方程(sin 2sin )(cos 2cos )0x xe y y x dx e y x dy -++=的通解为( )(A)sin 2cos xe y y x c += (B)s 2cos xe co y y x c +=(C)sin cos xe y y x c += (D)s 2cos xe co y y x c +=84、微分方程(2)0y ye dx x xy e dy -+=的通解为( )(A)2y xe y c += (B)2ye y c x += (C)yxe xy c +=x85、方程2(3)20xe y dx xydy ++=的通解为( )(A)32xxe x y c += (B)232(2)xx x e x y c -+=(C)232(22)xx x e x y c --+= (D)232(2)xx e x y c -+=86、下列方程为常微分方程的是( )(A)2220x y z ++= (B)22u u ux y y∂∂∂+=∂∂∂ (C)sin sin y A t B t =+ (D)'xy Ae = 87、方程432422(22)(3)0yyxy e xy y dx x y e x y x dy +++--=的积分因子为( )(A)21()x x μ= (B)1()x xμ= (C)41()y y μ= (D)21()y y μ=88、方程(2)0yye x xy e dy -+=的积分因子为( )(A)21()x x μ= (B) 1()x xμ= (C)21()y y μ= (D)1()y yμ=89、方程2(3)20xe y dx xydy ++=的积分因子为( )(A) 1()x xμ= (B)2()x x μ= (C) 1()y yμ=(D)2()y y μ=90、方程(1)0y xy dx xdy --+=的积分因子为( )(A)()xx e μ= (B)()xx e μ-= (C)()yy e μ= (D)()yy e μ-=91、方程23(225)(22)0x y y dx x x dy ++++=的积分因子为( )(A) 1()x x μ= (B)21()1x xμ=+ (C) 1()y y μ= (D)21()1y y μ=+92、方程3222(1)0xy dx x y dy +-=的积分因子为( )(A) 1()x x μ= (B) 21()x xμ=(C) 1()y yμ=(D)21()y y μ=93、方程(2cos )0xxe dx e ctgx y y dy ++=的积分因子为( )(A)()sin x x μ= (B)()s x co x μ= (C)()sin y y μ= (D)()s y co y μ=94、方程22()0ydx x y x dy -++=的积分因子为( )(A) 21()x x μ= (B) 21()y y μ=(C)221(,)x y x y μ=+ (D)1(,)x y x yμ=+95、方程3222()0y dx x xy dy +-=的积分因子为( )(A) 21x μ= (B)1xy μ=(C)221x y μ= (D)21x y μ=《常微分方程》选择题及答案 1996、方程36330x y x dx dy y y x ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭的积分因子为( )(A)x μ= (B)y μ=(C)xy μ= (D)2x y μ=97、下列方程中为常微分方程的是( ) (A)2-210x x += (B) 2 ' y xy =(C) 2222u u ut x y ∂∂∂=+∂∂∂(D) 2 y x c =+(c 为常数)98、下列微分方程是线性的是() (A)22 ' y x y =+ (B)2 " x y y e +=(C)2"0 y x += (D)2 '-y y xy =。
试题集:常微分方程
1.常微分方程y′+2y=4e x的通解形式为?o A. y=2e x+Ce−2xo B. y=2e x+Ce2xo C. y=2e−x+Ce2xo D. y=2e−x+Ce−2x参考答案: A解析: 该方程为一阶线性常微分方程,通过积分因子法求解,积分因子为e2x,从而得到通解形式。
2.方程y″−4y′+4y=0的特征方程为?o A. r2−4r+4=0o B. r2+4r+4=0o C. r2−4r−4=0o D. r2+4r−4=0参考答案: A解析: 特征方程由方程的系数确定,对于y″−4y′+4y=0,特征方程为r2−4r+4=0。
3.方程y″+9y=0的解中包含的函数类型是?o A. 指数函数o B. 三角函数o C. 对数函数o D. 幂函数参考答案: B解析: 该方程的特征方程为r2+9=0,解得r=±3i,因此解中包含三角函数。
4.方程y′=2y+3的平衡点是?o A. y=−32o B. y=32o C. y=−3o D. y=3参考答案: A解析: 平衡点满足y′=0,解方程0=2y+3得y=−3。
25.方程y″+4y′+4y=e2x的特解形式为?o A. y=Ax2e2xo B. y=Axe2xo C. y=A2xe2xo D. y=Ae2x参考答案: B解析: 由于e2x的形式,特解形式应为Axe2x。
6.方程y′=y2−4的奇点是?o A. y=2o B. y=−2o C. y=0o D. y=2,y=−2参考答案: D解析: 奇点满足y′=0,解方程0=y2−4得y=2,y=−2。
7.方程y″−5y′+6y=0的特征根是?o A. r=2,r=3o B. r=−2,r=−3o C. r=2,r=−3o D. r=−2,r=3参考答案: A解析: 特征方程为r2−5r+6=0,解得r=2,r=3。
8.方程y′=3y+e x的通解中包含的函数是?o A. e3xo B. e−3xo C. e xo D. e−x参考答案: A解析: 该方程为一阶线性方程,通解中包含e3x。
常微分方程试题库试卷库2
