2014年罗马尼亚数学奥林匹克竞赛试题及证明

合集下载

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a?9,0?b?9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b?18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k +1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km +dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n?10a+1.因此b=n2100a2?20a+1由此得 20a+1<100,所以a?4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402?422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a 都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2?m2>1故n4+4m4不是素数.取a=4224,4234,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a 为奇数,从而第一列也是如此,因此第二列数字的和b+c?9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a22b2=a2…(直至b2分成不可分解的元素之积)与r=ab2ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137273.故对一切n?2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,1043M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n?5)个数的和为合数.1987年全苏【解】由n个数a i=i2n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m2n!+k(m∈N,2?k ?n)由于n!=1222…2n是k的倍数,所以m2n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n?2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m?p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n?n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m?p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n?n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m?m,p?2m+1由得4m2+4m+1?m2+m+n即3m2+3m+1-n?0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab?0(否则ab?-1,a2+b2=k(ab+1)?0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a?b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方. 18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2?k?n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2?k?n+1)这n个连续正整数都不是素数的整数幂. 19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n -2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d?n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和?15005,所以A?15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402 ………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1?i?20,1?j?10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k +m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由。

2014年中国数学奥林匹克(CMO)试题及其解答

2014年中国数学奥林匹克(CMO)试题及其解答

,β =
时,方程x(x + α) = y(y + β)
至少有k组正整数解。引理得证。 下面借助引理证明原命题。
根据引理知,存在正整数α>β,使得方程x(x + α) = y(y + β)至少有k组正整数解,设
这k组正整数解分别为 x ,y 、 x ,y 、 … 、 x ,y 。
令n = x (x + α),1 ≤ i ≤ k,则n = x (x + α) = y (y + β),所以 α,β ⊆ D(n )。于 是知 α,β ⊆ D(n )⋂D(n ) ⋂ … ⋂D(n ),命题得证。
而 p,q = 1,所以μ = 1。于是知u ≡ −1(mod d) ⇒ d|u + 1。
综合两方面知d = u + 1,所以 u + 1,u + 1 = u + 1,引理一得证。
引理二:设v为大于1的正整数,q为v + 1的奇素因子,则2 |q − 1。
交流知识 共享智慧
文武光华
引理二的证明:根据条件知v ≡ −1(mod q) ⇒ v ≡ 1(mod q)。设v关于模q的阶
且1 ≤ f(k) ≤ k,从而根据归纳假设知:
f(k + 2) − f(k + 1) = f f(k + 1) + f k + 2 − f(k + 1) − f f(k) + f k + 1 − f(k)
= f(f(k) + 1) + f k + 1 − f(k) − f f(k) + f k + 1 − f(k)
若 f(k + 1) − f(k) = 0 , 则 f f(k + 1) = f f(k) , f k + 2 − f(k + 1) = f k + 2 − f(k) ,

2014年全国高中数学联赛试题及答案详解(A卷)

2014年全国高中数学联赛试题及答案详解(A卷)

2013
解:由题设
an

2(n 1) n
an1

2(n 1) n

2n n 1 an2


2(n 1) n

2n n 1

23 2
a1

2n1 (n
1)

记数列{an} 的前 n 项和为 Sn ,则
Sn =
2 + 2 × 3 + 22 × 4 + + 2n−1(n +1)
2015 2013


2015

2013
5. 正四棱锥 P ABCD 中,侧面是边长为 1 的正三角形,M , N 分别是边 AB, BC 的中
点,则异面直线 MN 与 PC 之间的距离是

答案: 2 . 4
解:设底面对角线 AC, BD 交于点 O ,过点 C 作直
线 MN 的垂线,交 MN 于点 H . 由 于 PO 是 底 面 的 垂 线 , 故 PO CH , 又
解:记 f (z) (z )2 z .则
f (z1) f (z2 ) (z1 )2 z1 (z2 )2 z2
(z1 z2 2)(z1 z2 ) z1 z2 .

