(完整版)动量-动量守恒定律专题练习(含答案)

合集下载

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。

F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。

A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案)

1 2
2mv02
1 (m 2
2m
m)v22
u(2mg)2(L
x)
解得 x v02 L 32g
对 P1、P2、P 系统从 P1、P2 碰撞结束到弹簧压缩量最大,用能量守恒定律
1 2
2mv12
1 2
2mv02
1 2
(m
2m
m)v22
u(2mg)(L
x)
Ep
最大弹性势能 EP
mv
2 0
解得:vn=

m/s(其中 n=1、2、3、…、44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式 关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。 【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必 备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相 关数学知识辅助分析、求解。
6.如图的水平轨道中,AC 段的中点 B 的正上方有一探测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作,已知 P1、P2 的质量都为 m=1 kg,P 与 AC 间的 动摩擦因数为 μ=0.1,AB 段长 L=4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的 碰撞为弹性碰撞。
(1)求 A 滑过 Q 点时的速度大小 v 和受到的弹力大小 F; (2)若碰后 AB 最终停止在第 k 个粗糙段上,求 k 的数值; (3)求碰后 AB 滑至第 n 个(n<k)光滑段上的速度 vn 与 n 的关系式.

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)
v 25m / s
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图所示,在同一水平面内有两根足够长的光滑水平平行金属导轨,间距为L =20cm ,电阻不计,其左端连接一恒定电源,电动势为E ,内阻不计,两导轨之间交替存在着磁感应强度为B =1T 、方向相反的匀强磁场,同向磁场的宽度相同。

闭合开关后,一质量为m =0.1kg 、接入电路的阻值为R =4Ω的导体棒恰能从磁场左边界开始垂直于导轨并与导轨接触良好一直运动下去,导体棒运动到第一个磁场的右边界时有最大速度,为5m/s ,运动周期为T =21s ,则下列说法正确的是( )A .E =1VB .导体棒在第偶数个磁场中运动的时间为2T C .相邻两磁场的宽度差为5 mD .导体棒的速度随时间均匀变化2.如图甲所示,一轻弹簧的两端与质量分别为99m 、200m 的两物块A 、B 相连接,并静止在光滑的水平面上,一颗质量为m 的子弹C 以速度v 0射入物块A 并留在A 中,以此刻为计时起点,两物块A (含子弹C )、B 的速度随时间变化的规律如图乙所示,从图象信息可得( )A .子弹C 射入物块A 的速度v 0为600m/sB .在t 1、t 3时刻,弹簧具有的弹性势能相同,且弹簧处于压缩状态C .当物块A (含子弹C )的速度为零时,物块B 的速度为3m/sD .在t 2时刻弹簧处于自然长度3.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg •m /s ,B 球的动量为7kg •m /s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为( )A .''6/6/AB P kg m s P kg m s =⋅=⋅, B .''3/9/A B P kg m s P kg m s =⋅=⋅,C .''2/14/A B P kg m s P kg m s =-⋅=⋅,D .''5/17/A B P kg m s P kg m s =-⋅=⋅,4.如图所示,一质量为0.5 kg 的一块橡皮泥自距小车上表面1.25 m 高处由静止下落,恰好落入质量为2 kg 、速度为2.5 m/s 沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取210m/s g =,不计空气阻力,下列说法正确的是A .橡皮泥下落的时间为0.3 sB .橡皮泥与小车一起在水平地面上运动的速度大小为2 m/sC .橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D .整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5 J5.从高处跳到低处时,为了安全,一般都要屈腿(如图所示),这样做是为了( )A .减小冲量B .减小动量的变化量C .增大与地面的冲击时间,从而减小冲力D .增大人对地面的压强,起到安全作用6.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则A .从a 到b 与从b 到c 的运动时间之比为2:1B .从a 到b ,跳楼机座椅对游客的作用力与游客的重力大小相等C .从a 到b ,跳楼机和游客总重力的冲量大小为m ghD .从b 到c ,跳楼机受到制动力的大小等于2mg7.如图所示,在光滑的水平面上有体积相同、质量分别为m =0.1kg 和M =0.3kg 的两个小球A 、B ,两球之间夹着一根压缩的轻弹簧(弹簧与两球不相连),A 、B 两球原来处于静止状态.现突然释放弹簧,B 球脱离弹簧时的速度为2m/s ;A 球进入与水平面相切、半径为0.5m 的竖直面内的光滑半圆形轨道运动,PQ 为半圆形轨道竖直的直径,不计空气阻力,g 取10m/s 2,下列说法正确的是( )A .A 、B 两球离开弹簧的过程中,A 球受到的冲量大小等于B 球受到的冲量大小 B .弹簧初始时具有的弹性势能为2.4JC .A 球从P 点运动到Q 点过程中所受合外力的冲量大小为1N ∙sD .若逐渐增大半圆形轨道半径,仍然释放该弹簧且A 球能从Q 点飞出,则落地的水平距离将不断增大8.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg ,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J9.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽10.如图所示,在粗糙水平面上,用水平轻绳相连的两个相同的物体A 、B 质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,A 在F 作用下继续前进,则下列说法正确的是( )A .t =0至t =mv F 时间内,A 、B 的总动量守恒 B .t =2mv F 至t =3mv F 时间内,A 、B 的总动量守恒 C .t =2mv F 时,A 的动量为2mv D .t =4mv F时,A 的动量为4mv 11.如图所示,质量为m = 245 g 的物块(可视为质点)放在质量为M = 0.5 kg 的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ = 0.4,质量为 m 0 = 5 g 的子弹以速度v 0 = 300 m/s 沿水平方向射入物块并留在其中(时间极短),g = 10 m/s 2,则在整个过程中A .物块和木板组成的系统动量守恒B .子弹的末动量大小为0.01kg·m/sC .子弹对物块的冲量大小为0.49N·sD .物块相对木板滑行的时间为1s12.如图所示,光滑水平面上质量为m 的小球A 和质量为13m 的小球B ,通过轻质弹簧相连并处于静止状态,弹簧处于自由长度;质量为m 的小球C 以速度0V 沿AB 连线向右匀速运动.并与小球A 发生弹性正碰.在小球B 的右侧固定一块弹性挡板(图中未画出).当小球B 的速度达到最大时恰与挡板发生正碰,后立刻将挡板搬走.不计所有碰撞过程中的机械能损失.弹簧始终处于弹性限度内,小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变,但方向相反.则B 与挡板碰后弹簧弹性勢能的最大值m E 为( )A .20mVB .2012mVC .2016mVD .20116mV 13.如图所示,一轻质弹簧固定在墙上,一个质量为m 的木块以速度v 0从右侧沿光滑水平面向左运动并与弹簧发生相互作用。

