八年级数学期末试题(人教版)超经典

合集下载

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

人教版八年级上册数学期末试题及答案

人教版八年级上册数学期末试题及答案

人教版八年级上册数学期末试卷一、单选题1.下列四个图案中,不是轴对称图形的是()A .B .C .D .2.将0.00000095用科学记数法表示为()A .70.9510-⨯B .89.510-⨯C .79.510-⨯D .59510-⨯3.若分式方程233x m x x +=++无解,则m 的值为()A .﹣1B .0C .1D .34.下列运算正确的是()A .2a aa +=B .632a a a ÷=C .()0-31π=D .()21224a b a b --=5.下列等式从左到右的变形是因式分解的是()A .()2212x x x x --=--B .()()25623x x x x -+=--C .211x x x x ⎛⎫-=- ⎪⎝⎭D .()()2224x x x +-=-6.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是()A .5B .4C .7D .67.如图,在△ABC 中,AD 是∠BAC 的平分线,E 为AD 上一点,且EF ⊥BC 于点F .若∠C=35°,∠DEF=15°,则∠B 的度数为()A .65°B .70°C .75°D .85°8.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为()A .8815 2.5x x+=B .8184 2.5x x +=C .88152.5x x =+D .8812.54x x =+9.如图,在ABC 中,90,30A C PQ ∠=︒∠=︒,垂直平分BC ,与AC 交于点,P 下列结论正确的是()A .2PC PA <B .2PC PA >C .2AB PA <D .2AB PA>10.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A .SASB .AASC .ASAD .SSS二、填空题11.使分式211x x -+的值为0,这时x=_____.12.计算:22222155ab b a b ab a b+⋅-=______________.13.已知点1(1,5)P a -和点2(2,1)P b -关于x 轴对称,则2016()b a +的值为_____________.14.若m+n=3,则2m 2+4mn+2n 2-6的值为________.15.已知6m x =,3n x =,则2m n x -的值为________.16.多项式x 2+2mx+64是完全平方式,则m =________.17.如图,已知∠AOB=60°,点P 在边OA 上,OP=24,点M ,N 在边OB 上,PM=PN ,若NM=6,则OM=______________.18.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.19.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠=__________度.20.如图,BC=EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件为_____________(答案不唯一,只需填一个)三、解答题21.解分式方程:(1)21322x x x-+=--(2)262393x x x x x -+=+--22.化简求值:(1)()()()322484a b a b ab a bab +-+-÷,其中21a b ==,(2)2234221121x x x x x x ++-÷---+(,其中x 取﹣1,1,﹣2,﹣3中你认为合理的数.23.在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF .(1)求证:△ABE ≌△CBF ;(2)若∠CAE=30°,求∠ACF 度数.24.如图,在△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE=CF ,AD+EC=AB .(1)求证:△DEF 是等腰三角形;(2)当∠A=40°时,求∠DEF 的度数;(3)△DEF 可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A 为多少度时,∠EDF+∠EFD=120°,并请说明理由.25.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?26.已知如图,AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .求证:AD 垂直平分EF .27.已知:如图,已知△ABC(1)点A 关于x 轴对称的点A 1的坐标是,点A 关于y 轴对称的点A 2的坐标是;(2)画出与△ABC 关于x 轴对称的△A 1B 1C 1;(3)画出与△ABC 关于y 轴对称的△A 2B 2C 2.28.某农资公司购进甲、乙两种农药,乙种农药的单价是甲种农药单价的3倍,购买250元甲种农药的数量比购买300元乙种农药的数量多15,求两种农药单价各为多少元?参考答案1.C【分析】根据轴对称的概念对各选项分析判断即可求解.【详解】解:A 、是轴对称图形,故本选项不合题意;B 、是轴对称图形,故本选项不合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不合题意.故选:C .