超滤膜的原理和方法

合集下载

超滤工作原理

超滤工作原理

超滤工作原理超滤是一种常用的分离和过滤技术,它通过使用超滤膜将溶液中的溶质和悬浮物分离出来。

超滤膜是一种具有特定孔径大小的微孔膜,可以选择性地阻挠溶质和悬浮物通过,而允许溶剂和一些小份子通过。

超滤工作原理如下:1. 超滤膜的选择:根据需要分离的物质的份子大小,选择合适的超滤膜。

超滤膜的孔径通常在0.001微米到0.1微米之间。

2. 溶液进入超滤系统:将待处理的溶液通过进料管道引入超滤系统中。

溶液中的溶质和悬浮物会随着溶剂一起进入超滤系统。

3. 超滤膜的作用:溶剂和小份子可以通过超滤膜的微孔,而较大的溶质和悬浮物则被滞留在超滤膜表面形成浓缩液。

超滤膜的微孔大小决定了能通过的份子大小范围。

4. 分离液的采集:通过调节超滤系统的操作参数,如压力、温度和流速等,可以控制超滤膜上的浓缩液的浓度和产量。

浓缩液中的溶质和悬浮物可以通过排出管道进行采集和处理。

5. 清洗和维护:超滤膜在使用过程中会逐渐被溶质和悬浮物阻塞,降低分离效果。

因此,定期对超滤膜进行清洗和维护是必要的,以保持其正常的工作效率。

超滤工作原理的优势和应用:1. 分离效果好:超滤膜具有较高的分离效率,可以有效地分离溶质和悬浮物,得到高纯度的产物。

2. 操作简便:超滤系统的操作相对简单,只需调节一些操作参数即可实现分离和采集。

3. 可逆性:超滤过程是可逆的,可以通过逆向操作将溶质和悬浮物从超滤膜上洗脱下来,延长超滤膜的使用寿命。

4. 应用广泛:超滤技术在许多领域有着广泛的应用,如食品和饮料工业、制药工业、环境保护等。

例如,在食品工业中,超滤可以用于乳制品的浓缩和蛋白质的分离。

总结:超滤是一种常用的分离和过滤技术,通过使用超滤膜将溶质和悬浮物与溶剂分离。

超滤膜具有特定的孔径大小,可以选择性地阻挠较大的溶质和悬浮物通过,而允许溶剂和小份子通过。

超滤工作原理简单易懂,操作方便,具有广泛的应用领域。

通过了解超滤工作原理,我们可以更好地理解超滤技术的应用和优势,为相关行业的工艺改进和产品提纯提供参考。

超滤工作原理

超滤工作原理

超滤工作原理超滤是一种常用的膜分离技术,通过超滤膜对溶液进行过滤和分离,实现溶质与溶剂的分离。

超滤工作原理主要涉及膜的选择、操作条件和分离机制。

1. 膜的选择超滤膜一般由聚合物材料制成,如聚酰胺、聚醚砜等。

膜的选择应根据被分离物的分子量、形状和溶液的性质来确定。

一般来说,分子量较小的物质适合选择较小孔径的膜,而分子量较大的物质则需要选择较大孔径的膜。

2. 操作条件超滤工艺的操作条件包括压力、温度和流速等。

通常,通过施加一定的压力将溶液推向膜表面,使溶质通过膜孔径,而溶剂和较大分子的溶质则被截留在膜表面。

压力的选择应根据被分离物的特性和膜的性能来确定。

温度的变化对超滤过程的影响较小,一般选择适宜的室温即可。

流速的控制可以影响分离效果和通量,过高的流速可能导致膜表面压力不均匀,影响分离效果。

3. 分离机制超滤的分离机制主要包括筛分和吸附。

筛分是指通过膜孔径对溶质进行筛选,较小分子的溶质能够通过膜孔径,而较大分子的溶质则被截留在膜表面。

吸附是指溶质与膜表面的相互作用,包括静电作用、水合作用和亲疏水性等。

吸附机制对于较大分子的溶质分离效果更为显著。

4. 应用领域超滤技术在许多领域都有广泛的应用。

在水处理中,超滤可以去除悬浮物、胶体、细菌和病毒等微生物污染物,提高水质。

在食品工业中,超滤可以用于浓缩果汁、蛋白质和乳制品等。

在制药工业中,超滤可以用于分离和纯化药物成分。

在环境保护中,超滤可以用于处理废水和废液,减少污染物的排放。

总结:超滤是一种通过超滤膜对溶液进行过滤和分离的膜分离技术。

超滤工作原理涉及膜的选择、操作条件和分离机制。

膜的选择应根据被分离物的特性来确定。

操作条件包括压力、温度和流速等。

超滤的分离机制主要包括筛分和吸附。

超滤技术在水处理、食品工业、制药工业和环境保护等领域有广泛的应用。

超滤的原理

超滤的原理

超滤的原理
超滤是一种常见的膜分离技术,利用超滤膜对溶液进行分离和浓缩。

超滤膜是一种孔隙结构均匀的多孔性薄膜,其孔径一般在0.001微米至0.1微米之间。

超滤的原理主要是利用膜的孔隙大小和分子的大小选择性地分离不同大小的溶质,从而实现溶质的分离和浓缩。

超滤的原理可以简单地理解为通过膜的孔隙将溶质和溶剂分离。

当溶液通过超滤膜时,溶质分子的大小大于膜孔的大小,因此无法通过膜孔,而溶剂分子则可以通过膜孔。

因此,溶质和溶剂就被有效地分离开来。

超滤的原理还涉及到溶质在膜上的截留和透过。

溶质在超滤膜上的截留是指溶质分子无法通过膜孔而被截留在膜表面,而溶剂分子可以通过膜孔。