(完整word)动量守恒定律经典习题(带答案)

(完整word)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0。

2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1。

6kg,木块与小车之间的摩擦系数为0。

2(g取10m/s2).设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1。

分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v Mv 0=(M+m)vs m v m N M v /454140=⨯+=+=即为所求。

动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)1.在图中,地面被竖直线MN分隔成两部分。

M点左侧地面粗糙,动摩擦因数为μ=0.5,右侧光滑。

MN右侧空间有一范围足够大的匀强电场。

在O点用长为R-4=5m的轻质绝缘细绳,拴一个质量为mA=0.04kg,带电量为q=+2×10的小球A,在竖直平面内以v=10m/s的速度做顺时针匀速圆周运动,运动到最低点时与地面刚好不接触。

处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B球的质量为mB=0.02kg,此时B球刚好位于M点。

现用水平向左的推力将B球缓慢推至P点(弹簧仍在弹性限度内),MP之间的距离为L=10cm,推力所做的功是W=0.27J,当撤去推力后,B球沿地面右滑恰好能和A球在最低点处发生正碰,并瞬间成为一个整体C(A、3B、C均可视为质点),碰后瞬间立即把匀强电场的场强大小变为E=6×10N/C,电场方向不变。

(取g=10m/s)求:1)A、B两球在碰前匀强电场的大小和方向。

2)碰撞后整体C的速度。

3)整体C运动到最高点时绳的拉力大小。

2.在图中,EF为水平地面,O点左侧是粗糙的、右侧是光滑的。

一轻质弹簧右端与墙壁固定,左端与静止在O点质量为m的小物块A连结,弹簧处于原长状态。

质量为m的物块B在大小为F的水平恒力的作用下由C处从静止开始向左运动,已知物块B与地面EO段间的滑动摩擦力大小为F,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F。

已知CO=4S,OD=S。

求撤去外力后:1)弹簧的最大弹性势能。

2)物块B最终离O点的距离。

3.在图中,矩形盒B的质量为M,底部长度为L,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面的动摩擦因数均为μ,开始时二者均静止,A在B的左端。

现瞬间使物体A获得一向右的水平初速度v,以后物体A与盒B的左右壁碰撞时,B始终向右运动。

当A与B的左壁最后一次碰撞后,B立刻停止运动,A继续向右滑行s(s<L)后也停止运动。

第三章 动量定理 动量守恒定律(习题)

第三章 动量定理 动量守恒定律(习题)

第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。

解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)12257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。

解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。

解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。

2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。

关于从A 、B 、C 三点抛出的小球,下列说法正确的是( )A .在空中运动时间之比为t A ∶tB ∶tC =1∶3∶5B .竖直高度之比为h 1∶h 2∶h 3=1∶2∶3C .在空中运动过程中,动量变化率之比为AC A B P P P t t t::=1∶1∶1 D .到达P 点时,重力做功的功率之比P A :P B :P C =1:4:9 2.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 223E mD .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 3.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 24.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。

动量定理、动量守恒定理大题50题(含答案)

动量定理、动量守恒定理大题50题(含答案)