【点睛】本题主要考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000095=79.510-⨯故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.A【详解】解:两边同乘以(x+3)得:x+2=m ,x=m-2,∵方程无解∴x+3=0,即m-2+3=0,∴1m =-,故选:A.4.C【分析】根据合并同类项法则、幂运算法则进行计算判断.【详解】A 、2a a a +=,故原计算错误;B 、633a a a ÷=,故原计算错误;C 、()0-31π=,故正确;D 、()21224a b a b ---=,故原计算错误;故选:C .【点睛】本题考查整式的加减乘除运算,熟练掌握运算法则是关键.5.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、()()2221x x x x --=-+,没有把一个多项式转化为几个整式积的形式,故A 错误;B 、把一个多项式转化为几个整式积的形式,故B 正确;C 、()()21+11x x x -=-,故C 错误;D 、()()2224x x x +-=-,整式的乘法,故D 不是因式分解.故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.6.D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×2,解得n=6.故选:D .【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.7.A【详解】解:∵EF ⊥BC ,∠DEF=15°,∴∠ADB=90°-15°=75°.∵∠C=35°,∴∠CAD=75°-35°=40°.∵AD 是∠BAC 的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°.故选A .8.D【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【详解】解:设乘公交车平均每小时走x 千米,根据题意可列方程为:8812.54x x =+.故选D .【点睛】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.9.C【分析】由题意连接BP ,并根据垂直平分线的性质进行分析求解即可.【详解】解:连接BP则130C ∠∠︒==.230∴∠︒=2PC PB PA ∴==.AB PB <,2AB PA ∴<.故选:C.【点睛】本题考查垂直平分线相关,熟练掌握垂直平分线的性质是解题的关键.10.D【分析】根据作图过程可知:OC=OD ,PC=PD ,又OP=OP ,从而利用SSS 判断出△OCP ≌△ODP ,根据全等三角形的对应角相等得出∠COP=∠DOP ,即OP 平分∠AOB ,从而得出答案.【详解】解:由画法得OC=OD ,PC=PD ,而OP=OP ,所以△OCP ≌△ODP (SSS ),所以∠COP=∠DOP ,即OP 平分∠AOB.故答案为:D.【点睛】本题考查了用尺规作图作已知角平分线,三角形全等的判定,用尺规作图作已知角平分线,三角形全等的判定掌握是解题的关键.11.1【详解】由题意得211x x -+=0,所以x 2-1=0且x+1≠0,解之得x=1,故答案为:1.12.3aa b-【分析】先把分子、分母分别分解因式,再约分计算.【详解】原式=()()()22155b a b a b ab a b a b +⋅+-=3a a b-,故填:3a a b-.【点睛】本题考查分式的乘法运算法则,熟练掌握因式分解是关键.13.1【详解】解:∵点()11,5P a -和点()22,1Pb -关于x 轴对称,∴a-1=2,b-1=-5,∴a=3,b=-4,∴()2016a b +=(-1)2016=1,故答案为:1.14.12【详解】解:原式=2(m 2+2mn+n 2)-6=2(m+n )2-6=2×9-6=12故答案为:12.15.12【分析】逆运用同底数幂的乘法公式和幂的乘方公式对原式适当变形,再将值代入计算即可.【详解】解:2222()6312m n m n n m x x x xx -=÷=÷=÷=.故答案为:12.【点睛】本题考查幂的乘方公式的逆运用,同底数幂的乘法逆运用.熟练掌握相关公式是解题关键.16.±8【详解】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x,所以m=±8.故答案为±8.【点睛】此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.17.9【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD即可求出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,∵∠AOB=60°,∴∠OPD=30°,∴OD=12OP=12.∵PM=PN,PD⊥MN,∴MD=ND=12MN=3,∴OM=OD﹣MD=12﹣3=9.故答案为:9.【点睛】本题考查的是含30度直角三角形的性质,等腰三角形的性质等知识,根据题意添加适当辅助线是解本题的关键.18.30【分析】由等边三角形三线合一,可知:点B 和点C 关于AD 成轴对称,连接BE 交AD 于点F ,此时,EF CF +取得最小值,进而,求出ECF ∠的度数即可.【详解】∵ABC ∆是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,AD 平分∠BAC ,∴点B 和点C 关于AD 所在直线成轴对称,连接BE 交AD 于点F ,则BF=CF ,∴EF CF +=EF+BF=BE ,即:此时,EF CF +取得最小值,∵等边ABC ∆的边长为4,2AE =,∴E 是AC 的中点,∴BE 平分∠ABC ,∵点F 是角平分线AD 与BE 的交点,∴CF 平分∠BCA ,即:∠FCA=12∠ACB=12×60°=30°,∴∠ECC=30°.