透过则是指溶质和溶剂分子通过膜孔的过程。

通过这种截留和透过的作用,超滤膜可以实现对不同大小溶质的选择性分离和浓缩。

超滤的原理还涉及到膜的操作压力。

在超滤过程中,通过对溶液施加一定的压力,可以促使溶剂分子通过膜孔,从而实现对溶质的分离和浓缩。

操作压力的大小会影响溶质和溶剂的透过速率,从而影响超滤的效果。

总的来说,超滤的原理是利用超滤膜的孔隙结构和操作压力,实现对溶质和溶剂的分离和浓缩。

通过对溶液施加一定的压力,溶质被截留在膜表面,而溶剂则通过膜孔,从而实现了对溶质的分离。

超滤技术在生物制药、食品加工、环境保护等领域有着广泛的应用,可以高效地实现对溶质的分离和浓缩,具有重要的科学研究和工程应用价值。

超滤膜原理

超滤膜原理

超滤膜原理
超滤膜是一种具有特殊孔径的膜,通过该膜可以实现一种物质的分离和浓缩。

超滤膜原理基于物质的分子大小和膜的孔径大小之间的关系。

根据超滤膜的特点,它可以有效地过滤掉溶质、胶体和大分子物质,而保留溶剂和小分子物质。

超滤膜的孔径通常在0.001-0.1微米之间,比微滤膜的孔径小
但比纳滤膜的孔径大。

通过超滤膜进行过滤时,溶液会被施加一定的压力推动,使其中的分子通过膜孔径,而较大的分子则被阻挡在膜表面上。

这样,溶质、胶体和大分子物质就可以被截留在膜表面,而溶剂和小分子物质可以通过膜孔径被保留。

超滤膜的分离性能受到两个主要因素的影响:膜孔径大小和施加的压力。

较小的孔径可以过滤掉更大的分子,而较大的孔径则可以通过更大的分子。

施加的压力越大,溶质通过膜的速度越快。

超滤膜在实际应用中具有广泛的用途。

例如,在水处理领域,超滤膜可以过滤掉水中的悬浮物、胶体和有机物,从而实现水的净化和浓缩。

在食品工业中,超滤膜可以用于分离乳制品中的蛋白质、脂肪和糖类。

此外,超滤膜还可以在生物技术、医药制造和环境保护领域中得到应用。

总之,超滤膜通过控制膜孔径和施加压力,实现溶质、胶体和大分子物质的截留和浓缩,而保留溶剂和小分子物质。

它在各个领域中具有重要的应用价值。

坎普尔 超滤膜技术手册

坎普尔 超滤膜技术手册

坎普尔超滤膜技术手册第一章:引言超滤膜技术是一种先进的膜分离技术,广泛应用于水处理、食品、制药、化工等领域。

坎普尔公司作为超滤膜技术的领先企业,自主研发了一系列高效、可靠的超滤膜产品,为客户提供优质的膜分离解决方案。

本手册旨在介绍坎普尔超滤膜技术的原理、应用及操作维护等内容,帮助客户更好地了解和使用坎普尔超滤膜产品。

第二章:超滤膜技术原理1. 超滤膜原理超滤膜是一种由特殊聚合物材料构成的微孔膜,其微孔直径通常在0.01-0.1微米之间。

通过超滤膜,可以有效去除水中的微生物、胶体、有机物质等,实现水的过滤和分离。

超滤膜技术的核心原理是利用膜的微孔大小对不同颗粒的物质进行筛选和分离。

2. 超滤膜的分离机理超滤膜的分离过程主要包括拦截作用和渗透作用。

拦截作用是指超滤膜对大分子物质的截留作用,而渗透作用则是指膜对溶质的渗透通量作用。

这两种作用相互配合,可以实现对水中各种杂质的有效去除。

第三章:坎普尔超滤膜产品系列坎普尔公司生产的超滤膜产品主要包括中空纤维膜、螺旋卷绕膜和平板式膜等多种类型,适用于不同的场景和要求。

这些产品具有优异的过滤性能、稳定的分离效果和长久的使用寿命,已在多个领域得到广泛应用。

第四章:超滤膜技术在水处理中的应用1. 饮用水处理坎普尔超滤膜产品可用于饮用水处理,去除水中的微生物、重金属、胶体颗粒等有害物质,提供清洁、健康的饮用水。

2. 工业废水处理在工业生产过程中产生的废水经过坎普尔超滤膜处理后,可实现回用,减少对环境的污染,同时节约水资源。

第五章:超滤膜技术的操作与维护1. 膜组件的安装在安装坎普尔超滤膜时,应仔细遵循操作手册的指导,确保膜组件正确安装,防止损坏和漏水。

2. 日常维护定期对超滤膜进行清洗、消毒和维护,保持其良好的过滤性能和稳定的分离效果。

第六章:结语坎普尔超滤膜技术手册旨在向用户介绍超滤膜技术的原理、应用和操作维护等内容,帮助用户更好地了解和使用坎普尔超滤膜产品。

希望本手册能够为用户在实际应用中提供帮助,实现高效、可靠的膜分离处理,为各行业的发展贡献力量。

超滤的工作原理应用范围

超滤的工作原理应用范围

超滤的工作原理应用范围1. 超滤技术简介超滤技术是一种利用超细孔隙的膜来进行分离和过滤的物理处理方法。

超滤膜孔径通常在0.001微米到0.1微米之间,可以去除水中的悬浮物、胶体、大分子有机物等,而保留水分子和小分子溶质。

超滤通常在低压条件下进行,能够实现高通量、高分离效果。

2. 超滤的工作原理超滤的工作原理基于膜的特性,当水样通过超滤膜时,大分子溶质和悬浮物无法通过膜孔径,被截留在膜的一侧,而小分子溶质和水分子则可以通过膜孔径,被收集在另一侧。