1.(18分)如图(a )所示,“”型木块放在光滑水平地面上,木块水平表面AB 粗糙,光滑表面BC 且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b )所示.已知sin37°=0.6,cos37°=0.8,g 取10m/s 2.求:(1) 斜面BC 的长度;(2) 滑块的质量;(3)2. (11分)甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度 ,水平向后方的乙船上抛一沙袋,其质量为m .设甲船和沙袋总质量为M ,乙船的质量也为M .问抛掷沙袋后,甲、乙两船的速度变化多少?图(a )3.(2011·新课标全国卷)如图,A 、B 、C 三个木块的质量均为m 。

置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连,将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体,现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C 与A ,B 分离,已知C 离开弹簧后的速度恰为v 0,求弹簧释放的势能。

【详解】设碰后A 、B 和C 的共同速度大小为v ,由动量守恒有,3mv=mv 0 ①设C 离开弹簧时,A 、B 的速度大小为v1,由动量守恒有,3mv=2mv 1+mv 0 ②设弹簧的弹性势能为Ep ,从细线断开到C 与弹簧分开的过程中机械能守恒,有, 12 (3m )v 2+Ep=12 (2m )v 12+12mv 02 ③ 由①②③式得弹簧所释放的势能为Ep=13m v 024.一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示。

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

(完整版)动量守恒定律经典习题(带答案)

(完整版)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。

设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+= 即为所求。

08专题:动量定理与动量守恒定律专题(含答案)

08专题:动量定理与动量守恒定律专题(含答案)

08专题:动量定理与动量守恒定律专题1.(多选)(2017·全国卷Ⅲ)一质量为 2 kg 的物块在合外力F的作用下从静止开始沿直线运动。

F随时间t变化的图线如图所示,则( )A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零2.质量为m的运动员从下蹲状态向上起跳,经时间t身体伸直并刚好离开水平地面,该过程中,地面对他的冲量大小为I,重力加速度大小为g.下列说法正确的是()A.运动员在加速上升过程中处于超重状态 B.运动员离开地面时的速度大小为I mC.该过程中,地面对运动员做的功为22ImD.该过程中,人的动量变化大小为I-mgt3.如图所示,abc是竖直面内的光滑固定轨道,ab段水平,长度为2R;bc段是半径为R的四分之一圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力F的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其轨迹最高点的过程中,以下说法正确的是()A.重力与水平外力合力的冲量等于小球的动量变化量B.小球对圆弧轨道b点和c点的压力大小都为5mgC.小球机械能的增量为3mgRD.小球在到达c点前的最大动能为21)mgR4.如图所示,在光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平初速度v0沿槽口向小车滑去,到达某一高度后,小球又返回右端,则( ) A.小球以后将向右做平抛运动B.小球将做自由落体运动C.此过程小球对小车做的功为20 2 mvD .小球在弧形槽内上升的最大高度为204gν 5.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务。

某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可视为质点。

甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A 后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站(设甲、乙距离空间站足够远,速度均指相对空间站的速度)。

(完整版)动量定理精选习题+答案

(完整版)动量定理精选习题+答案
小球由静止摆到最低点的过程中绳子的拉力不做功只有重力做功机械能守恒即可由机械能守恒定律求出小球与q碰撞前瞬间的速度?到达最低点时与q的碰撞时间极短且无能量损失满足动量守恒的条件且能量守恒由两大守恒定律结合可求出碰撞后小球与q在平板车p上滑动的过程中系统的合外力为零总动量守恒即可由动量守恒定律求出小物块q离开平板车时速度
三、计算题(本大题共 10 小题,共 100.0 分)
M 在水平轨道上向右移动了 0.54 m
11. 如图所示,质量为 5kg 的木板 B 静止于光滑水平面上,物块 A 质量为 5kg,停在 B 的左端 .质量为 1kg
的小球用长为 0.45??的轻绳悬挂在固定点 O 上,将轻绳拉直至水平位置后, 由静止释放小球, 小球在最
m 的静
止木块发生碰撞,碰撞的时间极短 .在此碰撞过程中,下列哪个或哪些说法是可
能发生的? ( )
A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为
??1、 ??2 、 ?3?,满足 (?? + ??0 )??= ???1? +
???2? + ??0 ??3
B. 在此碰撞过程中, 小球的速度不变, 小车和木块的速度分别为 ?1?和 ?2?,满足 (?? + ??0)??= ???1?+ ???2?
4
B. 5 ??0
1
C. 5 ??0
1
D. 25 ??0
2. 如图所示,小车静止在光滑水平面上, AB 是小车内半圆弧轨道的水平直径,现 将一小球从距 A 点正上方 h 高处由静止释放,小球由 A 点沿切线方向经半圆轨 道后从 B 点冲出,在空中能上升的最大高度为 0.8? ,不计空气阻力 .下列说法正 确的是 ( )
1

动量及动量守恒定律习题大全(含解析答案)

动量及动量守恒定律习题大全(含解析答案)