故答案是:30.【点睛】本题主要考查等边三角形中,两线段和最小时,求角的度数,通过轴对称,把两线段和化为两点之间的一条线段的长,是解题的关键.19.80【分析】先根据折叠的性质可得AD DF =,根据等边对等角的性质可得B BFD ∠=∠,再根据三角形的内角和定理列式计算即可求解.【详解】解:DEF 是DEA △沿直线DE 翻折变换而来,AD DF ∴=,D 是AB 边的中点,AD BD ∴=,BD DF ∴=,B BFD ∴∠=∠,50B ∠=︒ ,180180505080BDF B BFD ∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:80.【点睛】本题考查的是折叠的性质,以及等边对等角、三角形内角和定理,熟知折叠的性质是解答此题的关键.20.AC=DC (答案不唯一)【详解】根据∠1=∠2可得∠BCA=∠ECD ,添加AC=DC 可以利用SAS 来进行判定;添加∠B=∠E 可以利用ASA 来进行判定;添加∠A=∠D 可以利用AAS 来进行判定.故答案为:AC=DC (答案不唯一)21.(1) 1.5x =;(2)无解【分析】(1)两边同乘2x -进行去分母,再求解整式方程,最后检验即可;(2)两边同乘()()33x x +-进行去分母,再求解整式方程,最后检验即可.【详解】(1)21322x x x-+=--解:两边同乘2x -得()2321x x +-=-解得 1.5x =检验:当 1.5x =时,20x -≠,∴ 1.5x =是原分式方程的解,(2)262393x x x x x -+=+--解:两边同乘()()33x x +-得()()()3623x x x x -+=-+解得3x =检验:当3x =时,()()330x x +-=,∴3x =不是原分式方程的解,∴原分式方程无解.【点睛】本题考查解分式方程,熟练掌握分式方程的求解过程并注意检验是解题关键.22.(1)22a ab -,0;(2)11x x -+,2【分析】(1)原式利用平方差公式,以及多项式除以单项式法则计算,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)首先把括号内的分式的分母分解因式,把除法转化为乘法,进行分式的加减,利用分配律计算,然后根据题意选择合理的数,代入即可.【详解】(1)原式2222a b b ab=-+-22a ab =-,当2a =,1b =时,原式22221=-⨯⨯0=;(2)原式()()()()()()22113411112x x x x x x x x ⎡⎤+-+=-⋅⎢⎥+-+-+⎣⎦()()()212112x x x x x -+=⋅+-+11x x -=+,由题意可知,1x ≠±且2x ≠-∴3x =-,当3x =-时,原式2=.【点睛】本题考查了整式和分式的混合运算,熟练掌握运算法则是解题的关键.23.(1)见解析(2)∠ACF=60°【分析】(1)根据HL 可证明Rt △ABE ≌Rt △CBF ;(2)由全等三角形的性质得出∠BCF =∠BAE =15°,则可得出答案.【详解】(1)证明:∵∠ABC =90°,∴∠CBF =∠ABE =90°,在Rt △ABE 和Rt △CBF 中,AE CFAB BC =⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF (HL );(2)解:∵AB =BC ,∠ABC =90°,∴∠CAB =∠ACB =45°,又∵∠BAE =∠CAB ﹣∠CAE =45°﹣30°=15°,由(1)知:Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =15°,∴∠ACF =∠BCF+∠ACB =15°+45°=60°.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握三角形全等的判定方法是解题的关键.24.(1)证明见解析;(2)∠DEF=70°;(3)△DEF 不可能是等腰直角三角形,理由见解析;(4)当∠A=60°时,∠EDF+∠EFD=120°,理由见解析.【分析】(1)首先根据条件证明△DBE ≌△ECF ,根据全等三角形的性质可得DE=FE ,进而可得到△DEF 是等腰三角形;(2)由(1)中的全等得出∠BDE=∠CEF ,再由角之间的转化,从而可求解∠DEF 的大小;(3)由于AB=AC ,可得∠B=∠C≠90°=∠DEF ,从而可确定其不可能是等腰直角三角形;(4)先猜想出∠A 的度数,则可得∠EDF+∠EFD=120°,根据前面的推导过程知∠EDF+∠EFD=120°时,∠DEF=60°,再由∠B=∠DEF 以及等腰三角形的性质继而推得猜想的正确性.【详解】(1)∵AB=AC ,∴∠B=∠C ,∵AD+EC=AB ,AB=AD+BD ,∴BD=CE ,在△BDE 和△CEF 中,BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CEF (SAS )∴DE=EF ,∴△DEF 是等腰三角形;(2)∵∠DEC=∠B+∠BDE ,即∠DEF+∠CEF=∠B+∠BDE ,由(1)知△BDE ≌△CEF ,则∠BDE=∠CEF ,∴∠DEF=∠B ,∵∠A=40°,∴∠B=∠C=()1180402⨯︒-︒=70°,∴∠DEF=70°;(3)△DEF 不可能是等腰直角三角形,∵AB=AC ,∴∠B=∠C≠90°,由(2)知∠DEF=∠B ,∴∠DEF=∠B≠90°,∴△DEF 不可能是等腰直角三角形;(4)当∠A=60°时,∠EDF+∠EFD=120°,理由是:当∠EDF+∠EFD=120°时,则∠DEF=180°-120°=60°,∴∠B=∠DEF=60°,∴∠A=180°-∠B-∠C=180°-60°-60°=60°,∴当∠A=60°时,∠EDF+∠EFD=120°.