13-3四个强度理论-材料力学

合集下载

材料力学强度理论

材料力学强度理论

材料力学强度理论
材料力学强度理论是材料力学的一个重要分支,它研究材料在外力作用下的强
度和变形特性。

材料的强度是指材料抵抗破坏的能力,而变形特性则是指材料在外力作用下的形变行为。

强度理论的研究对于材料的设计、制备和应用具有重要意义。

首先,强度理论可以帮助我们了解材料的破坏机制。

材料在外力作用下会发生
破坏,而不同的材料在受力时表现出不同的破坏模式,比如拉伸、压缩、剪切等。

强度理论可以通过实验和理论分析,揭示材料在受力时的破坏机制,为材料的设计和选用提供依据。

其次,强度理论可以指导材料的合理使用。

在工程实践中,我们需要根据材料
的强度特性来选择合适的材料,并确定合理的使用条件。

强度理论可以帮助我们评估材料在特定工况下的承载能力,从而保证材料的安全可靠使用。

此外,强度理论还可以为材料的改进和优化提供指导。

通过对材料强度特性的
研究,我们可以发现材料的强度局限性,并提出改进的方案。

比如,可以通过合金化、热处理等手段来提高材料的强度,或者通过结构设计来减小应力集中,提高材料的抗破坏能力。

综上所述,材料力学强度理论是材料科学中的重要内容,它不仅可以帮助我们
了解材料的破坏机制,指导材料的合理使用,还可以为材料的改进和优化提供指导。

在未来的研究和工程实践中,我们需要进一步深入研究强度理论,不断提高材料的强度和可靠性,为社会发展和科技进步做出贡献。

第三第四强度理论

第三第四强度理论

max
s 2
第三强度理论
由前面的公式有:
1 3 max 2
1 3 s 2 2

于是得屈服准则:
将换成许用应力,得到按第三强度理论建立的强度条件是:
1 3
第三强度理论
σ1
当σ1 和σ2 正负号相同时,最大切应力为│ σ1 /2 │或│ σ2 /2 │
实例分析
p
实例分析
由于主应力为
p 第三强度理论
第四强度理论
=842MPa
实例分析
水管在寒冬低温条件下,由于管内水结冰引起体积膨胀,而导致 水管爆裂。由作用反作用定律可知,水管与冰块所受的压力相等,
试问管在寒冬低温条件下,管内水结冰引起体积膨胀,水管承受 内压而使管壁处于双向拉伸的应力状态下,且在低温条件下材料 的塑性指标降低,因而易于发生爆裂;而冰处于三向压缩的应力状
态下,不易发生破裂.例如深海海底的石块,虽承受很大的静水压
力,但不易发生破裂.
特别鸣谢
讲课人:汪丁
PPT制作:李学章、田宏润
托:钱志成
感 谢 聆听
第五组出品
失效形式还与应力状态有关点击此处添加描述文字点击此处添加描述文字无论是塑性还是脆性材料在三向拉应力相近的情况下都将以断裂的形式失效宜采用最大拉应力理论
第三第四强度理论
第五组出品
目录
CONTENTS
一 二 三
(Development course of failure criteria )
第三强度理论(Third
于是有:

σ1
M σ2 σ2
当σ1 和σ2 不同号时,最大切应力1/2│ σ1 - σ2 │ 于是屈服准则:

材料力学在工程设计中常用的强度理论有四种

材料力学在工程设计中常用的强度理论有四种

材料力学在工程设计中常用的强度理论有四种材料力学是研究材料力学性能和强度的学科,它在工程设计中起着至关重要的作用。

材料力学可以通过各种理论和方法来分析和预测材料在不同工程应用中的强度和性能。

在工程设计中,常用的材料强度理论有四种,分别是极限强度理论、变形能量理论、排斥原则理论和应变能量密度理论。

极限强度理论是最早也是最简单的一种强度理论,它基于材料的抗拉和抗压强度来进行设计。

根据极限强度理论,当应力达到材料的抗拉或抗压强度时,材料就会发生破坏。

这种理论适用于一些简单的材料和结构设计,但对于复杂的应力状态和材料特性不够准确。

变形能量理论是一种基于变形能量的强度理论,它是由应力和应变能量的平衡关系来进行设计。

根据变形能量理论,当变形能量达到最大值时,材料就会发生破坏。

这种理论考虑了材料的变形特性和应力-应变关系,对于复杂应力状态下的材料强度预测更加准确。

排斥原则理论是一种基于材料本身的排斥性质进行设计的强度理论。

根据排斥原则理论,材料的破坏是由于材料内部的排斥效应达到一定程度而引起的。

这种理论考虑了材料的微观结构和材料本身的排斥性质,对于一些高强度和高韧性材料的设计有着重要的应用价值。

应变能量密度理论是一种综合考虑材料的应力、应变和能量的强度理论。

根据应变能量密度理论,当应变能量密度达到临界值时,材料就会发生破坏。

这种理论综合了材料的应力、应变、能量等多种因素,对于复杂应力状态下的材料强度预测非常准确。

在工程设计中,选择合适的强度理论对于材料的设计和分析有着重要的意义。

不同的强度理论适用于不同的材料和结构,根据具体的工程需求和要求选择合适的强度理论进行设计是十分重要的。

同时,强度理论也需要结合实际工程情况和应力状态进行修正和调整,以提高预测的精度和合理性。

总之,材料力学在工程设计中常用的强度理论有极限强度理论、变形能量理论、排斥原则理论和应变能量密度理论。

选择合适的强度理论对于材料的设计和分析至关重要,需要综合考虑材料的特性和应力状态,同时还需要结合实际工程情况进行修正和调整。

材料力学强度理论

材料力学强度理论

9 强度理论1、 脆性断裂和塑性屈服脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。

塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。

2、四种强度理论(1)最大拉应力理论(第一强度理论)材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:01σσ= (2)最大伸长拉应变理论(第二强度理论):无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 01εε=(3)最大切应力理论(第三强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值,即: 0max ττ=(4)形状改变比能理论(第四强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:u u 0dd =强度准则的统一形式 [] σσ≤*其相当应力: r11σ=σr2123()σ=σ-μσ+σ r313σ=σ-σ222r41223311()()()2⎡⎤σ=σ-σ+σ-σ+σ-σ⎣⎦ 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。

9.1图9.1所示的两个单元体,已知正应力σ =165MPa ,切应力τ=110MPa 。

试求两个单元体的第三、第四强度理论表达式。

图9.1[解] (1)图9.1(a )所示单元体的为空间应力状态。

注意到外法线为y 及-y 的两个界面上没有切应力,因而y 方向是一个主方向,σ是主应力。

显然,主应力σ 对与y 轴平行的斜截面上的应力没有影响,因此在xoz 坐标平面内可以按照平面应力状态问题对待。

外法线为x 、z 轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a )所示单元体的三个主应力为:τστσσσ-===321、、,第三强度理论的相当应力为解题范例r4σ=()eq313165110275a σσσστ=-=+=+=MPa第四强度理论的相当应力为:()eq4a σ==252.0== MPa(2)图9.1(b)所示单元体,其主应力为第三强度理论的相当应力为:()eq31322055275b σσσ=-=+=MPa第四强度理论的相当应力为:()eq4a σ=252.0==MPa9.2一岩石试件的抗压强度为[]σ=14OMPa,E=55GPa, μ=0.25, 承受三向压缩。

材料力学 第十三章 强度准则

材料力学 第十三章 强度准则
(13-5)
vv
13.2.3畸变能密度

1 1 m 2 m 3 m 0 K 3
(b)
体积应变为零,所以微体的体积不变,仅形状发生改变。 与体积改变相对应的那一部分比能称为体积改变比能,与形状改变相对应 的那一部分比能称为形状改变比能或畸变能密度,总比能是这两部分之和,即
13.2空间应力状态下的应变能密度
13.2.1应变能密度一般表达式
1 1 1 dVε 1dydz 1dx 2 dzdx 2 dy 3 dxdy 3 dz v dV 2 2 2 1 vε 1 1 2 2 3 3 2 vε 1 2 2 12 2 3 2 1 2 2 3 3 1 2E
第13章 强度理论
由第3章材料的力学性能、应力应变关系可知,当 材料处于极限应力时就要屈服或断裂,即材料失效。 不同材料失效的现象和规律固然不同,就是同一种材 料处于不同应力状态时,失效的现象和规律也不同。 怎样从众多的失效现象中寻找失效规律,假设失效的 共同原因,从而利用有限的实验资料去建立材料的失 效判据,即强度理论,是本章研究的主要内容。本章 主要讨论常用工程材料静载荷时的常用强度理论。
对于脆性材料,在单向拉伸应力状态下,其失效形式为断裂,失效判据为
b
对于塑性材料,在单向拉伸应力状态下,其失效形式为屈服,失效判据为 s
在复杂应力状态下,材料的失效方式不仅与各个主应力的大小有关,而且与 它们的组合情况有关。例如脆性材料在三向等压应力状态下会产生塑性变形。 塑性材料在三向等拉应力状态下会发生脆性断裂。
123
1 2 2 2 12 23 31 3

