八年级上册数学《全等三角形》三角形全等 知识点整理
苏教版八年级数学上册知识点总结(苏科版)
知识点总结第一章三角形全等一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。
2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。
二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。
理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。
2、全等三角形的周长相等、面积相等。
3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。
三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
4、边边边公理(SSS) 有三边对应相等的两个三角形全等。
5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。
2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。
3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。
第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。
四、角的角平分线1、性质定理:角平分线上的点到角两边的距离相等。
人教版八年级数学上册 第十二章 全等三角形 知识点归纳
人教版八年级数学上册第十二章全等三角形知识点归纳12.1全等三角形经过平移、翻折、旋转,能够完全重合的两个图形叫做全等形。
经过平移、翻折、旋转,能够完全重合的两个三角形叫作全等三角形。
全等用符号“≌”表示,读作“全等于”。
例1、△ABC≌△DEF读作:三角形ABC全等于三角形DEF。
把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
用“≌”表示两个图形全等的时候,必须把对应的顶点写在对应的位置上。
例2、已知△ABC≌△DEF,那么就说明:①点A对应点D,点B对应点E,点C对应点F②∠A=∠D,∠B=∠E,∠C=∠F③AB=DE,AC=DF,BC=EF用“全等于”这个词表示两个图形全等的时候,顶点不一定有一一对应关系。
例3、已知△ABC全等于△DEF,那么点A不一定对应D,点A也可能对应点E或者点F 。
全等三角形的性质:①对应边相等②对应角相等③角平分线、中线、高分别对应相等④周长相等⑤面积相等12.2三角形全等的判定全等三角形的判定依据:①三边对应相等的两个三角形全等,简称“边边边”或“SSS ”。
②两边一夹角对应相等的两个三角形全等,简称“边角边”或“SAS ”。
③两角一夹边对应相等的两个三角形全等,简称“角边角”或“ASA ”。
④两角一对边对应相等的两个三角形全等,简称“角角边”或“AAS ”。
⑤一条斜边和一条直角边对应相等的两个直角三角形全等,简称“斜边直角边”或“HL ”。
温馨提示:“SSA ”和“AAA ”不能证明两个三角形全等。
全等三角形的证明格式:SSS 、SAS 、ASA 、AAS 的证明格式: HL 的证明格式:在△ABC 与△DEF 中 在Rt △ABC 与Rt △DEF 中∵{ 条件1条件2条件3∵{条件1条件2 ∴△ABC ≌△DEF (条件) ∴△ABC ≌△DEF (HL )12.3角的平分线的性质如果从一个角的顶点引出一条射线把这个角分成两个相等的角,那么这条射线叫做这个角的角平分线。
人教版初中八年级数学上册第十二章《全等三角形》知识点总结(含答案解析)(1)
一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒D解析:D【分析】 根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.2.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA C解析:C【分析】 根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.5.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°B解析:B【分析】根据正方形的性质得到AB=AD ,∠BAD=90︒,由旋转的性质推出ADE ≌ABF ,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90︒,由旋转得ADE ≌ABF ,∴∠FAB=∠EAD ,∴∠FAB+∠∠BAE=∠EAD+∠BAE ,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B .【点睛】 此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键. 6.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ B 解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF C解析:C【分析】 由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.8.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 9.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OBB .AC =BC C .∠A =∠BD .∠1=∠2B解析:B【分析】根据题意可以得到∠AOC=∠BOC,OC=OC,然后即可判断各个选项中条件是否能判定△AOC≌△BOC,从而可以解答本题.【详解】解:由已知可得,∠AOC=∠BOC,OC=OC,∴若添加条件OA=OB,则△AOC≌△BOC(SAS),故选项A不符合题意;若添加条件AC=BC,则无法判断△AOC≌△BOC,故选项B符合题意;若添加条件∠A=∠B,则△AOC≌△BOC(AAS),故选项C不符合题意;若添加条件∠1=∠2,则∠ACO=∠BCO,则△AOC≌△BOC(ASA),故选项D不符合题意;故选:B.【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.10.如图,△ACB≌△A'CB',∠BCB'=25°,则∠ACA'的度数为()A.35°B.30°C.25°D.20°C解析:C【分析】利用全等三角形的性质可得∠A′CB′=∠ACB,再利用等式的性质可得答案.【详解】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∴∠A′CB′-∠A′CB=∠ACB-∠A′CB,∴∠ACA′=∠BCB′=25°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应角相等.二、填空题11.如图,AC=BC,请你添加一个条件,使AE=BD.你添加的条件是:________.∠A=∠B或CD=CEAD=BE∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC∠C=∠C所以添加∠A=∠B或CD=CEAD=BE∠AEC=∠BDC可得△ADC与△解析:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.0,3,另12.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C的坐标为()8,8,则点A的坐标为____________一个顶点B的坐标为()(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ根据全等三角形的判定与性质可得AQCQ根据线段的和差可得OQ可得答案【详解】解:作BP⊥y轴AQ⊥y轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ,根据全等三角形的判定与性质,可得AQ,CQ,根据线段的和差,可得OQ,可得答案.【详解】解:作BP⊥y轴,AQ⊥y轴,如图,∴∠BPC=∠AQC=90°∵BC=AC,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.13.