假如存在复数 z1, z2 ( z1 , z2 1, z1 ≠ z2 ) ,使得 f (z1) f (z2 ) ,则由①知,
连接的情况数.
(1) 有 AB 边:共 25 32 种情况.
(2) 无 AB 边,但有 CD 边:此时 A , B 可用折线连接当且仅当 A 与 C , D 中至少一
点相连,且 B 与 C , D 中至少一点相连,这样的情况数为 (22 1)(22 1) 9 .

2014年第二届“学数学”奥林匹克邀请赛(春季赛)试题及其解答

2014年第二届“学数学”奥林匹克邀请赛(春季赛)试题及其解答
A
Q J E
P
H
F
K D
B
MT
C
三、开始时黑板上写着数1、2、3、 … 、2013,每步可以擦去黑板上的两个数a、b, 另写上a + b,最少要进行多少步操作才能使黑板上任意多个数之和都不等于2014?(林常 供题)
解答:注意到 1,2013 , 2,2014 ,…, 1006,1008 这1006组数,每组中两数之 和都为2014,所以每组中都至少有一个数被操作到,即至少要操作到1006个数。而每次操 作,涉及到两个数,故至少要进行 = 503次操作。
假设n = k时,存在正整数p 、p 、 … 、p ,使得0<x − ∑ <

!( ! )
当n = k + 1时,取p =
。注意到x − ∑ 为无理数,所以p =


>p − 1,又根据归纳假设知p >
>k! (k! + 1),从而



p ≥ k! (k! + 1) + 1。于是有
0< x − ∑
所以∠EHQ = ∠FHC,所以 E、H、F 三线共点。
交流知识 共享智慧
文武光华
A
Q
E O
P
H
F
D
B
MT
C
N
证明方法二(合肥一中一学生方法):如图,延长 BH 交 AC 于 P,延长 CH 交 AB 于 Q, 则 B、C、P、Q 四点共圆,且圆心为 M。过 H 作 JK⊥MH,分别交 AB、AC 于 J、K,根据蝴蝶 定理知HJ = HK,所以DJ = DK。注意到 AD 平分∠JAK,所以 A、J、D、K 四点共圆。根据 西姆松定理知 E、H、F 三点共线。

第55届(2014)国际数学奥林匹克试题 英文版

第55届(2014)国际数学奥林匹克试题 英文版

Tuesday,July8,2014 Problem1.Let a0<a1<a2<···be an in nite sequence of positive integers.Prove that there exists a unique integer n≥1such thata n<a0+a1+···+a nn≤a n+1.Problem2.Let n≥2be an integer.Consider an n×n chessboard consisting of n2unit squares.A con guration of n rooks on this board is peaceful if every row and every column contains exactly one rook.Find the greatest positive integer k such that,for each peaceful con guration of n rooks, there is a k×k square which does not contain a rook on any of its k2unit squares.Problem3.Convex quadrilateral ABCD has∠ABC=∠CDA=90◦.Point H is the foot of the perpendicular from A to BD.Points S and T lie on sides AB and AD,respectively,such that H lies inside triangle SCT and∠CHS−∠CSB=90◦,∠T HC−∠DT C=90◦.Prove that line BD is tangent to the circumcircle of triangle T SH.Wednesday,July 9,2014Problem 4.Points P and Q lie on side BC of acute-angled triangle ABC so that ∠P AB =∠BCA and ∠CAQ =∠ABC .Points M and N lie on lines AP and AQ ,respectively,such that P is the midpoint of AM ,and Q is the midpoint of AN .Prove that lines BM and CN intersect on the circumcircle of triangle ABC .Problem 5.For each positive integer n ,the Bank of Cape Town issues coins of denomination 1n .Given a nite collection of such coins (of not necessarily di erent denominations)with total value atmost 99+12,prove that it is possible to split this collection into 100or fewer groups,such that each group has total value at most 1.Problem 6.A set of lines in the plane is in general position if no two are parallel and no three pass through the same point.A set of lines in general position cuts the plane into regions,some of which have nite area;we call these its nite regions .Prove that for all su ciently large n ,in any set of n lines in general position it is possible to colour at least √n of the lines blue in such a way that none of its nite regions has a completely blue boundary.Note:Results with √n replaced by c √n will be awarded points depending on the value of theconstant c .。