超滤过程可通过有压力或压力差来驱使。

3. 超滤的应用范围3.1 水处理•饮用水净化:超滤膜可以有效去除水中的悬浮物、胶体、细菌和病毒等,提供安全可靠的饮用水。

•工业用水处理:超滤膜可以净化工业用水,去除悬浮物、胶体、油脂和微生物等,保证工业生产的稳定运行。

•污水处理:超滤膜可以实现污水的固液分离,去除悬浮物、胶体和生物颗粒等,提高污水处理效果。

3.2 食品与饮料工业•浓缩与分离:超滤膜可以用于乳品、果汁、啤酒等液体的浓缩和分离过程,提高产品品质和提高生产效率。

•脱色与脱盐:超滤膜可用于食品加工中的脱色和脱盐过程,去除杂质与盐分,提高产品纯度和质量。

3.3 药品与生物工程•细胞分离与培养:超滤膜可用于细胞的分离和培养过程,去除细胞碎片、悬浮物和生长因子等,提高细胞培养的效果。

•蛋白质纯化:超滤膜可以实现对蛋白质的纯化,去除杂质和小分子物质,提高纯度和效率。

•血液透析:超滤膜可以用于肾脏衰竭患者的血液透析过程,去除体内毒素和废物,维持体内的电解质平衡。

3.4 环境保护与资源回收•污水回用:超滤膜可以实现污水的深度处理,去除有害物质和微生物,达到回用标准,节约并保护水资源。

•废水处理:超滤膜可以用于废水处理中的固液分离和浓缩,减少废水排放,降低环境污染。

•悬浮物和颗粒物去除:超滤膜可以去除工业废水、河流水中的悬浮物和颗粒物,净化水体,保护环境生态。

4. 总结超滤技术具有广泛的应用范围,涵盖了水处理、食品与饮料工业、药品与生物工程以及环境保护与资源回收等领域。

超滤工作原理

超滤工作原理

超滤工作原理超滤是一种常用的分离技术,广泛应用于水处理、食品加工、制药等领域。

它通过使用超滤膜,将溶液中的大分子物质、悬浮物和微生物等分离出来,同时保留溶液中的小分子物质和溶质。

超滤膜是一种多孔性薄膜,由聚合物材料制成。

其孔径通常在0.001至0.1微米之间,可以根据需要选择不同孔径的超滤膜。

超滤膜的孔径比微滤膜小,但比逆渗透膜大。

超滤过程主要包括预处理、过滤和清洗三个步骤。

1. 预处理:在超滤过程开始之前,需要对原料溶液进行预处理。

这包括去除悬浮物、调整溶液的pH值和温度等。

预处理的目的是保护超滤膜,防止其被堵塞或受到损害。

2. 过滤:预处理完成后,原料溶液被送入超滤装置。

超滤装置通常由滤芯、滤床和滤饼等组成。

原料溶液通过超滤膜,大分子物质、悬浮物和微生物等被截留在膜表面,而小分子物质和溶质则通过膜孔进入滤液中。

3. 清洗:当超滤膜的通量降低或膜面出现堵塞时,需要进行清洗。

清洗的方法有物理清洗和化学清洗两种。

物理清洗包括反冲洗和超滤液冲洗,可以通过施加压力或改变流动方向来清除膜面的污染物。

化学清洗则使用特定的清洗剂来溶解和去除污染物。

超滤的工作原理基于分子的大小排斥效应。

超滤膜的孔径较小,无法通过大分子物质和悬浮物,但可以通过小分子物质和溶质。

当溶液施加一定的压力,溶液中的物质会根据其分子大小和溶液中的浓度梯度,通过超滤膜的孔隙进入滤液中。

这样,大分子物质、悬浮物和微生物等被截留在膜表面,而小分子物质和溶质则通过膜孔进入滤液中。

超滤的工作原理还受到溶液的粘度、温度和压力等因素的影响。

较高的压力可以增加通量,但也会增加膜的压力和损坏的风险。

较高的温度可以改善溶液的流动性,但也可能导致膜的变形或破裂。

因此,在超滤过程中需要根据具体情况选择适当的操作参数。

总结起来,超滤是一种通过使用超滤膜将溶液中的大分子物质、悬浮物和微生物等分离出来的分离技术。

它的工作原理基于分子的大小排斥效应,通过施加一定的压力,使溶液中的小分子物质和溶质通过超滤膜的孔隙进入滤液中,而大分子物质、悬浮物和微生物等被截留在膜表面。

坎普尔 超滤膜技术手册

坎普尔 超滤膜技术手册

坎普尔超滤膜技术手册第一章:超滤膜技术概述1.1 超滤膜技术的发展历程超滤膜技术是一种通过对水进行物理分离和截留的膜分离技术。

其应用领域涵盖废水处理、饮用水净化、工业生产等多个领域。

超滤膜技术的发展经历了多个阶段,从早期的实验室研究到如今的工业化应用,取得了重大进展。

1.2 超滤膜技术原理超滤膜技术利用微孔膜对水中的溶质和大分子进行分离。

通过施加压力,将水中的溶质和大分子截留在膜表面,从而实现对水的净化和分离。

第二章:坎普尔超滤膜技术介绍2.1 公司简介坎普尔是一家专注于膜分离技术研发和生产的公司,拥有具有自主知识产权的超滤膜技术。

公司致力于为客户提供高效、可靠的超滤膜产品和解决方案。

2.2 超滤膜产品系列坎普尔超滤膜产品系列包括不同孔径、不同材质的超滤膜,可广泛应用于水处理、废水处理、食品饮料等领域。

第三章:坎普尔超滤膜技术特点3.1 高效的分离性能坎普尔超滤膜具有优异的截留效果,能够有效去除水中的杂质和大分子有机物质。

3.2 高通量和低能耗坎普尔超滤膜采用先进的膜材料和工艺,具有高通量和低能耗的特点,能够实现节能高效的水处理。

3.3 长寿命和稳定性坎普尔超滤膜具有优异的耐污染性能和稳定性,能够保持长期稳定的运行状态,减少维护成本。

第四章:超滤膜技术在水处理领域的应用4.1 饮用水净化坎普尔超滤膜可用于城市饮用水净化工程,去除水中的微生物、有机物和重金属等有害物质,保障饮用水安全。

4.2 工业废水处理坎普尔超滤膜可用于各类工业废水处理工程,去除水中的悬浮物、油脂和化学物质,符合环保排放要求。

第五章:超滤膜技术在食品饮料领域的应用5.1 酿酒厂废水处理坎普尔超滤膜可用于酿酒厂废水处理工程,去除水中的余味物质和有机物质,满足饮料生产的水质要求。

5.2 食品加工废水处理坎普尔超滤膜可用于食品加工废水处理工程,去除水中的色泽物质和杂质,保障生产水质安全。

结语坎普尔超滤膜技术作为一种先进的膜分离技术,其在水处理、废水处理、食品饮料等领域有着广泛的应用前景。

超滤膜过滤原理及过滤方式

超滤膜过滤原理及过滤方式

净水器常识:超滤膜过滤原理及过滤方式作者:日期:2013-06-25 17:28:10中国市场上的净水设备大致可分为净水器和纯水机两大类。

所谓净水器就是去除水中的悬浮物以及对人体有害的有机化合物,无机化合物,重金属,细菌;所谓纯水机就是滤除水中所有的杂质,只剩下完全纯净的水分子。

长期饮用纯净水是不利于人体健康的,纯水失去了人体所需的微量元素,长期饮用对身体不利。

所有,我们可以选择超滤膜净水器,但是超滤膜净水器过滤原理及过滤方式如何?让小编为您共享下:超滤膜过滤原理超滤是一种与膜孔径大小相关的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。

