八年级上册数学《全等三角形》全等三角形的判定-知识点整理

合集下载

初二数学上册:全等三角形五大判定方法

初二数学上册:全等三角形五大判定方法

初二数学上册:全等三角形五大判定方法全等三角形5大判定一、边边边(SSS)学习全等三角形判定法则时,第一条就是边边边。

内容:它们的夹角分别相等的两个三角形全等。

理解:若给出三条线段的长度(满足三角形三边关系),即可确定出的三角形形状,大小。

若给出三条线段长度AB=c,BC=a,AC=b,确定过程如下:①先确定一边AB;②分别以AB为圆心,分别做半径为b,a长的圆,交于C点;③最后连接AC,BC。

这样三角形的大小,形状就都被确定出来了。

二、边角边(SAS)内容:两边和它们的夹角分别相等的两个三角形全等。

理解:若确定两条公共端点线段的长度,及它们的夹角,即可确定出的三角形形状,大小。

若给出AB=cBC=a∠B=α,确定过程如下:①画∠EAD=α;②在射线AE上截取AC=c,在射线AD上截取AB=c;③连接BC。

这样,三角形的.大小形状同样被确定了。

三、角边角(ASA)内容:两角和他们的夹边分别相等的两个三角形全等。

理解:若给出三角形的两个角的大小和它们的夹边的长度了,即可确定出的三角形形状,大小。

若有AB=c,∠CAB=α,∠CBA=β,确定过程如下:①先确定一边AB=c;②在AB同旁画∠DAB=α,∠EBA=β,AD,BE 交于点C。

这样,三角形的大小形状同样被确定了。

四、角角边(AAS)内容:两边分别相等且其中一组等角的对边相等的两个三角形全等。

理解:若给出三角形的两个角的大小和其中一个角对边的长度了,即可确定出的三角形形状,大小。

若有AB=c,∠CAB=α,∠ACB=β,确定过程如下:由三角形的内角和为180度可得出剩下一角∠CBA的度数,这样,利用角边角的思路即可确定三角形形状大小。

相关定理:三角形内角和为180度五、斜边,直角边(HL)内容:斜边和一条直角边分别相等的两个直角三角形全等。

(HL)理解:若确定一个三角形为直角三角形,同时得到其一个直角边和斜边的长度,即可确定出三角形的形状大小。

全等三角形的判定-八年级数学上册同步精品课堂知识清单+例题讲解+课后练习(人教版)(原卷版)

全等三角形的判定-八年级数学上册同步精品课堂知识清单+例题讲解+课后练习(人教版)(原卷版)

第二课时——全等三角形的判定知识点一:全等三角形的判定:判定方法内容数学语言 图形表示 注意点边边边(SSS )三边分别相等的两个三角形全等。

可简写为“边边边”或“SSS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF边角边(SAS )两边及其夹角分别对应相等的两个三角形全等。

可简写为“边角边”或“SAS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧=∠=∠=DF AC D A DEAB ∴△ABC ≌△DEF用“边角边(SAS )判定全等时,角一定是两边的夹角,否则不能判定全等。

在写条件的时候角必须写在中间。

角边角(ASA )两角及其夹边分别对应相等的两个三角形全等。

可简写为“角边角”或“ASA ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB DA ∴△ABC ≌△DEF用“角边角(ASA )判定全等时,边是两角的夹边,在书写的过程中需把边写在中间特别提示:在写全等三角形的数学语言时,等号左边写“≌”左边三角形的条件,等号右边写“≌”右边三角形的条件。

并且条件的顺序必须和判定条件顺序一致。

方法总结:【类型一:补充证全等条件】1.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DBC.∠A=∠DEF D.∠ABC=∠D2.如图,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,则需要添加的条件是()第2题第3题A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D3.如图,BC=BD,添加下列一个条件后,仍无法判定△ABC≌△ABD的是()A.AC=AD B.∠ABC=∠ABD C.∠CAB=∠DAB D.∠C=∠D=90°4.如图,已知点A,D,C,F在同一条直线上,AB=DE,AD=CF,要使△ABC≌△DEF,则下列条件可以添加的是()第4题第5题第7题A.∠B=∠E B.∠A=∠EDF C.AC=DF D.BC∥EF5.如图,已知AB=AE,∠EAB=∠DAC,添加一个条件后,仍无法判定△AED≌△ABC的是()A.AD=AC B.∠E=∠B C.ED=BC D.∠D=∠C6.下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等7.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,添加一个条件,不能使得Rt△ABC≌Rt△DCB 的是()A.AB=DC B.AC=DB C.∠ABC=∠DCB D.BC=BD8.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠CC.BD=DB D.AB=CD【类型二:证明三角形全等】9.请将以下推导过程补充完整.如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,CF平分∠DCE.求证:△DCF ≌△ECF 证明:∵AD ∥BE ∴∠A =∠B在△ACD 和△BEC 中()⎪⎩⎪⎨⎧=∠=∠BC AD B A ∴△ACD ≌△BEC ( )∴CD =CE ( ) ∵CF 平分∠DCE ∴ 在△DCF 和△ECF 中()⎪⎩⎪⎨⎧==CE CD CF CF ∴△DCF ≌△ECF (SAS )10.如图,点C 在BD 上,AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,AB =CD .求证:△ABC ≌△CDE .11.如图,点A、D、B、E在一条直线上,AD=BE,AC=DF,AC∥DF,求证:△ABC≌△DEF.12.如图,点D在线段BC上,AB=AD,∠1=∠2,DA平分∠BDE:求证:△ABC≌△ADE.13.天使是美好的象征,她的翅膀就像一对全等三角形.如图AD与BC相交于点O,且AB=CD,AD=BC.求证:△ABO≌△CDO.14.如图,在△ABC中,点D在BC的延长线上,DE∥AC,且DE=BC,AC=BD.求证:△ABC≌△BED.15.如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.16.如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.17.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.18.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE =BF.19.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,求证:Rt△ADE≌Rt△CDF.【类型三:全等三角形的判定与性质】20.如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,∠F AC =40°,则∠BFE=()第20题第21题A.35°B.40°C.45°D.50°21.如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为()A.21B.24C.27D.3022.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()第22题第23题A.3B.5C.6D.723.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.424.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.25.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.26.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.【类型四:全等三角形的应用】27.如图,要测池塘两端A,B的距离,小明先在地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.那么判定△ABC和△DEC全等的依据是()第27题第28题A.SSS B.SAS C.ASA D.AAS28.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去29.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为cm.第29题第30题30.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB =OC,测得AB=a,EF=b,圆形容器的壁厚是()A .aB .bC .b ﹣aD .21(b ﹣a )一、选择题(10题)1.如图为正方形网格,则∠1+∠2+∠3=( )第1题 第2题 第3题A .105°B .120°C .115°D .135°2.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL ”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是( )A .∠ABC =∠ABDB .∠BAC =∠BAD C .AC =AD D .AC =BC3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A .①B .②C .③D .①和②4.根据下列已知条件,能唯一画出△ABC 的是( )A.∠C=90°,AB=6B.AB=4,BC=3,∠A=30°C.AB=5,BC=3D.∠A=60°,∠B=45°,BC=45.如图,测河两岸A,B两点的距离时,先在AB的垂线BF上取C,D两点,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,测得ED的长就是A,B的距离,判定△EDC≌△ABC的依据是()A.ASA B.SSS C.AAS D.SAS6.如图,已知∠EAC=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠D.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个7.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD与CD的距离间的关系是()第7题第8题A.BD>CD B.BD<CD C.BD=CD D.不能确定8.如图,AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从B向A运动,每分钟走1m,点Q从B向D运动,每分钟走2m,P、Q两点同时出发,运动()分钟后,△CAP与△PQB全等.A.2B.3C.4D.89.把等腰直角三角形ABC,按如图所示立在桌上,顶点A顶着桌面,若另两个顶点距离桌面5cm和3cm,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE的长为()第9题第10题A.4cm B.6cm C.8cm D.求不出来10.如图,在△AOB和△COD中,OA=OB,OC=OD(OA<OC),∠AOB=∠COD=α,直线AC,BD 交于点M,连接OM.下列结论:①AC=BD,②∠OAM=∠OBM,③∠AMB=α,④OM平分∠BOC,其中正确结论的个数是()A.4B.3C.2D.1二、填空题(6题)11.如图,线段AB,CD相交于点O,AO=BO,添加一个条件,能使△AOC≌△BOD,所添加的条件的是.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.第12题第14题13.在△ABC中,AB=3cm,AC=4cm,则BC边上的中线AD的取值范围是.14.在直角三角形中,存在斜边的平方等于两条直角边的平方的和。

八年级数学上册《三角形全等的判定》知识点总结

八年级数学上册《三角形全等的判定》知识点总结

千里之行,始于足下。

八年级数学上册《三角形全等的判定》知识点
总结
三角形全等的判定是数学中非常重要的一部分,它通过观察以及一定的几何定理来判断两个三角形是否全等。

根据边和角的关系,我们可以有以下几个判定方法。

1. SSS判定法(边边边)
SSS判定法是通过三边的长度来判断两个三角形是否全等。

如果两个三角形的三条边长度分别相等,则这两个三角形是全等的。

2. SAS判定法(边角边)
SAS判定法是通过两边的长度和它们之间夹角的大小来判断两个三角形是否全等。

如果两个三角形的两边的长度相等,并且这两边夹角的大小也相等,则这两个三角形是全等的。

3. ASA判定法(角边角)
ASA判定法是通过两个角和它们之间的边的长度来判断两个三角形是否全等。

如果两个三角形的两个角相等,并且它们夹着的边的长度也相等,则这两个三角形是全等的。

4. AAS判定法(角角边)
AAS判定法是通过两个角和它们对应的边的长度来判断两个三角形是否全等。

如果两个三角形的两个角相等,并且它们对应的边的长度也相等,则这两个三角形是全等的。

除了上述判定法,还有一些特殊情况需要注意:
第1页/共2页
锲而不舍,金石可镂。

5. RHS判定法(正弦定理)
如果两个三角形的一个角相等,而这个角的两边分别和另一个三角形的两
个边成正比,则这两个三角形是全等的。

总的来说,通过这些判定方法,我们可以判断两个三角形是否全等,从而
解决与全等三角形相关的各种问题。

在解题时,我们可以根据题目提供的条件,选择合适的判定方法进行判断,进而得出结论。

八年级上册数学《全等三角形》全等三角形判定-知识点整理

八年级上册数学《全等三角形》全等三角形判定-知识点整理

千里之行,始于足下。

八年级上册数学《全等三角形》全等三角形判
定-知识点整理
全等三角形是指具有相同的形状和大小的三角形。

在判断两个三角形是否全等时,可以通过以下方法确定:
1. SSS判定法:如果两个三角形的三边分别相等,则这两个三角形全等。

2. SAS判定法:如果两个三角形的一边与其对应角的边段分别相等,并且包含相等的角,则这两个三角形全等。

3. ASA判定法:如果两个三角形的两个角和它们的夹边分别相等,则这两个三角形全等。

4. AAS判定法:如果两个三角形的两个角和它们的一边分别相等,则这两个三角形全等。

5. RHS判定法:如果两个直角三角形的一个锐角和两个直角边分别相等,则这两个直角三角形全等。

这些全等三角形判定方法可以根据题目给出的已知条件进行判定。

需要注意的是,当两个三角形的对应边或对应角不相等时,不能得出这两个三角形全等的结论。

第1页/共1页。

八年级(上册)数学《全等三角形》全等三角形的判定-知识点整理

八年级(上册)数学《全等三角形》全等三角形的判定-知识点整理

三角形三条中线的交于一点,这一点叫做“三角形的重心〞。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。

