纹波和噪声的测试方法
纹波和噪声
开关电源的纹波和噪声(图) 日期:2009-08-26 来源:本网作者:北京航空航天大学方佩敏开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。
但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。
本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。
纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。
纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
利用示波器可以看到纹波和噪声的波形,如图1所示。
纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。
纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。
如何正确测试电源的纹波
如何正确测试电源的纹波DC/DC 模块的电源纹波指标是一项很重要的参数。
干净的电源是数字电路稳定工作的前提,也是模拟器件的各项参数的重要保障。
为确定电源的质量,必须对 DC/DC 模块的输出纹波进行测量。
但很多人测量得到的纹波值动辄上百mV,甚至几百mV,远远比器件手册提供的最大纹波值大,这主要是测量方法的不正确造成的。
正确的测量方法1)限制示波器带宽为20MHz(大多中低端示波器档位限制在20MHz,高端产品还有200MHz 带宽限制的选择),目的是避免数字电路的高频噪声影响纹波测量,尽量保证测量的准确性。
2)设置耦合方式为交流耦合,方便测量(以更小档位来仔细观测纹波,不关心直流电平).3)保证探头接地尽量短(测量纹波动辄上百mV 的主要原因就是接地线太长),尽量使用探头自带的原装测试短针。
如果没有测试短针,可以拆除探头的接地线和外壳,露出探头地壳,自制接地线缠绕在探头地壳上,保证接地线长度小于 1cm。
4)示波器地悬空,只通过探头地与测试信号的参考点共地,不要通过其他方式与测试设备共地,这样会给纹波测量引入很大的地噪声。
例如:当示波器和其他仪器共插线板时,其他仪器的开关可能通过接地线给测试带来噪声干扰。
其中第3 条是关键中的关键。
接地线过长,其电感效应将给测量系统引入额外的噪声,如下图所示。
5)对示波器的要求示波器参数要求:支持带宽限制功能:一般示波器都支持 20MHz 带宽限制。
探头要求:为了使接地线尽量短,尽量使用探头的原装测试短针,若无原装测试短针,则须自制短接地线:去除探头接地线套,用金属丝自行绕制接地短线,推荐五类线中铜丝,强度适中(还是有些偏软,有更好的请推荐)。
其他候选有焊锡丝、刻刀。
选择1X 无衰减档位,一般无源探头在1X 档位时,其带宽限制在6MHz/10MHz带宽,如此在前端可有效滤除高频噪声的干扰,减小纹波测量影响。
6)靠接方法测试纹波:模块电源的输出端存在差模和共模两种噪声,同时纹波噪声容易受到环境中随机噪声及电源辐射噪声的影响. 探头地线的寄生电感与示波器输入电容形成LC 谐振电路,将高频噪音放大,探头地线会感应电源模块的辐射噪音,所以必须把探头地线移掉。
纹波和噪声的测试方法
纹波和噪声的测试方法纹波和噪声是测试中常见的两种问题,它们会对系统性能产生负面影响。
因此,了解纹波和噪声的测试方法是非常重要的。
本文将介绍纹波和噪声的定义、产生原因以及常见的测试方法。
一、纹波的定义和产生原因纹波是指信号或电压在周期性变化中的波动。
在电子电路中,纹波通常是由于电源或信号源的不稳定性引起的。
纹波会导致系统性能下降,影响信号的准确性和稳定性。
