七年级找规律方法总结材料

合集下载

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是 10021- ,第n 个数是 n 12-。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n 项是2n -1,第100项是2100—1(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。

例如:1,9,25,49,(81),(121),的第n 项为( 2)12(-n ),1,2,3,4,5.。

,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。

(三)看例题:A : 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且是n 的3次幂,即:n 3+1B :2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:n2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索: 一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3n =4n =5……数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(完整版)七年级找规律方法总结

(完整版)七年级找规律方法总结

七年级找规律方法总结有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方.一、通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.二、相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用三、绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.四、乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+.例3 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)n=1,S=1①n=2,S=5②③n=3,S=9字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.例 1 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25 352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……752=5625= ,852=7225= (1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.例2如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n表示S的公式.【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61 ①填空:第11,12,13三个数分别是 , , ;②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来: 找规律方法总结:一、 基本方法——看增幅增幅相等;增幅不相等(增幅有规律、增幅无规律);二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

七年级找规律的方法与技巧

七年级找规律的方法与技巧

七年级找规律的方法与技巧嗨,七年级的小伙伴们!你们在数学学习中是不是经常碰到找规律的题目呀?可别被它们吓住了,今天我就来和你们分享一下找规律的方法与技巧,这就像是打开神秘宝藏的钥匙哦。

咱先来说说数字规律。

比如说,给你一串数字:1,3,5,7,9……你乍一看,可能觉得眼花缭乱。

不过呢,咱静下心来仔细瞧。

我就会想啊,这相邻的两个数字之间有啥关系呢?这时候我就像个小侦探一样。

嘿,发现了没?后面的数字比前面的数字总是大2呢。

这就好像是在爬楼梯,每一步都往上跨2个台阶。

那如果让你接着往后写数字,这还不容易吗?直接在前一个数字上加2就成啦。

再来看个稍微难一点的,像2,4,8,16,32……这又是什么规律呢?我先试着用后一个数字除以前一个数字,4÷2 = 2,8÷4 = 2,16÷8 = 2,32÷16 = 2。

哈哈,原来是后一个数字是前一个数字的2倍呢。

这就好比是一颗小种子,每次都以2倍的速度生长。

那下一个数字就是32×2 = 64喽。

图形规律也很有趣呢。

有一次我和同桌小明一起做图形规律的题。

题目是一些正方形,第一个正方形里有1个小圆圈,第二个正方形里有4个小圆圈,第三个正方形里有9个小圆圈。

小明挠着头说:“这啥规律呀,乱七八糟的。

”我就跟他说:“你看啊,第一个正方形边长是1,那小圆圈个数就是1×1 = 1;第二个正方形边长是2,小圆圈个数就是2×2 = 4;第三个正方形边长是3,小圆圈个数就是3×3 = 9。