【点睛】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定和性质问题,能够熟练掌握和灵活运用相关质是解题的关键.25.(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.【分析】(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(x+30)千克材料,根据A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同建立方程求出其解即可得;(2)设购进A 型机器人a 台,根据每小时搬运材料不得少于2800kg 列出不等式进行求解即可得.【详解】(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(x+30)千克材料,根据题意,得100080030x x=+,解得:x=120,经检验,x=120是所列方程的解,当x=120时,x+30=150,答:A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)设购进A 型机器人a 台,则购进B 型机器人(20﹣a )台,根据题意,得150a+120(20﹣a )≥2800,解得a≥403,∵a 是整数,∴a≥14,答:至少购进A 型机器人14台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.26.见解析【分析】根据角平分线的性质可得DE DF =,易证AE AF =,即△AEF 为等腰三角形,根据三线合一可证结论.【详解】证明:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∴12∠=∠,∵90AED AFD ∠=∠=︒,∴3=4∠∠,∴AE AF =,∵AD 是等腰三角形AEF 的顶角平分线,∴AD 垂直平分EF (三线合一)【点睛】本题考查了角平分线的性质和等腰三角形的性质—“三线合一”的应用,熟练掌握性质是解题的关键.27.(1)(-4,-2),(4,2);(2)图形见解析(3)图形见解析【分析】(1)分别利用关于x 轴以及y 轴对称点的性质得出对应点坐标即可;(2)直接利用关于x轴对称点的性质得出对应点坐标即可;(3)直接利用关于y轴对称点的性质得出对应点坐标即可.【详解】解:(1)(-4,-2),(4,2);(2)如图所示:△A1B1C1,即为所求;(3)如图所示:△A2B2C2,即为所求.28.10元、30元.【分析】设甲农药的单价为x元,乙农药的单价为3x元,根据购买250元甲农药的数量比购买300元乙农药的数量多15件列出方程,求出方程的解即可得到结果;【详解】解:设甲农药的单价为x元,乙农药的单价为3x元,根据题意得,250360-=15x3x,解得x=10,经检验,x=10是所列方程的根,∴3x=3×10=30(元),答:甲、乙两种农药品的单价分别为10元、30元.【点睛】本题主要考查了分式方程的应用,掌握分式方程是解题的关键.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.已知长度分别为3 cm,4 cm,x cm的三根小棒可以摆成一个三角形,则x的值不可能是( )A.2.4 B.3C.5 D.8.52.下列图案中,是轴对称图形的为( )3.如图,已知AB=AC,AD=AE,添加一个条件不能得到“△ABD≌△ACE”的是( )A.∠ABD=∠ACE B.BD=CEC.∠BAD=∠CAE D.∠BAC=∠DAE4.下列因式分解正确的是( )A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)25.如图,在△ABC中,∠A=45°,∠B=30°,尺规作图如下:分别以点B、点BC的长为半径作弧,过两弧交点的直线交AB于点D,连接CD,C为圆心,大于12则∠ACD的度数为( )A.45°B.65°C.60°D.75°6.一个多边形的内角和是外角和的4倍,则这个多边形是( )A.八边形B.九边形C.十边形D.十二边形7.若(2x-m)(x+1)的运算结果是关于x的二次二项式,则m的值等于( ) A.-2或0 B.2或0C.-2或2 D.2或-2或08.若x是非负整数,则表示2xx+2−x2−4(x+2)2的值的对应点落在下图数轴上的范围是( )A.①B.②C.③D.①或②9.某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问:原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B.540x+2−540x=3C.540x −540x+2=3 D.540x−540x−2=310.关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A.13 B.15 C.18 D.20二、填空题:本题共6个小题,每小题3分,共18分。