动量及动量守恒定律习题大全一.动量守恒定律概述1。

动量守恒定律的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒.2.动量守恒定律的表达形式(1),即p1 p2=p1/ p2/,(2)Δp1 Δp2=0,Δp1= —Δp2 和3.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象.(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。

(3)确定过程的始、末状态,写出初动量和末动量表达式。

注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.(4)建立动量守恒方程求解。

4.注重动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.二、动量守恒定律的应用1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒.碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。

如:光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧分析:在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到Ⅲ位位置恰好分开。

(1)弹簧是完全弹性的。

压缩过程系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。

这种碰撞叫做弹性碰撞。

由动量守恒和能量守恒可以证实A、B的最终速度分别为:。

(这个结论最好背下来,以后经常要用到.)(2)弹簧不是完全弹性的。

压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。

完整版动量守恒定律综合专题练习与解答

完整版动量守恒定律综合专题练习与解答

动量守恒定律综合专题练习与解答,一2m1.如图所示,光滑水平面上有一带半径为R的1/4光滑圆弧轨道的滑块,其质量为质量为m沿水平面滑上轨道,并从轨道上端飞出,求的小球以速度v0是多少?⑴小球上升的到离水平面的最大高度H是多少?⑵小球离开轨道的瞬间,轨道的加速度大小a解答:⑴小球到达最高点时,球与轨道在水平方向有相同的速度,设。

由于小球和滑块组成的系统在水平方向不受外力作用,故系统在水平方向动量守恒,v为vm)?(m?2mv由根据动量守恒定律有0111222mghv???2mvm?mv?由机械能守恒有02222v?h0联立上述方程可得g3小球相对于轨道圆心在竖直方向轨道的圆心没有竖直方向的速度,⑵小球离开轨道的瞬间,v。

水平方向的速度和轨道速度相同。

的速度大小为小球的竖直分速度,设为竖)?R2g(hv?由运动的可逆性知道竖在轨道最高点,弹力提供做向心力,则有2v2mv2m竖mgg?m??2(h?R)??2N0RRR3由运动定律可得,小球对轨道的水平弹力大小为2mv2mgN'??20R32vN'g?a??0由运动定律得轨道的加速度为R32m 相切的、位于竖直平面内的2.如图所示,abc是光滑的轨道,其中ab是水平的,bc为与ab,速m0.60kg M==0.20kg的小球A静止在轨道上,另一质量半圆,半径R=0.30m,质量落到轨道上经过半圆的最高点c与小球BA正碰。

已知相碰后小球A度v=5.5m/s的小球02R42 b距点为L,求==10m/s处,重力加速度g 和B的速度大小。

A⑴碰撞结束时,小球是否能沿着半圆轨道到达c点。

⑵试论证小球B?t?v42R??A C解答:设A球过点时的速度为v,平抛后的飞行时间为t解得,则?1A2gtR?2?2?6m/s2v?22gR?A上滑的过程中机械能守恒,由机v A 和v。

小球、设碰撞结束后,小球AB的速度分别为21械能守恒定律有1122R2?mv?mvmg?A122页5 共页1 第6m/s2gRv解得1两小球碰撞过程中动量守恒,由动量守恒定律可得5m/s.v?3Mv?mv?Mv解得2102点,由此时有B刚好能够到达轨道上的c⑵设小球2v3m/s?v?gRMMgR?解得B B R,由机械能守恒定律有B球在最低点的最小速度为v设min1122R2Mg?Mv?Mv?Bmin2287m/s.?3?5gR?15m/sv解得min c B不可能到达最高点v<v,所以小球由于min22kg静止在光滑的水平面上,板的一端静止有一个质量为的小平板车B3.图示,质量为2kg A的水平速度射穿物体的子弹以600m/s A。

高二物理:动量与动量守恒定律练习题(含参考答案)

高二物理:动量与动量守恒定律练习题(含参考答案)