”小明眼睛一亮,说:“哦,原来是这样啊,那下一个正方形边长是4,小圆圈个数就是4×4 = 16喽。

”这图形规律就像是搭积木,每一块积木的数量都和它所在的层数有关系呢。

还有那种数字和图形结合的规律题。

我和前桌小红讨论过一道题。

是一些三角形,三角形的边上有点,第一个三角形每条边上有1个点,第二个三角形每条边上有2个点,第三个三角形每条边上有3个点。

七年级探索规律知识点

七年级探索规律知识点

七年级探索规律知识点在七年级数学课程中,探索规律是一项非常重要的知识点。

通过研究数据和图形,学生们可以发现和总结规律性的关系,并将其应用到解决各种数学问题的过程中。

本篇文章将简要介绍一些常见的探索规律知识点。

1. 数列和通项公式数列是由一串数按照一定次序排列而成的序列。

而数列的通项公式就是描述这个数列的模式和规律的公式。

在七年级课程中,学生们将会学习如何找到一些常见数列的通项公式,如斐波那契数列、等差数列和等比数列等。

同时,学生们将学习如何利用数列的通项公式来计算数列中的任意一项。

2. 图形规律图形规律涉及到由点、线和面组成的各种形状和图案。

在七年级课程中,学生们需要探究不同的图形之间的联系和规律。

例如,他们需要研究如何通过旋转、翻转和平移等操作来构建不同的图形,还需要了解几何图形的对称性和相似性等概念。

3. 平均数和中位数平均数和中位数是统计学中两个非常重要的概念。

平均数是指一组数据的所有数值之和除以数据个数,而中位数是指一组数据按大小排列后的中间数。

通过研究这些统计概念,学生们可以更有效地处理和分析数字数据。

4. 几何图形的面积和周长几何图形的面积和周长是七年级数学中的重要概念。

在课程中,学生们将会涉及到矩形、正方形、三角形和圆形等基本几何图形的面积和周长的计算。

同时,学生也会学习如何将这些计算应用到实际问题中。

5. 概率概率是指某个事件发生的可能性。

在七年级数学中,学生们将会学习如何计算简单的概率,例如掷硬币和抽卡片等。

除此之外,学生们也会学习到如何利用概率来评估不同效益的选择和决策。

总之,探索规律是七年级数学课程中的一个重要知识点。

通过研究这些常见的规律和模式,学生们可以更好地理解和应用数学知识。

同时,这些探索规律的知识也可以帮助学生们在解决实际问题时更有效地思考和分析。

初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律地一些窍门

初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律地一些窍门

初一数学找规律方法初一数学找规律方法,初一数学找规律的一些窍门导读:就爱阅读网友为大家分享的“初一数学找规律方法,初一数学找规律的一些窍门”资料,内容精辟独到,非常感谢网友的分享,希望这篇资料对您有所帮助。

初中数学考试中,经常出现数列的找规律题,今天小编就此类题的解题方法为大家介绍。

初一数学找规律方法一、基本方法看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2(n-2)=2n-1,总增幅为:[3+(2n-1)](n-1)÷2=(n+1)(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,.试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,.序列号: 1,2,3, 4, 5,.容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26,同时减去2后得到新数列:0、3、8、15、24,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例: 4,16,36,64,?,144,196, ?(第一百个数)同除以4后可得新数列:1、4、9、16,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,2,5,10,17,26,0,6,16,30,48(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3-1=81 5-3=82 7-5=83 用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差有关找规律的初中数学题1) 4,16,36,64,,144,196, (第一百个数)2) 2,6,18,,162,486,3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4) 3-1=81 5-3=82 7-5=83用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=400002)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,1 4583)18894)(N+2)-N=4N+4=888,再算出N223的平方-221的平方=888最全初中数学公式和规律最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切.正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分跑不了,对角相等也有用,两组对角才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在△现;延长两腰交一点,△中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.以上关于“[读书技巧]初一数学找规律方法,初一数学找规律的一些窍门”的信息由网友上传分享,希望对您有所帮助,感谢您对就爱阅读网的支持!。

初一数学找规律经典题技巧解析

初一数学找规律经典题技巧解析

初一数学找规律经典题技巧解析
1. 嘿,你知道吗?有些初一数学找规律的题就像隐藏的宝藏等你去发现!比如说那道找数字规律的题,5、10、15、20,这不是很明显每个数都在递增嘛,这不就是等差数列嘛,哈哈,是不是很简单?技巧就是要先观察数字的变化趋势哟!
2. 哇塞,同学们,找规律的时候可要看仔细啦!像那种图形规律题,一堆图形摆在一起,可别眼花缭乱啦!比如三角形、圆形、正方形这样排列的,那肯定是有一定周期的呀,你得从这些图形中找到那个关键的点啊!记住了没?
3. 哎呀呀,初一数学找规律也没那么难嘛!就好比那道找式子规律的题,先别急着下手,好好看看式子之间的关系呀!为啥这个式子会这样变化,这里面肯定有门道的呀!你难道不想把它弄明白?
4. 嘿,初一的小朋友们,找规律的时候要大胆去猜呀!好比那道根据已知条件猜下一个数的题,不要怕错,先大胆猜一个,说不定就猜对了呢!这就像是在探险,勇敢迈出第一步才可能找到宝藏呀!
5. 哇哦,有时候找规律真的超有趣的!比如说那道找规律填数字,前几个数是2、4、6、8,这不是偶数序列嘛,简单得很呐!大家可别想得太复杂啦!
6. 哈哈,初一数学找规律的经典题,那就是一个个小挑战呀!就像那道要你根据几个数推出下一组数的,你就得像个小侦探一样去分析,去推理呀!能不能行呀你?
7. 哎哟喂,找规律可是门技术活呀!比如说那道通过几个算式找规律的,那算式里肯定藏着线索呢,瞪大眼睛好好找呀,你肯定能行的!
8. 哼,初一数学找规律一点都不可怕!像有些先递增后递减的规律题,多想想,多分析,肯定能找到突破口!加油吧同学们,这些题都能被你们拿下的!
我的观点结论就是:初一数学找规律需要细心观察、大胆猜测、认真分析,只要掌握了技巧,这些题都不在话下!。