如图,在ABC 中,=6AB ,=4AC ,点D ,E 分别在边AB ,AC 上,2BD AE CE ===,//CE AB 交DE 的延长线于点F ,则CF 的长为_____________.4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD 再求出AD 的长即可【详解】解:∵AB=6BD=2∴AD=AB-BD=6-2=4∵∴∠BAC=∠FCE 在△ADE 和△CFE 中∴△ADE ≌△CFE ∴解析:4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD ,再求出AD 的长即可.【详解】解:∵AB=6,BD=2∴AD=AB-BD=6-2=4∵//CE AB∴∠BAC=∠FCE ,在△ADE 和△CFE 中BAC FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CFE∴CF=AD=4.故答案为:4.【点睛】此题主要考查了全等三角形的判定与性质,证明△ADE ≌△CFE 是解答此题的关键.14.如图,在Rt ABC △中,90B ∠=︒,12AB =,5BC =,射线AP AB ⊥于点A ,点E 、D 分别在线段AB 和射线AP 上运动,并始终保持DE AC =,要使ABC 和DAE △全等,则AE 的长为______.5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE此时AE=BC=5可据此求出E 点的位置②Rt △CBA ≌Rt △DAE 此时AE=AB=12EB 重合【详解】解:①当AE=CB 时∵∠B=∠EA解析:5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE ,此时AE=BC=5,可据此求出E 点的位置.②Rt △CBA ≌Rt △DAE ,此时AE=AB=12,E 、B 重合.【详解】解:①当AE=CB 时,∵∠B=∠EAP=90°,在Rt △ABC 与Rt △DAE 中,AE CB DE AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △DAE (HL ),即AE=BC=5;②当E 运动到与B 点重合时,AE=AB ,在Rt △CBA 与Rt △DAE 中,AE AB DE AC =⎧⎨=⎩, ∴Rt △CBA ≌Rt △DAE (HL ),即AE=AB=12,∴当点E 与点B 重合时,△CBA 才能和△DAE 全等.综上所述,AE=5或12.故答案为:5或12.【点睛】本题考查了三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.15.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.AB//CD 【分析】先利用SSS 证明△ABF ≌△CDE 然后根据全等三角形的性质得到∠DCE=∠BAF 最后根据内错角相等两直线平行即可解答【详解】解:∵AE=CF ∴AE+EF=CF+EF 即AF=EC 在解析:AB//CD【分析】先利用SSS 证明△ABF ≌△CDE ,然后根据全等三角形的性质得到∠DCE=∠BAF ,最后根据内错角相等、两直线平行即可解答.【详解】解:∵AE=CF ,∴AE+EF=CF+EF,即AF=EC在△ABF 和△CDE 中,,,,AB CD AF EC BF DE =⎧⎪=⎨⎪=⎩∴△ABF ≌△CDE (SSS ),∴∠DCE=∠BAF .∴AB//CD .故答案为:AB//CD .【点睛】本题主要考查了全等三角形的判定与性质以及平行线的判定,运用全等三角形的知识得到∠DCE=∠BAF 成为解答本题的关键.16.如图所示,己知ABC ∆的周长是22,,OB OC 分别平分ABC ∠和ACB OD BC D ∠⊥,于,且3OD =,则ABC ∆的面积是__________.【分析】连接OA 过O 作OE ⊥AB 于EOF ⊥AC 于F 根据角平分线上的点到角的两边的距离相等可得点O 到ABACBC 的距离都相等(即OE =OD =OF )从而可得到△ABC 的面积等于周长的一半乘以3代入求出即 解析:33【分析】连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等(即OE =OD =OF ),从而可得到△ABC 的面积等于周长的一半乘以3,代入求出即可.【详解】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D∴OE=OF=OD=3,∵△ABC的周长是22,∴S△ABC=12×AB×OE+12×BC×OD+12×AC×OF=12×(AB+BC+AC)×3=12×22×3=33.故答案为:33.【点睛】本题考查了角平分线的性质和三角形的面积求法,熟知角平分线的性质,并根据题意合理添加辅助线是解题关键.17.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为___.cm2【分析】如图延长AP交BC于T利用全等三角形的性质证明AP=PT即可解决问题【详解】解:如图延长AP交BC于T∵BP⊥AT∴∠BPA=∠BPT=90°∵BP=BP∠PBA=∠PBT∴△BPA≌解析:12cm2【分析】如图,延长AP交BC于T.利用全等三角形的性质证明AP=PT即可解决问题.【详解】解:如图,延长AP交BC于T.∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==, 1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.18.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.30【分析】根据∠ACB =∠DCE =90°可得∠ACD =∠BCE 利用三角形全等判定可得△ACD ≌△BCE 则BE =AD ∠DAC =∠EBC 再证明∠DBE =90°根据三角形面积计算公式便可求得结果【详解】解析:30【分析】根据∠ACB =∠DCE =90°,可得∠ACD =∠BCE ,利用三角形全等判定可得△ACD ≌△BCE ,则BE =AD ,∠DAC =∠EBC ,再证明∠DBE =90°,根据三角形面积计算公式便可求得结果.【详解】解:∵∠ACB =∠DCE =90°,∴∠ACB -∠DCB =∠DCE -∠DCB .即∠ACD =∠BCE .∵AC =BC ,∠ADC =∠BEC ,∴△ACD ≌△BCE .∴BE =AD ,∠DAC =∠EBC .∵∠DAC +∠ABC =90°,∴∠EBC +∠ABC =90°.∴△BDE 为直角三角形.∵AB =17,BD =5,∴AD =AB -BD =12.∴S △BDE =12BD ⋅BE =30. 故答案为:30.【点睛】本题考查了全等三角形的判定与性质,通过分析题意找出三角形全等的条件并能结合全等性质解决相应的计算问题是解题的关键.19.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.20.如图,ABC ∆的两条高AD 、CE 交于点H ,已知6EH EB ==,8AE =,则ACH ∆的面积为______.8【分析】由题意可得进而证明结合已知条件证明故根据分别求出与的面积即可【详解】在和中故答案为:【点睛】本题主要考查全等三角形的判定与性质熟记全等三角形的判定定理是解题关键解析:8【分析】由题意可得90ADC CEA ∠=∠=︒,进而证明EAH HCD ∠=∠,结合已知条件证明BEC HEA ∆≅∆,故8EC EA == ,根据AHC AEC AEH S S S ∆∆∆=-分别求出AEH S ∆与AEC S ∆的面积即可.【详解】AD BC ⊥,CE AB ⊥,90ADC CEA ∴∠=∠=︒,AHE CHD ∠=∠,EAH CEH HCD ADC ∴∠+∠=∠+∠,EAH HCD ∴∠=∠,在BEC △和HEA △中,90BEC HEA HCD EAHEB EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BEC HEA AAS ∴≅,EC EA ∴=,8EA =,8EC ∴=,6EH =,11862422AEH S AE EH ∆∴=⨯⋅=⨯⨯=, 11883222AEC S AE EC ∆=⋅=⨯⨯=,32248AHC AEC AEH S S S ∆∆∆∴=-=-=.故答案为:8.【点睛】本题主要考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题关键.三、解答题21.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.解析:见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF 通过等式的性质得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.22.