纹波的产生原因主要有以下几点:1. 电源质量不佳:电源的输出不稳定,会导致电压的波动,进而引起纹波。
2. 电源滤波不足:电源滤波电容不足或滤波电路设计不当,无法有效降低纹波。
3. 电源线路干扰:电源线路附近的干扰源,例如开关电源、电机等,会对电源线产生干扰,引起纹波。
4. 地线干扰:地线干扰是指由于地线阻抗不均匀或地线回路中存在干扰源,导致信号线受到干扰而产生纹波。
二、纹波的测试方法为了保证系统的稳定性和可靠性,需要对纹波进行测试和评估。
下面介绍几种常见的纹波测试方法。
1. 示波器测量法:示波器是最常用的测试工具之一。
通过将示波器探头连接到待测信号上,可以观察到信号的波形。
通过观察波形的峰峰值或有效值,可以评估纹波的大小。
2. 频谱分析法:频谱分析是一种通过将信号转换为频域来分析信号的方法。
通过频谱分析仪,可以将信号转换为频谱图,从而观察到信号中各个频率成分的强度。
通过观察频谱图中的纹波分量,可以评估纹波的大小。
3. 电压测量法:通过将待测信号连接到电压表上,直接测量信号的电压大小。
通过对比测量结果和标准值,可以评估纹波的大小。
三、噪声的定义和产生原因噪声是指在信号中存在的随机干扰。
在电子系统中,噪声是不可避免的,它会降低信号的质量和可靠性。
噪声分为各种类型,包括热噪声、量子噪声、互调失真噪声等。
噪声的产生原因主要有以下几点:1. 环境干扰:电子系统通常工作在复杂的环境中,周围的电磁场干扰、温度变化等都会对系统产生噪声的影响。
2. 元器件噪声:电子元器件本身存在噪声,例如晶体管、电阻、电容等都会对信号产生噪声。
纹波和噪声测试方法
纹波和噪声测试方法纹波和噪声测试方法,在电子设备的设计和测试过程中是非常重要的一环。
纹波是指电流或电压的周期性变化,而噪声则是指非周期性的电流或电压的随机变化。
纹波和噪声的存在可能会影响设备的性能和可靠性,因此需要进行相应的测试来评估和控制。
纹波和噪声测试方法主要分为以下几个方面:1.信号发生器测试:利用信号发生器产生特定频率和幅度的信号,然后通过示波器或频谱仪等仪器来观察电流或电压的波形和频谱。
通过分析波形和频谱,可以评估纹波和噪声的水平。
2.示波器测试:示波器是一种可以显示电流或电压波形的仪器,可以用来直接观察信号的纹波和噪声。
通过连接示波器到被测试的电路或设备上,可以实时观察纹波和噪声的水平和变化情况。
3.频谱分析仪测试:频谱分析仪可以将信号分解为不同频率的成分,并显示出它们的幅度。
可以通过连接频谱分析仪到被测试的电路或设备上,来分析纹波和噪声的频谱分布。
频谱分析可以帮助确定纹波和噪声的频率范围和幅度。
4.噪声测量仪器测试:噪声测量仪器是专门用于测量非周期性电流或电压的噪声水平的仪器。
常用的噪声测量仪器包括噪声分析仪和噪声源等。
通过连接噪声测量仪器到被测试的电路或设备上,可以测量并分析噪声的水平和特性。
5.模拟电压源测试:模拟电压源是用于产生稳定的参考电压的仪器,可以测试纹波的幅度。
通过连接模拟电压源到被测试的电路或设备上,并将输出接到示波器或频谱分析仪等仪器上,可以测量电压的纹波幅度,以评估设备的稳定性。
6.滤波器测试:滤波器可以用于降低纹波和噪声的水平。
通过连接滤波器到被测试的电路或设备上,并观察输出信号的纹波和噪声水平,可以评估滤波器的性能,并确定适合的滤波器参数。
总结起来,纹波和噪声测试方法主要包括信号发生器测试、示波器测试、频谱分析仪测试、噪声测量仪器测试、模拟电压源测试和滤波器测试等。
通过这些测试方法,可以评估和控制设备的纹波和噪声水平,以确保设备的性能和可靠性。
噪声和纹波测试步骤
噪声和纹波测试步骤嘿,咱今儿个就来讲讲噪声和纹波测试的那些事儿!你可别小瞧了这噪声和纹波,它们就像隐藏在电路里的小捣蛋鬼,要是不把它们给弄清楚,那可会惹出不少麻烦呢!那怎么进行测试呢?首先,咱得把测试的环境准备好呀,就像要打仗得先把战场布置好一样。