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试卷一、单选题1.在下列各式中,最简二次根式是()AB C D2.下列计算正确的是()A .+B .C .5=D 2÷=3.以下列各组数为边长,能构成直角三角形的是()A .5,12,13BC .9,16,25D .111,,3454.如图,在正方形ABCD 的外侧作等边三角形CDE ,则∠DAE 的度数为()A .20°B .15°C .12.5°D .10°5.如图所示,在△ABC 中,∠ACB =90°,分别以AB 、BC 、AC 为边向外作正方形,若三个正方形的面积分别为225、400、S ,则S 的值为()A .25B .175C .600D .6256.若直线l 的解析式为y =﹣x+1,则下列说法正确的是()A .直线l 与y 轴交于点(0,﹣1)B .直线l 不经过第四象限C .直线l 与x 轴交于点(1,0)D .y 随x 的增大而增大7.若一次函数y =kx+b (k <0)的图象上有两点(﹣3,y 1),(5,y 2),则y 1与y 2的大小关系是()A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定8.某校为选拔一名运动员参加市运动会100米短跑比赛,对甲、乙两名运动员都进行了5次测试.他们成绩的平均数均为12秒,其中甲测试成绩的方差S 甲2=0.8,乙的5次测试成绩分别为:13,12.5,11,11.5,12(单位:秒).则最适合参加本次比赛的运动员是()A .甲B .乙C .甲、乙都一样D .无法选择9.当1≤x≤10时,一次函数y =3x+b 的最小值为18,则b =()A .10B .15C .20D .2510.如图,在菱形ABCD 中,AC =12,BD =16,点M ,N 分别位于BC ,CD 上,且CM =DN ,点P 在对角线BD 上运动.则MP+NP 的最小值是()A .6B .8C .10D .12二、填空题11有意义,则x 的取值范围是___.12.某公司招聘职员,竞聘者需参加计算机、语言表达和写作能力三项测试.竞聘成绩按照如下标准计算:计算机成绩占50%,语言表达成绩占30%,写作能力成绩占20%.李丽的三项成绩依次是70分,90分,80分,则李丽的竞聘成绩是___分.13.已知直角三角形的两边长分别为3、4.则第三边长为________.14.若直线y =(m+5)x+(m ﹣1)经过第一、三、四象限,则常数m 的取值范围是___.15.如图,直线12:(0),:(0)l y kx b k l y mx n m =+≠=+≠分别与x 轴交于(4,0), (2,0)A B -两点,则不等式组0kx b mx n +>⎧⎨+>⎩的解集为____.16.如图,在Rt△ABC中,∠ACB=90°,∠A=3∠B,AB=20cm,点D是AB中点,点M从点A出发,沿线段AB运动到点B,点P始终是线段CM的中点.对于下列结论:①CD =10cm;②∠CDA=60°;③线段CM长度的最小值是2cm;④点P运动路径的长度是10cm.其中正确的结论是___(写出所有正确结论的序号).三、解答题1750405=,连接BE,18.如图,E,F分别是平行四边形ABCD的边AD,BC边上的点,且AE CFDF.求证:四边形BFDE是平行四边形.19.如图,在四边形ABCD中,∠B=90°,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.20.为了解初二某班学生使用共享单车次数的情况,某数学小组随机采访该班的10位同学,得到这10位同学一周内使用共享单车的次数,统计如下:使用次数1481216人数22411(1)这10位同学一周内使用共享单车次数的众数是,中位数是;(2)求这10位同学一周内使用共享单车次数的平均数.21.如图,四边形ABCD是矩形,AD=6,CD=8.(1)尺规作图:作∠DAC的平分线AE,与CD交于点E(保留作图痕迹,不写作法);(2)求点E到线段AC的距离.22.某校足球队计划从商家购进A、B两种品牌的足球,A种足球的单价比B种足球的单价低30元,购进5个A种足球的费用等于3个B种足球的费用.现计划购进两种品牌的足球共50个,其中A种足球数量不超过B种足球数量的9倍.(1)求A、B两种品牌的足球单价各是多少元?(2)设购买A种足球m个(m≥1),购买两种品牌足球的总费用为w元,求w关于m的函数关系式,并求出最低总费用.23.在平面直角坐标系xOy中,一次函数y=﹣2x+4的图象与x轴,y轴分别交于点B,A,以AB为边在第一象限内作等腰直角△ABC,且∠ABC=90°,过C作CD⊥x轴于点D.(1)如图1,求A,B,C三点的坐标;(2)如图2,若点E,F分别是OB,AB的中点,连接EF,CF.判断四边形FEDC的形状,并说明理由.24.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的动点,当S△OBP =14S△OAP时,求点P的坐标;(3)将直线AB向下平移10个单位长度得到直线l,点M,N是直线l上的动点(M,N的横坐标分别是xM,xN,且xM<xN),MN=ABNM的周长的最小值,并说明理由.25.已知:四边形ABCD是正方形,AB=20,点E,F,G,H分别在边AB,BC,AD,DC上.(1)如图1,若∠EDF=45°,AE=CF,求∠DFC的度数;(2)如图2,若∠EDF=45°,点E,F分别是AB,BC上的动点,求证:△EBF的周长是定值;(3)如图3,若GD=BF=5,GF和EH交于点O,且∠EOF=45°,求EH的长度.参考答案1.A 【解析】根据最简二次根式可直接进行排除选项.【详解】解:AB=C ,不是最简二次根式,故不符合题意;D =故选A .2.D 【解析】根据二次根式的加减乘除运算可直接进行排除选项.【详解】解:A 、B 、=C 、=D2÷=,正确,故符合题意;故选D .3.A 【解析】根据勾股定理逆定理可直接进行排除选项.【详解】解:A 、22251216913+==,所以能构成直角三角形,故符合题意;B 、2227+=≠,所以不能构成直角三角形,故不符合题意;C 、22291633725+=≠,所以不能构成直角三角形,故不符合题意;D 、22211411544003⎛⎫⎛⎫⎛⎫+=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以不能构成直角三角形,故不符合题意;故选A .