七年级数学找规律知识点

七年级数学找规律知识点

七年级数学找规律知识点数学中的找规律是指通过寻找一系列数字、图形或符号之间的关系模式,以推断出一种规则或模式,从而预测下一个数字、图形或符号。

在七年级数学中,找规律是一个非常重要的知识点。

在本文中,我们将探讨数学找规律的几个主要主题,并介绍如何在七年级中学习这些知识点。

一、数字规律数字规律是数学中找规律的最基本形式。

在数字规律中,我们会看到一系列数字,我们需要通过观察以及计算它们之间的关系,找出其中的规律。

1、加、减法规律这是最简单的数字规律。

比如,你可能会看到1,3,5,7,9......这个数列中,每个数字都比前一个数字大2。

或者1,4,7,10,13......这个数列中,每个数字都比前一个数字大3。

在这种情况下,规律是这样的:每次加一个固定的值。

同样,我们可能会看到一个数列中的数字之间是减去一个固定值。

例如10,7,4,1......这个数列,每个数字都比前一个数字小3。

规律是这样的:每次减去一个固定的值。

2、乘法规律在一些数字规律中,每个数字都是前一个数字乘以一个固定值而得来的。

例如2,4,8,16......这个数列,每个数字都比前一个数字大2。

规律是这样的:每个数字都是前一个数字乘以2。

3、递推规律在递推规律中,每个数字都是前一个数字加上一个运算结果得到的。

例如1,3,6,10,15......这个数列,每个数字都是前一个数字加上一个递增的值。

规律是这样的:每次加一个递增的值。

二、图形规律图形规律是指通过一系列图形之间的关系找出规律的技能。

在七年级数学中,主要遇到的图形包括点阵、几何图形、折线图和条形图等。

当你试图找出这些图形中的规律时,你需要注意每个图形的数量、形状和位置。

你可能需要把它们画出来,以便更好地观察。

你可以寻找图形之间的相似之处和不同之处,或者你可以找到它们之间的对称性。

三、字母符号规律数学中的找规律不仅限于数字和图形,还可以涉及字母和其他符号。

例如,你可能会看到一些字母或符号之间的关系,并需要找出它们之间的规律。

初中数学数列找规律题技巧汇总

初中数学数列找规律题技巧汇总

初中数学数列找规律题技巧汇总
数列找规律是初中数学中的重要知识点,也是高中数学的基础。

以下是数列找规律题的一些技巧汇总:
1. 找通项公式
在数列中,如果我们能找到通项公式,就能根据公式求出任意
一项或多项的值。

找通项公式的方法有很多,如通过递推公式、差
分法、倍差法、画图法等。

2. 找首项和公差
如果数列是等差数列,可以通过找到首项和公差,从而求得任
意一项的值。

一些数列也可以通过等比数列的特点来求解。

3. 运用数学方法
有些数列的规律需要用到数学方法才能找出来,如利用余数、
最大公约数、质因数分解等。

4. 找规律
在找规律题中,找规律也是很重要的一步。

可以先列出前几项,观察它们之间的关系,找出规律后再利用规律解题。

5. 多做练
数列找规律需要不断地练才能熟练掌握。

平时多做练,同时认
真培养自己的逻辑思维能力和观察能力,相信你一定能在数列找规
律这方面获得很好的成绩。

记住这些技巧,相信数列找规律题在你心中不再是难题!。

七年级上册找规律知识点

七年级上册找规律知识点

七年级上册找规律知识点在初中数学中,找规律是一个重要的学习内容。

因为找规律不仅能帮助我们更好地理解数学中的概念,还可以帮助我们解决实际问题。

这篇文章将介绍七年级上册找规律知识点,帮助同学们学习和掌握。

一、数形关系数形关系是数学中的一个重要概念,它是指数学中的数字和图形之间的相互关系。

在寻找规律时,我们可以用数形关系简化问题,使之更加易于理解。

例如,在数列中,我们可以用图表的方式来展示数列中的数字,帮助我们更好地发现规律。

又如在找阶梯数时,我们可以将数字表示成阶梯形式,更加容易看出其规律所在。

二、奇偶性奇偶性也是数学中寻找规律时经常用到的一个概念。

在奇偶性中,我们将数字分成奇数和偶数两种,奇偶性的特点即决定了数列的规律。

例如,当我们在寻找具有奇偶性的数列规律时,我们可以发现:奇数列中的每一项之间的差为2,偶数列中的每一项之间的差为4。

利用该规律,我们可以更加快速的解决问题。

三、乘法性在乘法性中,我们将数列中的每一项都乘上一个常数来形成一个新的数列。