∠1=∠2=∠BAC.要区分三角形的“角平分线〞与“角的平分线〞,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的内心〞。

要求会的题型:①三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度“等积法〞,将三角形的面积用两种方式表达,求出未知量。

三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性三角形的内角1. 三角形的内角和定理三角形的内角和为180°,与三角形的形状无关。

2. 直角三角形两个锐角的关系直角三角形的两个锐角互余〔相加为90°〕。

有两个角互余的三角形是直角三角形。

三角形的外角1. 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。

2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。

三角形的一个外角大于与它不相邻的任何一个内角。

多边形1. 多边形的概念在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。

多边形的边与它邻边的延长线组成的角叫做外角。

连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

一个n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.3. 正多边形各角相等,各边相等的多边形叫做正多边形。

〔两个条件缺一不可,除了三角形以外,因为假设三角形的三内角相等,那么必有三边相等,反过来也成立〕要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.将边数带入公式即可。

多边形的内角和1. n边形的内角和定理n边形的内角和为2. n边形的外角和定理多边形的外角和等于360°,与多边形的形状和边数无关。

八年级数学上册第十二章全等三角形知识点总结全面整理(带答案)

八年级数学上册第十二章全等三角形知识点总结全面整理(带答案)

八年级数学上册第十二章全等三角形知识点总结全面整理单选题AD,BD平分∠ABC,则点D到AB的距离等于( )1、如图,在ΔABC中,∠C=90°,AC=8,DC=13A.4B.3C.2D.1答案:C分析:如图,过点D作DE⊥AB于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.如图,过点D作DE⊥AB于E,AD,∵AC=8,DC=13∴CD=8×1=2,1+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2,故选C.小提示:本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.2、如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是()A.2B.2.5C.3D.103答案:C分析:过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG(HL),同理Rt△ADF≌Rt△ABH,得S四边形DGBA=S四边形AFGH=12,然后求得Rt△AFG的面积=6,进而得到FG的长.如图所示,过点A作AH⊥BC于H,在△ABC与△ADE中,{AC=AE∠C=∠E BC=DE,∴△ABC≌△ADE(SAS),∴AD=AB,S△ABC=S△AED,又∵AF⊥DE,∴12×DE×AF=12×BC×AH,∴AF=AH,∵AF⊥DE,AH⊥BC,∴∠AFG=∠AHG=90°,在Rt△AFG和Rt△AHG中,,{AG=AGAF=AH∴Rt△AFG≌Rt△AHG(HL),同理:Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=12,∵Rt△AFG≌Rt△AHG,∴SRt△AFG=6,∵AF=4,∴1×FG×4=6,2解得:FG=3.故选:C.小提示:本题考查全等三角形的判定与性质,综合运用各知识点是解题的基础,作出合适的辅助线是解此题的关键.3、如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作N为圆心,以大于12∠ABC;③BC=BE;④AE=BE中,一定正确的是()DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12A.①②③B.①②③④C.②④D.②③④答案:A分析:由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,{DE=DC,BD=BD∴△BCD≌△BED,∴BC=BE,故③正确.故选A.小提示:本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.4、如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ΔABC,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC答案:C分析:根据SSS,SAS,ASA逐一判定,其中SSA不一定符合要求.A. AB,BC,CA.根据SSS一定符合要求;B. AB,BC,∠B.根据SAS一定符合要求;C. AB,AC,∠B.不一定符合要求;D. ∠A,∠B,BC.根据ASA一定符合要求.故选:C.小提示:本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS,SAS,ASA三个判定定理.5、如图,点B,C,E在同一直线上,且AC=CE,∠B=∠D=90°,AC⊥CD,下列结论不一定成立的是()A.∠A=∠2B.∠A+∠E=90°C.BC=DE D.∠BCD=∠ACE答案:D分析:根据直角三角形的性质得出∠A=∠2,∠1=∠E,根据全等三角形的判定定理推出△ABC≌△CDE,再逐个判断即可.解:∵AC⊥CD,∴∠ACD=90°,∵∠B=90°,∴∠1+∠A=90°,∠1+∠2=90°,∴∠A=∠2,同理∠1=∠E,∵∠D=90°,∴∠E+∠2=∠A+∠E=90°,在△ABC和△CDE中,{∠A=∠2∠B=∠D AC=CE,∴△ABC≌△CDE(AAS),∴BC=DE,∴选项A、选项B,选项C都正确;根据已知条件推出∠A=∠2,∠E=∠1,但是∠1=∠2不能推出,而∠BCD=90°+∠1,∠ACE=90°+∠2,所以∠BCD=∠ACE不一定成立故选项D错误;故选:D.小提示:本题考查了全等三角形的判定定理和直角三角形的性质,能灵活运用知识点进行推理是解此题的关键,注意:全等三角形的判定定理有:ASA,SAS,AAS,SSS,两直角三角形全等,还有HL.6、在△ABC中,AB=4,AC=6,AD是BC边上的中线,则AD的取值范围是()A.0<AD<10B.1<AD<5C.2<AD<10D.0<AD<5答案:B分析:延长AD至点E,使得DE=AD,可证△ABD≌△CDE,可得AB=CE,AD=DE,在△ACE中,根据三角形三边关系即可求得AE的取值范围,即可解题.解:延长AD至点E,使得DE=AD,∵在△ABD和△CDE中,∵{AD=DE∠ADB=∠CDEBD=CD,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<10,∴1<AD<5.故选:B.小提示:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD≌△CDE是解题的关键.7、如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A.0.5B.1C.1.5D.2答案:B分析:根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出ΔADE≅ΔCFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.∵CF//AB,∴∠A=∠FCE,∠ADE=∠F,在ΔADE和ΔFCE中{∠A=∠FCE∠ADE=∠FDE=FE,∴ΔADE≅ΔCFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB−AD=4−3=1.故选B.小提示:本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ΔADE≅ΔFCE是解此题的关键.8、下列选项可用SAS证明△ABC≅△A′B′C′的是()A.AB=A′B′,△B=△B′,AC=A′C′B.AB=A′B′,BC=B′C′,△A=△A′C.AC=A′C′,BC=B′C′,△C=△C′D.AC=A′C′,BC=B′C′,△B=△B′答案:C分析:根据全等三角形SAS的判定逐项判定即可.解:A.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;B.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;C.满足SAS,能证明△ABC△△A′B′C′,故该选项符合题意;D.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意,故选:C.小提示:本题考查全等三角形的判定,熟练掌握全等三角形的判定条件是解答的关键.9、如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为().A.4B.3C.2D.1答案:B分析:根据题意逐个证明即可,①只要证明△AOC≌△BOD(SAS),即可证明AC=BD;②利用三角形的外角性质即可证明; ④作OG⊥MC于G,OH⊥MB于H,再证明△OCG≌△ODH(AAS)即可证明MO平分∠BMC.解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB∠AOC=∠BODOC=OD,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,{∠OCA=∠ODB∠OGC=∠OHDOC=OD,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;正确的个数有3个;故选B.小提示:本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.10、如图,AB=AC,AD=AE,∠BAC=∠DAE,点B,D,E在同一直线上,若∠1=25°,∠2=35°,则∠3的度数是()A.50°B.55°C.60°D.70°答案:C分析:由∠BAC=∠DAE可证得∠BAD=∠CAE,继而证明△BAD≅△CAE(SAS),由全等三角形对应角相等得到∠2=∠CAE,∠ABD=∠1,最后由三角形的外角性质解答即可.解:∵∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC∴∠BAD=∠CAE∵AB=AC,AD=AE,∴△BAD≅△CAE(SAS)∴∠2=∠CAE,∠ABD=∠1∵∠1=25°,∠2=35°∴∠3=∠2+∠ABD=∠2+∠1=60°故选:C.小提示:本题考查全等三角形的判定与性质、三角形的外角性质等知识,是重要考点,掌握相关知识是解题关键.填空题11、如图,在Rt△ABC中,∠ACB=90°,△ABC的角平分线AD,BE相交于点P,过P作PF⊥AD,交BC延长线于F,交AC于H,则下列结论:①∠APB=135°;②BF=BA;③PH=HC;④PH=PD;其中正确的有____________________.答案:①②④分析:由角平分线的定义,可得∠PAB+∠PBA=45°,由三角形内角和定理可得结论①;由△BPA≌△BPF可得结论②;由△APH≌△FPD可得结论④;若PH=HC,则PD=HC,由AD>AC可得AP>AH不成立,故③错误;解:∵∠CAB+∠CBA=90°,AD、BE平分∠CAB、∠CBA,∴∠PAB+∠PBA=1(∠CAB+∠CBA)=45°,2△PAB中,∠APB=180°-(∠PAB+∠PBA)=135°,故①正确;∵∠ADF+∠F=90°,∠ADF+∠DAC=90°,∴∠F=∠DAC=∠DAB,△BPA和△BPF中:∠PBA=∠PBF,∠PAB=∠PFB,BP=BP,∴△BPA≌△BPF(AAS),∴BA=BF,PA=PF,故②正确;△APH和△FPD中:∠PAH=∠PFD,PA=PF,∠APH=∠FPD=90°,∴△APH≌△FPD(ASA),∴PH=PD,故④正确;若PH=HC,则PD=HC,AD>AC,则AD-PD>AC-HC,即AP>AH,不成立,故③错误;综上所述①②④正确,所以答案是:①②④小提示:本题考查了三角形内角和定理,全等三角形的判定和性质等知识;掌握全等三角形的判定和性质是解题关键.12、如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,过点D作DE⊥AB,若CB=7,则DE+ DB=______.答案:7分析:先利用角平分线性质证明CD=DE,再求出DE+DB的值即可.解:∵AD平分∠BAC交BC于点D,∠C=90°,DE⊥AB,∴CD=ED.∵CB=7,∴BD+CD=7,∴DE+DB=7,所以答案是:7.小提示:本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线的性质.13、如图,在△ABC中,A(0,1),B(3,1),C(4,3),D是坐标平面上一点,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标是________.答案:D1(-1,3),D2(4,-1),D3(-1,-1)分析:若要△ABD≌△ABC,则D点可在AB的上方或下方,分别讨论即可.如图,要和△ABC全等,且有一边为AB的三角形,D点可为:D1(-1,3),D2(4,-1),D3(-1,-1)所以答案是:D1(-1,3),D2(4,-1),D3(-1,-1).小提示:本题考查判定全等三角形的概念,注意不要遗漏可能的情况是解题关键.14、如图,在△ABC中,∠A=90°,DE⊥BC,垂足为E.若AD=DE且∠C=50°,则∠ABD=_____°.答案:20分析:利用三角形的内角和定理先求解∠ABC,再利用角平分线的性质定理的逆定理证明:BD平分∠ABC,从而可得答案.解:∵∠A=90°,∠C=50°,∴∠ABC=180°−90°−50°=40°,∵∠A=90°,DE⊥BC,DA=DE,∴BD平分∠ABC,∠ABD=1∠ABC=20°,2所以答案是:20小提示:本题考查的是三角形的内角和定理,角平分线的定义及性质定理的逆定理,掌握角平分线的性质定理的逆定理是解题的关键.15、如图,已知AB=CB,要使△ABD≌△CBD(SSS),还需添加一个条件,你添加的条件是__________.答案:AD=CD分析:要利用SSS判定△ABD≌△CBD,已知AB=CB,公共边BD=BD,只需要再添加一组对边相等即可.解:∵AB=CB,BD=BD,∴要利用SSS判定△ABD≌△CBD,只需要在添加一组对边相等即可.∴AD=CD,所以答案是:AD=CD.小提示:本题考查用三边对应相等判定三角形全等,根据图形找到相关的条件是解题关键.解答题16、如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.答案:(1)14;(2)12.分析:(1)延长DE到G,使GE=DE,连接BG,根据线段中点的定义求出AE=4,AF=3,并利用SAS证明AB=4,△AED≌△BEG,由全等三角形的性质并再次利用全等三角形的判定得出△GBD≌△ABD,可证得DE=12同理DF=1AC=3,即可计算出四边形的周长;2(2)利用SSS可证△AEF≌△DEF,根据直角三角形的面积计算方法求出△AEF的面积,则四边形的面积即可求解.解:(1)延长DE 到G ,使GE =DE ,连接BG ,∵E 、F 分别是AB 、AC 的中点,AB =8,AC =6,∴AE =BE =12AB =4,AF =CF =12AC =3.在△AED 和△BEG 中,{AE =BE∠AED =∠BEG DE =GE,∴△AED ≌△BEG (SAS ).∴AD =BG ,∠DAE =∠GBE .∵AD ⊥BC ,∴∠DAE +∠ABD =90°.∴∠GBE +∠ABD =90°.即∠GBD =∠ADB =90°.在△GBD 和△ABD 中,{BG =DA∠GBD =∠ADB BD =DB,∴△GBD ≌△ABD (SAS ).∴GD =AB .∵DE =12GD ,∴DE =12AB =4.同理可证:DF =12AC =3.∴四边形AEDF 的周长=AE +ED +DF +FA =14.(2)由(1)得AE =DE =12AB =4,AF =DF =12AC =3, 在△AEF 和△DEF 中,{AE =DEAF =DF EF =EF,∴△AEF ≌△DEF (SSS ).∵∠BAC =90°,∴S △AEF =12AE•AF =12×4×3=6. ∴S 四边形AEDF =2S △AEF =12.小提示:本题主要考查了全等三角形的判定与性质,掌握全等三角形的判定与性质并能利用倍长中线法构造全等三角形是解题的关键.17、已知:如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,AD ,CE 是角平分线,AD 与CE 相交于点F ,FM ⊥AB ,FN ⊥BC ,垂足分别为M ,N .【思考说理】(1)求证:FE =FD .【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“∠ACB =90°”去掉,其他条件不变,观察发现(1)中结论(即FE =FD )仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.答案:(1)证明见详解;(2)正确,证明见详解;分析:(1)由角平分线的性质、三角形内角和定理证RtΔFDN ≅RtΔ∠FEM (AAS )即可求解;(2)在AB上截取CP=CD,分别证ΔCDF≅ΔCPF(SAS)、ΔAFE≅ΔAFP(ASA)即可求证;证明:(1)∵AD平分∠BAC,CE平分∠ACB,∴点F是ΔABC的内心,∵FM⊥AB,FN⊥BC,∴FM=FN,∵∠ACB=90°,∠ABC=60°,∴∠CAB=30°∴∠CAD=15°∴∠ADC=75°∵∠ACE=45°∴∠CEB=75°∴∠ADC=∠CEB∴RtΔFDN≅RtΔ∠FEM(AAS)∴FE=FD(2)如图,在AB上截取CP=CD,在ΔCDF和ΔCPF中,∵{CD=CP∠DCF=∠PCFCF=CF∴ΔCDF≅ΔCPF(SAS)∴FD=FP,∠CFD=∠CFP,∵AD平分∠BAC,CE平分∠ACB,∴∠CAD=∠BAD,∠ACE=∠BCE,∵∠B=60°,∴∠ACB+∠BAC=120°,∴∠CAD+∠ACE=60°,∴∠AFC=120°,∵∠CFD=∠AFE=180°-∠AFC=60°,∵∠CFD=∠CFP,∴∠AFP=∠CFP=∠CFD=∠AFE=60°,在ΔAFE和ΔAFP中,∵{∠AFE=∠AFP AF=AF∠PAF=∠EAF∴ΔAFE≅ΔAFP(ASA)∴FP=EF∴FD=EF.小提示:本题主要考查三角形的全等证明及性质,角平分线的性质,掌握相关知识并正确作出辅助线构造全等三角形是解题的关键.18、(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D,E.求证:DE=BD+CE.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC 向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.答案:(1)见解析;(2)结论成立,理由见解析;(3)3.5分析:(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由条件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG的中点.解:(1)证明:如图1中,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE∠BDA=∠CEAAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.理由:如图2中,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,在△ADB和△CEA中,{∠BDA=∠AEC∠DBA=∠CAEAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=∠GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,{∠GIN=∠EIM EM=GN∠GNI=∠EMI,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.∴S△AEI=12S△AEG=3.5.所以答案是:3.5.小提示:本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.。