这环境可不能马虎,得安静、稳定,不能有那些乱七八糟的干扰。
然后呢,把要测试的设备接上,就像给它穿上一件专门的测试服。
这时候,你就得瞪大眼睛,竖起耳朵啦!因为接下来的每一步都很关键呢。
接着,启动设备,让它开始工作。
这就好比让运动员开始跑步,咱得看看它跑起来的时候会不会发出奇怪的声音,会不会有不寻常的波动。
在测试的过程中,你得像个侦探一样,仔细观察各种数据和波形。
哎呀,这可真不是个轻松的活儿呀!但没办法,谁让咱要把这些小捣蛋鬼给揪出来呢。
你想想看,如果不认真测试,万一设备在关键时刻掉链子,那不就糟糕啦?就好比你正开着车,突然车子出了问题,那多吓人呀!测试的时候,还得注意各种细节。
比如说,探头的位置放得对不对呀,连接线有没有接好呀。
这些小细节就像一颗颗小螺丝钉,别看它们小,作用可大着呢!有时候,可能一次测试还不够,得反复测几次。
就像你做一道数学题,不验算几遍怎么能放心呢?等测试完了,还得好好分析那些数据和波形。
这就像医生看检查报告一样,得从那些密密麻麻的线条和数字里找出问题所在。
总之啊,噪声和纹波测试可不是一件随随便便就能做好的事情。
它需要我们细心、耐心,还得有一双敏锐的眼睛和一对灵敏的耳朵。
只有这样,才能把那些隐藏的问题给找出来,让设备能够稳稳当当、安安静静地工作。
你说是不是这个理儿呀?所以啊,可别小瞧了这噪声和纹波测试,它可是保证设备正常运行的重要环节呢!。
电源纹波噪声测试方法
电源纹波噪声测试方法电源纹波噪声测试是评估电源输出稳定性和质量的一种方法,电源纹波噪声指的是电源输出电压或电流中的交流成分。
在实际应用中,电源纹波噪声会影响到电子设备的正常工作,因此对电源纹波噪声进行测试和评估是非常重要的。
下面是一种常用的电源纹波噪声测试方法:1.准备测试设备和工具:-示波器:用于观测电源输出的波形。
-负载:用于模拟实际工作条件下的电流负载。
-多米尼克-杰角频率计:用于测量电源输出的纹波频率。
2.连接测试设备:-将电源的输出端连接到负载上。
-将示波器的探头连接到电源输出端和地线上。
-将多米尼克-杰角频率计的电极连接到电源输出端和地线上。
3.设置测试参数:-将负载设置为所需的值。
通常情况下,负载的电流应为电源额定输出电流的一半。
-调整示波器的时间基准和电压采样范围,使得波形能够清晰可见,并且不会超过示波器的测量范围。
4.进行测试:-打开电源并让其稳定运行一段时间。
-使用示波器观察电源输出的波形,并记录波形的幅值和频率。
-使用多米尼克-杰角频率计测量纹波频率,并记录下来。
5.分析结果:-根据记录的波形和频率数据,计算电源的纹波噪声。
常用的计算方法有峰-峰值法、均方根值法等。
-将计算结果与电源的规格要求进行比较,评估电源的质量和稳定性。
需要注意的是,电源纹波噪声测试应在标准的电源条件下进行,避免干扰源的影响。
同时,测试时要注意与电源和负载的连接方式,以减小测量误差。
此外,为了提高测试结果的准确性,可以进行多次重复测试,取平均值作为最终结果。
总之,电源纹波噪声测试方法通过观测电源输出波形和测量纹波频率来评估电源的质量和稳定性。
这一测试方法对于保证电子设备正常工作和提高产品质量具有重要意义。
直流稳压电源实验中的纹波与噪声分析与消除方法
直流稳压电源实验中的纹波与噪声分析与消除方法直流稳压电源在各种电子实验和设备中起着至关重要的作用。
在使用直流稳压电源时,我们常常会遇到纹波和噪声问题,这些问题可能会对电子元件和电路产生不利影响。
因此,对纹波和噪声进行准确的分析和消除是非常重要的。
本文将探讨直流稳压电源实验中纹波与噪声的产生原因、分析方法以及消除方法。