常微分方程期终考试试卷(1)一、 填空题(30%)1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。
有只含y 的积分因子的充要条件是______________。
2、_____________称为黎卡提方程,它有积分因子______________。
3、__________________称为伯努利方程,它有积分因子_________。
4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。
5、形如___________________的方程称为欧拉方程。
6、若()t φ和()t ψ都是'()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是_____________________________。
7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。
二、计算题(60%)1、3()0ydx x y dy -+=2、sin cos2x x t t ''+=-3、若2114A ⎡⎤=⎢⎥-⎣⎦试求方程组x Ax '=的解12(),(0)t ηϕϕηη⎡⎤==⎢⎥⎣⎦并求exp At4、32()480dy dyxy y dx dx-+=5、求方程2dyx y dx =+经过(0,0)的第三次近似解6.求1,5dx dyx y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性.三、证明题(10%)1、n 阶齐线性方程一定存在n 个线性无关解。
常微分方程期终试卷(2)一、填空题 30%1、 形如____________的方程,称为变量分离方程,这里.)().(y x f ϕ分别为x .y的连续函数。
2、 形如_____________的方程,称为伯努利方程,这里x x Q x P 为)().(的连续函数.n ,可化为线性方程。
常微分方程试题库试卷库
常微分方程期终考试试卷(1)一、 填空题(30%)1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。
有只含y 的积分因子的充要条件是______________。
2、_____________称为黎卡提方程,它有积分因子______________。
3、__________________称为伯努利方程,它有积分因子_________。
4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。
5、形如___________________的方程称为欧拉方程。
6、若()t φ和()t ψ都是'()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是_____________________________。
7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。
二、计算题(60%)1、3()0ydx x y dy -+=2、sin cos2x x t t ''+=-3、若2114A ⎡⎤=⎢⎥-⎣⎦试求方程组x Ax '=的解12(),(0)t ηϕϕηη⎡⎤==⎢⎥⎣⎦并求expAt4、32()480dy dyxy y dx dx-+=5、求方程2dyx y dx =+经过(0,0)的第三次近似解6.求1,5dx dyx y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性.三、证明题(10%)1、n 阶齐线性方程一定存在n 个线性无关解。
常微分方程期终试卷(2)一、填空题 30%1、 形如____________的方程,称为变量分离方程,这里.)().(y x f ϕ分别为x.y 的连续函数。
2、 形如_____________的方程,称为伯努利方程,这里x x Q x P 为)().(的连续函数.n ,可化为线性方程。
常微分方程习题集
《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为x.y的连续函数。
2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。
4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解-。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x=,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的微分方程是.2、方程的通解中含有任意常数的个数为.3、方程有积分因子的充要条件为.4、连续是保证对满足李普希兹条件的条件.5、方程满足解的存在唯一性定理条件的区域是.6、若是二阶线性齐次微分方程的基本解组,则它们(有或无)共同零点.7、设是方程的通解,则.8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一解.9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线性无关解是.10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y= y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1, x=±1, (B) y=±1(C) x=±1 (D) y=1, x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A)(B)(C)2 (D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y= y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1, x=±1, (B) y=±1(C) x=±1 (D) y=1, x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A)(B)(C)2 (D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4.