八年级上册数学第二单元知识点:全等三角形

八年级上册数学第二单元知识点:全等三角形

八年级上册数学第二单元知识点:全等三角形
朱熹曾说过:不勤于始,将毁与中。

换句话就是:勤于始、精于始,才干成于始。

初中在孩子求学的生涯是一个重要的承上启下阶段。

详细内容请看八年级上册数学第二单元知识点。

1.全等三角形:两个三角形的外形、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:
(1)边角边简称SAS
(2)角边角简称ASA
(3)边边边简称SSS
(4)角角边简称AAS
(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的外部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或应用它证明线段或角的相等的基本方法步骤:①、确定条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含
的边角关系),②、回忆三角形判定,搞清我们还需求什么,③、正确地书写证明格式(顺序和对应关系从推导出要证明的效果).
在学习三角形的全等时,教员应该从实践生活中的图形动身,引出全等图形进而引出全等三角形。

经过直观的了解和比拟发现全等三角形的微妙之处。

在阅历三角形的角平分线、中线等探求中激起先生的集合思想,启示他们的灵感,使先生体会到集合的真正魅力。

希望为大家提供的八年级上册数学第二单元知识点的内容,可以对大家有用,更多相关内容,请及时关注!。

三角形全等的判定(6种题型)-2023年新八年级数学核心知识点与常见题型(浙教版)(解析版)

三角形全等的判定(6种题型)-2023年新八年级数学核心知识点与常见题型(浙教版)(解析版)