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.解析:见解析【分析】根据SSS 可证明△ABD ≌△CDB ,即可得∠ABD =∠CDB ,∠ADB =∠CBD ,进而可证明结论.【详解】在ABD ∆和CDB ∆中AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()ABD CDB SSS ∴∆≅∆ABD CDB ∴∠=∠ADB CBD ∠=∠ABC ABD CBD ∠=∠-∠CDA CDB ADB ∠=∠-∠ABC CDA ∴∠=∠【点睛】本题主要考查全等三角形的性质与判定,利用SSS 证明△ABD ≌△CDB 是解题的关键. 23.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.解析:(1)详见解析;(2)52︒【分析】(1)先证明∠BAC=∠DAE ,即可根据SAS 证得结论;(2)根据三角形内角和定理求出∠BAC 的度数,再根据全等三角形的性质得到答案.【详解】(1)∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE .在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABC ADE △≌△;(2)∵42,86B C ∠=︒∠=︒,∴18052BAC B C ∠=︒-∠-∠=︒.∵ABC ADE △≌△,∴52DAE BAC ∠=∠=︒.【点睛】此题考查全等三角形的判定及性质,三角形内角和定理,熟记三角形全等的判定定理是解题的关键.24.阅读下面材料:学习了三角形全等的判定方法(即“SAS ”“ASA ”“AAS ”“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为在ABC 和DEF 中,AC DF =,BC EF =,B E ∠=∠.小聪的探究方法是对B 分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当B 是直角时,如图1,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠=︒,根据“HL ”定理,可以知道Rt Rt ABC DEF ≌△△. 第二种情况:当B 是锐角时,如图2,90B E ∠=∠<︒,BC EF =.(1)在射线EM 上是否存在点D ,使DF AC =?若存在,请在图中作出这个点,并连接DF ;若不存在,请说明理由;(2)这种情形下,ABC 和DEF 的关系是 (选填“全等”“不全等”或“不一定全等”);第三种情况:当B 是钝角时,如图3,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠>︒.(3)请判断这种情形下,ABC 和DEF 是否全等,并说明理由.解析:(1)存在,见解析;(2)不一定全等;(3)全等,见解析【分析】(1)根据尺规作图的方法画出图形即可.(2)根据题(1)所得两种情况及全等三角形的判定即可求解;(3)第三种情况:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N,先证明△CMA ≌△FND ,推出AM =DN ,推出AB =DE ,再证明△ABC ≌△DEF 即可.【详解】解:(1)存在,如图所示.射线EM 上有两个点满足要求.(2)不一定全等.如题(1)所示:由于满足条件的D 有两个,故△ABC 和△DEF 不一定全等,故答案为:不一定全等;(3)△ABC 和△DEF 全等.理由如下:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N .∵ABC DEF ∠=∠,∴CBM FEN ∠=∠.∵CM AB ⊥,FN DE ⊥,∴90CMB FNE ∠=∠=︒.在△CBM 和△FEN 中,∵,,,CMB FNE CBM FEN BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBM ≌△FEN (AAS ).∴BM EN =,∴CM FN =.在Rt △ACM 和Rt △DFN 中,∵,,AC DF CM FN =⎧⎨=⎩∴Rt △ACM ≌Rt △DFN (HL ).∴AM DN =,∴AM BM DN EN -=-,即AB DE =.又∵BC EF =,∴△ABC 和△DEF (SSS ).【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,学会作辅助线,难度适中.25.OAB 和ODE 均为等腰三角形,且AOB DOE β∠=∠=,OA OB =,OD OE =,连接AD 、BE ,它们所在的直线交于点F .(1)观察发现:如图1,当60β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______;(2)探究证明:如图2,当90β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______,根据图2证明你的猜想;(3)拓展推广:当β为任意角时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______.(用含β的式子表示)解析:(1)AD BE =,60°;(2)AD BE =,90°,理由见解析;(3)AD BE =,β【分析】(1)设AF 交BD 于G ,证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,得到60AFB AOB ∠=∠=︒;(2)证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,根据OFA DFB ∠=∠及三角形内角和定理即可证得90AFB AOB ∠=∠=︒;(3)根据(1)与(2)直接得到结论.【详解】(1)证明:设AF 交BO 于G ,∵60AOB DOE ∠=∠=︒,∴AOB BOD DOE BOD ∠-∠=∠-∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA FGB ∠=∠,∴180180OGA OAD FGB OBE ∠-∠=∠--∠︒-︒,∴60AFB AOB ∠=∠=︒, 故答案为:AD BE =,60°;(2)AD BE =,90°证明:设AF 交BO 于G ,∵90AOB DOE ︒∠=∠=,∴AOB BOD DOE BOD ∠+∠=∠+∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA DGB ∠=∠,∴90AFB AOB ∠=∠=︒;故答案为:AD BE =,90°;(3)证明:由(1)与(2)可得AD BE =,AFB AOB β∠=∠=故答案为:AD BE =,β.【点睛】此题考查全等三角形的判定及性质,等腰三角形的性质,熟练掌握全等三角形的判定及性质是解题的关键.26.已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长. 解析:图见解析,9DE =或3DE =【分析】分直线l 不经过线段AB 和直线l 经过线段AB 两种情况画图,证明△ACD ≌△CBE 即可求出DE 的长.【详解】解:如图1∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中,===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=DC+CE=9;如图2,∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中,===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=CE-CD=3;∴9DE =或3DE =.【点睛】本题考查了全等三角形的判定与性质,根据题意分类画图证明全等三角形是解题关键. 27.如图,BC ⊥AD 于C ,EF ⊥AD 于F ,AB ∥DE ,分别交BC 于B ,交EF 于E ,且BC =EF .求证:AF =CD .解析:证明见解析.【分析】由BC ⊥AD ,EF ⊥AD 得∠EFD =∠BCA =90°,由AB ∥DE ,得∠D =∠A ,又BC =EF ,从而△ABC ≌△DEF ,则AC =FD , AF =CD .【详解】证明:∵BC ⊥AD ,EF ⊥AD ,∴∠EFD =∠BCA =90°∵AB ∥DE ,∴∠D =∠A∵BC =EF ,∴△ABC ≌△DEF ,∴AC =FD ,∴AF =CD .【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键. 28.已知:如图,AC =BD ,BD ⊥AD 于点D ,AC ⊥BC 于点C .求证:∠ABC =∠BAD .解析:详见解析【分析】利用HL 证明Rt △ABD ≌Rt △BAC ,即可得到结论.【详解】∵BD ⊥AD ,AC ⊥BC ,∴∠D=∠C=90︒,在Rt △ABD 和Rt △BAC 中,AB BA BD AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △BAC (HL ),∴∠ABC =∠BAD .【点睛】此题考查全等三角形的判定及性质,根据题中的已知条件确定两个三角形的对应相等的条件,根据全等的判定定理证得这两个三角形全等是解题的关键.。