线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3.方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)1.x=+y2.tgydx-ctydy=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一.解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05.=6-x6.=27.已知f(x)=1,x0,试求函数f(x)的一般表达式。
(完整版)常微分方程练习试卷及答案
常微分方程练习试卷一、填空题。
1.方程 x 3 d2x 10 是阶(线性、非线性)微分方程 .dt 22. 方程 x dyf (xy ) 经变换 _______ ,能够化为变量分别方程.y dx3.微分方程 d 3 y y 2x 0 知足条件 y(0) 1, y (0)2 的解有个 .dx 34. 设 常 系 数 方程 yy*2 xxx,则此方程的系数ye x 的 一个 特解 y ( x) eexe,, .5. 朗斯基队列式 W (t )0是函数组 x 1(t), x 2 (t),L , x n (t ) 在 a x b 上线性有关的条件 .6. 方程 xydx (2 x 2 3y 2 20) dy 0 的只与 y 有关的积分因子为.7. 已知 X A(t) X 的基解矩阵为 (t ) 的,则 A(t ).8. 方程组 x '2 0.0 x 的基解矩阵为59. 可用变换 将伯努利方程化为线性方程 .10 . 是知足方程 y2 y 5y y 1 和初始条件的独一解 .11. 方程的待定特解可取的形式 :12. 三阶常系数齐线性方程 y 2 y y 0 的特点根是二、计算题1. 求平面上过原点的曲线方程 , 该曲线上任一点处的切线与切点和点 (1,0) 的连线互相垂直 .dy x y 1 2.求解方程.dxx y 3d 2 x dx 2。
3. 求解方程 x2( )dt dt4.用比较系数法解方程 . .5.求方程y y sin x 的通解.6.考证微分方程(cos x sin x xy 2 )dx y(1 x2 )dy0 是适合方程,并求出它的通解.311A X 的一个基解基解矩阵(t) ,求dXA X7.设 A,,试求方程组dX241dt dt 知足初始条件x(0)的解 .8.求方程dy2x13y2经过点 (1,0)的第二次近似解 . dx9.求dy)34xy dy8y20 的通解(dxdx10. 若A 21试求方程组 x Ax 的解(t ),(0)141,并求expAt2三、证明题1.若(t), (t ) 是 X A(t) X 的基解矩阵,求证:存在一个非奇怪的常数矩阵 C ,使得(t)(t )C .2.设 ( x) (x0 , x) 是积分方程y(x)y0x2 y( )]d ,x0 , x [ , ] [x0的皮卡逐渐迫近函数序列 {n (x)} 在 [,] 上一致收敛所得的解,而(x) 是这积分方程在 [ ,] 上的连续解,试用逐渐迫近法证明:在[,] 上( x)( x) .3. 设都是区间上的连续函数 ,且是二阶线性方程的一个基本解组 . 试证明 :(i)和都只好有简单零点(即函数值与导函数值不可以在一点同时为零);(ii)和没有共同的零点;(iii)和没有共同的零点.4. 试证:假如(t ) 是dXAX 知足初始条件(t0 )的解,那么(t) exp A(t t 0 ) dt.答案一 . 填空题。
(完整版)常微分方程试题及答案2023年修改整理
第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。
( X )2.微分方程的通解中包含了它所有的解。
( X )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( O ) 4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( X )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21 (C 为任意常数)。
( O )6.y y sin ='是一阶线性微分方程。
( X ) 7.xy y x y +='33不是一阶线性微分方程。
( O ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。
( O )9.221xy y x dxdy +++=是可分离变量的微分方程。
( O )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是可分离变量微分方程。
②()()022=-++dy y x y dx x xy 是可分离变量微分方程。
③xy y dx dy x ln ⋅=是齐次方程。
④x x y y x sin 2+='是一阶线性微分方程。
⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。
2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。
3.x e y 2-=''的通解是21241C x C e x ++-。
4.x x y cos 2sin -=''的通解是21cos 2sin 41C x C x x +++-。