超滤膜过滤方式一个中空纤维超滤膜组件主要是由成百到上千根中空纤维丝和膜壳两部分组成,一般将中空纤维内径在0.6-6mm之间的超滤膜称为毛细管式超滤膜,毛细管式超滤膜因内径较大,因此不易被大颗粒物质堵塞,更适用于过滤原液浓度较大的场合。

A)内压式过滤:原液先从膜丝内孔进,经压力差驱动,沿径向由内向外渗透过中空纤维成透过液为内压式过滤,内压式过滤可以使用高压大流量的顺冲洗,使冲洗水流与膜孔成切向方向快速流过,从而可以将吸附在膜内孔表面上的污染物冲去,恢复膜的水通量。

B)外压式过滤:原液经压力差驱动沿径向由外向内渗透过中空纤维膜丝成为透过液,而截留的物质汇集在中空丝的外部时为外压式过滤。

:外压式超滤膜密封在膜壳内,水流的死角多,无法使用快速直冲的方法清除膜表面附着的污染物,因而不能完全去污。

超滤净水器过滤原理

超滤净水器过滤原理

超滤净水器过滤原理
超滤净水器利用超滤技术来过滤水中的杂质和污染物。

超滤膜是一种以微孔为基础的膜,其孔径通常在0.01至0.1微米之间,比细菌和病毒直径要小得多。

超滤净水器的过滤原理如下:
1. 水进入超滤净水器后,首先经过一个预处理过程,去除较大的悬浮颗粒、沉淀物和泥沙等。

这有助于保护超滤膜不被堵塞。

2. 水通过预处理后,被推入超滤膜。

由于超滤膜的微孔直径非常小,一部分水分子可以通过孔隙进入下一个阶段,而较大的杂质和污染物则被滤除。

3. 被滤除的杂质和污染物会随着水的流动被排出系统。

因此,用户只需从出水口取水,就可以得到清洁的水源。

需要注意的是,超滤净水器不能去除溶解在水中的微量杂质,如重金属离子和溶解性盐类等。

此外,超滤膜也无法过滤出病毒和微生物的代谢物,因此在特殊环境下,如水质恶劣的地区或需要高纯度水的实验室中,可能需要额外的处理方法来满足需求。

超滤膜基础

超滤膜基础

1.1超滤膜过滤原理超滤是一种与膜孔径大小相关的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的,参见图1-1。

1.2超滤膜材料及特性目前制造中空纤维超滤膜的主要材料有聚丙烯腈(PAN)、聚砜(PSF)、聚醚砜(PES)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)等。

a) PVC膜-具有优良的化学稳定性,有耐酸、耐碱以及耐水解的性能,能广泛应用于各种领域;-膜丝具有很好的强度和柔韧性,不容易断裂;-膜丝内外表面平整、光滑,有光泽,膜丝不易污染;- PVC膜材料是国内的食品级材料,并且经过亲水改性,具备很强的抗污染性。

b)PVDF膜-耐紫外线和γ射线辐射,有优良的耐污染和化学侵蚀性能;-耐热温度可以达到140℃,可采用超高温的蒸汽和环氧乙烷杀菌消毒;-能在较宽的PH(1-13)范围内使用,可以在强酸和强碱和各种有机溶剂条件下使用。

1.3膜材料的改性通过改性,可以使膜材料达到预期的某种性能要求,如提高机械强度,改善亲水性和改变荷电性等。

常见的改性方法主要有接枝改性和共混改性,使用PVC 材料经共混改性后制成的超滤膜通常称之为改性PVC膜或PVC合金膜。

膜壁质1.4膜的亲水性和疏水性一般而言,膜的分离体系均为水相体系。

亲水性的膜表面与水形成氢键,使之处于有序结构,当疏水溶质要接近膜表面,必须打破这种有序结构,显然不易进行,所以膜面不易被污染。

而疏水膜表面上的水无氢键作用,疏水溶质接近膜表面是个增熵自发过程,则膜易被疏水溶质污染。

膜的亲水性和疏水性可用表面接触角来量度,接触角小,表明其亲水性好。

1.5超滤膜的性能表征超滤膜的性能通常是指膜的物化性能和分离透过性能,物化性能主要包括膜的机械强度、耐化学药品、耐热温度范围和适用pH值范围等。

中空纤维超滤膜原理

中空纤维超滤膜原理

中空纤维超滤膜原理
中空纤维超滤膜是一种常用的分离膜技术,其原理如下:
1. 中空纤维结构:中空纤维超滤膜是由一组细长的纤维组成,纤维中心是一个空心的管道,而纤维外部则是一层过滤膜。

2. 分离机制:中空纤维超滤膜运用了压力差和纤维孔径的大小来实现分离。

当水或其他溶液施加压力通过纤维外部的过滤膜时,较大分子或颗粒无法穿过纤维孔径,而只有较小分子、水和部分溶质可以通过纤维孔径进入纤维内部。

3. 分离效果:由于过滤膜的特殊性质,只有溶质中的较小分子和部分溶剂能通过膜孔,而大分子、悬浮物、细胞和大颗粒等则被滞留在膜的外部。

这样就实现了液体中溶质的分离和纯化。

4. 工作原理:在中空纤维超滤膜工作过程中,液体溶液被施加压力通过膜孔进入纤维内部形成渗透液(filtrate),而分子较
大的组分或颗粒则滞留在膜外形成浓缩液(retentate)。