【点睛】本题主要考查勾股定理逆定理,熟练掌握勾股定理逆定理是解题的关键.4.B 【解析】根据正方形、等边三角形和三角形内角和定理可以得到答案.【详解】解:∵四边形ABCD 是正方形,∴∠ADC =90°,AD =DC ,∵△CDE 是等边三角形,∴DE =DC ,∠EDC =60°,∴∠ADE =90°+60°=150°,AD =ED ,∴∠DAE =∠DEA =12(180°﹣∠ADE )=15°,故选:B .5.D 【解析】由勾股定理得:222AC BC AB +=,直接代入即可.【详解】解:在ABC ∆中,90ACB ∠=︒,由勾股定理得:222AC BC AB +=,225400S ∴+=,625S ∴=.故选:D .6.C 【解析】根据一次函数的图象与性质可直接进行排除选项.【详解】解:令y=0时,则有-x+1=0,解得:x=1,∴直线l 与x 轴交于点(1,0);故C 正确;令x=0时,则有y=1,∴直线l 与y 轴交于点(0,1),故A 错误;由直线l 的解析式为y =﹣x+1,可知10,10k b =-<=>,∴直线l 经过一、二、四象限,y 随x 的增大而减小,故B 、D 错误;故选C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.7.C 【解析】【分析】根据题意结合一次函数的性质可进行排除选项.【详解】解:∵k <0,∴y 随x 的增大而减小,∵一次函数y =kx+b (k <0)的图象上有两点(﹣3,y 1),(5,y 2),∴y 1>y 2;故选C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.8.B 【解析】【分析】由题意求出乙运动员的方差,然后再根据方差进行求解即可.【详解】解:由题意得:()()()()()222222131212.512111211.51212120.55S ⎡⎤-+-+-+-+-⎣⎦==乙;∵S 甲2=0.8,∴最适合参加本次比赛的运动员是乙;故选B .【点睛】本题主要考查方差,熟练掌握方差公式是解题的关键.9.B 【解析】【分析】由3>0可得一次函数y 随x 的增大而增大,进而可得当x=1时,一次函数有最小值,然后问题可求解.【详解】解:由题意得:3>0,∴y 随x 的增大而增大,∵1≤x≤10,∴当x=1时,一次函数有最小值,∴318b +=,解得:15b =,故选B .【点睛】本题主要考查一次函数的性质,熟练掌握一次函数的性质是解题的关键.10.C 【解析】【分析】作点M 关于BD 的对称点Q ,连接NQ ,交BD 于点P ,此时MP+NP 的值最小,求出CP 、PB ,根据勾股定理求出BC ,然后证得MP+NP=QN=BC ,即可得出答案.【详解】解:作点M 关于BD 的对称点Q ,连接NQ ,交BD 于点P ,如图所示:由轴对称的性质及两点之间线段最短可得此时MP+NP 的值最小,即为NQ 的长,∵四边形ABCD 是菱形,∴AB=BC=CD=AD ,AC ⊥BD ,//AB CD ,OA=OC ,OB=OD ,∵AC =12,BD =16,∴6,8OA OB ==,∴2210BC AB OA OB ==+=,由轴对称的性质可得BQ BM =,∵CM =DN ,∴CN BM BQ ==,∴四边形BCNQ 是平行四边形,∴10BC QN ==,∴PM PN +的最小值为10;故选C .【点睛】本题主要考查轴对称的性质、勾股定理及菱形的性质,熟练掌握轴对称的性质、勾股定理及菱形的性质是解题的关键.11.5x ≥-【解析】【分析】根据二次根式有意义的条件可直接进行列式求解.【详解】210x +有意义,∴2100x +≥,解得:5x ≥-;故答案为5x ≥-.本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.12.78【解析】【分析】根据题意结合加权平均数可直接进行列式求解.【详解】解:由题意得:70509030802078⨯+⨯+⨯=%%%(分);故答案为78.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的求法是解题的关键.13.5【解析】【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论.【详解】解:①长为3的边是直角边,长为4的边是斜边时,=;②长为3、4的边都是直角边时,5=;5,或5.14.51m -<<【解析】【分析】根据题意易得5010m m +>⎧⎨-<⎩,然后求解即可.解:∵直线y =(m+5)x+(m ﹣1)经过第一、三、四象限,∴5010m m +>⎧⎨-<⎩,解得:51m -<<;故答案为51m -<<.【点睛】本题主要考查一次函数的图象与性质及一元一次不等式组的解法,熟练掌握一次函数的图象与性质及一元一次不等式组的解法是解题的关键.15.-4<x <2【解析】【分析】根据图像可以得出满足kx+b >0的图像应该在(-4,0)的右侧,满足mx+n >0的图像应该在(-2,0)的左侧,两者的公共部分就是不等式组的解集.【详解】解:由图像可知∵0kx b +>∴x >-4∵mx+n >0∴x <2∴不等式组00kx b mx n +>⎧⎨+>⎩的解集是-4<x <2故答案为:-4<x <2.【点睛】本题考查了由直线与坐标轴的交点求不等式的解集,解决本题的关键是能够读懂函数图像中的特殊点,此类题型是中考常考题型.16.①③④【解析】【分析】①根据直角三角形斜边中线定理可判定;②由题意易得90A B ∠+∠=︒,然后可得22.5B ∠=︒,则根据等腰三角形的性质可求解;③当CM AB ⊥时,CM 的值最小,然后根据等腰直角三角形的性质可求解;④由题意易得点P 的运动轨迹为平行于AB 的线段,进而根据三角形中位线可求解.