八年级数学上册 12.1《全等三角形》知识讲解 全等三角形的概念和性质(提高)素材 (新版)新人教版
全等三角形的概念和性质〔提高〕【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确识别全等三角形的对应元素.2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如以下列图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法〔1〕全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;〔2〕全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;〔3〕有公共边的,公共边是对应边;〔4〕有公共角的,公共角是对应角;〔5〕有对顶角的,对顶角一定是对应角;〔6〕两个全等三角形中一对最长的边〔或最大的角〕是对应边〔或角〕,一对最短的边〔或最小的角〕是对应边〔或角〕,等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等;要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、请观察以下列图中的6组图案,其中是全等形的是__________.【答案】〔1〕〔4〕〔5〕〔6〕;【解析】〔1〕〔5〕是由其中一个图形旋转一定角度得到另一个图形的,〔4〕是将其中一个图形翻折后得到另一个图形的,〔6〕是将其中一个图形旋转180°再平移得到的,〔2〕〔3〕形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式1】全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B 与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,假设运动方向相同,那么称它们是真正合同三角形(如图1),假设运动方向相反,那么称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,以下各组合同三角形中,是镜面合同三角形的是( )【答案】B;提示:抓住关键语句,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,B答案中的两个三角形经过翻转180°就可以重合,应选B;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角2、如图,△ABD≌△CDB,假设AB∥CD,那么AB的对应边是〔〕A.DB B. BC C. CD D. AD【答案】C【解析】因为AB∥CD,所以∠CDB=∠ABD,这两个角为对应角,对应角所对的边为对应边,所以,BC和DA为对应边,所以AB的对应边为CD.【总结升华】公共边是对应边,对应角所对的边是对应边.类型三、全等三角形性质3、如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,那么∠DAE等于〔〕.A.60°B.45°C.30°D.15°【思路点拨】△AFE是由△ADE折叠形成的,由全等三角形的性质,∠FAE=∠DAE,再由∠BAD=90°,∠BAF=60°可以计算出结果.【答案】D;【解析】因为△AFE是由△ADE折叠形成的,所以△AFE≌△ADE,所以∠FAE=∠DAE,又因为∠BAF=60°,所以∠FAE=∠DAE=90602︒-︒=15°.【总结升华】折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:【变式】如图,在长方形ABCD中,将△BCD沿其对角线BD翻折得到△BED,假设∠1=35°,那么∠2=________.【答案】35°;提示:将△BCD沿其对角线BD翻折得到△BED,所以∠2=∠CBD,又因为AD∥BC,所以∠1=∠CBD,所以∠2=35°.4、如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,假设∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.【思路点拨】〔1〕由∠1,∠2,∠3之间的比例关系及利用三角形内角和可求出∠1,∠2,∠3的度数;〔2〕由全等三角形的性质求∠EBC,∠BCD的度数;〔3〕运用外角求∠α的度数.【答案】∠α=80°【解析】∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x,∠2=5x,∠3=3x,∴28x+5x+3x=36x=180°,x=5°即∠1=140°,∠2=25°,∠3=15°∵△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,∴△ABE≌△ADC≌△ABC∴∠2=∠ABE,∠3=∠ACD∴∠α=∠EBC+∠BCD=2∠2+2∠3=50°+30°=80°【总结升华】此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题.见“比例〞设未知数x是比较常用的解题思路.举一反三:【变式】如图,在△ABC中,∠A:∠ABC:∠BCA =3:5:10,又△MNC≌△ABC,那么∠BCM:∠BCN等于〔〕A.1:2 B.1:3 C.2:3 D.1:4【答案】D;提示:设∠A=3x,∠ABC=5x,∠BCA=10x,那么3x+5x+10x=18x=180°,x=10°. 又因为△MNC≌△ABC,所以∠N=∠B=50°,CN=CB,所以∠N=∠CBN=50°,∠ACB=∠MCN=100°,∠BCN=180°-50°-50°=80°,所以∠BCM:∠BCN=20°:80°=1:4.。
八年级数学上册《三角形全等的判定》知识点总结
千里之行,始于足下。
八年级数学上册《三角形全等的判定》知识点
总结
三角形全等的判定是数学中非常重要的一部分,它通过观察以及一定的几何定理来判断两个三角形是否全等。
根据边和角的关系,我们可以有以下几个判定方法。
1. SSS判定法(边边边)
SSS判定法是通过三边的长度来判断两个三角形是否全等。
如果两个三角形的三条边长度分别相等,则这两个三角形是全等的。
2. SAS判定法(边角边)
SAS判定法是通过两边的长度和它们之间夹角的大小来判断两个三角形是否全等。
如果两个三角形的两边的长度相等,并且这两边夹角的大小也相等,则这两个三角形是全等的。
3. ASA判定法(角边角)
ASA判定法是通过两个角和它们之间的边的长度来判断两个三角形是否全等。
如果两个三角形的两个角相等,并且它们夹着的边的长度也相等,则这两个三角形是全等的。
4. AAS判定法(角角边)
AAS判定法是通过两个角和它们对应的边的长度来判断两个三角形是否全等。
如果两个三角形的两个角相等,并且它们对应的边的长度也相等,则这两个三角形是全等的。
除了上述判定法,还有一些特殊情况需要注意:
第1页/共2页
锲而不舍,金石可镂。
5. RHS判定法(正弦定理)
如果两个三角形的一个角相等,而这个角的两边分别和另一个三角形的两
个边成正比,则这两个三角形是全等的。
总的来说,通过这些判定方法,我们可以判断两个三角形是否全等,从而
解决与全等三角形相关的各种问题。
在解题时,我们可以根据题目提供的条件,选择合适的判定方法进行判断,进而得出结论。
沪科版八年级数学上册《全等三角形》知识总结和经典例题
沪科版八年级上册数学全等三角形复习[知识要点] 一、全等三角形 一般三角形直角三角形判定 边角边(SAS )、角边角(ASA ) 角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL ) 性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
(以上可以简称:全等三角形的对应元素相等) 7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用SAS 找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