三角形全等的判定(6种题型)【知识梳理】一、全等三角形判定——“边边边”全等三角形判定——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .二、全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.三、垂直平分线:1.定义:垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线.2.性质定理:线段垂直平分线上的点到线段两端的距离相等四、全等三角形判定——“角边角”全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .五、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.六、角平分线的性质定理:角平分线上的点到角两边的距离相等.【考点剖析】题型一、全等三角形的判定——“边边边”例1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)【变式2】、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型二、全等三角形的判定——“边角边”例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB =CD -BD ,把CD -BD 转化为一条线段,可利用翻折变换,把△ABD 沿AD 翻折,使线段BD 运动到DC 上,从而构造出CD -BD ,并且也把∠B 转化为∠AEB ,从而拉近了与∠C 的关系.【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ), 求证:∠B +∠D =180°. AE D CB【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型三、全等三角形的判定——“角边角”例5、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B=∠DEF,∠ACB=∠F,再证明BC=EF,然后根据“ASA”可判断△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,{∠B=∠DEF BC=EF∠ACB=∠F,∴△ABC≌△DEF(ASA).5种判定方法是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.例6、如图,G是线段AB上一点,AC和DG相交于点E.请先作出∠ABC的平分线BF,交AC于点F;然后证明:当AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明:∵AD∥BC,∴∠DAC=∠C∵BF平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN题型四、全等三角形的判定——“角角边”例7.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC=AD,再由平行线的性质可得∠DAE=∠ACB,由∠CED+∠B=180°,∠CED+∠AED=180°,得∠AED=∠B,从而利用AAS可判定△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例8、已知:如图,AB⊥AE,AD⊥,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 题型五:线段的垂直平分线 例9.(2023秋·浙江杭州·八年级校考开学考试)如图所示,在ABC 中,8AC =,5BC =,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则BCE 的周长为( )A .13B .18C .10.5D .21【答案】A 【分析】根据线段垂直平分线的性质得到AE BE =,再将BCE 的周长转化为AC BC +的长,即可求解.【详解】解:DE 是AB 的垂直平分线,∴AE BE =,∴BCE 的周长为BE EC BC AE EC BC AC BC ++=++=+,8AC =,5BC =,∴BCE 的周长为8513AC BC +=+=,故选:A .【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.【变式1】(2022秋·浙江温州·八年级校考期中)如图,点D 是ABC 边AC 的中点,过点D 作AC 的垂线交BC 于点E ,已知6AC =,ABC 的周长为14,则ABE 的周长是( )A .6B .14C .8D .20【答案】C 【分析】由题意可知:ED 垂直平分AC ,故EA EC =,结合6AC =,ABC 的周长为14,即可得出答案.【详解】解:∵点D 是ABC 边AC 的中点, ED AC ⊥,∴ED 垂直平分AC ,∴EA EC =,∵6AC =,ABC 的周长为14,∴1468AB BC +=−=,∴8AB BC AB BE EC AB BE AE +=++=++=,∴ABE 的周长是8.故选:C .【点睛】此题考查了垂直平分线的性质和判定,掌握垂直平分线的性质和判定是解题的关键.【答案】C 【分析】根据垂直平分线的性质可知,到A ,B ,C 表示三个居民小区距离相等的点,是AC ,BC 两边垂直平分线的交点,由此即可求解.【详解】解:如图所示,分别作AC ,BC 两边垂直平分线MN ,PQ 交于点O ,连接OA,OB,OC,∵MN,PQ是AC,BC两边垂直平分线,==,∴OA OB OC∴点O是到三个小区的距离相等的点,即点O是AC,BC两边垂直平分线的交点,故选:C.【点睛】本题主要考查垂直平分线的性质,掌握垂直平分线的性质是解题的关键.八年级专题练习)如图,在ABC中,是ABC外的一点,且【分析】根据到线段两端距离相等的点在线段的垂直平分线上,即可证明A、D都在BC的垂直平分线上,由此即可证明结论.AB AC,【详解】证明:∵=∴点A在BC的垂直平分线上,BD CD,∵=∴点D在BC的垂直平分线上,∴A、D都在BC的垂直平分线上,∴AD垂直平分BC.【点睛】本题主要考查了线段垂直平分线的判定,熟知线段垂直平分线的判定条件是解题的关键.【变式】.(2022秋·浙江·八年级专题练习)如图,点E是△ABC的边AB的延长线上一点,∠BCE=∠A+∠ACB,求证:点E在BC的垂直平分线上.【分析】由三角形的外角性质得到∠EBC=∠A+∠ACB,结合已知推出∠BCE=∠EBC,得到BE=CE,即可得到结论.【详解】证明:∵∠BCE=∠A+∠ACB,∠EBC=∠A+∠ACB,∴∠BCE=∠EBC,∴BE=CE,∴点E在BC的垂直平分线上.【点睛】本题考查了三角形的外角性质,线段垂直平分线的判定,用到的知识点:到线段两端点的距离相等的点在线段的垂直平分线上.题型六:角平分线【答案】A【分析】根据角平分线上的点到两边的距离相等即可解答.【详解】根据题意要使集贸市场到三条公路的距离相等即集贸市场应建在三个角的角平分线的交点.故本题选A .【点睛】本题考查了角平分线的性质,熟记角平分线的性质是解答本题的关键. 的中点,ABC ,则BED 的面积为( 【答案】C【分析】作DF AC ⊥于F ,DM AB ⊥于点M ,根据角平分线的性质求出DM ,根据三角形的面积公式计算即可.【详解】解:作DF AC ⊥于F ,DM AB ⊥于点MAD 是ABC 的角平分线DF AC ⊥于F ,DM AB ⊥,112122AC DF AB DM ∴⋅+⋅=,112122AC DM AB DM ⋅+⋅=∴即:3421DM DM +=得3DM =8AB =, E 是AB 的中点,142BE AB ∴== 1143622BEDS BE DM ∴=⋅=⨯⨯= 故选:C .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键. 例12.(2022秋·浙江·八年级专题练习)已知:如图,90B C ∠=∠=,M 是BC 的中点,DM 平分ADC ∠.(1)若连接AM ,则AM 是否平分BAD ∠?请你证明你的结论;(2)线段DM 与AM 有怎样的位置关系?请说明理由.【答案】(1)AM 平分BAD ∠,证明见解析(2)DM AM ⊥,理由见解析【分析】(1)过点M 作ME AD ⊥,垂足为E ,证明ME MC MB ==即可得证.(2)利用两直线平行,同旁内角互补,证明1390∠+∠=.【详解】(1)AM 平分BAD ∠,理由为:证明:过点M 作ME AD ⊥,垂足为E ,∵DM 平分ADC ∠,∴12∠=∠,∵ME AD ⊥,MC CD ⊥∴MC ME =(角平分线上的点到角两边的距离相等),又∵MC MB =,∴ME MB =,∵MB AB ⊥,ME AD ⊥,∴AM 平分BAD ∠(到角的两边距离相等的点在这个角的平分线上).(2)DM AM ⊥,理由如下:∵90B C ∠=∠=,∴,DC CB AB CB ⊥⊥,∴DC AB ∥(垂直于同一条直线的两条直线平行),∴180DAB CDA ∠+∠=(两直线平行,同旁内角互补)又∵111,322CDA DAB ∠=∠∠=∠(角平分线定义) ∴2123180∠+∠=,∴1390∠+∠=,∴90AMD ∠=.即DM AM ⊥.【点睛】本题考查了角平分线的性质定理和判定定理,平行线的性质,熟练掌握以上的知识是解题的关键. 【变式1】(2023秋·浙江台州·八年级统考期末)如图 90B C ∠=∠=︒,E 为BC 上一点,AE 平分BAD ∠,DE 平分CDA ∠.(1)求AED ∠的度数;(2)求证:E 是BC 的中点.【答案】(1)90︒(2)见解析.【分析】(1)利用已知条件可以得到180BAD CDA ∠+∠=︒,想要求AED ∠的度数,只需要根据三角形内角和定理和角平分线的性质即可得到结论.(2)过点E 做EF AD ⊥,根据角平分线上的点到角的两边距离相等即可得结论.【详解】(1)解:∵90B C ∠=∠=︒,∴DC AB ∥,∴180BAD CDA ∠+∠=︒,∵AE 平分BAD ∠,DE 平分CDA ∠, ∴12EAD BAD ∠=∠,12EDA CDA ∠=∠, ∴1()902EAD EDA BAD CDA ∠+∠=∠+∠=︒,∴180()90AED EAD EDA ∠=︒−∠+∠=︒;(2)证明:过点E 作EF AD ⊥于点F ,∵AE 平分BAD ∠,90B Ð=°,EF AD ⊥,∴EF EB =.∵DE 平分CDA ∠,90C ∠=︒,EF AD ⊥,∴EF EC =.∴EB EC =,即E 是BC 的中点.【点睛】本题考查了平行线的判定与性质,以及角平分线上的点到角两边距离相等的性质,熟记性质和定理并做出辅助线是解题的关键.【变式2】.(2022秋·浙江杭州·八年级校考期中)如图,在ABC 外作两个大小不同的等腰直角三角形,其中90DAB CAE ∠=∠=︒,AB AD =,AC AE =.连接DC 、BE 交于F 点.(1)求证:DAC BAE ≌△△; (2)直线DC 、BE 是否互相垂直,试说明理由;(3)求证:AF 平分DFE ∠.【答案】(1)见解析(2)DC BE ⊥,理由见解析(3)见解析【分析】(1)由题意可得AD AB =,AC AE =,由90DAB CAE ∠=∠=︒,可得到DAC BAE ∠=∠,从而可证DAC BAE ≌△△;(2)由(1)可得ACD AEB ∠=∠,再利用直角三角形的性质及等量代换即可得到结论;(3)作AM DC ⊥于M ,AN BE ⊥于N ,利用全等三角形的面积相等及角平分线的判定即可证得结论.【详解】(1)证明:∵90DAB CAE ∠=∠=︒,∴DAB BAC CAE BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,又∵AD AB =,AC AE =,∴()SAS DAC BAE ≌△△;(2)解:DC BE ⊥,理由如下;∵DAC BAE ≌△△, ∴ACD AEB ∠=∠,∵90AEB AOE ∠+∠= ,AOE FOC ∠=∠,∴90FOC ACD ∠+∠=,∴90EFC ∠=,∴DC BE ⊥;(3)证明:作AM DC ⊥于M ,AN BE ⊥于N ,∵DAC BAE ≌△△, ∴DAC BAE S S ∆∆=,DC BE =, ∴1122DC AM BE AN ⋅=⋅,∴AM AN =,∴AF 平分DFE ∠.【点睛】本题主要考查全等三角形的判定和性质,及直角三角形的性质,角平分线的判定,熟练掌握判定和性质是解决本题的关键.【变式3】(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠∠+=︒.(1)如图1,当90OAP ∠=︒时,求证:OA OB =;(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:①PA PB =;②请直接写出OA ,OB ,AC 之间的数量关系 .【答案】(1)见解析(2)①见解析;②2OA OB AC −=【分析】(1)证明()AAS OPA OPB ≌,即可得证;(2)①作PD ON ⊥于点D ,证明()AAS PAC PBD ≌,即可得证; ②证明()AAS OCP ODP ≌,得出OD =,根据AC BD =,即可得证.【详解】(1)证明:180OAP OBP ∠∠+=︒,且90OAP ∠=︒,90OAP OBP ∠∠∴==︒,OP 平分MON ∠,POA POB ∠∠∴=,OP OP =,()AAS OPA OPB ∴≌,OA OB ∴=;(2)证明:①如图2,作PD ON ⊥于点D ,PC OM ⊥于点C ,PC PD ∴=,90PCA PDB OCP ∠∠∠===︒,180OAP OBP ∠∠+=︒,180DBP OBP ∠∠+=︒,OAP DBP ∠∠∴=,在PAC 和PBD 中,CAP DBP PCA PDBPC PD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS PAC PBD ∴≌, PA PB ∴=;②结论:2OA OB AC −=.理由:在OCP 和ODP 中,OCP ODP COP DOP OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OCP ODP ∴≌,OC OD ∴=,OA AC OB BD ∴−=+,AC BD =,2OA OB AC BD AC ∴−=+=.