渗透
液通常是纯净的,可以进一步用于分离、浓缩或除杂。

总之,中空纤维超滤膜的原理是运用压力差和纤维的孔径大小来实现溶质的分离和纯化。

这种技术在水处理、饮料加工、药品制造、废水处理等领域中广泛应用。

超滤工作原理

超滤工作原理

超滤工作原理超滤是一种常用的膜分离技术,通过超滤膜的孔径,将溶质和溶剂分离。

超滤膜是一种具有特定孔径的半透膜,其孔径通常在0.1微米至0.001微米之间,可以过滤掉溶质和悬浮物,同时保留溶剂和溶质中的较小分子。

超滤工作原理可以简单概括为以下几个步骤:1. 进料:待处理的溶液通过进料管道进入超滤系统。

2. 过滤:溶液通过超滤膜,大分子和悬浮物无法通过膜孔径,被截留在膜表面形成滤饼,而溶剂和较小分子则通过膜孔径,进入膜内部。

3. 分离:溶剂和较小分子通过超滤膜后,形成透明的超滤液,滤饼中的大分子和悬浮物则被留在膜表面。

4. 收集:透明的超滤液通过收集管道流出超滤系统,用于后续的处理或回收利用。

超滤工作原理的关键在于超滤膜的孔径选择。

根据被处理溶液中溶质和溶剂的分子大小,选择合适的超滤膜孔径,可以实现对溶质的有效分离。

通常情况下,溶质的分子量越大,所需的超滤膜孔径就应该越小。

超滤工艺在许多领域都有广泛的应用。

例如,它可以用于饮用水处理,去除水中的悬浮物、细菌和病毒;在食品工业中,可以用于乳品、果汁等液体的浓缩和澄清处理;在制药工业中,可以用于药物的纯化和浓缩;在环境保护领域,可以用于废水处理和水资源回收等。

超滤工艺具有以下优点:1. 高效分离:超滤膜具有较高的截留效率,可以有效分离溶质和溶剂。

2. 无需加热:相比传统的蒸发浓缩工艺,超滤工艺无需加热,能够节约能源。

3. 操作简便:超滤工艺操作简单,无需复杂的设备和高技术要求。

4. 保留溶剂中的有用成分:超滤膜可以选择性地保留溶剂中的有用成分,避免了传统分离方法中的损失。

5. 可回收利用:超滤工艺可以将溶剂中的有用成分回收利用,提高资源利用效率。

当然,超滤工艺也存在一些局限性:1. 孔径选择受限:超滤膜的孔径选择受到限制,只能分离较大分子和悬浮物,对于分子较小的物质分离效果较差。

2. 滤饼堵塞:在超滤过程中,滤饼的堵塞问题可能会影响分离效果,需要定期清洗和更换超滤膜。

超滤工作原理

超滤工作原理

超滤工作原理
超滤是一种分离技术,基于物质在膜表面的选择性传输特性。

它是通过半透膜过滤器将悬浮物、胶体和高分子物质从液体中分离出来。

超滤膜通常由多孔聚合物材料构成,孔径较小,能够阻止大分子物质通过,而容许小分子物质通过。

超滤的工作原理可以归结为两个主要过程:筛选和空隙流体传递。

首先是筛选作用。

超滤膜的孔径较小,能够有效拦截大分子物质,如蛋白质、胶体颗粒等。

这些物质由于体积较大,在超滤膜上无法穿透,从而被分离出来。

其次是空隙流体传递。

超滤时,液体通过超滤膜的孔隙空隙在膜表面形成流体层。

该层内的溶质和溶剂可以通过超滤膜的微孔,从而实现分离。

较小的分子物质,如溶解的盐类、小分子有机物等能够通过孔隙空隙,穿过超滤膜达到另一侧。

超滤的分离效果主要取决于超滤膜的孔径大小,孔径越小,被截留的分子越大。

因此,超滤常被应用于蛋白质的分离和浓缩、胶体物质的分离、废水处理等领域。

总体而言,超滤通过筛选和空隙流体传递的两个过程,实现了悬浮物、胶体和高分子物质与溶质的分离,具有高效、无化学添加剂和低能耗等优势。

超滤膜技术原理、特点及应用详解

超滤膜技术原理、特点及应用详解

超滤膜技术原理、特点及应用详解超滤膜是最早开发的高分子膜之一,是一种额定孔径范围为0.001~0.02微米的微孔过滤膜。

在膜的一侧施加适当压力,溶液中的溶剂以及一部分分子量较低的溶质从超滤膜的微小孔隙中穿透到膜的另一边,而分子量较高的溶质或一些乳化胶束团被截留,从而达到过滤分离的效果。

在水处理领域,超滤膜技术相对于其他过滤技术来说,过滤杂质的效率更高,其过滤精度可达99.99%,能有效去除水中的绝大部分有害物质;并且使用很少或不使用化学药剂,有效避免水质受到二次污染,因此处理后的水质更好。

从操作层面来说,基于超滤膜技术的过滤系统自动化程度高,运行简单可靠,只有开、关两种操作。

由于超滤膜的材料化学稳定性强,抗酸碱腐蚀,耐高温,因此可以高温杀菌消毒,适用性很广。

1、超滤膜技术原理及特点(1)技术原理超滤膜技术是一种膜透过分离技术,其滤过能力介于纳滤和微滤之间,其工作原理是:在溶液通过一种半透膜的时候,在压力的作用下,溶剂和溶质中的小分子物质可通过滤膜到达膜的另一侧,而溶质中的大分子物质和胶体则由于无法通过滤膜孔洞而被拦截下来,随着溶液不断流过,膜上被拦截的物质也越来越多,因此要想实现超滤作用就得对溶剂施加更大的压力,与此同时在膜的表面形成的物质也展现出一定的化学特性,对于一些污染物也具有截留和分解的作用,从而实现水的净化。

随着大分子物质不断高集在膜表面滤过的速度不断降低,出现“浓度极化”的现象,为使超滤能够持续有效地进行,实际工作中常使用搅排式超滤装置来消除”浓度极化”的现象。

(2)超滤膜技术的特点相对于其他水处理技术而言,超滤膜技术具有很多无可比拟的优势:第一,超滤膜化学稳定性高,可耐高温、耐酸、耐碱,因此对进水水质要求不高,通用性强;第二,超滤膜技术原理简单,容易实现自动化运转,节约劳动力,且操作简便、易于维护,运行安全稳定;第三,超滤膜技术属于物理方法,在水处理过程中并不需加任何化学药剂,因此可有效的防止水体的出现二次污染的情况;第四,超滤膜技术效率高,处理水量大,尤其是对污染较小的城市饮用水处理,展现出极高的作效率;2、超滤膜技术在环保工程水处理中的应用(1)城市饮用水净化随看社会的发展,人们对饮用水安全要求越来越高,但与此同时我国城市用水源地的污染也日益严重,直接取水的水质越来越无法满足饮用水的标准,因此必需要对城市饮用水进行净化。