高二物理:动量与动量守恒定律练习题(含参考答案)的物体A。

物体A向右以速度v撞击平板车B,撞击后物体A和平板车B一起向右运动。

假设撞击过程中没有能量损失,则撞击后平板车B的速度为:()A。

v/2B。

vC。

2v/3D。

3v/41.一名跳水运动员从峭壁上水平跳入湖水中。

已知运动员的质量为70kg,初速度为5m/s。

经过1秒后速度为5m/s。

不计空气阻力,求此过程中运动员动量的变化量。

A。

700 kg·m/s B。

350 kg·m/s C。

350(-1) kg·m/s D。

350(+1) kg·m/s2.质量相等的A、B两球在光滑水平面上沿同一直线、同一方向运动。

A球的动量为9kg•m/s,B球的动量为3kg•m/s。

当A追上B时发生碰撞,求碰后A、B两球的动量可能值。

A。

pA′=6 kg•m/s,pB′=6 kg•m/s B。

pA′=8 kg•m/s,pB′=4 kg•m/s C。

pA′=﹣2 kg•m/s,pB′=14 kg•m/s D。

pA′=﹣4 kg•m/s,pB′=17 kg•m/s3.A、B两物体发生正碰。

碰撞前后物体A、B都在同一直线上运动,其位移—时间图象如图所示。

由图可知,物体A、B的质量之比为:A。

1∶1 B。

1∶2 C。

1∶3 D。

3∶14.在光滑水平地面上匀速运动的小车和砂子总质量为M,速度为v。

在行驶途中有质量为m的砂子从车上漏掉,求砂子漏掉后小车的速度。

A。

v B。

(M-m)v/M C。

mv/(M-m) D。

(M-m)v/m5.在光滑水平面上,质量为m的小球A正以速度v匀速运动。

某时刻小球A与质量为3m的静止小球B发生正碰,两球相碰后,A球的动能恰好变为原来的1/4.求碰后B球的速度大小。

A。

2v B。

6v C。

2v/3 或 6v/7 D。

无法确定6.在光滑水平面上停放质量为m装有弧形槽的小车。

现有一质量也为m的小球以v的水平速度沿与切线水平的槽口向小车滑去(不计摩擦)。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。

动量守恒定律练习题(含答案)

动量守恒定律练习题(含答案)

动量守恒定律复习测试题1.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为()A.v0+mM v B.v0-m M vC.v0+mM(v0+v) D.v0+mM(v0-v)2.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图13-1-8为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s 的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为()A.0.1 m/s B.-0.1 m/sC.0.7 m/s D.-0.7 m/s3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶104.如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m的物体A相连,A放在光滑水平面上,有一质量与A相同的物体B,从高h处由静止开始沿光滑曲面滑下,与A相碰后一起将弹簧压缩,弹簧复原过程中某时刻B与A分开且沿原曲面上升.下列说法正确的是()A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 能达到的最大高度为h 2D .B 能达到的最大高度为h5.如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,并排悬挂,平衡时两球刚好接触.现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置6.如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =2m ,m B =m ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同.求B 与C 碰撞前B 的速度.7.如图所示,光滑水平桌面上有长L =2 m 的挡板C ,质量m C =5 kg ,在其正中央并排放着两个小滑块A 和B ,m A =1 kg ,m B =3 kg ,开始时三个物体都静止.在A 、B 间放有少量塑胶炸药,爆炸后A 以6 m/s 速度水平向左运动,A 、B 中任意一块与挡板C 碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板C 碰撞后,C 的速度是多大;(2)A 、C 碰撞过程中损失的机械能.8.如图所示,在光滑水平面上有质量均为m 的两辆小车A 和B ,A 车上表面光滑水平,其上表面左端有一质量为M 的小物块C (可看做质点).B 车上表面是一个光滑的14圆弧槽,圆弧槽底端的切线与A 的上表面相平.现在A 和C 以共同速度v 0冲向静止的B 车,A 、B 碰后粘合在一起,之后物块C 滑离A ,恰好能到达B 的圆弧槽的最高点.已知M =2m ,v 0=4 m/s ,取g =10 m/s 2.求圆弧槽的半径R .动量守恒复习题答案1.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为()A.v0+mM v B.v0-m M vC.v0+mM(v0+v) D.v0+mM(v0-v)【解析】小船和救生员组成的系统满足动量守恒:(M+m)v0=m·(-v)+Mv′解得v′=v0+mM(v0+v)故C项正确,A、B、D三项均错.【答案】 C2.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图13-1-8为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为() A.0.1 m/s B.-0.1 m/sC.0.7 m/s D.-0.7 m/s【解析】设冰壶质量为m,碰后中国队冰壶速度为v x,由动量守恒定律得mv0=mv+mv x解得v x=0.1 m/s,故选项A正确.【答案】 A3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1∶10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10【解析】 由m B =2m A ,p A =p B 知碰前v B <v A若左为A 球,设碰后二者速度分别为v ′A 、v ′B由题意知p ′A =m A v ′A =2 kg·m/sp ′B =m B v ′B =10 kg·m/s 由以上各式得v ′A v ′B =25,故正确选项为A. 若右为A 球,由于碰前动量都为6 kg·m/s ,即都向右运动,两球不可能相碰.【答案】 A4.如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从高h 处由静止开始沿光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 能达到的最大高度为h 2D .B 能达到的最大高度为h【解析】 根据机械能守恒定律可得B 刚到达水平地面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12·2mv 2=12mgh ,即A 错,B 正确;当弹簧再次恢复原长时,A 与B 将分开,B 以v 的速度沿斜面上滑,根据机械能守恒定律可得mgh ′=12mv 2,B 能达到的最大高度为h /4,即D 错误.【答案】 B5.如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,并排悬挂,平衡时两球刚好接触.现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置【解析】 弹性碰撞遵守能量守恒和动量守恒,设第一次碰撞前,a 的速度为v ,第一次碰撞后a 的速度为v 1、b 的速度为v 2,根据动量守恒,得mv =mv 1+3mv 2① 根据能量守恒,得:12mv 2=12mv 21+12×3mv 22② ①②联立得:v 1=-12v ,v 2=12v ,故A 选项正确;第一次碰撞后瞬间,a 的动量大小为12mv ,b 的动量大小为32mv ,故B 选项错误;由于第一次碰撞后瞬间的速度大小相等,根据机械能守恒可知,两球的最大摆角相等,C 选项错误;由于摆长相同,两球的振动周期相等,所以第二次碰撞时,两球在各自的平衡位置,D 选项正确.【答案】 AD6.如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =2m ,m B =m ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同.求B 与C 碰撞前B 的速度.【解析】 设共同速度为v ,球A 与B 分开后,B 的速度为v B ,由动量守恒定律(m A +m B )v 0=m A v +m B v B ①m B v B =(m B +m C )v ②联立①②式,得B 与C 碰撞前B 的速度v B =95v 0.7.如图所示,光滑水平桌面上有长L =2 m 的挡板C ,质量m C =5 kg ,在其正中央并排放着两个小滑块A 和B ,m A =1 kg ,m B =3 kg ,开始时三个物体都静止.在A 、B 间放有少量塑胶炸药,爆炸后A 以6 m/s 速度水平向左运动,A 、B 中任意一块与挡板C 碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板C 碰撞后,C 的速度是多大;(2)A 、C 碰撞过程中损失的机械能.【解析】 (1)A 、B 、C 系统动量守恒0=(m A +m B +m C )v C , v C =0.(2)炸药爆炸时A 、B 系统动量守恒m A v A =m B v B解得:v B =2 m/s A 、C 碰撞前后系统动量守恒m A v A =(m A +m C )v v =1 m/sΔE =12m A v 2A -12(m A +m C )v 2=15 J.8.如图所示,在光滑水平面上有质量均为m 的两辆小车A 和B ,A 车上表面光滑水平,其上表面左端有一质量为M 的小物块C (可看做质点).B 车上表面是一个光滑的14圆弧槽,圆弧槽底端的切线与A 的上表面相平.现在A 和C 以共同速度v 0冲向静止的B 车,A 、B 碰后粘合在一起,之后物块C 滑离A ,恰好能到达B 的圆弧槽的最高点.已知M =2m ,v 0=4 m/s ,取g =10 m/s 2.求圆弧槽半径R .【解析】 设A 、B 碰后的共同速度为v 1,C 到达最高点时A 、B 、C 的共同速度为v 2,A 、B 碰撞过程动量守恒:mv 0=2mv 1C 冲上圆弧最高点过程系统动量守恒:Mv 0+2mv 1=(M +2m )v 2机械能守恒:12Mv 20+2×12mv 21=12(M +2m )v 22+MgR 联立以上三式解得:R =v 2016g代入数据得:R =0.1 m。