5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。
6.微分方程()06='-''⋅y y y 是 2 阶微分方程。
《常微分方程》期末考试试题库
《常微分方程》期末考试试题目录《常微分方程》期末考试题(一) (1)《常微分方程》期末考试题(二) (6)《常微分方程》期末考试题(三) (13)《常微分方程》期末考试题(四) (18)《常微分方程》期末考试题(五) (24)《常微分方程》期末考试题(六) (31)《常微分方程》期末考试题库 (36)《常微分方程》期末考试题(一)一、填空题(每空2 分,共16分)。
1、方程22d d y x x y+=满足解的存在唯一性定理条件的区域是 xoy 平面 . 2. 方程组n x x xR Y R Y F Y∈∈=,),,(d d 的任何一个解的图象是 n+1 维空间中的一条积分曲线.3.),(y x f y '连续是保证方程),(d d y x f xy=初值唯一的 充分 条件. 4.方程组⎪⎪⎩⎪⎪⎨⎧=-=x ty y txd d d d 的奇点)0,0(的类型是 中心5.方程2)(21y y x y '+'=的通解是221C Cx y +=6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是()()x P y N 17.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是 线性无关8.方程440y y y '''++=的基本解组是x x x 22e ,e -- 二、选择题(每小题 3 分,共 15分)。
9.一阶线性微分方程d ()()d yp x y q x x+=的积分因子是( A ). (A )⎰=xx p d )(e μ (B )⎰=xx q d )(e μ (C )⎰=-x x p d )(e μ (D )⎰=-xx q d )(e μ10.微分方程0d )ln (d ln =-+y y x x y y 是( B )(A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A) 1±=x (B)1±=y (C)1±=y , 1±=x (D)1=y , 1=x12.n 阶线性非齐次微分方程的所有解( D ).(A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( D )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D )无三、计算题(每小题8分,共48分)。
常微分方程练习试卷及答案
常微分方程练习试卷及答案常微分方程练试卷一、填空题。
1.方程d2x/dt2+1=是二阶非线性微分方程。
2.方程xdy/ydx=f(xy)经变换ln|x|=g(xy)可以化为变量分离方程。
3.微分方程d3y/dx3-y2-x=0满足条件y(0)=1,y'(0)=2的解有一个。
4.设常系数方程y''+αy'+βy=γex的一个特解y(x)=e-x+e2x,则此方程的系数α=-1,β=2,γ=1.5.朗斯基行列式W(t)≠0是函数组x1(t),x2(t)。
xn(t)在[a,b]上线性无关的条件。
6.方程xydx+(2x2+3y2-20)dy=0的只与y有关的积分因子为1/y3.7.已知X'=A(t)X的基解矩阵为Φ(t),则A(t)=Φ(t)-1dΦ(t)/dt。
8.方程组x'=[2,5;1,0]x的基解矩阵为[2e^(5t),-5e^(5t);e^(5t),1]。
9.可用变换将伯努利方程y'+p(x)y=q(x)化为线性方程。
10.方程y''-y'+2y=2e^x的通解为y(x)=C1e^x+C2e^2x+e^x。
11.方程y'''+2y''+5y'+y=1和初始条件y(0)=y'(0)=y''(0)=0的唯一解为y(x)=e^-x/2[sin(5^(1/2)x/2)-cos(5^(1/2)x/2)]。
12.三阶常系数齐线性方程y'''-2y''+y=0的特征根是1,1,-1.二、计算题1.设曲线方程为y(x)=kx/(1-k^2),则曲线上任一点处的斜率为y'(x)=k/(1-k^2),切点为(0,0),切线方程为y=kx,点(1,0)的连线斜率为-1/k,因此k=-1,曲线方程为y=-x/(1+x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.方程 过点(A).
(A)有无数个解(B)只有三个解(C)只有解 (D)只有两个解
9. 连续是保证 对 满足李普希兹条件的(B)条件.
(A)充分(B)充分必要(C)必要(D)必要非充分
10.二阶线性非齐次微分方程的所有解(C).
(A)构成一个2维线性空间(B)构成一个3维线性空间
答:线性无关(或:它们的朗斯基行列式不等于零)
16.方程 的基本解组是.
答:
17.若 在 上连续,则方程 的任一非零解与 轴相交.
答:不能
18.在方程 中,如果 , 在 上连续,那么它的任一非零解在 平面上与 轴相切.
答:不能
19.若 是二阶线性齐次微分方程的基本解组,则它们共同零点.
答:没有
20.方程 的常数解是.
答:形如 的方程
11.一个不可延展解的存在区间一定是区间.
答:开
12.方程 满足解的存在唯一性定理条件的区域是.
答: ,(或不含x轴的上半平面)
13.方程 的所有常数解是.
答:
14.函数组 在区间I上线性无关的条件是它们的朗斯基行列式在区间I上不恒等于零.
答:充分
15.二阶线性齐次微分方程的两个解 为方程的基本解组充分必要条件是.
解:
两边积分
所以 方程的通解为
故 过 的解为
通过点 的解向左可以延拓到 ,但向右只能延拓到 2,
所以解的存在区间为
4.求方程 的奇解
解:利用 判别曲线得
消去 得 即
所以方程的通解为 ,所以 是方程的奇解
5.