这种方法可以快速帮助我们发现数列规律。

例如,在找乘法因式时,我们可以找到数列中的因式将其乘上去,使之成为一个等差或等比数列,帮助我们更快速的解决问题。

四、通项公式在初中数学中,通项公式也是一个重要的知识点。

它是指用一个数学公式来表示数列中任意一项的表达式。

通项公式可以帮助我们在解决问题时更加快速地计算出各项的数值。

例如,在解决数列求和问题时,我们可以先通过通项公式来求出数列中每一项的数值,然后再进行加和,帮助我们更加顺利地解决问题。

总结初中数学中找规律是一个很有趣的学习内容,它不仅能增强我们对数学的兴趣,还能帮助我们更好地理解数学概念。

本文介绍了七年级上册找规律的知识点,包括数形关系、奇偶性、乘法性和通项公式。

希望同学们能够在学习和实践中顺利掌握这些知识点,取得好的成绩。

初中数学之10大找规律方法总结

初中数学之10大找规律方法总结

初中数学之10大找规律方法总结
找规律是数学研究过程中十分重要的一个环节,下面总结了初
中数学中常用的10种找规律方法,希望能够对同学们的研究有所
帮助。

1. 相邻两项间的关系:找出相邻两个数之间的规律,如公差、
倍数关系等。

2. 累加法:将所求的数字列出来累加,看其和与第几项相关。

3. 累乘法:将所求的数字列出来累乘,看其积与第几项相关。

4. 因式分解法:将数字进行因式分解,观察其因子,找出规律。

5. 奇偶性法:观察数字的奇偶性和结尾数字的规律。

6. 交错相加法:在一串数字中,用加减交替的方法,找出数字
之间的规律。

7. 格式法:观察数字的表达方式,如小数、分数等,找到其规律。

8. 取整型列举法:将数字取整后列举出来进行分析找规律。

9. 归纳法:根据前几项找出规律,得到通项公式,推导出后面
的答案。

10. 逆向思维法:找出已知答案与所求数的关系。

以上10种方法可以根据题目的不同特点和难度灵活组合使用,既可以单独使用其中一种方法,也可以多种方法结合使用,找出有
用的部分,最终得出正确答案。

希望以上总结能够帮助同学们更好地理解并掌握找规律的方法,提高数学解题能力。

七年级的找规律的题知识点

七年级的找规律的题知识点

七年级的找规律的题知识点七年级数学找规律的题知识点随着教育改革的深入,学生的数学学习也在不断提高。

在七年级的数学学习中,找规律的题目是重点和难点之一。

如何发现规律,并能够运用所学知识进行解题,是每个学生需要掌握的技能。

本文将介绍七年级找规律题目需要掌握的基本知识点和解题技巧。

一、数列的概念数列是由一定的规则依次排列而成的数的集合。

数列中的每个数叫做这个数列的项。

数列的第一个数叫做首项,数列的第n项叫做通项公式,用an来表示。

二、通项公式的推导要求解数列中的第n项,就需要求出通项公式。

通项公式的推导方法有很多种,但其中一种是比较普遍和简单的方法,可以用来解决大部分的数列问题。

例如:已知数列1,3,5,7,9,求第n项,找到数列中的规律后可以列出如下公式:an=2n-1这个公式是通过观察数列中每一个项的变化得到的。

具体方法是找到相邻两项之间的差值,得到2,2,2,2,然后再找到相邻两项差值之间的差值,发现是一个定值,为2。

于是得出了通项公式an=2n-1。

三、常用的数列类型1.等差数列等差数列是指相邻两项之间的差值都是一个定值。

例如:1,3,5,7,9,……就是一个公差为2的等差数列。

求等差数列的通项公式有多种方法,其中比较简单的一种是利用首项和公差来表示第n项:an=a1+(n-1)d其中a1是首项,d是公差。

2.等比数列等比数列是指相邻两项之间的比值都是一个定值。

例如:2,4,8,16,32,……就是一个公比为2的等比数列。

求等比数列的通项公式也有多种方法,其中比较简单的一种是利用首项和公比来表示第n项:an=a1×q^(n-1)其中a1是首项,q是公比。

3.斐波那契数列斐波那契数列是指前两项是1,从第三项开始,每一项都是前两项之和。

例如:1,1,2,3,5,8,13,21,……就是一个斐波那契数列。

斐波那契数列是一种特殊的数列,求其通项公式的方法也比较特殊,需要利用斐波那契数列的特性来推导。

找规律思维导图知识点总结

找规律思维导图知识点总结

找规律思维导图知识点总结
一、数列找规律
1. 等差数列的特点和求和公式
2. 等比数列的特点和求和公式