物理动量守恒定律专题练习(及答案)含解析

物理动量守恒定律专题练习(及答案)含解析

①求弹簧恢复原长时乙的速度大小; ②若乙与挡板 P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板 P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 和 ,对两滑块及弹簧组成的系统,设向 左的方向为正方向,由动量守恒定律可得:
又知
(2 分)
因为子弹在射穿第一块钢板的动能损失为 ΔE 损 1=f·d=
mv
2 0
(1
分),
由能量守恒得:
1 2
mv
2 1

1 2
mV
2 1

1 2
mv
2 0
-ΔE
损 1(2
分)
且考虑到 v1 必须大于 V1,
解得:v1= ( 1 3 ) v0 26
设子弹射入第二块钢板并留在其中后两者的共同速度为 V2,
物理动量守恒定律专题练习(及答案)含解析
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为 3kg 和 1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板 P.现将两滑块由静止释放,当弹簧 恢复原长时,甲的速度大小为 2m/s,此时乙尚未与 P 相撞.
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与小球的初始距离为 x1=1.3 m, 求物块 M 在 P 处的初速度大小. 【答案】(1)3.0m/s(2)7.0m/s 【解析】 试题分析:(1)碰后物块 M 做平抛运动,设其平抛运动的初速度为 V
6.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒 B.小球在槽内运动的 B 至 C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C.小球离开 C 点以后,将做竖直上抛运动 D.小球从 A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机 械能守恒 8.—粒钢珠从静止状态开始自由下落,然后陷入泥潭中静止.若把在空中下落的过程称为过 程Ⅰ,进入泥潭直到停止的过程称为过程Ⅱ, 不计空气阻力,则( ) A.过程Ⅰ中的钢珠动量的改变量的大小大于过程Ⅱ中合力的冲量的大小 B.过程Ⅱ中合力的冲量的大小等于过程Ⅰ中重力冲量的大小 C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ中重力做功 D.过程Ⅰ中的钢珠动量的改变量小于过程Ⅱ中钢珠的重力的冲量
整个过程推力做功为 W,瞬间撤去推力,撤去推力后( )
A.当 A 对墙的压力刚好为零时,物块 B 的动能等于 W
B.墙对 A 物块的冲量为 4mW
C.当 B 向右运动的速度为零时,弹簧的弹性势能为零 D.弹簧第一次伸长后具有的最大弹性势能为 W 11.如图所示,质量为 m = 245 g 的物块(可视为质点)放在质量为 M = 0.5 kg 的木板左 端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为 μ = 0.4,质量为 m0 = 5 g 的子弹以速度 v0 = 300 m/s 沿水平方向射入物块并留在其中(时间极短),g = 10 m/s2,则在整个过程中
9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为 m 的小球以平行斜
面向上的初速度 v1 ,当小球回到出发点时速率为 v2 。小球在运动过程中除重力和弹力外,
另受阻力 f (包含摩擦阻力),阻力 f 大小与速率成正比即 f kv 。则小球在斜面上运动 总时间 t 为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。