故答案为:2OA OB AC −=.【点睛】本题考查了角平分线的性质,全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.【过关检测】一、单选题 1.(2022秋·浙江·八年级专题练习)如图,在ABC 中,90A ∠=︒,点D 是边AC 上一点,3DA =,若点D 到BC 的距离为3,则下列关于点D 的位置描述正确的是( )A .点D 是AC 的中点B .点D 是B ∠平分线与AC 的交点 C .点D 是BC 垂直平分线与AC 的交点D .点D 与点B 的距离为5【答案】B 【分析】作DE BC ⊥于E ,连接BD ,利用角平分线的判定定理可证明BD 是ABC ∠的角平分线,即可作答.【详解】解:如图所示:作DE BC ⊥于E ,连接BD ,∵3DA =,点D 到BC 的距离为3,∴=AD DE ,∵90A ∠=︒,∴DA BA ⊥,∵DE BC ⊥,∴BD 是ABC ∠的角平分线,即点D 是ABC ∠的角平分线与AC 的交点,故B 项正确;其余选项,利用现有条件均无法得出,故选:B .【点睛】本题主要考查了角平分线的判定定理,作出辅助线,证明BD 是ABC ∠的角平分线,是解答本题的关键. 2.(2023·浙江·九年级专题练习)如图,已知BF DE =,AB ∥DC ,要使ABF CDE ≅△△,添加的条件可以是( )A.BE DF =B .AF CE =C .AB CD = D .B D ∠=∠【答案】C 【分析】根据AB ∥DC ,可得B D ∠=∠,又BF DE =,所以添加AB CD =,根据SAS 可证ABF CDE ≅△△.【详解】解:应添加AB DC =,理由如下:AB ∥DC ,B D ∴∠=∠.在ABF △和CDE 中,AB CD B DBF DE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CDE ∴≅,故选:C .【点睛】本题主要考查了平行线的性质以及全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.3.(2023·浙江金华·统考二模)如图,ABC 和DEF 中,AB DE ∥,A D ∠=∠,点B ,E ,C ,F 共线,添加一个条件,不能判断ABC DEF ≌△△的是( )A .AB DE =B .ACB F ∠=∠C .BE CF =D .AC DF =【答案】B 【分析】根据AB DE ∥可得B DEF ∠=∠,加上A D ∠=∠,可知ABC 和DEF 中两组对角相等,因此一组对边相等时,即可判断ABC DEF ≌△△. 【详解】解:AB DE ∥,∴B DEF ∠=∠, 又A D ∠=∠,∴ABC 和DEF 中两组对角相等,当AB DE =时,根据ASA 可证ABC DEF ≌△△,故A 选项不合题意; 当ACB F ∠=∠时,ABC 和DEF 中,三组对角相等,不能判断ABC DEF ≌△△,故B 选项符合题意; 当BE CF =时,BC EF =,根据AAS 可证ABC DEF ≌△△,故C 选项不合题意; 当AC DF =时,根据AAS 可证ABC DEF ≌△△,故D 选项不合题意; 故选B .【点睛】本题考查添加条件使三角形全等,解题的关键是熟练掌握全等三角形的各种判定方法..ABC 的三条中线的交点.ABC 三边的垂直平分线的交点.ABC 三条角平分线的交点.ABC 三条高所在直线的交点【答案】C【分析】角平分线上的点到角的两边的距离相等,由此可解.【详解】解:要使凉亭到草坪三条边的距离相等,∴凉亭应在ABC 三条角平分线的交点处.故选C .【点睛】本题考查了角平分线的性质,解题的关键是注意区分三角形中线的交点、高的交点、垂直平分线的交点以及角平分线的交点之间的区别. 5.(2020秋·浙江·八年级期末)如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,2DE =,4AB =,则AC 的长为( )A .3B .4C .5D .6【答案】A 【分析】先根据角平分线的性质得到2DF DE ==,再利用三角形面积公式得到11242722AC ⨯⨯+⨯⨯=,然后解关于AC 的方程即可.【详解】解:∵AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,2DE =,∴2DF DE ==,∵7ABC S =△,4AB =,又∵ABD ACD ABC S S S +=△△△,∴111124272222AB DE DF AC AC ⋅+⋅=⨯⨯+⨯⨯=,∴3AC =.故选:A .【点睛】本题考查角平分线的性质:角的平分线上的点到角的两边的距离相等.理解和掌握角平分线的性质是解题的关键.本题也考查了三角形的面积及等积变换.6.(2022秋·浙江·八年级专题练习)如图,用B C ∠=∠,12∠=∠,直接判定ABD ACD ≌△△的理由是( )A .AASB .SSSC .ASAD .SAS【答案】A 【分析】根据三角形全等的判定方法判定即可.【详解】解:在ABD △和ACD 中,12B CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS ABD ACD ≌,故A 正确. 故选:A .【点睛】本题主要考查三角形全等的判定,解题的关键是掌握证明全等三角形的几种证明方法:AAS 、ASA 、SSS 、SAS 、HL .A .2B .【答案】C 【分析】由FC AB ∥,得F ADE ∠=∠,FCE A ∠=∠,即可根据全等三角形的判定定理“AAS”证明CFE ADE ≅,则4CF AD AB BD ==−=.【详解】解:FC AB ∥,F ADE ∴∠=∠,FCE A ∠=∠,在CFE 和ADE V 中,F ADE FCE AFE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS CFE ADE ∴≅, CF AD ∴=,5AB =,1BD =,514AD AB BD ∴=−=−=,4CF ∴=,CF ∴的长度为4.故选:C .【点睛】此题重点考查平行线的性质、全等三角形的判定与性质等知识,正确地找到全等三角形的对应边和对应角并且证明CFE ADE ≅是解题的关键.A .SSS【答案】B 【分析】根据已知条件两边,及两边的夹角是对顶角解答.【详解】解:在AOB 和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∴≌. 故选:B .【点睛】本题考查了全等三角形的应用,准确识图判断出两组对应边的夹角是对顶角是解题的关键. 9.(2022秋·浙江嘉兴·九年级校考期中)在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放在ABC 的( )A .三边垂直平分线的交点B .三杂中线的交点C .三条角平分线的交点D .三条高所在直线的交点【答案】A【分析】根据题意可知,当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质即可求解.【详解】解:由题意可得:当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的点到线段两端的距离相等,∴木凳应放的最适当的位置是在ABC 的三边垂直平分线的交点,故选:A .【点睛】本题考查线段垂直平分线的性质的应用,掌握线段垂直平分线的性质是解题的关键. )可说明ABC 与△ 【答案】A 【分析】先根据垂直的定义可得90ACB ADB ∠=∠=︒,再根据角平分线的定义可得CAB DAB ∠=∠,然后根据AAS 定理即可得.【详解】解:,BC AC BD AD ⊥⊥,90ACB ADB ∴∠=∠=︒,AB 平分CAD ∠,CAB DAB ∴∠=∠,在ABC 和ABD △中,90ACB ADB CAB DABAB AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AAS ABC ABD ∴≌,故选:A . 【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定方法是解题关键.二、填空题【答案】CA FD =,B E ∠=∠,A D ∠=∠,AB DE ∥等【分析】可选择CA FD =添加条件后,能用SAS 进行全等的判;也可选择B E ∠=∠添加条件后,能用ASA 进行全等的判定;也可选择A D ∠=∠添加条件后,能用AAS 进行全等的判定;也可选择AB DE ∥添加条件后,能用ASA 进行全等的判定即可;【详解】解:添加CA FD =,∵12∠=∠,BC EF =,∴()SAS ABC DEF ≌△△,故答案为:CA FD =;或者添加B E ∠=∠,∵BC EF =,12∠=∠,∴()ASA ABC DEF ≌△△,故答案为:B E ∠=∠;或者添加A D ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:A D ∠=∠;或者添加AB DE ∥,∵AB DE ∥,∴B E ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:AB DE ∥.【点睛】本题考查了全等三角形的判定,解答本题关键是掌握全等三角形的判定定理,本题答案不唯一.【答案】AB DC =【分析】添加条件AB DC =,利用SAS 证明ABC DCB △≌△即可.【详解】解:添加条件AB DC =,理由如下:在ABC 和DCB △中,AB DC ABC DCBBC CB =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCB △≌△, 故答案为:AB DC =.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS SAS AAS ASA HL ,,,,. 13.(2023秋·浙江湖州·八年级统考期末)如图,已知AC DB =,要使得ABC DCB ≅,根据“SSS”的判定方法,需要再添加的一个条件是_______.【答案】ABDC =【分析】要使ABC DCB ≅,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC 和DCB △中AB DC BC CB AC BD =⎧⎪=⎨⎪=⎩, ∴()ABC DCB SSS ≅△△, 故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.14.(2022秋·浙江丽水·八年级统考期末)如图,在ABC 中,CD 是边AB 上的高,BE 平分ABC ∠,交CD 于点E ,6BC =,若BCE 的面积为9,则DE 的长为______.【答案】3【分析】过E 作EF BC ⊥于F ,根据角平分线性质求出EF DE =,根据三角形面积公式求出即可.【详解】解:过E 作EF BC ⊥于F ,CD 是AB 边上的高,BE 平分ABC ∠,交CD 于点E ,DE EF ∴=,192BCE S BC EF =⋅=,1692EF ∴⨯⨯=,3EF DE ∴==,故答案为:3.【点睛】本题考查了角平分线性质的应用,能根据角平分线性质求出3EF DE ==是解此题的关键,注意:在角的内部,角平分线上的点到角的两边的距离相等. 八年级期末)如图,在ABC 中, 【答案】4【分析】根据线段垂直平分线的性质得到2AD BD ==,则4CD AC AD =−=.【详解】解:∵AB 的垂直平分线交AB 于点E ,交AC 于点D ,∴2AD BD ==,∵6AC =,∴4CD AC AD =−=,故答案为:4.【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解题的关键. 16.(2022秋·浙江温州·八年级校联考期中)如图,在ABC 中,DE 是AC 的中垂线,分别交AC ,AB 于点D ,E .已知BCE 的周长为9,4BC =,则AB 的长为______.【答案】5【分析】先利用三角形周长得到5CE BE +=,再根据线段垂直平分线的性质得到EC EA =,然后利用等线段代换得到AB 的长.【详解】解:∵BCE 的周长为9,9CE BE BC ∴++=,又4BC =,5CE BE ∴+=,又DE 是AC 的中垂线,EC EA ∴=,5AB AE BE CE BE ∴=+=+=;故答案为:5.【点睛】本题考查了垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.17.(2023秋·浙江杭州·八年级校考开学考试)如图,已知12∠=∠,要说明ABC BAD ≌,(1)若以“SAS ”为依据,则需添加一个条件是__________;(2)若以“ASA ”为依据,则需添加一个条件是__________.【答案】 BC AD = BAC ABD ∠=∠【分析】(1)根据SAS 可添加一组角相等,故可判定全等;(2)根据ASA 可添加一组角相等,故可判定全等;【详解】解:(1)已知一组角相等和一个公共边,以“SAS ”为依据,则需添加一组角,即BC AD =故答案为:BC AD =;(2)已知一组角相等,和一个公共边,以“ASA ”为依据,则需添加一组角,即BAC ABD ∠=∠. 故答案为:BAC ABD ∠=∠.【点睛】本题主要考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.添加时注意:AAA SSA 、不能判定两个三角形全等. 18.(2019秋·浙江嘉兴·八年级校考阶段练习)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF=________【答案】6.【分析】根据题中条件由SAS 可得△ABC ≌△DEF ,根据全等三角形的性质可得AC=DF=6.【详解】∵AB ∥DE ,∴∠B=∠DEF∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEFBC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴AC=DF=6.考点:全等三角形的判定与性质.。