[工学]材料力学中强度理论

[工学]材料力学中强度理论

强度理论中直接与 [σ ] 比 1 b 较的量,称为相当应力σri b 1
nb
r1
1
15
r1 1
实验表明:该理论对于大部分脆性材料受拉应力作
用,结果与实验相符合,如铸铁受拉伸、扭转。
局限性: (1)没有考虑另外二个主应力的影响;
s
ns

实验表明:该理论对于塑性材料的屈服破坏能够得到
较为满意的解释,并能解释材料在三向均压下不发生
(2)无法应用于没有拉应力的应力状态; (3)无法解释塑性材料的破坏;
(4)无法解释三向均压时,既不屈服、也不破坏
的现象。
2018/11/20 16
(一)关于断裂的强度理论
2、最大拉应变理论(第二强度理论) (Maximum Tensile-Strain Criterion)
无论材料处于什么应力状态,只要发生脆性断裂, 都是由于单元体内的最大拉应变(线变形)达到简单 拉伸时的破坏伸长应变值。
无论材料处于什么应力状态 ,只要发生脆性断裂,
都是由于单元体内的最大拉应力达到了一个共同的
极限值。

2018/11/20
t max

o max
14
1、最大拉应力理论

t max

o max
2
1 3
= b

t max
1 (1 0)

o max
b
断裂条件
强度条件
2018/11/20
18
2018/11/20
r 2 1 ( 2 3 ) [ ]
实验表明:该理论对于一拉一压的二向应力状态的 脆性材料的断裂较符合,如铸铁受拉压比第一强度 理论更接近实际情况。

材料力学-强度理论

材料力学-强度理论
这一理论认为最大拉应力是引起材料脆性断裂破坏的主 要因素,即不论材料处于简单还是复杂应力状态,只要最大 拉应力1 达到材料在单向拉伸时断裂破坏的极限应力,就会 发生脆性断裂破坏。建立的强度条件为:
1 (11 1)
实践证明,该理论适合脆性材料在单向、二向或三向受 拉的情况。此理论不足之处是没有考虑其它二个主应力对材 料破坏的影响。
危险截面发生在C、D截面 MC=32KN·m QC=100KN
(二)强度校核 先绘出C截面正应力分布图和剪应力分布图。
C截面
a.正应力强度校核(K1)点
max
k1
MC WZ
32 103 237 106
135Mpa 150Mpa
b.剪应力强度校核(K2)点
C截面
max
QC
S
* Z
力横截面中性轴处的弯曲剪应力。式中的许用正应力 和许 用剪应力 是由轴向拉(压)试验和纯剪切试验所测得的极
限应力除以安全系数而得。这两类强度条件是能够直接通过试 验来建立。
然而,在工程实际中许多构件的危险点是处于复杂应力 状态下,其应力组合的方式有各种可能性。如采用拉(压) 时用的试验方法来建立强度条件,就得对材料在各种应力状 态下一一进行试验,以确定相应的极限应力,这显然是难以 实现的。
1 3 (11 3)
这一理论能较好的解释塑性材料出现的塑性流动现象。 在工程中被广泛使用。但此理论忽略了中间生应力 2的影响, 且对三向均匀受拉时,塑性材料也会发生脆性断裂破坏的事 实无法解释。
2.第四强度理论(形状改变比能理论)
这一理论认为形状改变比能是引起材料塑性流动破坏的 主要因素,即不论材料处于简单还是复杂应力状态。只要构 件危险点处的形状改变比能,达到材料在单向拉伸屈服时的 形状改变比能,就会发生塑性流动破坏。建立的强度条件为:

材料力学四大强度理论

材料力学四大强度理论

材料力学四大强度理论材料力学是研究材料在外力作用下的力学性能和变形规律的学科,其中强度理论是材料力学中的重要内容之一。

材料的强度是指材料在外力作用下抵抗破坏的能力,而强度理论则是用来描述和预测材料在不同应力状态下的破坏规律和强度值的理论体系。

在材料力学中,有四大经典的强度理论,分别是极限强度理论、绝对最大剪应力理论、莫尔-库伊特理论和最大应变能理论。

首先,极限强度理论是最早被提出的强度理论之一,它是根据材料的屈服条件来描述材料的破坏规律。

极限强度理论认为材料在受到外力作用时,只要应力达到了材料的屈服强度,材料就会发生破坏。

这种理论简单直观,易于应用,但在实际工程中往往存在一定的局限性,因为它忽略了材料在屈服之前的变形过程。

其次,绝对最大剪应力理论是基于材料的最大剪应力来描述材料的破坏规律。

这种理论认为,材料在受到外力作用时,只要材料中的最大剪应力达到了材料的抗剪强度,材料就会发生破坏。

这种理论在一些特定情况下具有较好的适用性,但在一些复杂应力状态下往往难以准确描述材料的破坏规律。

接下来,莫尔-库伊特理论是基于材料的主应力来描述材料的破坏规律。

这种理论认为,材料在受到外力作用时,只要材料中的任意一个主应力达到了材料的抗拉强度或抗压强度,材料就会发生破坏。

莫尔-库伊特理论相对于前两种理论来说,更加全面和准确,因为它考虑了材料在不同应力状态下的破坏规律。

最后,最大应变能理论是基于材料的应变能来描述材料的破坏规律。

这种理论认为,材料在受到外力作用时,只要材料中的应变能达到了材料的抗拉强度或抗压强度,材料就会发生破坏。

最大应变能理论在描述材料的破坏规律时考虑了材料的变形能量,因此在一些复杂应力状态下具有较好的适用性。

综上所述,材料力学中的强度理论是描述和预测材料在外力作用下的破坏规律和强度值的重要理论体系。

四大强度理论分别是极限强度理论、绝对最大剪应力理论、莫尔-库伊特理论和最大应变能理论,它们各自具有一定的适用范围和局限性,工程应用中需要根据具体情况进行选择和应用。

材料力学强度理论

材料力学强度理论

纵截面裂开,这与第
二强度理论旳论述
基本一致。
例6、填空题
危险点接近于三向均匀受拉旳塑性材
料,应选用 第一 强度理论进行计算,
因为此时材料旳破坏形式

脆性断。裂
例8、圆轴直径为d,材料旳弹性模量为E,泊松比为 ,为了测得轴端旳力偶m之值,但只有一枚电阻片。 (1)试设计电阻片粘贴旳位置和方向; (2) 若按照你所定旳位置和方向,已测得线应变为
(一)、有关脆断旳强度理论
1、最大拉应力理论(第一强度理论)
假定:不论材料内各点旳应力状态怎样, 只要有一点旳主应力σ1 到达单向拉伸断裂时旳 极限应力σu,材料即破坏。
在单向拉伸时,极限应力 σu =σb
失效条件可写为 σ1 ≥ σb
第一强度理论强度条件:
1 [ ]
[ ] b
n
第一强度理论—最大拉应力理论
(二)强度校核 先绘出C截面正应力分布图和剪应力分布图。
C截面
a.正应力强度校核(K1)点
max
k1
MC WZ
32 103 237 106
135Mpa 150Mpa
b.剪应力强度校核(K2)点
C截面
max
k2
FS hb
(200
100 103 22.8) 103 7 103
1 , 2 0, 3
第三强度理论旳强度条件为:
1 3 ( ) 2 [ ]
由此得: [ ]
2
剪切强度条件为: [ ]
按第三强度理论可求得: [ ] [ ]
2
第四强度理论旳强度条件为:
1
2
( 1 2 )2
( 2
3)2
( 3
1)2
3 [ ]

第四强度理论的理解

第四强度理论的理解

关于材料力学第四强度理论的理解第四强度理论就是假设,当材料的形状改变能积蓄到一定程度导致了物体材料的屈服。

1.形状改变能密度:这一概念是这么得出的,认为弹性体在形变过程中弹性体内的应变能在数值上等于外力所做的功。

而单位体积内所积蓄的应变能就成为应变能密度。

根据材料力学的推导首先就得到了单轴应力下的应变能密度: νε12σε⋅其中σ和ε分别表示应力和应变。

第四强度理论正是基于这一假设得到的。

那么在空间应力状态下,可以得到主应变和主应力之间的关系为ε11E σ1νσ2σ3+()-()ε21E σ2νσ3σ1+()-()ε31E σ3νσ1σ2+()-()空间应力状态下的应变能密度νε12σ1ε1⋅σ2ε2⋅+σ3ε3⋅+()应变能密度又包含体积改变能密度和形状改变能密度。