4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等 二、动量守恒定律 1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。

A 、'0()Mv M m v mv =-+B 、'00()()Mv M m v m v v =-++C 、''0()()Mv M m v m v v =-++D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止。

根据测速仪的测定,长途客车碰前以20m/s 的速度行驶,由此可判断卡车碰前的行驶速率为:A 、小于10 m/sB 、大于10 m/s 小于20 m/sC 、大于20 m/s 小于30 m/sD 、大于30 m/s 小于40 m/s3、质量相同的物体A 、B 静止在光滑的水平面上,用质量和水平速度相同的子弹a 、b 分别射击A 、B ,最终a 子弹留在A 物体内,b 子弹穿过B ,A 、B 速度大小分别为v A 和v B ,则:A 、v A >vB B 、v A <v BC 、v A =v BD 、条件不足,无法判定4、质量为3m ,速度为v 的小车, 与质量为2m 的静止小车碰撞后连在一起运动,则两车碰撞后的总动量是O P SQFA 、3m v /5B 、2m vC 、3m vD 、5m v5、光滑的水平面上有两个小球M 和N ,它们沿同一直线相向运动,M 球的速率为5m/s ,N 球的速率为2m/s ,正碰后沿各自原来的反方向而远离,M 球的速率变为2m/s ,N 球的速率变为3m/s ,则M 、N 两球的质量之比为A 、3∶1B 、1∶3C 、3∶5D 、5∶76、如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。

木箱和小木块都具有一定的质量。

现使木箱获得一个向右的初速度0v ,则:A 、小木块和木箱最终都将静止B 、小木块最终将相对木箱静止,二者一起向右运动C 、小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D 、如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动8、质量分别为60㎏和70㎏的甲、乙两人,分别同时从原来静止在光滑水平面上的小车两端以3m/s 的水平初速度沿相反方向跳到地面上。

若小车的质量为20㎏。

则当两人跳离小车后,小车的运动速度为: A 、19.5m/,方向与甲的初速度方向相同 B 、19.5m/s ,方向与乙的初速度方向相同C 、1.5m/s ,方向与甲的初速度方向相同D 、1.5m/s ,方向与乙的初速度方向相同9、在光滑的水平面上,有三个完全相同的小球排成一条直线,小球2和3静止并靠在一起,小球1以速度v 0与它们正碰,如图所示,设碰撞中没有机械能损失,则碰后三个球的速度可能是:A 、30321v v v v === B 、v 1=0,2032v v v == C 、v 1=0,2032v v v == D 、v 1=v 2=0,v 3=v 0 三、动量守恒和机械能的关系1、一个质量为m 的小球甲以速度v 0在光滑水平面上运动,与一个等质量的静止小球乙正碰后,甲球的速度变为v 1,那么乙球获得的动能等于:A 、21202121mv mv -B 、210)(21v v m -C 、20)21(21v mD 、21)21(21v m 2、质量为M 的物块以速度V 运动,与质量为m 的静止物块发生正碰,碰撞后两者的动量正好相等,两者质量之比M /m 可能为A、2 B、3 C、4 D、53、如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相同的物体B 以速度v 向A 运动并与弹簧发生碰撞,A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是A 、A 开始运动时B 、A 的速度等于v 时C 、B 的速度等于零时D 、A 和B 的速度相等时v4、在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m 。

现B 球静止,A 球向B 球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于A 、m E pB 、m E p2 C 、2m E pD 、2mE p25、如图所示,位于光滑水平面桌面上的小滑块P 和Q 都视作质点,质量相等。

Q 与轻质弹簧相连。

设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞。

在整个过程中,弹簧具有最大弹性势能等于:A 、P 的初动能B 、P 的初动能的12C 、P 的初动能的13D 、P 的初动能的146、质量为1kg 的物体原来静止,受到质量为2kg 的速度为1m/s 的运动物体的碰撞,碰后两物体的总动能不可能的是:A 、1J ;B 、3/4JC 、2/3JD 、1/3J 。