3. 通项公式和常项公式的确定方法
4. 数列的应用问题
二、图形找规律
1. 几何图形的特点和性质
2. 图形的对称性和相似性
3. 图形的旋转和平移规律
4. 图形的应用问题
三、排列组合找规律
1. 排列与组合的定义和区别
2. 排列组合的计算方法
3. 排列组合的应用问题
四、逻辑推理找规律
1. 数字逻辑推理
2. 关系逻辑推理
3. 条件逻辑推理
4. 逻辑推理的应用问题
五、综合运用
1. 数学、物理、化学等学科中的找规律问题
2. 生活中的找规律问题
3. 考试中的找规律题型
以上就是找规律思维导图知识点的总结,希望对大家有所帮助。

找规律是一个综合性很强的思维能力,在学习和生活中都会有很大的作用。

因此我们要多多练习,提高自己的找规律能力。

初一数学找规律方法 初一数学找规律方法,初一数学找规律的一些窍门

初一数学找规律方法 初一数学找规律方法,初一数学找规律的一些窍门

初一数学找规律方法初一数学找规律方法,初一数学找规律的一些窍门导读:就爱阅读网友为大家分享的“初一数学找规律方法,初一数学找规律的一些窍门”资料,内容精辟独到,非常感谢网友的分享,希望这篇资料对您有所帮助。

初中数学考试中,经常出现数列的找规律题,今天小编就此类题的解题方法为大家介绍。

初一数学找规律方法一、基本方法看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n 位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2(n-2)=2n-1,总增幅为:[3+(2n-1)](n-1)÷2=(n+1)(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,.试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,.序列号:1,2,3, 4, 5,.容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26,同时减去2后得到新数列:0、3、8、15、24,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196, ?(第一百个数)同除以4后可得新数列:1、4、9、16,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,2,5,10,17,26,0,6,16,30,48(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3 -1 =81 5 -3 =82 7 -5 =83 用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差有关找规律的初中数学题1) 4,16,36,64,,144,196, (第一百个数)2) 2,6,18,,162,486,3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4) 3 -1 =81 5 -3 =82 7 -5 =83用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=400002)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,14583)18894)(N+2) -N =4N+4=888,再算出N223的平方-221的平方=888最全初中数学公式和规律最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切.正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分跑不了,对角相等也有用,两组对角才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在△现;延长两腰交一点,△中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.以上关于“[读书技巧]初一数学找规律方法,初一数学找规律的一些窍门”的信息由网友上传分享,希望对您有所帮助,感谢您对就爱阅读网的支持!。