材料力学推导得到形状改变能密度为 νd1ν+6E⋅σ1σ2-()2σ2σ3-()2+σ3σ1-()2+⎡⎣⎤⎦ 2.第四强度理论第四强度理论即形状改变能密度理论认为形状改变能密度的极限为: 时 σ1σs σ2σ30,1ν+6E ⋅σ1σ2-()2σ2σ3-()2+σ3σ1-()2+⎡⎣⎤⎦1ν+6E⋅2⋅σs ()2⋅ 那么就得到了第四强度理论所建立的强度条件 σr12σ1σ2-()2σ2σ3-()2+σ3σ1-()2+⎡⎣⎤⎦V σV ≤ 3.两种平面应力状态下的相当应力第一种根据应力圆可以得到主应力σ1σ2σ2⎛⎝⎫⎭2τ2++ σ2σ3σ2σ2⎛⎝⎫⎭2τ2+- 那么代入相当应力就得到12σ1σ2-()2σ2σ3-()2+σ3σ1-()2+⎡⎣⎤⎦substitute σ1σ2σ2⎛⎝⎫⎭2τ2++, substitute σ20, substitute σ3σ2σ2⎛⎝⎫⎭2τ2+-, 3τ2⋅σ2+→第二种同样将得到的主应力代入相当应力得到12σ1σ2-()2σ2σ3-()2+σ3σ1-()2+⎡⎣⎤⎦substitute σ1σσm+2σσm -2⎛⎝⎫⎭2τ2++, substitute σ2σσm+2σσm -2⎛⎝⎫⎭2τ2+-, substitute σ3, 3τ2⋅σ2+σσm⋅-→4.讨论总结上述两种应力状态可以发现,虽然第二种应力状态较第一种多了一个方向的应力但是相当应力并不一定增大,也就是说按照第四强度理论材料并不一定会破坏。