7、在光滑水平面上,动能为E 0、动量的大小为p 0的小钢球l 与静止小钢球2发生碰撞,碰撞前后球l 的运动方向相反。

将碰撞后球l 的动能和动量的大小分别记为E 1、p 1,球2的动能和动量的大小分别记为E 2、p 2,则必有:A 、E 1<E 0B 、p 1<p 0C 、E 2>E 0D 、p 2>p 08、质量为m 的小球A 在光滑的水平面上以速度v 与静止在光滑水平面上的质量为2m 的小球B 发生正碰,碰撞后,A 球的动能变为原来的1/9,那么碰撞后B 球的速度大小可能是:A 、v 31B 、v 32C 、v 94D 、v 98 9、质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ。

初始时小物块停在箱子正中间,如图所示。

现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,井与箱子保持相对静止。

设碰撞都是弹性的,则整个过程中,系统损失的动能为A 、212mv B 、2)(2v M m mM + C 、12N mgL μ D 、mgL N μ10、如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑CA 、在以后的运动过程中,小球和槽的动量始终守恒B 、在下滑过程中小球和槽之间的相互作用力始终不做功C 、被弹簧反弹后,小球和槽都做速率不变的直线运动hD、被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h处四、多过程问题,尽可能分过程使用动量守恒定律,避免计算相关能量时出现不必要的错误。

1、质量分别为3m和m的两个物体,用一根细线相连,中间夹着一个被压缩的轻质弹簧,整个系统原来在光滑水平地面上以速度v0向右匀速运动,如图所示。

后来细线断裂,质量为m的物体离开弹簧时的速度变为2v0。

求:弹簧在这个过程中做的总功。

2、如图,ABC三个木块的质量均为m。

置于光滑的水平面上,BC之间有一轻质弹簧,弹簧的两端与木块接触可不固连,将弹簧压紧到不能再压缩时用细线把BC紧连,使弹簧不能伸展,以至于BC可视为一个整体,现A以初速v0沿BC的连线方向朝B运动,与B相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C与A,B分离,已知C离开弹簧后的速度恰为v0,求弹簧释放的势能。

3、如图所示,一轻质弹簧两端连着物体A、B,放在光滑的水平面上,若物体A被水平速度为v0的子弹射中,且后者嵌在物体A的中心,已知物体A的质量是物体B质量的3/4,子弹质量是物体B的1/4,设B的质量为M,求:(1)弹簧被压缩到最短时物体A、B的速度。

(2)弹簧被压缩到最短时弹簧的弹性势能4、如图所示,质量为m=1kg的木块A,静止在质量M=2kg的长木板B的左端,长木板停止在光滑的水平面上,一颗质量为m0=20g的子弹,以v0=600m/s的初速度水平从左向右迅速射穿木块,穿出后速度为smv/450=',木块此后恰好滑行到长木板的中央相对木板静止。

已知木块与木板间的动摩擦因数μ=0.2,g=10m/s2,并设A被射穿时无质量损失。

求:(1)木块与木板的共同滑行速度是多大?(2)A克服摩擦力做了多少功?(3)摩擦力对B做了多少功?(4)A在滑行过程中,系统增加了多少内能?B CAABv0《动量 动量守恒定律》参考答案一、动量和冲量 1A 2A 3BD 4A二、动量守恒定律 1A 2A 3A 4C 5 D 6 B 8C 9D三、动量守恒和机械能的关系1B 2AB 3 D 4C 5 B 6D 7ABD 8AB 9BD 10C四、多过程问题,尽可能分步使用动量守恒定律,避免相关能量计算时出现不必要的错误。

1解:设3m 的物体离开弹簧时的速度为υ',根据动量守恒定律,有υυυ'+⋅=+m m m m 32)3(00 得:032υυ='根据动能定理,弹簧对两个物体做的功分别为:20202012321)2(21υυυm m m W =-= 202020265321)32(321υυυm m m W -=⋅⋅-⋅⋅= 弹簧做的总功:202132υm W W W =+= 2解:设碰后A 、B 和C 的共同速度的大小为v ,由动量守恒得03mv mv = ①设C 离开弹簧时,A 、B 的速度大小为1v ,由动量守恒得0123mv mv mv += ② 设弹簧的弹性势能为p E ,从细线断开到C 与弹簧分开的过程中机械能守恒,有2021221)2(21)3(21mv v m E v m p +=+ ③ 由①②③式得弹簧所释放的势能为2031mv E p =④ 3、(1)80v (2)6420Mv 4解:(1)设子弹射穿木块A 后,木块A 的速度为A v ,对子弹和木块A 由动量守恒定律得:A mv v m v m +=+010000 s m v A /314501020600102033=⨯⨯-⨯⨯=-- 设木块A 与木板B 共同滑行的速度为v ,对木块A 和B 由动量守恒定律得:v M m mv A '+=+)(0 s m v /12131=+⨯=' (2)对A 使用动能定理得: J mv mv W A f 43121112121212222-=⨯⨯-⨯⨯=-= A 克服摩擦力做的功为4J 。

相关文档
最新文档