超滤膜基础原理篇

超滤膜基础原理篇

超滤膜基础原理篇一、超滤膜工作原理超滤膜是一种孔径规格一致,额定孔径范围为0.001-0.02微米的一种微孔过滤膜。

超滤膜采用压力差为推动力的膜过滤方法为超滤膜过滤。

以膜的额定孔径范围作为区分标准时压力差为推动力的膜过滤可区分为:微孔膜(MF)的额定孔径范围为0.02~10um;超滤膜(UF)为0.001~0.02 um;逆渗透膜(RO)为0.0001~0.001 um。

超滤膜的孔径只有几纳米到几十纳米,也就是说在膜的一侧施以适当压力,就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。

利用膜表面孔径机械筛分作用,膜孔阻塞、阻滞作用和膜表面及膜孔对杂质的吸附作用,去除废水中的大分子物质和微粒。

一般认为主要是筛分。

在外力的作用下,被分离的溶液以一定的流速沿着超滤膜表面流动,溶液中的溶剂和低分子量物质、无机离子,从高压侧透过超滤膜进入低压侧,并作为滤液而排出;而溶液中高分子物质、胶体微粒及微生物等被超滤膜截留,溶液被浓缩并以浓缩液形式排出。

1、超滤膜和膜组件(1)超滤膜:常用的有醋酸纤维素膜和聚砜膜(2)超滤的膜组件(同反渗透组件):分为板式、管式、卷式和中空纤维组件。

2、超滤的浓差极化(1)概念:溶液在膜的高压侧,由于溶剂和低分子物质不断透过超滤膜,结果在膜表面溶质(或大分子物质)的浓度不断上升,产生膜表面浓度与主体流浓度的浓度差,这种现象称为膜的浓差极化。

(2)影响:发生浓差极化时,由于高分子物质和胶体物质在膜表面截留会形成一个凝胶层。

有凝胶层时,超滤的阻力增加,因为除了膜阻力外,又有凝胶层的阻力,在给定的压力下,凝胶层势必影响水透过超滤膜的通量。

(3)减缓措施:一是提高液料的流速,控制料液的流动状态,使其处于紊流状态,让膜面处的液体与主流更好地混合;二是对膜面不断地进行清洗,消除已形成的凝胶层。

3、超滤的影响因素料液流速、操作压力、温度、运行周期、进料浓度、料液的预处理、膜的清洗4、超滤流程超滤是一种流体切向流动和压力驱动的过滤过程并按分子量大小来分离颗粒。

超滤膜的原理和方法

超滤膜的原理和方法

一、工作原理过滤是使液体通过多孔过滤介质以分离其中所含的固体颗粒的一种操作。

过滤介质截阻颗粒而让液体通过,随着被分离的颗粒变小,要求介质的通道也要变小。

如果颗粒小到亚微细粒的程度,膜孔大小就要趋近于能阻止溶液中大分子的通过。

这种利用半透膜的微孔过滤以截留溶液中大溶质分子的操作称为超滤,而这样的半透膜称为超滤膜。

超滤的驱动力是压力,通常高达1.0MPa。

运用液压迫使溶液透过膜并按溶质分子大小、形状等差异,把大溶质分子阻留在膜的一侧,成为浓缩液; 而小分子的溶质则随溶剂透过膜到另一侧,成为透过液流出。

如果将所得浓缩液用水稀释,再进行超滤,可使料液中的低分子溶质进一步随透过液流出,而高分子物质逐步得到提纯,这样的过程称为全滤(如图8-4)。

超滤具有分离和提纯的作用。

1. 分离作用图8-4 超滤原理示意图1—进料2—浓缩液3—清液4—超滤膜低分子质量的溶质随溶媒一起透过滤膜,高分子质量的溶质被截留,因此,料液被分为带有低分子溶质的透过液和带有高分子溶质及残留低分子溶质的浓缩液。

2. 提纯作用由于分离,提高了浓缩液中总固体里高分子量溶质的百分率,因此,提纯了高分子溶质。

在透过液中,低分子溶质由于从高分子溶质中分离出来,也得到了提纯。

二、超滤膜(一)超滤膜的膜渗机理料液在超滤膜内的流动问题比较复杂,简单的床层流动理论不能充分解释膜内的流动,它不是单纯属于一般毛细管内层流的机理。

通常膜渗机理有下述两种模型:1. 毛细流动模型在这种模型中,溶质的脱除主要靠流过微孔结构的过滤或筛滤作用,半透膜阻止了大分子的通过,按这一模型建立的流动是毛细孔中的层流流动。

2. 溶解扩散模型在这种模型中,假定扩散质的分子,先溶解于膜的结构材料中,而后再经载体的扩散而传递。

因为分子种类不同,溶解度和扩散度也就不同。

实际上,两种模型在膜渗传递中都可能存在,但反渗透以溶解扩散机理占优势,而超滤则以毛细流动机理占优势。

为此,又出现综合两种机理的所谓“优先吸着毛细流动” 的机理。

超滤膜分离技术

超滤膜分离技术

实验二超滤膜分离技术【实验目的】1.了解超滤膜分离的原理及方法2.掌握超滤膜分离的基本操作方法3.掌握采用超滤膜分离技术在蛋白、酶类分离纯化中的应用【实验原理】超滤技术是通过膜表面的微孔结构对物质进行选择性分离。

当液体混合物在一定压力下流经膜表面时,小分子溶质透过膜(称为超滤液),而大分子物质则被截留,使原液中大分子浓度逐渐提高(称为浓缩液),从而实现大、小分子的分离、浓缩、净化的目的。

超滤膜分离技术作为现代分离技术,因其具有设备简单、能在低温下操作、能耗小、生物活性物质不易失活、效率高等特点,近年来被广泛应用于生物活性物质的分离、浓缩和纯化。

本实验以超滤膜分离浓缩α-淀粉酶。

【实验材料】1. 试剂(1)α-淀粉酶液(2)可溶性淀粉溶液(3)磷酸缓冲液(pH=6.0)(4)碘液:碘11 g,碘化钾22 g,少量水溶解后,定容500 mL,作原液贮存棕色瓶。