一、纹波与噪声的产生原因直流稳压电源实验中纹波与噪声的产生主要有以下几个方面的原因:1. 电源本身的问题:直流稳压电源可能存在电源波动或者电源的设计不合理,使得输出直流电压出现纹波。
2. 电源滤波电容:电源滤波电容的质量和容值对纹波有直接影响。
当电容的质量较差或容值较小时,就容易出现较大的纹波。
3. 复杂电路连接:在实验中,当直流稳压电源与其他电路连接时,电源输出的纹波与噪声可能通过其他电路产生耦合作用,从而出现在实验电路中。
二、纹波与噪声的分析方法在直流稳压电源实验中,我们可以采用以下几种方法进行纹波与噪声的分析:1. 示波器显示法:将直流稳压电源输出的电压信号接入示波器并设置合适的量程,观察示波器上的波形变化,从波形上可以分析纹波和噪声的幅度和频率。
2. 多用表测量法:通过将直流稳压电源输出的电压信号接入多用表,选择合适的测量范围和测量方式,测量电压的均值和波动值,从而获取纹波和噪声的相关信息。
3. 频谱分析法:通过频谱仪等设备对直流稳压电源输出的电压信号进行频谱分析,找出纹波和噪声所在的频率区域,并获取相应的幅度信息。
三、纹波与噪声的消除方法在直流稳压电源实验中,为了消除输出电压中的纹波与噪声,我们可以采用以下几种方法:1. 优化电源设计:选择质量较好的电源模块或器件,并合理设计稳压电路,使得电源本身的纹波和噪声尽量降低。
2. 选择合适的滤波元件:在直流稳压电源的输出端添加合适的滤波元件,如大容值电解电容、磁珠或者低通滤波器等,以实现对纹波和噪声的滤波处理。
3. 电源电容升级:对电源滤波电容进行升级,选择较大容值的优质电容来替换原有电容,以减小纹波和噪声的幅度。
电源产品输出电压纹波及噪声测试方法(标准版)
电源产品输出电压纹波及噪声测试方法
(1).测试目的:确保产品的输出电压纹波及噪声在标准范围内。
(2).测试条件:
a.输入电压在额定输入电压范围内变化,一般记录三个点上的数据,即最低输入电压、标称输入电压和最高输入电压。
b.显波器设定:带宽20M,探头10X,其接地线长度不应该超过12cm 。
c.在尽量靠近负载端并上两个电容C1,C2;其中C1一般采用10uF电解电容,C2一般采用0.1uF高频电容(电容容量或参考产品标准规定)。
d.测试示意图为:
(3). 测试后检验:
a. 输出直流电压中所包括的交流分量峰一峰值≤输出电压额定值1%,或由型号产品标准规定。
(4). 备注:
A. 检测员严格按照本作业指引进行检验,并作好相关记录,记录表见《综合电气性能测试报告A》。
B. 在测试时失败或异常,速联系品管负责人或相关人员。
纹波和噪声测试方法
纹波和噪声测试方法纹波和噪声测试方法纹波(Waveform Leakage)是指在信号传输过程中,由于传输线或传输媒介本身的特性引起的频率范围内的衰减或干扰。
纹波通常会对信号的精度和可靠性产生影响,因此在许多应用中需要进行纹波测试。
噪声(Noise)是指在信号处理过程中,由于各种干扰因素引起的随机信号。
噪声测试可以帮助评估信号的抗干扰能力和稳定性。
以下是几种常见的纹波和噪声测试方法:1. 静态纹波测试(Static Waveform Leakage):在测试过程中,信号被放置在一个固定位置,并使用仪器测量其频率范围内的衰减。
静态纹波测试可以评估传输线或传输媒介的特性,例如材料密度、电容和电感等。
2. 动态纹波测试(Dynamic Waveform Leakage):在测试过程中,信号通过传输线或传输媒介,并使用仪器测量其频率范围内的衰减。
动态纹波测试可以评估信号在不同负载下的抗干扰能力。
3. 噪声测试:噪声测试可以使用各种仪器进行,例如频谱仪、示波器、信号发生器等。
在测试中,信号被放置在一个固定位置,并使用仪器测量其频率范围内的噪声水平。
噪声测试可以评估信号的抗干扰能力和稳定性。