初一找规律经典题型(含部分问题详解)

初一找规律经典题型(含部分问题详解)

图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1)6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3 n =4 n =5 ……数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

七年级找规律知识点总结

七年级找规律知识点总结

七年级找规律知识点总结在七年级数学学习中,找规律是一个重要的知识点。

它不仅是数学思维训练的关键,也是后续学习代数和函数的基础。

在此,我将从什么是找规律、找规律的方法、找规律的应用等方面进行总结。

一、什么是找规律找规律是指在一组数或图形中寻找规律性、相似性和变化规律的过程,通过对这些规律进行总结、归纳和推广,进一步加深对数学规律的理解,提高分析问题的能力。

二、找规律的方法找规律并不是看起来简单,实则需要有一定的技巧。

以下是几种常用的找规律方法:1. 数列数列是较为常见的一种找规律方法,它可以用表格列出其中的数字,以便快速发现规律。

常见的数列有等差数列和等比数列,可以应用对应的公式来计算每一项。

2. 分组讨论法通过分类讨论,把一组数据分解成不同的部分,从而来看出各部分的规律、特性和联系。

例如,把一组数字按奇偶分为两部分,可以发现每个奇数与其前一个偶数之和均为奇数等规律。

3. 拆分组合法将数列拆分成若干个小部分,分析小部分与大部分之间的联系,进而得出规律。

例如,把一组数据分为前后两个部分,看它们之间有什么联系,是否有递推、递归和循环等规律。

4. 数数法计算第n项与第n-1项之间的差值,看是否为固定数值或以某种规则变化,通过推算找出每一项的值。

三、找规律的应用找规律的能力是数学学科中的一个重要基础,不仅可以应用到中考、高考中,还可以在未来的数学学习中得到广泛的应用。

1. 应用到代数学习中代数学习是找规律的延伸,通过找出规律,我们可以总结、提炼更加高级的数学规律和知识。

2. 应用到函数学习中函数学习需要有对数量关系的理解和掌握,而找规律正是我们深入剖析数量关系的一个过程。

通过找规律,我们可以逐步掌握函数的性质和运算规则。

3. 应用到计算机编程中计算机编程中也需要具有找规律能力,因为它涉及到算法设计和程序逻辑。

只有通过找规律,才能快速地设计出便捷、高效的程序。

总之,在学习数学过程中,找规律是一个重要的知识点。

七年级找规律知识点归纳

七年级找规律知识点归纳

七年级找规律知识点归纳在七年级数学课程中,找规律是一个重要的知识点。

它可以培养学生的观察力和思维能力,同时也是日常生活中必须掌握的技能之一。

下面我们将对七年级找规律知识点进行归纳总结,帮助大家更好地理解和掌握这一知识点。

一、数列的概念数列是由一些按照特定顺序排列的数所组成的序列,其中每一个数称为该数列的项。

数列可以写成$a_1,a_2,a_3,...,a_n$的形式,其中$a_1$为第一项,$a_2$为第二项,$a_3$为第三项,以此类推,$a_n$为第n项。

二、等差数列的性质等差数列是指每个数与它的前一个数之差等于同一个常数$d$的数列。

具体来说,等差数列的特点包括:1. 第一项$a_1$2. 公差$d$3. 通项公式$a_n=a_1+(n-1)d$4. 前n项和公式$S_n=\frac{n}{2}(a_1+a_n)$三、等比数列的性质等比数列是指每个数都是前一个数与同一个常数$q$相乘得到的数列。

具体来说,等比数列的特点包括:1. 第一项$a_1$2. 公比$q$3. 通项公式$a_n=a_1q^{n-1}$4. 前n项和公式$S_n=\frac{a_1(1-q^n)}{1-q}$四、找规律的方法找规律是指通过观察一组数据的特点和规律,推出其中的通项公式或递推公式。