实验时,取2.0 mL,加碘化钾20 g,溶解定容至500 mL,贮于棕色瓶中。

(5)考马斯亮兰试剂:100mg考马斯亮兰G-250,溶于50 mL 95%乙醇,加100 mL 85%(W/V)磷酸,加水稀释到1000 mL,过滤贮存棕色瓶中(6)标准蛋白溶液BSA(0.1 mg/mL)2. 仪器超滤器:截留分子量1万,膜面积50cm2;分光光度计,烧杯,试管,移液管等。

【实验操作】1.膜的清洗:在容器中加入200 mL去离子水,启动蠕动泵,直至去离子水全部滤过;将进液管、回流管和滤过管放入同一个盛有去离子水的容器中。

启动蠕动泵,低速循环清洗30 min。

2.膜通量的测定:用烧杯接滤过液,同时用秒表计时,用滤过液体积除以相应时间和膜面积表示。

3.α-淀粉酶酶活及蛋白质(酶)含量测定(1)酶活测定:吸取可溶性淀粉液5 mL于试管中,加入缓冲液1 mL,摇匀后,于60℃恒温水浴中预热5 min。

再加入酶液1.0 mL(须作适当倍数稀释),立即计时,摇匀,准确反应5 min。

PF超滤膜工艺过滤原理与技术详解

PF超滤膜工艺过滤原理与技术详解

PF超滤膜工艺过滤原理与技术详解超滤是一种与膜孔径大小相关的筛分过程,膜的材质在超滤工作中是至关重要的,不同的材料材质显示的特性也是不同的,像亲水性、成孔性、材料来源广泛、稳定,这些都是衡量材质适不适合自己需求的指标特性。

一、PF超滤膜过滤原理阐述超滤膜组件采用先进的内压式膜分离技术,在常温和低压下进行分离,它具有能耗低、过滤精度高、产水量大、抗污能力强等优点,可有效滤除水中的细菌、胶体、悬浮物、铁锈、大分子有机物等有害物质。

二、uf超滤膜系统特点采用内装高强度高韧性的改性聚丙烯中空纤维膜的系列超滤元件,不断丝、通量大、抗污染性,运行时无需进行化学分散洗,通过反冲就可以恢复通量。

各组件水力负荷均匀、无死角,在反冲洗和化学清洗时污染物更易排出。

适应各种水质,产水清澈透明,SDI稳定小于等于3,优于反渗透系统的进水要求。

设备紧凑、占地面积小、模块化设计便于扩充、全自动运行,免维护工作。

三、应用领域过滤经生化处理后的城市污水达到杂用水回用标准,工业废水深度处理回用、自来水、地下水、地表水的除菌、除浊、净化、大型反渗透系统的前级预处理、海水淡化前级预处理,工业冷却水的净化回用。

目前,超滤膜元件主要使用的材质有大概有聚砜、聚丙烯腈、聚偏氟乙烯、聚氯乙烯和无机材料。

主要应用于分离、浓缩、纯化生物制品、医药制品以及食品工业中、还用于血液处理、废水处理和超纯水制备中的终端处理装置。

浅谈UF超滤膜技术在酿造行业中的应用优势超滤膜是最早开发的高分子分离膜之一,在60年代超滤装置就实现了工业化。

现如今成熟的超滤膜技术在工业领域应用十分广泛,已成为新型化工单元操作。

成熟的超滤技术在酿造行业中发挥着浓缩、分离、提纯、除菌等重要作用。

超滤与传统制备工艺相比,具有安全无二次污染、操作简单、生产成本较低、还能使成品酒质具有较好的芳香度及清澈度等优势被越来越多的行业所应用。

超滤膜工艺原理一般认为超滤的分离机理为筛孔分离过程, 在静压差为推动力的作用下, 原料液中溶剂及小溶质粒子从高压的料液侧被透过膜到低压侧, 而大分子杂质被膜所阻挡,使过滤后的溶液中浓度增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、工作原理
过滤是使液体通过多孔过滤介质以分离其中所含的固体颗粒的一种操作。

过滤介质截阻颗粒而让液体通过,随着被分离的颗粒变小,要求介质的通道也要变小。

如果颗粒小到亚微细粒的程度,膜孔大小就要趋近于能阻止溶液中大分子的通过。

这种利用半透膜的微孔过滤以截留溶液中大溶质分子的操作称为超滤,而这样的半透膜称为超滤膜。

超滤的驱动力是压力,通常高达1.0MPa。

运用液压迫使溶液透过膜并按溶质分子大小、形状等差异,把大溶质分子阻留在膜的一侧,成为浓缩液;而小分子的溶质则随
溶剂透过膜到另一侧,成为透过液流出。

如果将所得浓缩液用水稀释,再进行超滤,可使料液中的低分子溶质进一步随透过液流出,而高分子物质逐步得到提纯,这样的过程称为全滤(如图8-4)。

超滤具有分离和提纯的作用。

1. 分离作用
图8-4 超滤原理示意图
1—进料2—浓缩液3—清液4—超滤膜
低分子质量的溶质随溶媒一起透过滤膜,高分子质量的溶质被截留,因此,料液被分为带有低分子溶质的透过液和带有高分子溶质及残留低分子溶
质的浓缩液。

2. 提纯作用
由于分离,提高了浓缩液中总固体里高分子量溶质的百分率,因此,提纯了高分子溶质。

在透过液中,低分子溶质由于从高分子溶质中分离出来,也得到了提纯。

二、超滤膜
(一)超滤膜的膜渗机理
料液在超滤膜内的流动问题比较复杂,简单的床层流动理论不能充分解释膜内的流动,它不是单纯属于一般毛细管内层流的机理。

通常膜渗机理有下述两种模型:
1. 毛细流动模型
在这种模型中,溶质的脱除主要靠流过微孔结构的过滤或筛滤作用,半透膜阻止了大分子的通过,按这一模型建立的流动是毛细孔中的层流流动。