人教版八年级上册第十二章全等三角形知识点复习

人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

八年级数学上册《全等三角形》知识点解析

八年级数学上册《全等三角形》知识点解析

八年级数学上册《全等三角形》知识点解析八年级数学上册《全等三角形》知识点解析在现实学习生活中,相信大家一定都接触过知识点吧!知识点有时候特指教科书上或考试的知识。

为了帮助大家掌握重要知识点,下面是店铺收集整理的八年级数学上册《全等三角形》知识点解析,欢迎大家分享。

八年级数学上册《全等三角形》知识点解析1一、定义1.全等形:形状大小相同,能完全重合的两个图形.2.全等三角形:能够完全重合的两个三角形.二、重点1.平移,翻折,旋转前后的图形全等.2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.3.全等三角形的判定:SSS三边对应相等的两个三角形全等【边边边】SAS两边和它们的夹角对应相等的两个三角形全等【边角边】ASA两角和它们的夹边对应相等的两个三角形全等【角边角】AAS两个角和其中一个角的对边开业相等的两个三角形全等【边角边】HL斜边和一条直角边对应相等的两个三角形全等【斜边,直角边】4.角平分线的性质:角的平分线上的点到角的两边的距离相等.5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.八年级数学上册《全等三角形》知识点解析2全等三角形定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

通过上面对全等三角形知识点的讲解学习,相信同学们对全等三角形的知识已经能很好的掌握了吧,后面我们进行更多知识点的巩固学习。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

最新人教版八年级上册数学第十二章全等三角形第8课时 《全等三角形》单元复习

最新人教版八年级上册数学第十二章全等三角形第8课时 《全等三角形》单元复习
返回
数学
15.【例7】如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF. (1)求证:点D为EF的中点; (2)求证:AD⊥BC.
返回
数学
证明:(1)如图,过点D作DH⊥AB于H, ∵AD平分∠BAC,DE⊥AC,DH⊥AB,∴DE=DH, ∵BF∥AC,DE⊥AC, ∴BF⊥DF, ∵BC平分∠ABF,DH⊥AB,DF⊥BF, ∴DH=DF,∴DE=DF,∴点D为EF的中点.
答案图
返回
数学
(2)∵BF∥AC,∴∠C=∠DBF,且∠CDE=∠BDF,DE=DF, ∴△DCE≌△DBF(AAS),∴CD=BD, ∵BC平分∠ABF,∴∠ABD=∠DBF,∴∠C=∠ABD, ∵AD平分∠BAC,∴∠CAD=∠DAB, 又AD=AD,∴△DCA≌△DBA, ∴∠CDA=∠BDA, ∵∠CDA+∠BDA=180°, ∴∠CDA=∠BDA=90°,∴AD⊥BC.
第十二章 全等三角形
第8课时 《全等三角形》单元复习
数学
目录
01 知识要点 02 对点训练 03 精典范例 04 变式练习
数学
知识要点
知识点一:全等三角形的性质 (1)性质1:全等三角形的对应边 相等 . 性质2:全等三角形的对应角 相等 . 说明:①全等三角形的对应边上的高、中线以及对应角的平分 线 相等 . ②全等三角形的周长相等、面积相等. ③平移、翻折、旋转前后的图形 全等 .
返回
数学
证明: (1)∵DE⊥A B,DF ⊥A C,
∴△BDE,△CDF 是直角三角形.
在 Rt△BDE 和 Rt△CDF 中, = , =
∴R t △ B DE≌R t △ CDF(H L ),∴DE =DF .

人教版八年级上册数学《三角形全等的判定》全等三角形说课复习

人教版八年级上册数学《三角形全等的判定》全等三角形说课复习
在直角三角形中。
只须找除直角外的两个条件即可(两个条 件中至少有一个条件是一对对应边相等)。
谢谢
三角形全等的判定 第1课时
课件
人教版 初中数学
情景引入
一张教学用的三角形硬纸板不小心被撕坏了,如 图,你能制作一张与原来同样大小的新教具?能恢复 原来三角形的原貌吗?
学习目 标
1.理解判定三角形全等的“边角边”条件.
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
斜边和一条直角边对应相等的两个直角三角形全等。
(简写成“斜边、直角边”或“HL”)
几何语言:
B
∵∠C=∠C′=90°,
∴在Rt△ABC和Rt△A′B′C′中,
A
C
AB=A′B′,
B′
BC=B′C′,
∴Rt△ABC≌Rt△A′B′C′(HL)。
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
放到Rt△ABC上,它们全等吗? A
B
C
探究验证
N
A
A′
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
B
C
M B′
C′
作法:
(1)画∠MC'N=90°; (2)在射线C'M上截取B'C'=BC;

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

提示:在BC上取一点F使得BF=BA,连结EF。

(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。

如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。

八年级数学上册第十二章全等三角形考点大全笔记(带答案)

八年级数学上册第十二章全等三角形考点大全笔记(带答案)