找规律的方法可以分为以下几种:1. 数列的加减规律通过计算相邻两项之间的差值或和值,提取出数列的加减规律,从而得到通项公式。

2. 数列的乘除规律通过计算相邻两项之间的比值或积值,提取出数列的乘除规律,从而得到通项公式。

3. 数学归纳法通过数学归纳法来证明数列的通项公式或前n项和公式的正确性。

五、例题解析1.已知等差数列的首项为$a=5$,公差为$d=3$,求前10项的和。

解:根据前n项和公式可知,$S_{10}=\frac{10}{2}\times(5+a_{10})=\frac{10}{2}\times(5+28)=1 65$。

初中数学找规律的方法与技巧

初中数学找规律的方法与技巧

初中数学找规律的方法与技巧1. 哎呀呀,初中数学找规律呀,那首先咱得瞪大眼睛仔细瞧!比如说数列 1,3,5,7,9,这不就是相邻两个数相差 2 嘛,那下一个数不就很容易猜出来是11 啦!这就像走在路上找脚印,顺着就能发现下一步往哪儿走。

2. 嘿,你还可以用画图的办法来帮忙找规律呢!像图形的排列规律,你就画出来看看嘛。

比如三角形、正方形、三角形、正方形这样的排列,一画就明白接下来该是三角形啦!就好像给图案排队,一下子就清楚顺序啦。

3. 还有哇,把数字拆开来分析也超有用的呢!像 123,234,345,你看每个数的个位、十位、百位是怎么变化的,不就能找到规律啦!这多像拆礼物一样,一层一层解开就发现里面的奥秘啦。