4. 纹波抑制测试:纹波抑制测试可以使用各种仪器进行,例如滤波器、放大器等。
在测试中,信号被放置在一个固定位置,并使用仪器测量其频率范围内的纹波水平。
纹波抑制测试可以帮助提高信号的精度和可靠性。
纹波和噪声测试方法的选择取决于具体的应用场景和需求。
测试方法可以提供有关信号传输性能的重要信息,例如抗干扰能力、稳定性和精度等。
因此,在实际应用中,需要根据具体情况选择合适的测试方法。
开关电源纹波噪声测试方法
开关电源纹波噪声测试方法我折腾了好久开关电源纹波噪声测试这事儿,总算找到点门道。
最开始的时候啊,我真是瞎摸索。
我就知道得找个示波器来测,心想这能有多难呢。
就随便拿了个示波器,把探头往电源输出那一端一接,我以为就能看到准确的纹波噪声了,结果大错特错。
那显示出来的数值啊,看起来就很不靠谱。
后来才明白,探头的接地方式太重要了。
如果接地没接好,那测出来的结果就全乱套了。
就好比你要量一个东西的长度,但是尺子没放正一样。
后来我又试了一次,这次我特别注意探头的接地。
我把探头的接地弹簧尽量靠近测试点接地。
这就像是你去钓鱼,要把鱼钩尽可能靠近鱼多的地方一样。
但是又碰到新问题了,测试环境干扰太大了。
周围有其他设备开着的时候,示波器上的波形看起来就有很多毛刺,根本分不清哪些是真正的纹波噪声,哪些是干扰。
又失败了几次后,我就想啊,得把测试环境弄得干净点。
我专门挑了个周围没有什么大型电气设备运行的时间去测试。
还把开关电源单独放在一个绝缘的台子上,减少和其他物体的耦合。
这就像是你要安静地做一件事,就找个没人打扰的小角落一样。
同时呢,示波器的带宽限制也很重要。
我最开始没管这个,后来设置了合适的带宽限制后,发现波形看起来就清晰多了。
我不确定每个型号的示波器这个操作是不是都一样,反正我这个示波器得仔细看说明书才能搞定这个带宽设置呢。
再一个就是测试点的选取。
我最开始就在电源输出线随便找个地方接探头,其实最好是在电容后面,也就是电源滤波之后的地方测。
这地方更能反映纹波经过滤波后的真实情况,就好比你要检测经过净化器后的空气,肯定是要在净化器出风口处检测最准确。
还有采样率,这个设置不好也会影响结果。
要是采样率太低,波形细节就显示不出来,就好像你用低像素的相机拍照,很多细节都看不到了。
我还在不断摸索,但是现在按照这些法子来测试,结果已经靠谱多了。
这就是我在开关电源纹波噪声测试里的一些尝试和经验啦。
示波器测试纹波方法
示波器测试纹波方法示波器是一种用于观察和测量电信号的工具,可以用来检测和记录电信号的各种特征,包括波形、振幅、频率、相位等。
为了检测和记录电信号中的纹波,可以使用示波器上的纹波产生器和测试按钮。
下面是几种常见的示波器测试纹波方法:1. 单圈测试法:单圈测试法是一种简单而常用的测试纹波的方法。
该方法将示波器上的正弦波信号分成若干个圈,并在每个圈上测量信号的振幅和相位。
如果每个圈的振幅和相位都不同,则说明存在纹波。
单圈测试法可以在示波器上直接操作,因此是一种方便且实用的测试方法。
2. 多圈测试法:多圈测试法是将示波器上的正弦波信号分成多个圈,并在每个圈中测量信号的振幅和相位。
这种方法可以更精确地检测和记录纹波,但需要更多的示波器时间。
多圈测试法通常需要使用示波器上的时钟和触发器来确保每个圈的测量正确。
3. 垂直纹波测试法:垂直纹波测试法是一种在示波器上使用垂直轴来检测和记录纹波的方法。
该方法将示波器上的正弦波信号分解成垂直和水平两个部分,并在垂直轴上测量信号的振幅和相位。
如果垂直纹波与水平纹波不同,则说明存在纹波。
垂直纹波测试法通常需要使用示波器上的垂直轴触发器和衰减器。
4. 扩展纹波测试法:扩展纹波测试法是一种在示波器上使用扩展轴来检测和记录纹波的方法。
该方法将示波器上的正弦波信号分解成扩展和垂直两个部分,并在扩展轴上测量信号的振幅和相位。