2014奥林匹克数学竞赛试题与详细解答

2014奥林匹克数学竞赛试题与详细解答

2014奥数决赛详解 小张老师1、 计算12 +34 +78 +1516书上的分数求和类:1+1+1+1-(12 +14 +18 +116 )=3116(括号内是等比求和。

)那天上课我们才讲过的。

2、计算(1.1·+229 +313 +449 )÷127 =(119 +229 +339 +449)×27 =(1+2+3+4)×27+(19 +29 +39 +49)×27=300 3、五个分数37 ,49 ,1735 ,49101 ,100201中从小到大的第三个分数是( )。

12 -100201 =1402 =31206 将差从小到大排列第三个减法的减数为答案。

所以是49101 。

4、3.如图,取π≈3,则阴影部分的面积是___________.答案为:1.255、将数字1,2,3,4,5,6分别填入下列算式中的6个[ ]中,使算式成立。

(此题有多个解,填入一个即可)。

[ ]×( 7-[ ])÷[ ]-[ ]+[ ]= [ ]解答:6×(7-3)÷4-3+2=5 答案不唯一。

6、由棱长为1厘米的若干个立方体堆成一个长、宽、高分别是11、9、7厘米的长方体。

将它的表面全部涂上红色,然后将只有一个面是红色的立方体取出来。

再将取出来的立方体堆成一个长宽高都不同的实心长方体,那么这个新长方体的表面积的最大值是()立方厘米。

解答:(11-2)×(9-2)=63 (11-2)×(7(9-2)×(7-2)=35(63+45+35)×2=286 (体积数)分解所以长宽高为143、2、1表面积=862.7、矿泉水、果汁、豆奶三种饮料共计180以从中取出矿泉水瓶数的12,果汁瓶数的13瓶;,果汁瓶数的13,瓶饮料中,有果汁()瓶。

)。

根据题意有12X+14X+8、甲组10人和乙组9人一起去看电影。

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案

1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a≤9,0≤b≤9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≤18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n≥10a+1.因此b=n2100a2≥20a+1由此得 20a+1<100,所以a≤4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≥422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≥m2>1故n4+4m4不是素数.取a=4·24,4·34,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m 11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2·b2=a2…(直至b2分成不可分解的元素之积)与r=ab·ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137·73.故对一切n≥2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104×M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n≤5)个数的和为合数.1987年全苏【解】由n个数a i=i·n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m·n!+k(m∈N,2≤k ≤n)由于n!=1·2·…·n是k的倍数,所以m·n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n≥2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m≥p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≥n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≤p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n≥n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≥m,p≥2m+1由得4m2+4m+1≤m2+m+n即3m2+3m+1-n≤0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab≥0(否则ab≤-1,a2+b2=k(ab+1)≤0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≥b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2≤k≤n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≤k≤n+1)这n个连续正整数都不是素数的整数幂.19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n-2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≥n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≥15005,所以A≥15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≤i≤20,1≤j≤10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由a+c>c≥c1,b+c>c≥c2。

2014 第 55 届 IMO 解答s

2014 第 55 届 IMO 解答s
类似,b′ ≥2蕴含a′ ≤q.
当b≤a′ ,b′ ≤a时,令s=a′ −b,t=a−b′ .显然0≤s,t≤q.于是
i+s=(a−1)(q+1)+a′ ,j+t=(a′ −1)(q+1)+a.
当b>a′ ,b′ ≤a+1时,令s=(q+1)−(b−a′ ) ,t=(a+1)−b′ .显然0≤s≤q.注意,b>a′ ≥1说明b≥2 ,故此a≤q,进而0≤t≤q.于是
BM ,CN的交点在△ABC的外接圆上.
由∠PAB=∠QCA断定
∠APB=180º−∠PAB−∠ABP=180º−∠QCA−∠ABP=∠BAC.
又因为∠ABP=∠CAQ,故△PAB∼△QCA.于是
=
因为PA=PM,QA=QN,于是
=