材料力学在工程设计中常用的强度理论有四种

材料力学在工程设计中常用的强度理论有四种

材料力学在工程设计中常用的强度理论有四种材料力学在工程设计中常用的强度理论有四种,分别是:最大拉应力理论、最大伸长线应变理论、最大切应力理论和形状改变比能理论。

以下是对这四种强度理论的详细介绍:1.最大拉应力理论最大拉应力理论,也称为第一强度理论。

这个理论的基础是,物体内部任何一点的拉应力都不能超过该点的强度极限。

当物体受到的拉应力超过其强度极限时,物体就会在这一点上发生脆性断裂。

在工程设计中,这种理论的应用非常广泛。

例如,在桥梁设计中,我们需要保证桥梁的拉应力不超过其强度极限,以防止桥梁在载荷的作用下发生脆性断裂。

此外,在材料力学实验中,我们也会通过测量材料的最大拉应力来确定其强度极限。

2.最大伸长线应变理论最大伸长线应变理论,也称为第二强度理论。

这个理论的基础是,物体内部任何一点的伸长线应变都不能超过该点的强度极限。

当物体受到的伸长线应变超过其强度极限时,物体就会在这一点上发生塑性变形。

在工程设计中,这种理论的应用也十分广泛。

例如,在机械零件的设计中,我们需要保证零件的伸长线应变不超过其强度极限,以防止零件在使用过程中发生塑性变形。

此外,在材料力学实验中,我们也会通过测量材料的最大伸长线应变来确定其强度极限。

3.最大切应力理论最大切应力理论,也称为第三强度理论。

这个理论的基础是,物体内部任何一点的切应力都不能超过该点的强度极限。

当物体受到的切应力超过其强度极限时,物体就会在这一点上发生剪切破坏。

在工程设计中,这种理论的应用也十分重要。

例如,在齿轮的设计中,我们需要保证齿轮的切应力不超过其强度极限,以防止齿轮在使用过程中发生剪切破坏。

此外,在材料力学实验中,我们也会通过测量材料的最大切应力来确定其强度极限。

4.形状改变比能理论形状改变比能理论,也称为第四强度理论。

这个理论的基础是,物体内部任何一点的形状改变比能都不能超过该点的强度极限。

当物体受到的形状改变比能超过其强度极限时,物体就会在这一点上发生屈服。

四种强度理论

四种强度理论

由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。

1、最大拉应力理论:这一理论又称为第一强度理论。

这一理论认为破坏主因是最大拉应力。

不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。

破坏形式:断裂。

破坏条件:。

1 =(T b强度条件1< [门实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。

缺点:未考虑其他两主应力。

使用范围:适用脆性材料受拉。

如铸铁拉伸,扭转。

2、最大伸长线应变理论这一理论又称为第二强度理论。

这一理论认为破坏主因是最大伸长线应变。

不论复杂、简单的应力状态,只要第一主应变达屈服破坏条件: T maX™1/2( T 仁T 3 )到单向拉伸时的极限值,即断裂。

破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算 )< 破坏形式:断裂。

脆断破坏条件:£ 1= £ u=C b/E£1 = 1/E[ (T 1 - a ( (T 2+ (T 3)]破坏条件:c 1- a ( T 2+ T 3)= T b强度条件:T 1- a ( T 2+ T 3)< [ T ]实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。

但是,其实验结果只与很少的材料吻合,因此已经很少使用。

缺点:不能广泛解释脆断破坏一般规律。

使用范围:适于石料、混凝土轴向受压的情况。

3、最大切应力理论:这一理论又称为第三强度理论。

这一理论认为破坏主因是最大切应力maxw。

不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。

破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。

破坏形式:屈服。

破坏因素:最大切应力。

四大强度理论

四大强度理论

第10章强度理论10、1 强度理论的概念构件的强度问题就是材料力学所研究的最基本问题之一。

通常认为当构件承受的载荷达到一定大小时,其材料就会在应力状态最危险的一点处首先发生破坏。

故为了保证构件能正常地工作,必须找出材料进入危险状态的原因,并根据一定的强度条件设计或校核构件的截面尺寸。

各种材料因强度不足而引起的失效现象就是不同的。

如以普通碳钢为代表的塑性材料,以发生屈服现象、出现塑性变形为失效的标志。

对以铸铁为代表的脆性材料,失效现象则就是突然断裂。

在单向受力情况下,出现塑性变形时的屈服点σ与发生断裂s时的强度极限σ可由实验测定。

sσ与bσ统称为失效应力,以安全系数除失效应力得到b许用应力[]σ,于就是建立强度条件[]σσ≤可见,在单向应力状态下,强度条件都就是以实验为基础的。

实际构件危险点的应力状态往往不就是单向的。

实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。

常用的方法就是把材料加工成薄壁圆筒(图10-1),在内压p作用下,筒壁为二向应力状态。

如再配以轴向拉力F,可使两个主应力之比等于各种预定的数值。

这种薄壁筒试验除作用内压与轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。

此外,还有一些实现复杂应力状态的其她实验方法。

尽管如此,要完全复现实际中遇到的各种复杂应力状态并不容易。

况且复杂应力状态中应力组合的方式与比值又有各种可能。

如果象单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。

由于技术上的困难与工作的繁重,往往就是难以实现的。

解决这类问题,经常就是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。

图10-1经过分析与归纳发现,尽管失效现象比较复杂,强度不足引起的失效现象主要还就是屈服与断裂两种类型。

同时,衡量受力与变形程度的量又有应力、应变与变形能等。

人们在长期的生产活动中,综合分析材料的失效现象与资料,对强度失效提出各种假说。

材料力学强度理论

材料力学强度理论

代入上式可得
C = s
按双剪切理论建立的强度条件为
σ
1

1 2

2

σ
3)

σ

1 2

1

σ
2)

σ
3

σ

(τ 12 τ 23)
(τ 12 τ 23)
相当应力
rt
1

1 2
2
3
rt

1 2
2

1
3
12 23 12 23
τ max

1 ( 1 3)
2

σ1 σ3 σ s
强度条件为:
max
u

s
2
1 3
(10—3)
四、 形状改变比能理论(第四强度理论)
基本假说:形状改变比能 uf 是引起材料屈服的因素。
屈服条件:
uf = uf u
1 ν
材料力学强度理论
上述强度条件具有如下特点:
1、 危险点处于单向应力状态或纯剪切应力状态。
2、 材料的许用应力 ,是通过拉(压)试验或纯剪试 验测定试件在破坏时其横截面上的极限应力,以 此极限应力作为强度指标,除以适当的安全系数 而得。即根据相应的试验结果建立的强度条件。
二、 强度理论的概念 根据材料在复杂应力状态下破坏时的一些现象与 形式 ,进行分析,提出破坏原因的假说,在这些假说的 基础上,可利用材料在单向应力状态时的试验结果 , 来建立材料在复杂应力状态下的强度条件。
(10-10a) (10-10b)

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

力学四个强度理论?