2. 溶解扩散模型
在这种模型中,假定扩散质的分子,先溶解于膜的结构材料中,而后再经载体的扩散而传递。

因为分子种类不同,溶解度和扩散度也就不同。

实际上,两种模型在膜渗传递中都可能存在,但反渗透以溶解扩散机理占优势,而超滤则以毛细流动机理占优势。

为此,又出现综合两种机理的所谓“优先吸着毛细流动”的机理。

(二) 超滤膜的结构和材料
目前,超滤膜已发展到第三代。

第一代为醋酸纤维素膜(CA膜),耐pH范围3~8,耐温0~50℃,易受微生物和酶的作用,在强酸和弱碱条件下水解,并且在正常使用时会因蠕变使透水速率降低。

尽管有这些缺点,它在食品工业上目前仍得到广泛应用。

第二代为聚合物膜,制造超滤膜有代表性的聚合物包括多种热塑性塑料,如聚甲基丙烯酸甲基、聚氯乙烯、聚苯乙烯、聚丙烯、尼龙等。

用于高温的热塑性塑料如芳族聚酰胺、芳族聚醚等。

由这些聚合物制成的半透膜的特性是,具有高压力下抵抗破坏、高温下抵抗变性、在酸碱和氧化环境下抵抗腐蚀等特性。

第三代是锆-氧化铝膜,耐温达400℃,滤膜厚0.1μm,为多孔凝胶附着在100~1000μm厚的多孔托板上。

普通使用的醋酸纤维半透膜,具有不对称和超微孔的结构,它有一层由致密聚合物做成的超薄(亚微)表层,此层支持在下面的支撑层之上,支撑层由较厚的微孔聚合物制成。

表层和支撑层由一次浇铸工艺制成。

(三)超滤膜的构型
超滤膜在工业应用上有平板状、管状、螺旋板状和空心纤维状等几种不同的形式。

目前国内应用的大多数为板状和管状,空心纤维膜(中空纤维膜) 也已开始试制并应用于生产。

1. 平板膜
这种膜主要用于结构与板框压滤机相似的设备上。

半透膜张紧在一组多孔板上,用一块带槽的板来支持。

支撑板的材料为聚砜(polysulfone),呈椭圆形,长径长度为35cm,由双层空心夹板组成。

两个表面设计为弧形浅沟,即由多根凸起的弧形圈组成多条料液通道,适于处理粘性物料,不易形成膜面上的浓料沉积,能加快透过速度,改善流动状况。

超滤膜紧贴于支撑板的两面。

两端开圆孔,料液由一端进入,流过膜面,从另一端流出。

清液透过膜层及支撑板沟槽上的长条孔隙,进入夹板空心,从支撑板边上的一个小管流出。

超滤膜紧贴于支撑板上,在两端圆孔处有锁圈将其固定,如图8-5所示。

当两块支撑板叠合时,有一面的锁圈为流通圈,可将料液疏导至支撑板膜面。

多块膜板重合,料液并流通过一定数量的并流膜板后,在流通孔上设一挡圈,使料液进入另一组并流膜板,两组连接,形成串联,两组流动方向相反。

如此,多组膜板叠合,组成多次并流与串流,清液从每个膜面透过流出,超滤液不断地得到浓缩(如图8-6所示)。

1—流通圈2—超滤膜3—支撑板4—超滤膜5—锁圈
图8-6 超滤膜组合图
1—超滤膜2—支撑板3—隔板4—流通圈5—锁圈
A—料液进口B—清液出口C—浓缩液出口
2. 管状膜
这种膜是牢固地紧贴在支撑管内侧,做成的一个元件,是广泛应用的一种膜型。

完整的组件是将此管状膜装入外壳内构成,很像简单的管式换热器。

3. 空心纤维膜
这种膜是在平板膜基础上开发出的具有空间立体几何形状的薄膜,使单位体积的膜渗设备不依靠极薄的半透膜而有很大的膜渗能力。

在各种几何形状中,最有吸引力的是小直径的空心圆柱,而圆柱壁由半透膜制成。

因此,圆柱面积与体积之比值反比于直径,而且对于给定的内外径比值,壁厚正比于直径,故单位体积空心圆柱膜的透过量与直径的平方成反比。

这样,采用空心圆柱构形,就大大地提高了单位体积膜渗设备的生产能力。

可以证明,在超滤应用上,采用一个大小合理的小直径空心纤维膜的圆柱束,则所发生的透过液量将相当于几十平方米超薄平板膜上所得者。

空心纤维为细长的膜管,内壁为膜层,膜层结合于海绵式的外壁上,外壁有粗孔,内层起超滤分离作用。

内膜孔的大小,决定管内被阻物质的大小。

空心纤维内径约200μm,由惰性的非离子聚合物制成,具有独特的各向异性的(表皮)结构,有明显高的流率(如图8-7)。

图8-7 空心纤维超滤膜筒
三、超滤装置
(一) 板式分离装置
用于大规模生产的平板式超滤分离设备有类似板框式的结构(如图8-8)。

在这种设备中,被处理的液体在窄沟道中流动,沟道宽度仅0.3~0.5mm,液体沿膜做径向流动。

在同一膜上,与膜接触的路程只有150mm左右。

通常液体流动的平均流速约为0.5m/s,故流动为层流。

一般平板膜渗设备由许多膜渗组件构成,每一组件提供一定的膜面积,从几平方米到几十平方米。

(二) 空心纤维膜渗分离器
图8-8 平板膜分离装置结构原理
1—隔离板2—半透膜3—膜支撑板4—中央螺栓
空心纤维膜渗分离装置的外形亦为壳管状(如图8-9)。

图8-9 中空纤维膜组件剖面图
1—盐水2—进料3—取样4—中空纤维膜5—环氧树脂管板6—多孔支撑板7—产品8—外壳9—环氧树脂块
这种膜渗分离器把几千万根空心纤维集束的开口端用环氧树脂粘接,装填在管状壳体内而成。

其特点是:(1)装置内单位体积的膜面积很大; (2)膜壁薄,液体透过速度快; (3) 因空心纤维的几何构形具有一定的耐压性能,故强度高。

四、超滤在乳品工业上的应用
国外已将超滤用于脱脂乳的浓缩,可制取含蛋白质高达50%~80%的脱脂浓乳。

超滤已被证实为在乳清中浓缩和回收蛋白质的有效方法(如图8-1 0)。

图8-10 乳清的超滤
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档