八年级数学上册第十二章全等三角形考点大全笔记单选题1、判断两个直角三角形全等的方法不正确...的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等答案:D分析:根据直角三角形全等的判定条件逐一判断即可.解:A、两条直角边对应相等,可以利用SAS证明两个直角三角形全等,说法正确,不符合题意;B、斜边和一锐角对应相等,可以利用AAS证明两个直角三角形全等,说法正确,不符合题意;C、斜边和一条直角边对应相等,可以利用HL证明两个直角三角形全等,说法正确,不符合题意;D、两个锐角对应相等,不可以利用AAA证明两个直角三角形全等,说法错误,符合题意;故选D.小提示:本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.2、如图所示,在平面直角坐标系中,等腰Rt△ABC的直角顶点C在x轴上,点A在y轴上,若点B坐标为(6,1),则点A坐标为()A.(4,0)B.(5,0)C.(0,4)D.(0,5)答案:D分析:作BD⊥x轴于点D,由等腰Rt△ABC可得AC=BC,进一步可证明Rt△AOC≌Rt△CDB,得到CO=BD=1,AO=CD=OD-OC=5,即可得到点A的坐标.解:如图,作BD ⊥x 轴于点D ,’∴∠BDC =90°,∴∠BCD +∠CBD =90°,∵点B 坐标为(6,1),∴ OD =6,BD =1,∵△ABC 为等腰直角三角形,∴ ∠ACB =90°,AC=BC ,∴ ∠ACO +∠BCD =90°∴ ∠ACO=∠CBD在Rt △AOC 和Rt △CDB 中,∵{∠ACO =∠CBD ∠ACO =∠CBD AC =BC,∴ Rt △AOC ≌Rt △CDB (AAS ),∴ CO=BD =1,AO=CD ,∴AO=CD=OD-OC =5,∵点A 在y 轴上,∴点A 坐标为(0,5),故答案选:D .小提示:本题考查了利用几何图形的性质求点的坐标的问题,综合性稍强,灵活运用所学知识是关键.3、数学课上老师布置了“测量锥形瓶内部底面的内径”的探究任务,善思小组想到了以下方案:如图,用螺丝钉将两根小棒AD ,BC 的中点O 固定,只要测得C ,D 之间的距离,就可知道内径AB 的长度.此方案依据的数学定理或基本事实是()A.边角边B.三角形中位线定理C.边边边D.全等三角形的对应角相等答案:A分析:根据O是AD与BC的中点,得到OA=OD,OB=OC,根据∠AOB=∠DOC,推出△AOB≌△DOC,是SAS.∵O是AD与BC的中点,∴OA=OD,OB=OC,∵∠AOB=∠DOC,∴△AOB≌△DOC(SAS).故选A.小提示:本题考查了测量原理,解决此类问题的关键是根据测量方法和工具推导测量原理.4、下列选项可用SAS证明△ABC≅△A′B′C′的是()A.AB=A′B′,△B=△B′,AC=A′C′B.AB=A′B′,BC=B′C′,△A=△A′C.AC=A′C′,BC=B′C′,△C=△C′D.AC=A′C′,BC=B′C′,△B=△B′答案:C分析:根据全等三角形SAS的判定逐项判定即可.解:A.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;B.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;C.满足SAS,能证明△ABC△△A′B′C′,故该选项符合题意;D.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意,故选:C.小提示:本题考查全等三角形的判定,熟练掌握全等三角形的判定条件是解答的关键.5、如图,Rt△ABC中,∠ACB=90°,∠B=50°,D,F分别是BC,AC上的点,DE⊥AB,垂足为E,CF=BE,DF =DB,则∠ADE的度数为()A.40°B.50°C.70°D.71°答案:C分析:先利用三角形内角和算出∠CAB,再证明△CDF△△EDB得到CD=DE;再证明△ACD△△AED,得到∠CAD=∠EAD,即可算出根据题意:在Rt△ABC中∠CAB=90°−∠B=40°在Rt△CDF和Rt△EDB中{FC=BEDF=DB∴Rt△CDF△Rt△EDB(HL)∴CD=DE在Rt△ACD和Rt△AED中{CD=DEAD=AD∴Rt△ACD△Rt△AED(HL)∴∠CAD=∠EAD=1∠CAB=20°2在Rt△ADE中∴∠ADE=90°−∠EAD=70°故选:C.小提示:本题主要考查了全等三角形的判定及性质,注意HL这个判定方法的使用.6、如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长可能是()A.6B.7C.8D.9答案:A分析:在AC上取AE=AB=5,然后证明△AEP-ABP,根据全等三角形对应边相等得到PE=PB=3,再根据三角形的任意两边之差小于第三边即可求解.解:在AC上截取AE=AB=5,连接PE,∵AC=9,∴CE=AC-AE=9-5=4,∵点P是∠BAC平分线AD上的一点,∴∠CAD=∠BAD,在△APE和△APB中,{AE=AB∠CAP=∠BADAP=AP,∴△APE≌△APB(SAS),∴PE=PB=3,∵4-3<PC<4+3,解得1<PC<7,观察四个选项,PC的长可能是6,故选:A.小提示:本题主要考查了全等三角形的判定与性质、三角形的三边关系;通过作辅助线构造全等三角形是解题的关键.7、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,BE=3cm,AD=7cm,则DE的长是()A.3cmB.3.5cmC.4cmD.4.5cm答案:C分析:根据同角的余角相等,得∠CBE=∠ACD,再利用AAS证明△ACD≌△CBE,得CD=BE=3cm,CE=AD=7cm,进而求得DE.解:∵BE⊥CE,AD⊥CE∴∠BEC =90°,∠ADC =90°∴∠CBE +∠BCE =90°,∵∠ACB =90°∴∠ACD +∠BCE =90°,∴∠CBE =∠ACD ,在△ACD 与△CBE 中,{∠CBE =∠ACD∠BEC =∠ADC AC =BC∴△ACD ≌△CBE (AAS ),∴CD =BE =3cm ,CE =AD =7cm ,∴DE =CE ﹣CD =7﹣3=4cm ,故选:C .小提示:本题主要考查了全等三角形的判定和性质,等腰直角三角形的性质,本题证明△ACD ≌△CBE 是关键.8、如图,△ABC ≌△A ′B ′C ′,其中∠A =36°,∠C ′=24°,则∠B =( )A .60°B .100°C .120°D .135°答案:C分析:由全等三角形的性质,先求出∠C =∠C ′=24°,即可求出∠B 的度数.解:∵△ABC ≌△A ′B ′C ′,∴∠C =∠C ′=24°,∵∠A =36°,∴∠B =180°−36°−24°=120°;故选:C.小提示:本题考查了三角形的内角和定理,全等三角形的性质,解题的关键是掌握所学的知识,正确得到∠C=24°.9、如图,若△ABC△△ADE则下列结论中不成立...的是()A.∠BAD=∠CAEB.∠BAD=∠CDEC.DA平分∠BDED.AC=DE答案:D分析:根据全等三角形的性质得出∠B=∠ADE,∠BAC=∠DAE,AB=AD,∠E=∠C,再逐个判断即可.解:A.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,故本选项不符合题意;B.如图,∵△ABC≌△ADE,∴∠C=∠E,∵∠AOE=∠DOC,∠E+∠CAE+∠AOE=180°,∠C+∠COD+∠CDE=180°,∴∠CAE=∠CDE,∵∠BAD=∠CAE,∴∠BAD=∠CDE,故本选项不符合题意;C.∵△ABC≌△ADE,∴∠B=∠ADE,AB=AD,∴∠B=∠BDA,∴∠BDA=∠ADE,∴AD平分∠BDE,故本选项不符合题意;D.∵△ABC≌△ADE,∴BC=DE,故本选项符合题意;故选:D.小提示:本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.10、下列说法不正确的是()A.有两条边和它们的夹角对应相等的两个三角形全等B.有三个角对应相等的两个三角形全等C.有两个角及其中一角的对边对应相等的两个三角形全等D.有三条边对应相等的两个三角形全等答案:B分析:根据全等三角形的判定定理逐一判断即可得答案.A.符合判定SAS,故该选项说法正确,不符合题意,B.全等三角形的判定必须有边的参与,AAA不能判定两个三角形全等,故该选项说法不正确,符合题意,C.正确,符合判定AAS,故该选项说法正确,不符合题意,D.正确,符合判定SSS,故该选项说法正确,不符合题意,故选:B.小提示:本题考查全等三角形的判定,全等三角形常用的判定方法有:SSS、SAS、AAS、ASA、HL,注意:AAS、AAA不能判定两个三角形全等,当利用SAS判定两个三角形全等时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.填空题11、如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以每秒2cm的速度从点A出发向C运动,到点C停止运动,点Q在射线AM上运动,且PQ=AB,当点P的运动时间为_________秒时,△ABC 才能和△PQA全等.答案:2或4##4或2分析:据全等三角形的判定HL定理分AP=BC和AP=AC解答即可.解:设点P的运动时间为t秒,∵∠C=∠CAM=90°,PQ=AB,∴当AP=BC=4cm,时,Rt△QPA≌Rt△ABC(HL),∴t=4÷2=2秒;当AP=AC=8cm,时,Rt△PQA≌Rt△ABC(HL),∴t=8÷2=4秒,综上,当点P的运动时间为2或4秒时,△ABC才能和△PQA全等.所以答案是:2或4.小提示:本题考查全等三角形的判定,熟练掌握证明直角三角形全等的HL定理,利用分类讨论思想是解答的关键.12、已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为大于12__________.答案:15°或45°分析:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于12MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,即可求解.解:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于12MN的长度为半径作弧,两弧在∠AOB内交于点P,得到O P为∠AOB的平分线,再以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,所以∠BOC=15°或45°.所以答案是:15°或45°.小提示:本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边作∠POC=15°的两种情况,避免遗漏.13、如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E,S四边形ABCD=10,则BE的长为__________答案:√10分析:过点B作BF⊥CD交DC的延长线交于点F,证明△AEB≌△CFB(AAS)推出BE=BF,S△ABE=S△BFC,可得S四边形ABCD =S正方形BEDF=12,由此即可解决问题;解:过点B作BF⊥CD交DC的延长线交于点F,如右图所示,∵BF⊥CD,BE⊥AD∴∠BFC=∠BEA=90∘∵∠ABC=∠ADC=90∘∴∠ABE+∠EBC=90∘,∠EBC+∠CBF=90∘∴∠ABE=∠CBF∵AB=CB∴△AEB≌△CFB(AAS)∴BE=BF,S△ABE=S△BFC∴S四边形ABCD =S正方形BEDF=10,∴BE×BF=10,即BE2=10,∴BE=√10,故答案为√10.小提示:本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.14、如图,在△ABC中,已知AD是△ABC的角平分线,作DE⊥AB,已知AB=4,AC=2,△ABD的面积是2,则△ADC的面积为___.答案:1分析:先根据三角形面积公式计算出DE= 1,再根据角平分线的性质得到点D到AB和AC的距离相等,然后利用三角形的面积公式计算△ADC的面积.∵DE⊥AB,× DE × AB= 2,∴S△ABD=12=1,∴DE=2×24∵AD是△ABC的角平分线,∴点D到AB和AC的距离相等,∴点D到AC的距离为1,×2×1= 1.∴S△ADC=12所以答案是:1.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,属于基础题,熟练掌握角平分线的性质是解题的关键.15、如图,BE交AC于点M,交CF于点D,AB交CF于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出的下列五个结论中正确结论的序号为.①∠1=∠2;②BE=CF;③△CAN≅△BAM;④CD=DN;⑤△AFN≌△AEM.答案:①;②;③;⑤分析:①先证明△ABE≌△ACF,然后根据全等三角形的性质即可判定;②利用全等三角形的性质即可判定;③根据ASA即可证明三角形全等;④无法证明该结论;⑤根据ASA证明三角形全等即可.解:在△ABE和△ACF中,{∠E =∠F =90°∠B =∠C AE =AF,∴△ABE ≌△ACF (AAS ),∴∠BAE =∠CAF ,BE =CF ,故②正确,∴∠BAE -∠BAC =∠CAF -∠BAC ,即∠1=∠2,故①正确,∵△ABE ≌△ACF ,∴AB =AC ,在△CAN 和△BAM 中,{∠N AC =∠M AB ,AB=AC∠B =∠C, ∴△CAN ≌△BAM (ASA ),故③正确,CD =DN 不能证明成立,故④错误在△AFN 和△AEM 中{∠1=∠2AF =AE ∠F =∠E,∴△AFN ≌△AEM (ASA ),故⑤正确.结论中正确结论的序号为①;②;③;⑤.故答案为①;②;③;⑤.小提示:本题主要考查了三角形全等的判定和性质,解题的关键是正确寻找全等三角形全等的条件. 解答题16、如图所示,A ,C ,E 三点在同一直线上,且△ABC △△DAE .(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC△DE?请说明理由.答案:(1)见解析(2)当△ABC满足∠ACB为直角时,BC△DE.分析:(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.(1)证明:∵△ABC△△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC△DE,∴∠BCE=∠E,又∵△ABC△△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC△DE.小提示:本题考查了全等三角形的性质和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.17、如图,△ABC是格点三角形(顶点在网格线的交点上),请在下列每个方格纸上按要求画一个与△ABC 全等的格点三角形.(1)在图①中所画三角形与△ABC有一条公共边AB;(2)在图②中所画三角形与△ABC有一个公共角C;(3)在图③中所画三角形与△ABC有且只有一个公共顶点A.答案:(1)见解析(2)见解析(3)见解析分析:(1)根据题意以及网格的特点根据轴对称画出图形即可;(2)根据题意以及网格的特点根据轴对称画出图形即可;(3)根据题意以及网格的特点画出图形即可.(1)如图①所示,△ABD即为所求;(2)如图②所示,△DEC即为所求;(3)如图③所示,△AED即为所求,小提示:本题考查了作图-应用与设计作图、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.18、如图,小明和小华住在同一个小区不同单元楼,他们想要测量小明家所在单元楼AB的高度,首先他们在两栋单元楼之间选定一点E,然后小华在自己家阳台C处测得E处的俯角为∠1,小明站在E处测得楼顶A的仰角为∠2,发现∠1与∠2互余,过点F作FG⊥AB于点G,已知BG=1米,BE=CD=20米,BD=58米,点B、E、D在一条直线上,AB⊥BD,FE⊥BD,CD⊥BD,试求单元楼AB的高.(注:BE=FG,BG=EF,∠1与∠3互余).答案:39米分析:根据题意得出∠2=∠3,∠AGF=∠EDC=90°,FG=CD,然后利用全等三角形的判定和性质求解即可.解:由图可得∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3,∵FG⊥AB,CD⊥BD,∴∠AGF=∠EDC=90°,∵BE=CD,FG=BE,∴FG=CD,在△AFG与△ECD中,{∠AGF =∠EDCFG =CD ∠2=∠3∴△AFG ≌△ECD(ASA),∴AG =DE =BD −BE =38(米),∴AB =AG +BG =38+1=39(米),答:单元楼AB 的高为39米.小提示:题目主要考查全等三角形的判定和性质,理解题意,熟练掌握运用全等三角形的判定和性质是解题关键.。