力学四个强度理论?

力学中常用的四个强度理论是:
1. 最大剪应力理论(Tresca理论):最大剪应力理论假设材料在破坏前,会发生剪应力最大的区域,因此材料的破坏准则基于剪应力达到一定的临界值。

2. 极限强度理论(Rankine理论):极限强度理论认为材料在破坏前,承受的应力应该小于材料的屈服强度,因此材料的破坏准则基于主应力或主应力之和。

3. 椭圆形变能理论(Von Mises理论):椭圆形变能理论基于金属塑性变形过程中的等效应变能,认为材料在破坏前,应变能密度达到一定的临界值。

4. 梁库伦应力理论(Mohr-Coulomb理论):梁库伦应力理论主要适用于岩石和土壤等非金属材料的破坏,该理论基于材料的摩擦角和抗压强度,判断材料的破坏状态。

这些强度理论都是基于材料的力学性质和破坏机制而提出的,用于进行材料的强度设计和破坏分析。

在具体应用中,选择合适的强度理论取决于材料的特性、实际应力状态和设计要求。

工程力学四个强度理论

工程力学四个强度理论

工程力学四个强度理论工程力学是研究物体在受到外力作用时的运动与变形规律的一门学科,它是理论力学在工程实践中的应用。

工程力学中有许多重要理论,其中四个强度理论是应用最为广泛且具有实用性的理论。

这四个强度理论分别是:拉压强度理论、剪切强度理论、弯曲强度理论和变形强度理论。

拉压强度理论拉压强度理论是研究材料受拉力和压力时的强度情况。

在材料受拉或受压时,当受到的外力超过其承受能力时,材料就会发生破坏。

拉压强度理论通过对材料的拉伸和压缩性能进行分析,确定了材料在拉伸和压缩下的强度极限,为工程设计和材料选取提供了依据。

剪切强度理论剪切强度理论是研究材料受到剪切力时的强度情况。

在材料受到剪切力作用时,如果剪切力超过了材料本身的承受能力,就会导致材料剪切破坏。

剪切强度理论通过对材料在剪切力下的变形规律和破坏特点进行研究,确定了材料的剪切强度极限,为结构的承载能力和稳定性提供了理论支撑。

弯曲强度理论弯曲强度理论是研究材料在受到弯曲力矩时的强度情况。

在工程实践中,很多结构在受力时会受到不同方向的弯曲力矩,因此了解材料在弯曲条件下的强度表现是至关重要的。

弯曲强度理论通过对材料在受弯曲力矩下的应力、变形和破坏特性进行研究,为结构的设计和优化提供了基础。

变形强度理论变形强度理论是研究材料在受热膨胀、冷缩等变形情况下的强度特性。

材料在受到温度变化或热机械作用时,会发生尺寸变化和形变,如果超出了材料能够承受的范围,就会导致材料破坏。

变形强度理论通过研究材料在变形过程中的应力、变形和破坏特性,为高温结构、膨胀管道等工程提供了理论依据。

在工程实践中,工程师们常常根据这四个强度理论来评估和设计工程结构,以确保结构的安全性、可靠性和稳定性。

这四个强度理论不仅是工程力学理论体系中重要的组成部分,也是工程设计和材料选择的重要参考依据,为各种工程问题的解决提供了理论支撑。

四大强度理论

四大强度理论

四大强度理论1、最大拉应力理论(第一强度理论)(材料脆性断裂的强度理论):()这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论)(材料塑性屈服的强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax 达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

τmax=τ0。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论)(最大歪形能理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