如果扩展纹波与垂直纹波不同,则说明存在纹波。
扩展纹波测试法通常需要使用示波器上的扩展轴触发器和衰减器。
以上是几种常见的示波器测试纹波方法。
不同类型的示波器可能需要不同的测试方法,因此在使用示波器时,需要根据具体情况选择适合的测试方法。
降低电源纹波噪声的一些常用方法
降低电源纹波噪声的一些常用方法在应用电源模块常见的问题中,降低负载端的纹波噪声是大多数用户都关心的。
下文结合纹波噪声的波形、测试方式,从电源设计及外围电路的角度出发,阐述几种有效降低输出纹波噪声的方法。
1、电源的纹波与噪声图示纹波和噪声即:直流电源输出上叠加的与电源开关频率同频的波动为纹波,高频杂音为噪声。
具体如图1所示,频率较低且有规律的波动为纹波,尖峰部分为噪声。
图12、纹波噪声的测试方法对于中小微功率模块电源的纹波噪声测试,业内主要采用平行线测试法和靠接法两种。
其中,平行线测试法用于引脚间距相对较大的产品,靠测法用于模块引脚间距小的产品。
但不管用平行线测试法还是靠测法,都需要限制示波器的带宽为20MHz,同时需要去掉地线夹。
具体如图2和图3所示。
图2 平行线测试法注1:C1为高频电容,容量为1μF;C2为钽电容,容量为10μF。
注2:两平行铜箔带之间的距离为2.5mm,两平行铜箔带的电压降之和应小于输出电压的2%。
图3靠测法3、去除地线夹测试的区别测试纹波噪声需要把地线夹去掉,主要是由于示波器的地线夹会吸收各种高频噪声,不能真实反映电源的输出纹波噪声,影响测量结果。
下面的图4和图5分别展示了对同一个产品,使用地线夹及取下地线夹测试的巨大差异。
图4 使用地线夹测试-示波器垂直分辨率200mv/div图5 去除地线夹测试-示波器垂直分辨率50mv/div4、设计上PCB布局的影响好与坏的PCB布局,是设计上影响纹波噪声的关键因素。
差的PCB布局如图6所示,变压器输出的地,直接通过过孔连到背部的地平面,地平面连接电源的输出引脚。
此布局在输出5V/2A的负载下,实测电源尖峰达1.5V VP-P。
图6 差的PCB布局如图7 所示是比较好的PCB布局,调整了变压器的位置,将变压器输出地通过两个电容后,再回到地平面和输出引脚相连。
实测在相同5V/2A输出的负载下,噪声已降到60mV VP-P,差别显著。
纹波和噪声
开关电源的纹波和噪声(图) 日期:2009-08-26 来源:本网作者:北京航空航天大学方佩敏开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。
但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。
本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。
纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。
纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
利用示波器可以看到纹波和噪声的波形,如图1所示。
纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。
纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。
电源适配器之测量输出噪声和纹波
深圳奥康迪科技有限公司
电源适配器之测量输出噪声和纹波
电源适配器毕竟只是大型系统的一部分。
所以,除了关注噪声和纹波对变换器自身的影响之外,还要考虑它们对系统其余部分的影响。
幸好,如果系统对噪声过分敏感,工程师就绝不会首选开关电源,而是使用那些低噪声、高功耗的LDO (线性调节器)!