4. 哇塞,你可别小瞧了计算哦!通过计算前后数的差值或者比值也能找到规律呢。

比如 2,4,8,16,算一下比值都是 2 呀,那下一个肯定是 32 啦!这不就跟升级打怪一样,知道了打法就不难啦。

5. 咱还可以从特殊到一般来找规律呢!先找几个特殊的例子看看,然后总结出一般的规律。

就好像从几个小朋友身上发现他们共同的爱好,那这就是大家普遍的特点啦。

6. 哈哈,别忘了观察数字的奇偶性呀!奇数偶数的分布有时候也藏着规律呢。

像 1,4,9,16,奇数位置和偶数位置就有不同的规律呢!这就像区分男生女生,特点一下子就出来了嘛。

7. 找规律的时候要大胆假设呀!觉得是什么规律就试试看嘛。

如果不对再换个想法,就像试衣服一样,这件不合适就换另一件呗。

8. 记住,细心和耐心是关键哟!千万别着急,慢慢找肯定能发现规律。

就跟找宝藏一样,得慢慢挖才能找到呀!我觉得呀,初中数学找规律并不难,只要掌握了这些方法与技巧,再加上自己的细心观察和思考,就能轻松搞定啦!。

初一找规律题型总结

初一找规律题型总结

初一找规律题型总结《初一找规律题型总结:规律的“奇妙探险”》嘿,家人们!今天咱就来唠唠初一的找规律题型。

初一啊,那可是充满新鲜和挑战的一年,而找规律题型就像是一个神秘的宝藏,等你去探索和发现。

你们可别小瞧了这些找规律的题啊,它们就像一群小机灵鬼,有时候藏得可深了。

刚遇到的时候,那真是让人摸不着头脑,脑袋里就像一团乱麻。

但是,嘿,别急,咱们得慢慢来,就像探险家一样,一点点去挖掘规律的踪迹。

有时候那些规律啊,就像是跟你捉迷藏。

它会在数字中间偷偷藏起来,你得瞪大了眼睛仔细瞧。

比如说,有些数字一会儿大,一会儿小,一会儿递增,一会儿又递减,这可把咱给整懵了。

但咱不能放弃啊,得静下心来,仔细琢磨。

就好像侦探在找线索,一点点分析,也许突然就灵光一闪,找到答案啦!还有些图形的找规律题,那就更有趣啦。

那些图形摆得稀奇古怪的,就问你能不能看出门道来。

这时候啊,咱就得发挥想象力,在脑子里把这些图形转来转去,看看能不能发现什么特别的地方。

说不定啊,某个角落的一个小细节就是解开规律的关键钥匙呢。

其实啊,找规律题型就像是一场游戏。

咱得带着玩游戏的心态去面对,别太紧张,也别太着急。

一旦找到了规律,那感觉,就跟打通了游戏关卡一样,别提多有成就感了。

而且啊,学会了找规律,以后再遇到什么难题,咱都不慌,因为咱知道,只要细心、耐心,总能找到答案的。

我还记得我刚开始做找规律题的时候,那真是抓耳挠腮啊,一道题能磨蹭半天。

但是慢慢地,经过不断地练习和总结,我找到了一些小窍门。

比如说,先看看相邻的数字或者图形有什么变化,然后再往长远一点看,也许就能发现更大的规律。

而且啊,有些规律是有周期性的,一旦发现了这个,问题就迎刃而解啦。

总之啊,初一的找规律题型就像是我们学习道路上的一个小挑战,也是一个小乐趣。

只要我们用心去探索,就一定能在这场奇妙的探险中找到属于我们自己的宝藏。

所以,同学们,别害怕找规律,勇敢地冲上去,让我们一起开启这场有趣的规律之旅吧!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级找规律方法总结
有理数及其运算篇
【核心提示】
有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方.
一、通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.
二、相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用
三、绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我
们要从七年级把绝对值学好,理解它的几何意义.
四、乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则
方面.
【核心例题】
例1计算:
2007
20061......431321211⨯++⨯+⨯+⨯
例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+.
例3 计算:⎪⎭
⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)
字母表示数篇
【核心提示】
用字母表示数部分核心知识是求代数式的值和找规律.
求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.
例 1 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25
352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……
752=5625= ,852=7225=
n=1,S=1
①n=2,S=5
②③
n=3,S=9
(1)找规律,把横线填完整;
(2)请用字母表示规律;
(3)请计算20052的值.
例2如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S表示三角形的个数.
(1)当n=4时,S= ,
(2)请按此规律写出用n表示S的公式.
【核心练习】
1、观察下面一列数,探究其中的规律:
—1,21,31-,41,51-,6
1 ①填空:第11,12,13三个数分别是 , , ;
②第2008个数是什么?
③如果这列数无限排列下去,与哪个数越来越近?.
2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:
找规律方法总结:
一、 基本方法——看增幅
增幅相等;增幅不相等(增幅有规律、增幅无规律);
二、基本技巧
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是( ),第n 个数是 ( )。

练习:
(1)2,9,28,65.....
(2)2,4,8,16.......
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。

例如:1,9,25,49,(),(),的第n项为()。

(三)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)技巧找出每位数与位置的关系。

再在找出的规律上加上第一位数,恢复到原来。

例:2,5,10、,17,26……
(四)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。

例:4,16,36,64,?,144,196,…?
(五)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。

当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。

(六)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

三、基本步骤
1、先看增幅是否相等,如相等,用基本方法(一)解题。

2、如不相等,综合运用技巧(一)、(二)、(三)找规律
3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧
(一)、(二)、(三)找出新数列的规律
4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题
四、练习题
1、找规律题
0,3,8,15,24,…… 2,5,10,17,26,……0,6,16,30,48,……
(1)第一组有什么规律?
(2)第二、三组分别跟第一组有什么关系?
(3)取每组的第7个数,求这三个数的和?
2、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?
3、2213-=8 2235-=16
2257-=24 ……用含有N 的代数式表示规律 五、对于数表
1、先看行的规律,然后,以列为单位用数列找规律方法找规律
2、看看有没有一个数是上面两数或下面两数的和或差
图形数表类练习:
【例1】(2005年回自治区中考题) “”代表甲种植物,“”代表乙种植物,为美化环境,采用如图所示方案种植。

按此规律,第六个图案中应种植乙种植物 株。

【例2】(市2016年初中毕业会考)例如、观察下列数表:
根据数列所反映的规律,第行第列交叉点上的数应为______ .
【例3】(省2016年初中毕业升考)例如,用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第个图形中需要黑色瓷砖块(用含的代数式表示).
这一题的关键是求第个图形中需要几块黑色瓷砖?。

相关文档
最新文档