发生塑性破坏的条件为:所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]Von mise应力Von Mises 应力是基于剪切应变能的一种等效应力其值为(((a1-a2)^2+(a2-a3)^2+(a3-a1)^2)/2)^0.5 其中a1,a2,a3分别指第一、二、三主应力。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体,求主应力。 4、强度分析:选择适当的强度理论,计算相当应力,进行
强度计算。
例1 图示几种单元体,分别按第三和第四强度理论 求相当应力(单位MPa)
60
100
(1)
40 100
40
(2)
10
60
30 (3)
例2 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, 为铸铁构
件,[]=40MPa,试用第一强度理论校核杆的强度。

7.7
0
0
所以,此容器不满足第三强度理论。不安全。
第三强度理论(第三相当应力) xd3 1 3
第四强度理论(第四相当应力)
xd 4
1 2
1
2
2

2
3
2

3
1
2

三、强度计算的步骤:
1、外力分析:确定所需的外力。 2、内力分析:画内力图,确定可能的危险面。 3、应力分析:画危险截面应力分布图,确定危险点并画出单元
2
1
2 2
2
3 2
3
1 2

3、实用范围:实用于破坏形式为屈服的构件。
第一、第二强度理论适合于脆性材料; 第三、第四强度理论适合于塑性材料。 1、伽利略1638年提出了第一强度理论; 2、马里奥特1682年提出了第二强度理论;
3、杜奎特(C.Duguet)提出了最大剪应力理论;也有一说是库 伦1773年提出,特雷斯卡1868完善的。
到单向拉伸的强度极限时,构件就发生断裂。
1、破坏判据: 1 b ;( 1 0)
2、强度准则: 1 ; ( 1 0)
3、实用范围:实用于破坏形式为脆断的构件。
(二)、最大伸长线应变理论—第二强度理论: 认为构件的断裂是由最大拉应变引起的。当最大伸长线应变
达到单向拉伸试验下的极限应变时,构件就发生了断裂。
4、麦克斯威尔最早提出了最大形变比能理论;也有一说胡贝尔 1904提出,密赛斯1913修正,1925亨奇用能量法论证该理论。
相当应力:(强度理论的统一形式) xdi
第一强度理论(第一相当应力) xd1 1
第二强度理论(第二相当应力)xd2 1 2 3
1 故,安全。
例3 薄壁圆筒受最大内压时,测得x=1.8810-4, y=7.3710-4,已知钢 的E=210GPa,[]=170MPa,泊松比=0.3,试用第三强度理论校
核其强度。 解:由广义虎克定律得:
yA x

x
E
1
2
(
x

y
)
2.1 10.32
(1.880.37.37)107
A P
T
T
解:危险点A的应力状态如图:
P
PA405.1021036.37MPa
AA

T
Wn
167000
0.13
35
.7MPa
max min



2

(
2
)2

2

6.37 2

( 6.37 )2 2
35.72

39 32
139MPa, 20, 332MPa
能达到单向拉伸试验屈服时形状改变比能时,构件就破坏了。
ux0

1
6E
(2
2 s
)
ux

1
6E
1
2
2
2
3 2
3
1 2

1、破坏判据:
1
2
1
2 2

2
3 2

3
1 2
s
2、强度准则
1
94.4MPa

y
E
1
2
(
y

x
)
2.1 10.32
(7.370.31.88)107
183.1MPa
y
A x
1183 .1MPa, 294.4MPa, 30
xd3 1 3 183.1

xd3


183.1170 170
到单向拉伸试验的极限剪应力时,构件就发生破坏。
max s
max
1 3
2
s
2
s
1、破坏判据: 1 3 s
2、强度准则: 1 3
3、实用范围:实用于破坏形式为屈服的构件。
四、形状改变比能理论—第四强度理论:
认为构件的屈服是由形状改变比能引起的。当形状改变比
强度理论的基本概念及其四个强度理论
一、强度理论的基本概念:
1、材料的破坏形式:⑴ 屈服(塑性流动); ⑵ 断裂 。 破坏形式与材料性质有关系。
2、强度理论: “构件发生强度失效起因”的假说。
二、四个强度理论:
(一)、最大拉应力理论—第一强度理论: 认为构件的断裂是由最大拉应力引起的。当最大拉应力达
1 b ;(1 0)
1

1 E
1
2
3
b
E
1、破坏判据: 1 2 3 b
2、强度准则: 1 2 3
3、实用范围:实用于破坏形式为脆断的构件。
三、最大切应力理论—第三强度理论: 认为构件的屈服是由最大切应力引起的。当最大剪应力达
相关文档
最新文档