八年级上册数学第二单元:全等三角形知识点与练习
第二单元全等三角形本单元的学习目标①重点:全等三角形的性质;三角形全等的判定;角平分线的性质及应用②难点:三角形全等的判断方法及应用;角平分线的性质及应用在中考中的重要性:①中考热点,初中数学中的重点内容②考察内容多样化,有的独立考三角形全等,有的考全等三角形结合其他知识点综合,有的探究三角形全等条件或结论的开放性题目③题型以选择题、填空题、解答题为主【知识归纳】1.全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。
(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点。
重合的边叫做对应边。
重合的角叫做对应角。
(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12.全等三角形的性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等3.全等三角形的判定方法(1)三边相等(SSS);(2)两边和它们的夹角相等(SAS);(3)两角和其中一角的对应边相等(AAS);(4)两角和它们的夹边相等(ASA);(5)斜边和直角边相等的两直角三角形(HL).(该判定只适合直角三角形)注意:没有“AAA”和“SSA”的判定方法,这是因为“三角对应相等的两个三角形”和“两边及其中一边的对角对应相等的两个三角形”未必全等。
如图2,△ABC和△ADE中,∠A=∠A,∠1=∠3,∠2=∠4,即三个角对应相等,但它们只是形状相同而大小并不相等,故它们不全等;如图3,△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,即两边及其中一边的对角对应相等,但它们并不全等。
4.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。
5.角平分线推论:角的内部到角的两边距离相等的点在角的平分线上。
判定三角形全等常用思路公理及定理练笔1、一般三角形全等的判定(如图)(1) 边角边(SSS) AAB=A′B′ BC=B′C ′ _______=_____∴△ABC≌△A′B′C′(2)边角边(SAS)AB=A′B′∠B=∠B′ _______=_____ B C∴△ABC≌△A′B′C′A′(3) 角边角(ASA)∠B=∠B′ ____=_____ ∠C=∠C′∴△ABC≌△A′B′C′B ′ C′(4) 角角边(AAS)∠A=∠A′∠C=∠C′ _______=_____∴△ABC≌△A′B′C′2、直角三角形全等的判定:斜边直角边定理(HL)AB=AB _____=_____∴Rt△ABC≌Rt△A′B′C′B C B′ C′二、全等三角形的性质1、全等三角形的对应角_____2、全等三角形的对应边、对应中线、对应高、对应角平分线_______注意:1、斜边、直角边公理(HL)只能用于证明直角三角形的全等,对于其它三角形不适用。
八年级(上册)数学《全等三角形》全等三角形的判定-知识点整理
三角形三条中线的交于一点,这一点叫做“三角形的重心〞。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
∠1=∠2=∠BAC.要区分三角形的“角平分线〞与“角的平分线〞,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
三角形三条角平分线的交于一点,这一点叫做“三角形的内心〞。
要求会的题型:①三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度“等积法〞,将三角形的面积用两种方式表达,求出未知量。
三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性三角形的内角1. 三角形的内角和定理三角形的内角和为180°,与三角形的形状无关。
2. 直角三角形两个锐角的关系直角三角形的两个锐角互余〔相加为90°〕。
有两个角互余的三角形是直角三角形。
三角形的外角1. 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。
2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于与它不相邻的任何一个内角。
多边形1. 多边形的概念在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。
多边形的边与它邻边的延长线组成的角叫做外角。
连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
一个n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.3. 正多边形各角相等,各边相等的多边形叫做正多边形。
〔两个条件缺一不可,除了三角形以外,因为假设三角形的三内角相等,那么必有三边相等,反过来也成立〕要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.将边数带入公式即可。
多边形的内角和1. n边形的内角和定理n边形的内角和为2. n边形的外角和定理多边形的外角和等于360°,与多边形的形状和边数无关。
人教版八年级上册第十二章全等三角形知识点复习
A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )
人教版八年级上册数学 12.2 全等三角形全等判定知识点和对应练习(无答案)
全等三角形一、全等三角形的概念与性质1、概念:能够完全重合的两个三角形叫做全等三角形。
(1)表示方法:两个三角形全等用符号“≌”来表示,记作ABC∆≌DEF∆2、性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等1.下列各组的两个图形属于全等图形的是( )2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.二、全等三角形的判定1 全等三角形的判定方法:(SAS),(SSS), (ASA), (AAS),(HL)边边边(SSS)边角边(SAS)角边角(ASA) 角角边AAS 直角边和斜边(HL)三边对应相等的两三角形全等有两边和它们的夹角对应相等的两个三角形全等有两角和它们的夹边对应相等的两个三角形全等.两角和及其中一个角所对的边对应相等的两个三角形全等.有一条斜边和一条直角边对应相等的两个直角三角形全等(HL)专题一:“边边边”全等三角形(SSS)三边对应相等的两个三角形全等,简写成“边边边”或“SSS”,几何表示如图,在ABC∆和DEF∆中,ABCEFBCEBDEAB∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SASDEF∆【典型例题】AC=DF (SSS)例1找第三边(减公共部分)如图,已知点B,C,D,E 在同一直线上,且A B=AE,AC=AD,BD=CE.求证:△ABC≌△AED.例2找第三边(加公共部分)如图,点B,E,C,F 在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;例3找第三边(公共边)如图,AD=CB,AB=CD,求证:△ACB≌△CAD.巩固练习1.如图,下列三角形中,与△ABC全等的是( )A.① B.② C.③ D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是( ) A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB.4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.6.如图,在ABC ∆中,M 在BC 上,D 在AM 上,AB=AC , DB=DC 求证:AM 是ABC ∆的角平分线7.如图:在△ABC 中,BA=BC ,D 是AC 的中点。
人教版数学八上第6讲全等三角形判定一(SSS,SAS)(基础)知识讲解(1)