∠MPB=∠PAB+∠ABP=∠QCA+∠CAQ=∠CQN,
得知△MPB∼△CQN.进而,∠BMP=∠NCQ.
既然△NEF的外心H落在NC上,以及早已知道的∠ENC=∠SCE和∠THA=∠SCE的可以立刻写下的水到渠成的
∠ENC=∠THA,
我们可断言△HTS的外心必定位于HA上.然后,从AH⊥BD可以判定直线BD与三角形TSH的外接圆相切.
第4题锐角△ABC中,点P和点Q是在边BC上满足∠PAB =∠BCA和∠CAQ =∠ABC的两点。点M和点N分别在直线AP,AQ上满足:P是AM中点,Q是AN中点.证明:
考虑由(q+1)4个单位正方形组成的一个(q+1)2×(q+1)2棋盘.
我们仔细揣摩集合
S={((a−1)(q+1)+b,(b−1)(q+1)+a)|a,b=1,2,…,q+1}.

2014年第55届IMO解答

2014年第55届IMO解答

1 (其中可能有面值相同的硬币) ,证明:可以将这些硬币分为 100 组,使得每 2 组硬币的面值之和不大于 1。 1 我们来证明一般的结论:对于每个正整数 n ,银行都发行一些面值为 的硬币, m 是 n 1 正整数, 现在有有限枚这样的硬币总价值小于 m (其中可能有面值相同的硬币) , 证明: 2 可以将这些硬币分为 m 组,使得每组硬币的面值之和不大于 1。 m 1 时, 结论显然成立。 若结论不成立, 我们取 m 最小的反例, 则结论对于 m 1 证明: 成立。在 m 最小的反例中我们再取硬币数量最小的一种,设所有硬币面值之和为 S 。 1 1 1 不能有两枚硬币面值都是 否则可将两枚 换成一枚 得到硬币数更小的 ,k Z , 2k 2k k 1 反例;若其中有些总币值为 1的硬币,则将它分为一组,另外硬币总值小于 (m 1) ,因 2 1 此可以将它们分为 m 1 组,矛盾。所以不能有 k 枚面值为 , k 1 的硬币。 k 1 1 设其中价值最低的硬币面值为 ,则由硬币数量的最小性,可以将 之外的其它硬币 r r 1 分为 m 组,使得每组硬币的面值之和不大于 1,由于加上一个 是反例,因此只能是恰好 r
: S V ;U T ,所以 AS AV AT AU ,因此 ST UV ,所以 O1O2 UV ,因此
HO1 AO1 AO2 HO2 , 所 以 AO1 H , AO2 H 的 平 分 线 交 点 在 AH 上 , 也 即 O1U O1U O2V O2V


㈠先来证明: k m 。
n m 2 1 时,由于四个角不能都有车,因此可以假设右下角没有车,此时最底下一行
和最右边一列都各有一个车,将棋盘左上角的 m 2 m 2 的棋盘分为 m 2 个 m m 的棋盘,由 于除了最底下一行和最右边一列之外还有 m 2 1 个车,因此必有一个 m m 的棋盘没有车, 因此 k m 。 若 n m r ,1 r 2m 时结论成立,我们来考虑 n m 2 r 1 的情况,不失一C 270 CSH CHS 90 SCH

切比雪夫不等式证明(精选多篇)

切比雪夫不等式证明(精选多篇)

切比雪夫不等式证明(精选多篇)第一篇:切比雪夫不等式证明切比雪夫不等式证明一、试利用切比雪夫不等式证明:能以大小0.97的概率断言,将一枚均匀硬币连续抛1000次,其出现正面的次数在400到600之间。

分析:将一枚均匀硬币连续抛1000次可看成是1000重贝努利试验,因此1000次试验中出现正面h的次数服从二项分布.解:设x表示1000次试验中出现正面h的次数,则x是一个随机变量,且~xb(1000,1/2).因此500211000=×==npex,250)2答题完毕,祝你开心!11(211000)1(=××==pnpdx,而所求的概率为}500600500400{}600400{}100{975.010012=≥dx.二、切比雪夫(chebyshev)不等式对于任一随机变量x,若ex与dx均存在,则对任意ε>0,恒有p{|x-ex|>=ε}=1-dx/ε切比雪夫不等式说明,dx越小,则p{|x-ex|>=ε}越小,p{|x-ex|同时当ex和dx已知时,切比雪夫不等式给出了概率p{|x-ex|>=ε}的一个上界,该上界并不涉及随机变量x的具体概率分布,而只与其方差dx和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。