解: = , = , = ,所以方程是恰当方程.
得
所以
故原方程的解为
6.
解: 故方程为黎卡提方程.它的一个特解为
答:在 上连续且关于 满足利普希兹条件
5.对于任意的 , ( 为某一矩形区域),若存在常数 使______________________,则称 在 上关于 满足利普希兹条件.
答:
6.方程 定义在矩形区域 : 上,则经过点 的解的存在区间是___________________
答:
7.若 是齐次线性方程的 个解, 为其伏朗斯基行列式,则 满足一阶线性方程___________________________________
,令 ,则方程可化为 ,
即 ,故
7.
解:两边同除以 得
所以 ,另外 也是方程的解
8.
解当 时,分离变量得
等式两端积分得
即通解为
9.
解齐次方程的通解为
令非齐次方程的特解为
代入原方程,确定出
原方程的通解为
+
10.
解方程两端同乘以 ,得
令 ,则 ,代入上式,得
通解为
原方程通解为
11.
解因为 ,所以原方程是全微分方程.
(A) (B) -1(C) +1(D) +2
2.如果 , 都在 平面上连续,那么方程 的任一解的存在区间( D ).
(A)必为 (B)必为
(C)必为 (D)将因解而定
3.方程 满足初值问题解存在且唯一定理条件的区域是(D).
(A)上半平面(B)xoy平面
(C)下半平面(D)除y轴外的全平面
4.一阶线性非齐次微分方程组的任两个非零解之差(C).
(C)不能构成一个线性空间(D)构成一个无限维线性空间
11.方程 的奇解是( D).
(A) (B) (C) (D)
12.若 , 是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为(C).
(A) (B)
(C) (D)
13. 连续是方程 初值解唯一的(D)条件.
(A)必要(B)必要非充分(C)充分必要(D)充分
答:
8.若 为齐次线性方程的一个基本解组, 为非齐次线性方程的一个特解,则非齐次线性方程的所有解可表为_____________________
答:
9.若 为毕卡逼近序列 的极限,则有 __________________
答:
10.______________________称为黎卡提方程,若它有一个特解 ,则经过变换___________________,可化为伯努利方程.
14.方程 (C)奇解.
(A)有一个(B)有两个(C)无(D)有无数个
15.方程 过点(0, 0)有(A).
(A)无数个解(B)只有一个解(C)只有两个解(D)只有三个解
三、求下列方程的通解或通积分
1.
解: ,则 所以
另外 也是方程的解
2.求方程 经过 的第三次近似解
解:
3.讨论方程 , 的解的存在区间
常微分方程试题库.
————————————————————————————————作者:
————————————————————————————————日期:
常微分方程
一、填空题
1.微分方程 的阶数是____________
答:1
2.若 和 在矩形区域 内是 的连续函数,且有连续的一阶偏导数,则方程 有只与 有关的积分因子的充要条件是_________________________
取 ,原方程的通积分为
即
12.
解:当 , 时,分离变量取不定积分,得
通积分为
13.
解原方程可化为
于是
积分得通积分为
14.
解:令 ,则 ,代入原方程,得
分离变量,取不定积分,得
( )
通积分为:
15.
解令 ,则 ,代入原方程,得
,
当 时,分离变量,再积分,得
答:
21.向量函数组 在其定义区间 上线性相关的条件是它们的朗斯基行列式 , .
答:必要
22.方程 满足解的存在唯一性定理条件的区域是.
答: 平面
23.方程 所有常数解是.
答:
24.方程 的基本解组是.
答:
25.一阶微分方程的通解的图像是维空间上的 阶线性齐次微分方程基本解组中解的个数恰好是(A )个.
(A)不是其对应齐次微分方程组的解(B)是非齐次微分方程组的解
(C)是其对应齐次微分方程组的解(D)是非齐次微分方程组的通解
5.方程 过点 共有(B )个解.
(A)一(B)无数(C)两(D)三
6.方程 (B)奇解.
(A)有三个(B)无(C)有一个(D)有两个
7. 阶线性齐次方程的所有解构成一个(A)线性空间.
答:
3._________________________________________称为齐次方程.
答:形如 的方程
4.如果 ___________________________________________ ,则 存在唯一的解 ,定义于区间 上,连续且满足初始条件 ,其中
_______________________.