全等三角形判定一(SSS ,SAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”; 2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】要点一、全等三角形判定1——“边边边” 全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边” 1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等. 【答案与解析】证明:∵M 为PQ 的中点(已知), ∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等). 即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定. 举一反三:【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等) 类型二、全等三角形的判定2——“边角边”2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE 在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD 证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形 ∴AB =BC ,BD =BE 在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS ) ∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等) ∴∠2+∠4=90°,即∠AFC =90° ∴AE ⊥CD【总结升华】通过观察,我们也可以把△CBD 看作是由△ABE 绕着B 点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP 平分∠BAC ,且AB =AC ,点Q 在PA 上,求证:QC =QB【答案】证明:∵ AP 平分∠BAC ∴∠BAP =∠CAP 在△ABQ 与△ACQ 中∵∴△ABQ ≌△ACQ(SAS) ∴ QC =QB类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH ≌△DFH(SSS) ∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题. 举一反三: 【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB 是一个任意角,在边OA ,边OB 上分别取OD =OE ,移动角尺,使角尺两边相同的刻度分别与D 、E 重合,这时过角尺顶点P 的射线OP 就是∠AOB 的平分线,你能先说明△OPE 与△OPD 全等,再说明OP 平分∠AOB 吗?【答案】证明: 在△OPE 与△OPD 中∵OE OD OP OP PE PD =⎧⎪=⎨⎪=⎩∴ △OPE ≌△OPD (SSS )∴ ∠EOP =∠DOP(全等三角形对应角相等) ∴ OP 平分∠AOB.【巩固练习】 一、选择题1. △ABC 和△'''A B C 中,若AB =''A B ,BC =''B C ,AC =''A C .则( ) A.△ABC ≌△'''A C B B. △ABC ≌△'''A B C C. △ABC ≌△'''C A B D. △ABC ≌△'''C B A2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( ) A.AB ∥DC B.∠B =∠D C.∠A =∠C D.AB =BC3. 下列判断正确的是( ) A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( ) A.EC ⊥AC B.EC =AC C.ED +AB =DB D.DC =CB二、填空题7. 如图,AB =CD ,AC =DB ,∠ABD =25°,∠AOB =82°,则∠DCB =_________.8. 如图,在四边形ABCD 中,对角线AC 、BD 互相平分,则图中全等三角形共有_____对.9. 如图,在△ABC 和△EFD 中,AD =FC ,AB =FE ,当添加条件_______时,就可得△ABC ≌△EFD (SSS )10. 如图,AC =AD ,CB =DB ,∠2=30°,∠3=26°,则∠CBE =_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13. 已知:如图,四边形ABCD中,对角线AC、BD相交于O,∠ADC=∠BCD,AD=BC,求证:CO=DO.14. 已知:如图,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD∥BC,只要证∠______=∠______,又需证______≌______.证明:∵ AB∥CD (),∴∠______=∠______ (),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ). ∴ ∠______=∠______ ( ). ∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】 一.选择题1. 【答案】B ;【解析】注意对应顶点写在相应的位置. 2. 【答案】D ;【解析】连接AC 或BD 证全等. 3. 【答案】D ; 4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA. 5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ; 【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA. 9. 【答案】BC =ED ; 10.【答案】56°;【解析】∠CBE =26°+30°=56°. 11.【答案】20°;【解析】△ABE ≌△ACD (SAS ) 12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上. 三.解答题13.【解析】证明:在△ADC 与△BCD 中,,,,DC CD ADC BCD AD BC =⎧⎪∠=∠⎨⎪=⎩()...ADC BCD SAS ACD BDC OC OD ∠=∠=∴△≌△∴∴ 14. 【解析】3,4; ABD ,CDB ; 已知;1,2;两直线平行,内错角相等; ABD ,CDB ; AB ,CD ,已知; ∠1=∠2,已证; BD =DB ,公共边; ABD ,CDB ,SAS ;3,4,全等三角形对应角相等; AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS ) ∴∠ABC =∠DCB , 在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS ) ∴AE =DE.DBA。
八年级数学《全等三角形》知识点
八年级数学《全等三角形》知识点八年级数学《全等三角形》知识点一、全等三角形的定义全等三角形是指能够完全重合的两个三角形。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边所夹的角是对应角;有公共边的,公共边一定是对应边;有公共角的,角一定是对应角;有对顶角的,对顶角一定是对应角。
全等”的图形必须满足形状相同且大小相等。
即能够完全重合的两个图形叫全等形。
全等三角形的性质包括对应边相等、对应角相等、对应边上的高对应相等、对应角平分线相等、对应中线相等、面积相等和周长相等。
二、三角形全等的判定定理判定三角形全等有五种定理:SSS或“边边边”、SAS或“边角边”、ASA或“角边角”、AAS或“角角边”和HL或“斜边,直角边”。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
判定两个三角形全等必须有一组边对应相等。
其中,A是英文“角”的缩写(angle),S是英文“边”的缩写(side)。
三、全等三角形的性质全等三角形的性质包括对应角相等、对应边相等、对应边上的高对应相等、对应角平分线相等、对应中线相等、面积相等和周长相等。
另外,角平分线上的点到这个角的两边的距离相等,线段垂直平分线上的点到这条线段两个端点的距离相等。
四、证题的思路证题的思路可以通过找夹角(SAS)来解决。
已知两边可以找直角(HL)定理,找第三边可以用SSS 定理。
如果已知一边为角的对边,则可以用AAS定理。
如果已知一个角和一边,则可以用SAS定理。
如果已知一边和一个角,则可以用ASA定理。
如果已知两个角,则可以用AAS 定理或者任意一边的SSS定理。
灵活运用定理需要注意全等三角形的条件和判定方法。
找出两个全等三角形中的对应边和对应角是关键。
在写两个三角形全等时,要注意对应的顶点、角和边的顺序。
最新人教版八年级上册数学第十二章全等三角形第8课时 《全等三角形》单元复习
数学
15.【例7】如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF. (1)求证:点D为EF的中点; (2)求证:AD⊥BC.