【详解】解:∵∠ACB =90°,∠A =3∠B ,∴90A B ∠+∠=︒,即490B ∠=︒,∴22.5B ∠=︒,∵点D 是AB 中点,AB =20cm ,∴110cm 2CD AD BD AB ====,故①正确;∴22.5B DCB ∠=∠=︒,∴245ADC B ∠=∠=︒,故②错误;当CM AB ⊥时,CM 的值最小,∴90CMD ∠=︒,∴CMD △是等腰直角三角形,∴10cm CD ==,∴CM =,故③正确;取AC 的中点E ,连接PE ,并延长EP ,交BC 于点F ,如图所示:∵点P 始终是线段CM 的中点,∴2//,1PE AM PE AM =,∴//EF AB ,∴点F 为BC 的中点,∵点M 从点A 出发,沿线段AB 运动到点B ,∴点P 在线段EF 上运动,∴110cm 2EF AB ==,即点P 运动路径的长度10cm ,故④正确;∴正确的结论是①③④;故答案为①③④.【点睛】本题主要考查直角三角形斜边中线定理、三角形中位线及等腰直角三角形的性质与判定,熟练掌握直角三角形斜边中线定理、三角形中位线及等腰直角三角形的性质与判定是解题的关键.17.【解析】【分析】先算除法,再算二次根式的减法即可.【详解】解:原式==-=.【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算是解题的关键.18.见解析【解析】【分析】由平行四边形的性质得到AD=BC,AD∥BC,由已知得到ED=BF,根据平行四边形的判定即可得到结论.【详解】解:证明:∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴ED∥BF,又∵AE=CF,且ED=AD-AE,BF=BC-CF,∴ED=BF,∴四边形BFDE是平行四边形.【点睛】本题考查平行四边形的判定和性质,灵活运用平行四边形的性质是本题的关键.19.1ABCD S =+四边形【解析】【分析】由题意易得AC =ACD=90°,进而问题可求解.【详解】解:∵∠B =90°,AB =1,BC =2,∴AC ==,∵CD =2,AD =3,∴2229AC CD AD +==,∴∠ACD=90°,∴11122122ABC ACD ABCD S S S =+=⨯⨯+= 四边形【点睛】本题主要考查勾股定理逆定理及二次根式的运算,熟练掌握勾股定理逆定理及二次根式的运算是解题的关键.20.(1)8,8;(2)这10位同学一周内使用共享单车次数的平均数为7次.【解析】【分析】(1)根据表格及题意可直接进行求解众数及中位数;(2)由题意可直接进行求解平均数.【详解】解:(1)众数是指一组数据中出现次数最多的,故这10位同学一周内使用共享单车次数的众数是8;中位数为第5、第6个数据的平均数,即为(8+8)÷2=8;故答案为8,8;(2)由题意得:1242841216710x ⨯+⨯+⨯++==(次),答:这10位同学一周内使用共享单车次数的平均数为7次.【点睛】本题主要考查众数、平均数及中位数,熟练掌握求一组数据的众数、中位数及平均数是解题的关键.21.(1)图见详解;(2)点E 到线段AC 的距离为3.【解析】【分析】(1)以点A 为圆心,适当长为半径画弧,分别交AD 、AC 于点M 、N ,然后以点M 、N 为圆心,大于MN 长的二分之一为半径画弧,交于一点,然后与点A 连接,则问题可求解;(2)过点E 作EF ⊥AC 于点F ,由题意易得AC=10,DE=EF ,进而可得6AD AF ==,设DE EF x ==,则有8CE x =-,然后根据勾股定理建立方程求解即可.【详解】解:(1)如图所示:(2)过点E 作EF ⊥AC 于点F ,如图所示:∵四边形ABCD 是矩形,∴∠D=90°,∵AD =6,CD =8,∴10AC ==,∵AE 平分∠DAC ,∴DE=EF ,∵,90AE AE D AFE =∠=∠=︒,∴()ADE AFE HL △≌△,∴6AD AF ==,∴4CF =设DE EF x ==,则有8CE x =-,∴在Rt △EFC 中,由勾股定理可得()22168x x +=-,解得:3x =,∴EF=3,即点E 到线段AC 的距离为3.【点睛】本题主要考查勾股定理、角平分线的性质定理及矩形的性质,熟练掌握勾股定理、角平分线的性质定理及矩形的性质是解题的关键.22.(1)A 种品牌的足球单价为45元,B 种品牌的足球为75元;(2)303750w m =-+,购买两种足球的最低费用为2400元.【解析】【分析】(1)设A 种品牌的足球单价为x 元,B 种品牌的足球为(x+30)元,由题意可得()5330x x =+,然后求解即可;(2)由(1)及题意易得购买B 种品牌足球为(50-m )个,然后根据题意可进行求解.【详解】解:(1)设A 种品牌的足球单价为x 元,B 种品牌的足球为(x+30)元,由题意得:()5330x x =+,解得:45x =,∴B 种品牌的足球为45+30=75元;答:A 种品牌的足球单价为45元,B 种品牌的足球为75元.(2)由题意得购买B 种品牌足球为(50-m )个,则由(1)可得:()457550303750w m m m =+-=-+,∵A 种足球数量不超过B 种足球数量的9倍,∴()950m m ≤-,且m≥1,解得:145m ≤≤,∵300k =-<,∴w 随m 的增大而减小,∴当m=45时,w 有最小值,即为304537502400w =-⨯+=;答:购买两种足球的最低费用为2400元.【点睛】本题主要考查一次函数的应用及一元一次不等式的应用,熟练掌握一次函数的应用及一元一次不等式的应用是解题的关键.23.(1)()0,4A ,()2,0B ,()6,2C ;(2)四边形FEDC 是矩形,理由见详解.【解析】【分析】(1)由题意可分别令x=0、y=0时求解A 、B 的坐标,然后再根据“k 型全等”可得点C 的坐标;(2)由题意易得EF=2,EF ∥OA ,进而可得EF ∥CD ,EF=CD ,然后问题可求解.