当客户回来抱怨开关变换器输出噪声和纹波过时,通常纹波确实是存在的,但噪声可能是由不正确的测量方法造成的假象。
一定要问客户是否有噪声和纹波!你可能惊奇的发现相当多的人采用如图的测量纹波。
对于第一种方法,示波器的地探头会等效出很大的无限接收器拾波线圈,而第二种方法会产生很大的环流辐射天线。
实际上,在任何故障诊断过程中,每当你遇到奇怪的示波器连接图,首先尝试采用这种简单的探头接地技术来验证它确实是正确的。
本文由深圳奥康迪科技有限公司发布。
开关电源的纹波和噪声测试方法
开关电源的纹波和噪声(图)开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。
但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。
本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。
纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。
纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
利用示波器可以看到纹波和噪声的波形,如图1所示。
纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。
纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。
图1 纹波和噪声的波形纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。
电源纹波和噪声测试的注意事项和调试技巧
图 2. 10:1 与 1:1 探头的差异
可见, 选择一款高精度的示波器和探头系统组合是多么重要!
图 4. N7020A 探头和 N7021A 焊接前端示意图
03 | 是德科技 | 电源纹波和噪声的测试测量和分析
采用 N7021A 焊接电缆时 N7020A 探头带宽可达 2GHz 确保可 以支持测试到 2GHz 电源噪声, 是目前业界最高带宽的电源纹波 示波器里设置 Offset 值到电源直流值, 然后再调节示波器的垂 和噪声测试探头。 ±24V 垂直偏移设置可以在测试时可以直接在 测试直流分量上的纹波或噪声小信号通常不得不在示波器上设 置 AC 耦合方式, 但是 AC 耦合在滤除直流分量的同时也会将低 低测量值。 频噪声和漂移也滤除掉。 50K Ω 的 DC 阻抗则确保探头对电源分 配网络 (PDN)足够高阻, 以免探头在介入电路探测时分压从而降 N7020A 除了提供高达 2GHz 带宽的 N7021A 焊接连接方式外,
或噪声显然精度是无法保证的, 而采用 1:1 探头时垂直刻度则依
其 次 推 荐 一 款 专用 的电 源 纹 波 和 噪 声 测 试 探 头 — K e y s i g h t 身可设置 ±24V 垂直偏移, 且其本身阻抗为 50K Ω@DC。
N7020A 。 该探头具有最高 2GHz 带宽, 衰减比 1:1 左右, 探头本
以免接地线耦合其它干扰和噪声。 长地线的寄生电感还会降低 尖直接点测和短弹簧地针的组合效果最佳, 当然采用双列直插 有时需要在测试精度和连接方便性之间进行平衡。
测试带宽。 因此在 N7023A 的三种灵活测试组合中, 采用探头针 连接和贴片器件夹的组合具有更佳的连接和测试方便性, 因此 以上描述了推荐进行精确电源纹波和噪声测试的示波器和探头 组合以及测试中的一些小技巧, 这些是得到真实测量结果的基 础和保证。 在得到期望的波形后, 又该如何进行分析呢? 通常情况下, 可以采用直方图统计和进行简单的 FFT 频谱分析:
输出噪声纹波的测试
输出噪声纹波的测试
输出纹波和噪声是指叠加在输出直流上交流成份,其中纹波是叠加在输出直流上开关频率的谐波分量,而噪声电压是与开关频率无关的非周期的分量。
测试纹波和噪声应在规定的带宽内测试,一般用20MHZ带宽,超20MHZ带宽的示波器可选用20MHZ带宽限制,一般用mVp-p表示,测量时应采用靠测法(见图十五)即去掉探头上的地线夹和测试钩,直接用示波器探头靠在电源模块的输出引针上,这样可以避免空间瞎射造成影响,还可以避免将共模信号叠加在真正要测试的差模信号上。
另一种方法是用双绞线测量。
适用于便装式电源的测量,如图十六所示。
将电源放置在一个离接地板25mm之上的地方,接地板由铝或铜板构成。