需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。

切比雪夫不等式是指在任何数据集中,与平均数超过k倍标准差的数据占的比例至多是1/k 。

在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。

这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近:与平均相差2个标准差的值,数目不多于1/4与平均相差3个标准差的值,数目不多于1/9与平均相差4个标准差的值,数目不多于1/16……与平均相差k个标准差的值,数目不多于1/k举例说,若一班有36个学生,而在一次考试中,平均分是80分,标准差是10分,我们便可得出结论:少于50分(与平均相差3个标准差以上)的人,数目不多于4个(=36*1/9)。

田开斌——2004年罗马尼亚数学奥林匹克的一道数论题及其解答

田开斌——2004年罗马尼亚数学奥林匹克的一道数论题及其解答

田开斌——2004年罗马尼亚数学奥林匹克的一道数论题及其解答深谋远虑的田开斌老师本文于2014年发表在田开斌老师的新浪博客“杏林孔门2014”,现重新整理出来,供广大喜欢田老师文章的数学爱好者和竞赛生阅读。

田开斌专集2020-12-20 2013年协作体夏令营的一道组合题及其解答2020-12-20 2013年北大对浙江省单独招生的一道组合题及其解答2020-12-19 2010年美国国家队选拔的一道数论试题及其解答2020-12-19 一道不等式的柯西不等式证明2020-12-18 利用一个二次剩余结论解答一道数论题2020-12-18 2014年《中等数学》第二期奥林匹克问题的一道数论题及其解答2020-12-17 一道数论构造题及其解答2020-12-16 2008年罗马尼亚的一道数论题及其解答2020-12-16 2006年中国国家集训队的一道数论题及其解答2020-12-15 2014年南开大学数学试点班A卷的一道不等式题及其解答2020-12-15 一道三角不等式的赫尔德不等式证明2020-12-14 一道与平方数相关的不定方程及其解答2020-12-14 数论中的重要定理之伯特兰-切比雪夫定理2020-12-13 2014年南开大学数学试点班A卷的一道数列题及其解答2020-12-11 2005年中国集训队一道几何题的九点圆证明2020-12-11 一道求值域小题的解答2020-11-17 2020年爱尖子“CMO赛前冲刺”训练营一道题目的一般化2020-11-03 第三届刘徽杯数学竞赛第一天第2题解答2020-10-28 涉及高斯函数的一道数论题的两种解法2020-06-23 一道三元不等式的加强2020-06-11 许康华问题的推广证明2020-06-04 竞赛生每日一题(276):一道新编几何题2020-04-03 一道IMO预选组合题的解答2020-03-30 竞赛生每日一题(210):一道新编几何题2020-03-28 2019巴西数学奥林匹克(第一天)第1题解答的更正2018-03-31 田开斌简解2017哈萨克斯坦zhautykov国际数学竞赛第一题2018-01-05 田开斌简解一道复数题2017-09-27 田开斌主讲之《平面几何问题综合(七)、(八)》讲义2017-09-23 田开斌主讲之《平面几何问题综合(五)、(六)》讲义2017-09-21 田开斌主讲之《平面几何问题综合(二)、(三)、(四)》讲义2017-09-20 田开斌主讲之《平面几何问题综合(一)》讲义2017-09-09 田开斌解答一道精彩数论题2017-08-18 田开斌解答2017女子奥林匹克数学竞赛几何题2017-07-21 田开斌命题之2013年“华约”自主招生数学模拟试题2017-07-19 田开斌最新解答几何难题2017-07-16 田开斌老师近期解答的几道数学难题2017-07-10 田开斌巧解金磊一道平面几何题2017-07-05 田开斌解答几道数学难题2017-06-28 田开斌另解棋盘中填数2017-05-25 田开斌老师对一道最值问题的推广2017-02-16 王永喜和田开斌另解一道IMO 预选题2017-01-06 田开斌老师对王仕奎计数征解问题的另一解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档