返回
数学
证明:(1)如图,过点D作DH⊥AB于H, ∵AD平分∠BAC,DE⊥AC,DH⊥AB,∴DE=DH, ∵BF∥AC,DE⊥AC, ∴BF⊥DF, ∵BC平分∠ABF,DH⊥AB,DF⊥BF, ∴DH=DF,∴DE=DF,∴点D为EF的中点.
答案图
返回
数学
(2)∵BF∥AC,∴∠C=∠DBF,且∠CDE=∠BDF,DE=DF, ∴△DCE≌△DBF(AAS),∴CD=BD, ∵BC平分∠ABF,∴∠ABD=∠DBF,∴∠C=∠ABD, ∵AD平分∠BAC,∴∠CAD=∠DAB, 又AD=AD,∴△DCA≌△DBA, ∴∠CDA=∠BDA, ∵∠CDA+∠BDA=180°, ∴∠CDA=∠BDA=90°,∴AD⊥BC.
第十二章 全等三角形
第8课时 《全等三角形》单元复习
数学
目录
01 知识要点 02 对点训练 03 精典范例 04 变式练习
数学
知识要点
知识点一:全等三角形的性质 (1)性质1:全等三角形的对应边 相等 . 性质2:全等三角形的对应角 相等 . 说明:①全等三角形的对应边上的高、中线以及对应角的平分 线 相等 . ②全等三角形的周长相等、面积相等. ③平移、翻折、旋转前后的图形 全等 .
返回
数学
证明: (1)∵DE⊥A B,DF ⊥A C,
∴△BDE,△CDF 是直角三角形.
在 Rt△BDE 和 Rt△CDF 中, = , =
∴R t △ B DE≌R t △ CDF(H L ),∴DE =DF .
(完整版)八年级数学上册全等三角形知识点总结
第十二章《全等三角形 》 知识点归纳一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形.2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等.SSS(2)两角和它们的夹边对应相等的两个三角形全等。
ASA(3)两角和其中一角的对边对应相等的两个三角形全等.AAS(4)两边和它们的夹角对应相等的两个三角形全等。
SAS(5)斜边和一条直角边对应相等的两个直角三角形全等.HL4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:角的内部到角的两边的距离相等的点在角的平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1。
确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
八年级数学上册 第十二章 全等三角形知识点总结 新人教版
第十二章全等三角形一、知识框架:二、知识清单:1.全等图形与全等三角形:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.全等三角形中互相重合的顶点叫做对应顶点;全等三角形中互相重合的边叫做对应边;全等三角形中互相重合的角叫做对应角.2.全等三角形性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定公理:⑴边边边公理:三边对应相等的两个三角形全等.(简记为“边边边”或“SSS”)⑵边角边公理:两边和它们的夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)⑶角边角公理:两角和它们的夹边对应相等的两个三角形全等.(简记为“角边角”或“ASA”)⑷角角边推论:两角和其中一角的对边对应相等的两个三角形全等.(简记为“角角边”或“AAS”)⑸斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等.(简记为“斜边、直角边”或“HL”)4.角平分线:把一个角平均分成两个等角的射线称为角的平分线.⑴角平分线的画法:a.以角的顶点为圆心,适当长为半径画弧,与角两边交于两个点;b.分别以两个交点为圆心,大于两交点连线段的1/2的相同长度为半径画弧,在角内交于一点;c.过角的顶点和b中的交点做射线.射线即为角的平分线.⑵角平分线性质定理:角平分线上的点到角两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(三角形三条角平分线的交点到三边距离相等,三条角平分线的交点称为三角形的内心)5.证明的基本步骤:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.。
八年级数学上册三角形全等的判定知识点
八年级数学上册三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
提示:在BC上取一点F使得BF=BA,连结EF。
(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。
如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。
人教版八年级数学上册知识点归纳
精心整理第十一章全等三角形11.1全等三角形(1)形状、大小相同的图形能够完全重合;(2)全等形:能够完全重合的两个图形叫做全等形;(3)全等三角形:能够完全重合的两个三角形叫做全等三角形;(4)平移、翻折、旋转前后的图形全等;(5)对应顶点:全等三角形中相互重合的顶点叫做对应顶点;(6)对应角:全等三角形中相互重合的角叫做对应角;(7)对应边:全等三角形中相互重合的边叫做对应边;(8)全等表示方法:用“ ”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上)(9)全等三角形的性质:①全等三角形的对应边相等;②全等三角形的对应角相等;11.2三角形全等的判定(1)若满足一个条件或两个条件均不能保证两个三角形一定全等;(2)三角形全等的判定:①三边对应相等的两个三角形全等;(“边边边”或“SS”S)②两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“SAS”)③两角和它们的夹边对应相等的两个三角形全等;(“角边角”或“ASA”)④两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“AAS”)⑤斜边和一条直角边对应相等的两个直角三角形全等;(“斜边直角边”或“HL”)(3)证明三角形全等:判断两个三角形全等的推理过程;(4)经常利用证明三角形全等来证明三角形的边或角相等;(5)三角形的稳定性:三角形的三边确定了,则这个三角形的形状、大小就确定了;(用“SSS”解释)11.3角的平分线的性质(1)角的平分线的作法:课本第19页;(2)角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;(3)证明一个几何中的命题,一般步骤:①明确命题中的已知和求证;②根据题意,画出图形,并用数学符号表示已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程;(4)性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;(利用三角形全等来解释)(5)三角形的三条角平分线相交于一点,该点为内心;第十二章轴对称12.1轴对称(1)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么就称这个图形是轴对称图形;这条直线叫做它的对称轴;也称这个图形关于这条直线对称;(2)两个图形关于这条直线对称:一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;(3)轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合;(4)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]本文介绍了八年级上册数学中的全等三角形知识点,包括全等三角形的概念和性质,三角形全等的判定方法,角的平分线的性质以及全等三角形证明方法。
要点一介绍了全等三角形的判定与性质,其中包括边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边定理(HL)、边边边(SSS)等判定方法,并说明了对应元素相等的性质。
要点二介绍了全等三角形的证明思路,包括找夹角、找直角、找另一边、边为角的对边等方法。
要点三介绍了角平分线的性质和判定定理,以及与角平分线有关的辅助线。
要点四介绍了全等三角形证明方法,包括证明线段相等的方法、证明角相等的方法等。
XXX∠FAE。
又∠EAG+∠XXX∠BAG=180°。
AEF≌△AGF(AAS)。
XXX.结论:BE=FD,EF=FD/2.2、(2014•北京市海淀区期末)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AC.连接CD,交AB于E点.证明:AE=DE.思路点拨】1)延长AD交CE于点F;2)证明△AFE≌△CFD,得到∠AFE=∠CFD,再证明△AED≌△CED,得到AE=DE.答案与解析】证明:(1)连接AF,CF,DF,因为AB=AC,AD=AC,∴∠BAD=∠CAD,∠AFD=∠CFD。
又∠AFE=∠XXX,∴△AFE≌△CFD(AAS)。
AE=DE.证明:作角平分线AD,连接BD,CD.AB=AC。
BAD=∠CAD。
又∠ABD=∠ACD。
ABD≌△ACD(AAS)。
BD=CD。
又∠BDA=∠CDA。
BDA≌△CDA(SAS)。
B=∠C.总结升华】本题考查了角平分线的性质,以及全等三角形的判定方法,即AAS和SAS定理。
证明:过点A作AD⊥BC,则在Rt△ABD与Rt△ACD 中,由于AB=AC,AD=AD,根据HL(斜边-直角边-斜边)可得Rt△ABD≌Rt△ACD,因此∠B=∠C。
八年级数学上册全等三角形知识点总结
千里之行,始于足下。
八年级数学上册全等三角形知识点总结
一、全等三角形的定义:
两个三角形的三个对应角相等,并且对应边的长度相等,这两个三角形就
是全等的。
二、全等三角形的判定方法:
1. SSS判定法:若两个三角形的三边对应相等,则这两个三角形全等。
2. SAS判定法:若两个三角形的两边和夹角对应相等,则这两个三角形全等。
3. ASA判定法:若两个三角形的两角和边对应相等,则这两个三角形全等。
4. AAS判定法:若两个三角形的两角和对边对应相等,则这两个三角形全等。
三、全等三角形的性质:
1. 全等三角形的对应边长相等。
2. 全等三角形的对应角度相等。
3. 全等三角形的对应高、中线、角平分线等相等。
4. 全等三角形的全等部分与全等部分相等,非全等部分与非全等部分相等。
四、全等三角形的应用:
1. 利用全等三角形可以证明几何定理和解决几何问题。
2. 利用全等三角形可以判断两个图形是否全等,并求出一些未知的边长或角度的值。
3. 利用全等三角形可以判断两个物体的形状是否相等,或者利用一个物体的全等部分构造出另一个物体。
第1页/共2页
锲而不舍,金石可镂。
需要注意的是,在证明问题中,除了上述判定方法,还可以使用正规玩散三角形、合同三角形等方法来证明全等关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.1全等三角形
一、本节学习指导
这一节我们来认识全等三角形,这一节我们要重点掌握三角形全等的表示方法,以及全等三角形的性质。
本节有配套学习视频。
二、知识要点
1、全等形的概念:能够完全重合的两个图形叫做全等形。
注:完全能重合的图形那么固然:形状完全相同,大小固然相等,对应角也相等。
2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。
用符号“≌”表示,读作:全等。
3、全等三角形的表示:
(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.
(2)如图,△ABC和△A'B'C'全等,记作△ABC≌△A'B'C'.通常对应顶点字母写在对应位置上.
注意:在写三角形全等的时候一定要把相对应角的顶点对应写,比如上图中写成△ABC ≌△A'B'C',而不能写成△ACB≌△A'B'C',因为C对应的是C’所以这种写法是错误的。
4、全等三角形的性质:
(1)全等三角形的对应边相等;全等三角形的对应角相等.
(2)全等三角形的周长、面积相等.
5、全等变换:只改变位置,不改变形状和大小的图形变换.
平移、翻折(对称)、旋转变换都是全等变换.
6、全等三角形常见类型
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
三、经验之谈:
本节开始我们学习全等三角形,全等三角形在初中几何中应用非常广泛,同学们要认真学习。