电源的输出公共端和AC输入地端直接与接地板连结,而且不长于50mm(线径应> 1mm2)用16AWG铜线傲成300mm长的双绞线,一端接电源输出,另一端并联一只47μF的钽电容,再接到示波器上。
电容的引线应尽可能短,注意极性不要接反。
示波器探头的“地线”应尽可能接到地线环。
输出纹波和噪声是指叠加在输出直流上交流成份,其中纹波是叠加在输出直流上开关频率的谐波分量,而噪声电压是与开关频率无关的非周期的分量。
测试纹波和噪声应在规定的带宽内测试,一般用20MHZ带宽,超20MHZ带宽的示波器可选用20MHZ带宽限制,噪声、纹波测试一般用mVp-p表示,测量时应采用摸拟示波器选择适当的量程,扫描速度应低干0.5秒,测峰-峰值杂音电压,接线如图。
开关电源的纹波噪声及测试方法
开关电源的纹波和噪声来源:今日电子/21ic作者:北京航空航天大学方佩敏开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。
但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。
本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。
纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。
纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
利用示波器可以看到纹波和噪声的波形,如图1所示。
纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。
纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。
图1 纹波和噪声的波形纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纹波和噪声的测试方法
一、引言
纹波和噪声是在电子设备和电路中常见的问题,它们会对系统的性能和稳定性产生不良影响。
因此,为了确保电子设备和电路的正常工作,需要对纹波和噪声进行测试和分析。
本文将介绍纹波和噪声的测试方法。
二、纹波的测试方法
纹波是指电源输出中的交流成分,通常是由于电源的不稳定或电路的设计问题引起的。
纹波的测试方法主要包括以下几个方面:
1. 输出纹波的测量:使用示波器将电源的输出信号进行测量,然后通过傅里叶变换等方法将信号分解成不同频率的成分,从而得到纹波的幅度和频率。
2. 纹波的评估标准:根据电子设备和电路的要求,确定纹波的允许范围。
通常使用峰峰值、均方根值等指标来评估纹波的大小。
3. 纹波的抑制方法:在设计电源和电路时,可以采取一些措施来抑制纹波的产生。
常见的方法包括使用滤波电容、稳压器等。
三、噪声的测试方法
噪声是指电子设备和电路中的随机信号成分,通常是由于电子元件的热噪声、电源的电磁干扰等引起的。
噪声的测试方法主要包括以
下几个方面:
1. 噪声功率谱的测量:使用频谱分析仪等设备对电子设备和电路的输出信号进行测量,得到噪声功率谱的频率和幅度信息。
2. 噪声的评估标准:根据电子设备和电路的要求,确定噪声的允许范围。
常见的评估指标包括等效输入噪声、噪声系数等。
3. 噪声的抑制方法:在设计电子设备和电路时,可以采取一些措施来抑制噪声的产生和传播。
常见的方法包括屏蔽、隔离、降噪电路等。
四、纹波和噪声的测试仪器
为了进行纹波和噪声的测试,需要使用一些专门的测试仪器。
常见的测试仪器包括示波器、频谱分析仪、信号发生器等。
这些仪器能够准确地测量和分析纹波和噪声的特性。
五、测试过程和注意事项
在进行纹波和噪声的测试时,需要注意以下几个方面:
1. 测试环境的准备:测试仪器和被测试设备应处于稳定的环境中,避免外部干扰对测试结果的影响。
2. 测试信号的选择:根据被测试设备的要求,选择合适的测试信号进行测试。
通常使用正弦波、方波等信号进行测试。
3. 测试参数的设置:根据测试要求,设置合适的测试参数,如频率范围、幅度范围等。
4. 测试结果的分析:对测试得到的数据进行分析和比较,判断纹波和噪声是否满足要求。
5. 测试报告的编写:根据测试结果,编写详细的测试报告,包括测试方法、测试结果和分析等内容。
六、总结
纹波和噪声是电子设备和电路中常见的问题,对系统的性能和稳定性具有重要影响。
通过合适的测试方法和仪器,可以准确地测量和分析纹波和噪声的特性,为电子设备和电路的设计和优化提供依据。
因此,在电子领域的研究和应用中,纹波和噪声的测试方法具有重要的意义。