人教版八年级数学上《三角形全等的判定》知识全解

人教版八年级数学上《三角形全等的判定》知识全解

千里之行,始于足下。

人教版八年级数学上《三角形全等的判定》知
识全解
三角形全等的判定方法主要有以下六种:
1. 三边全等(SAS判定法):如果两个三角形的三边分别相等,则这两个三角形全等。

2. 两边一角全等(SAS判定法):如果两个三角形的一对对应边相等,并且夹在二者中间的夹角也相等,则这两个三角形全等。

3. 两角一边全等(ASA判定法):如果两个三角形的一对对应角相等,并且夹在二者中间的边也相等,则这两个三角形全等。

4. 直角边全等(RHS判定法):如果两个三角形的直角边相等,并且斜边也相等,则这两个三角形全等。

5. 两边全等(SSS判定法):如果两个三角形的三边分别相等,则这两个三角形全等。

6. 对边全等(对顶角相等,SAA判定法):如果两个三角形的两对对应边相等,并且对应边夹角的对应角也相等,则这两个三角形全等。

通过以上六种判定法,可以判断两个三角形是否全等。

在解题过程中,可以根据所给条件选择合适的判定法进行判断,以确定是否两个三角形全等。

第1页/共1页。

八年级上册第十二章-全等三角形知识梳理

八年级上册第十二章-全等三角形知识梳理

八年级数学第十一章--全等三角形知识梳理1、能够完全重合的两个图形叫做全等形;全等形的形状相同、大小相等。

2、一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

3、能够完全重合的两个三角形叫做全等三角形;把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

4、全等表示方法:用 ≌ 表示,读作“全等于”;例如△ABC ≌△DEF,读作:三角形ABC 全等于三角形DEF (注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上)5、全等三角形的对应边相等;全等三角形对应角相等。

6、全等三角形的面积相等,周长相等,对应边上的高相等,对应边上的中线相等,对应边上的角平分线相等7、三角形全等的判定(1)三边分别相等的两个三角形全等;(简写成“边边边”或“SSS ”)符号语言:在△ABC 和△DEF 中AB=DEAC=DFBC=EF∴△ABC ≌△DEF (SSS)(2)两边和它们的夹角分别相等的两个三角形全等;(简写成“边角边”或“SAS ”) 符号语言:在△ABC 和△DEF 中AB=DE∠A=∠DAC=DF∴△ABC ≌△DEF (SAS) {{(3)两角和它们的夹边分别相等的两个三角形全等;(简写成“角边角”或“ASA ”) 符号语言:在△ABC 和△DEF 中∠A=∠DAB=DE∠B=∠E∴△ABC ≌△DEF (ASA)(4)两角分别相等且其中一组等角的对边相等的两个三角形全等;(简写成“角角边”或“AAS ”)符号语言:在△ABC 和△DEF 中∠A=∠D∠B=∠EBC=EF∴△ABC ≌△DEF (AAS)(5)斜边和一条直角边分别相等的两个直角三角形全等;(“斜边直角边”或“HL ”) 符号语言:在Rt △ABC 和Rt △DEF 中AB=DEAC=DF∴Rt △ABC ≌Rt △DEF (HL)8、从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

八年级数学三角形与全等三角形知识点大全

八年级数学三角形与全等三角形知识点大全

八年级数学三角形与全等三角形知识点大全一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之和 3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。

证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N 边形:如果一个多边形由N 条线段组成,那么这个多边形就叫做N 边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十二章三角形知识点导学案
1. 三角形的概念
由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.三角形按边分类
3.
三角形的任意两边之和大于第三边。

三角形的任意两边之差小于第三边。

(这两个条件满足其中一个即可)
用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b
要求会的题型:
①数三角形的个数
方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形
方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形
方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

④已知三角形两边的长度分别为a,b,求第三边长度的范围
方法:第三边长度的范围:|a-b|<c<a+b
⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长
方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

三角形的高、中线与角平分线
1. 三角形的高
从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC 的边BC上的高。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”。

2. 三角形的中线
连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC 上的中线。

三角形三条中线的交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线
∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。

要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。

要求会的题型:
①已知三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度
方法:利用“等积法”,将三角形的面积用两种方式表达,求出未知量。

三角形的稳定性
1. 三角形具有稳定性
2. 四边形及多边形不具有稳定性
要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。

三角形的内角
1. 三角形的内角和定理
三角形的内角和为180°,与三角形的形状无关。

2. 直角三角形两个锐角的关系
直角三角形的两个锐角互余(相加为90°)。

有两个角互余的三角形是直角三角形。

三角形的外角
1. 三角形外角的意义
三角形的一边与另一边的延长线组成的角叫做三角形的外角。

2. 三角形外角的性质
三角形的一个外角等于与它不相邻的两个内角之和。

三角形的一个外角大于与它不相邻的任何一个内角。

3.
(1
2=∠3
+∠4

∠BOC =∠A +∠B +∠C
多边形
1. 多边形的概念
在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。

多边形的边与它邻边的延长线组成的角叫做外角。

连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

一个n 边形从一个顶点出发的对角线的条数为(n -3)条,其所有的对角线条数为错误!未找到引用源。

. 3. 正多边形
各角相等,各边相等的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)
要求会的题型:
①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数 方法:一个n 边形从一个顶点出发的对角线的条数为(n -3)条,其所有的对角线条数为错误!未找到引用源。

.将边数带入公式即可。

多边形的内角和
1. n 边形的内角和定理
n 边形的内角和为错误!未找到引用源。

2. n 边形的外角和定理
多边形的外角和等于360°,与多边形的形状和边数无关。

全等三角形的性质:
(1)全等三角形的对应边相等;全等三角形的对应角相等. (2)全等三角形的周长、面积相等.
全等变换:只改变位置,不改变形状和大小的图形变换.
平移、翻折(对称)、旋转变换都是全等变换.
全等三角形的判定
一、本节学习指导
本节较难,考试题目千变万化,更是容易和其他几何联合起来出题,同学们要牢牢的掌握好。

二、知识要点
1、两个三角形全等的条件【重点】
(1)判定1——边边边公理
三边对应相等的两个三角形全等,简写成“边边边”或“SSS”。

“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架)。

注意:边边边是三条边都相等,并且在书写时边与边要对应书写。

在已知两边相等的情况下优先考虑。

(2)判定2——边角边公理
两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。

注意:边角边中,角是指两对应边的夹角,如上图中,同样在书写时对应边角对准。

比如上图中正确的写法是:△ABC≌△A'B'C'
(3)判定3——角边角公理
两角和它们的夹边对应相等的两个三角形全等。

简写为“角边角”或“ASA”。

注意:角边角中,边是两个角中间时,才能描述为角边角,否则就是下面的角角边。

(4)判定4——角角边推论
两角和其中一角的对边对应相等的两个三角形全等。

简称“角角边”或“AAS”。

(5)直角三角形全等的判定——斜边直角边公理
斜边和一条直角边对应相等的两个直角三角形全等。

简写成“斜边直角边”或“HL”。

判定直角三角形全等的方法:
①一般三角形全等的判定方法都适用;
②斜边-直角边公理
2、证明三角形全等一般有以下步骤:
(1)读题:明确题中的已知和求证;
(2)要观察待证的线段或角,在哪两个可能全等的三角形中
(3)、分析要证两个三角形全等,已有什么条件,还缺什么条件。

有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角
(4)、先证明缺少的条件
(5)、再证明两个三角形全等
三、经验之谈:
对于常见的四种判定三角形全等的方法我们都要掌握,并且知道“边”是什么边,“角”是什么角,上面中并没有“边边角”这点要记牢了。

本节是非常重要的一章节,同学们一定要多做练习题,不会的要向老师及时请教
全等三角形常见类型
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
二、知识要点
1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。

如右图:OC平分∠AOB
∵OC平分∠AOB
∴∠AOC=∠BOC
2、角的平分线的性质:角平分线上的点到角的两边的距离相等。

【重点】
如上图:
∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB
∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边)3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。

如上图:
∵PE⊥OA,PD⊥OB,PD=PE
∴OC平分∠AOB(或∠1=∠2)
4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。

如右图:
∵C是AB的中点
∴AC=BC
5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。

如右图:【重点】
∵AB⊥CD
∴∠AOC=∠AOD=∠BOC =∠BOD=90°
或∵∠AOC=90°
∴AB⊥CD
注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的
一个角是直角就可以了。

反过来,两条直线互相垂直,它们的四个交角都是直角。

相关文档
最新文档