【详解】解:(1)由题意得:令x=0时,则有y=4,∴()0,4A ,令y=0时,则有-2x+4=0,解得:x=2,∴()2,0B ,∵△ABC 是等腰直角三角形,∠ABC=90°,∴,90AB BC ABO BAO ABO CBD =∠+∠=∠+∠=︒,∴BAO CBD ∠=∠,∵CD ⊥x 轴,∴90AOB BDC ∠=∠=︒,∴()AOB BDC AAS ≌,∴4,2AO BD OB CD ====,∴6OD =,∴()6,2C ;(2)四边形FEDC 是矩形,理由如下:由(1)可得:2,//CD CD OA =,OA=4,∵点E ,F 分别是OB ,AB 的中点,∴122EF OA ==,EF ∥OA ,∴2,//EF CD EF CD ==,∴四边形FEDC 是平行四边形,∵90EDC ∠=︒,∴四边形FEDC 是矩形.【点睛】本题主要考查一次函数与几何的综合及矩形的判定,熟练掌握一次函数与几何的综合及矩形的判定是解题的关键.24.(1)10y x =-+;(2)P ()8,2或4010,33⎛⎫- ⎪⎝⎭;(3)四边形ABNM 的周长的最小值为.【解析】【分析】(1)由题意易得()()0,10,10,0A B ,然后代入求解即可;(2)由题意可得△OBP 若以OB 为底,则点P 的纵坐标的绝对值就是它的高,△OAP 若以OA 为底,则点P 的横坐标的绝对值就是它的高,然后根据三角形面积计算公式可进行求解;(3)由题意可得如图所示,作点A 关于MN 的对称点C ,作MD ∥BN ,进而可得MA=MC ,MD=BN ,要使四边形ABNM 的周长的最小值,则需满足AM BN MC MD +=+为最小即可,进而问题可求解.【详解】解:(1)∵点A 在y 轴的正半轴上,点B 在x 轴的正半轴上,OA =OB =10,∴()()0,10,10,0A B ,设直线AB 的解析式为y kx b =+,∴10010k b b +=⎧⎨=⎩,解得:110k b =-⎧⎨=⎩,∴直线AB 的解析式为10y x =-+;(2)由(1)及题意可设(),10P m m -+,则有△OBP 若以OB 为底,则点P 的纵坐标的绝对值就是它的高,△OAP 若以OA 为底,则点P 的横坐标的绝对值就是它的高,∵S △OBP =14S △OAP ,∴11110242OB m OA m ⋅⋅-+=⨯⋅,∵OA =OB =10,∴1104m m -+=,解得:8m =或403m =,∴点P 的坐标为()8,2或4010,33⎛⎫- ⎪⎝⎭;(3)由题意可得如图所示:作点A 关于MN 的对称点C ,作MD ∥BN ,连接MC 、CD ,∴AM MC =,AC MN ⊥,∵MN ∥AB ,∴四边形MNBD 是平行四边形,90CAD ∠=︒,∴,MN BD MD BN ==,∵MN =,∴BD =∵10OA OB ==,∴△AOB 是等腰直角三角形,∴AB ==l 与AB 的距离为12AB =∴根据轴对称的性质可得AC =∴四边形ABNM 的周长为AB BN MN AM AB MD MN CM MD MC +++=+++=+,要使四边形ABNM 的周长的最小值,则需满足MC MD +为最小即可,即需满足点C 、M 、D 三点共线时即可,此时MC MD CD +=,∴在Rt △ADC 中,AC AD AB BD ==-=,由勾股定理可得:CD ==,∴MC MD +=,∴四边形ABNM 的周长的最小值为+.【点睛】本题主要考查一次函数与几何的综合、等腰直角三角形的性质与判定、轴对称的性质及勾股定理,熟练掌握一次函数与几何的综合、等腰直角三角形的性质与判定、轴对称的性质及勾股定理是解题的关键.25.(1)∠DFC=67.5°;(2)见详解;(3)EH =【解析】【分析】(1)由题意易得ADE CDF V V ≌,则有22.5ADE CDF ∠=∠=︒,然后问题可求解;(2)将△ADE 绕点D 逆时针旋转90°,得到△DCK ,通过证明三角形全等证明得到EF=AE+CF ,然后问题可求证;(3)过点D 作DL ∥EH ,交AB 于点L ,作DM ∥FG ,交BC 于点M ,连接LM ,运用(2)中的结论和勾股定理求出BL 的长,再用勾股定理求出DL 的长即可.【详解】(1)解:∵四边形ABCD 是正方形,∴,90AD CD A C ADC =∠=∠=∠=︒,∵AE =CF ,∴()ADE CDF SAS △≌△,∴ADE CDF ∠=∠,∵∠EDF =45°,∴904545ADE CDF ∠+∠=︒-︒=︒,∴14522.52ADE CDF ∠=∠=⨯︒=︒,∴9022.567.5DFC ∠=︒-︒=︒;(2)证明:将△ADE 绕点D 逆时针旋转90°,得到△DCK ,如图所示:由旋转的性质可得,,CDK ADE CK AE DE DK ∠=∠==,∵∠EDF =45°,∴45KDF CDF CDK CDF ADE ∠=∠+∠=∠+∠=︒,∴KDF EDF ∠=∠,∵DF DF =,∴()DEF DKF SAS ≌,∴KF EF =,∵KF CK CF AE CF =+=+,∴EF AE CF =+,∴BEF C BE BF EF BE AE BF CF AB BC =++=+++=+ ,∵AB=BC=20,∴40BEF C = ,∴△EBF 的周长是定值;(3)过点D 作DL ∥EH ,交AB 、GF 分别于点L 、P ,作DM ∥FG ,交BC 、EH 分别于点M 、Q ,连接LM ,如图所示:∵//,//EL DH GD FM ,∴四边形DLEH 、四边形DGFM 、四边形OPDQ 都是平行四边形,∵GD =BF =5,∠EOF =45°,∴5,,45GD BF FM EH DL LDM POQ EOF ====∠=∠=∠=︒,∴10BM =,由(2)可得40BL LM BM ++=,∴30BL LM +=,∴30LM BL =-,∵90B ∠=︒,∴由勾股定理得()2221030BL BL +=-,解得:403BL =,∴40202033AL =-=,∵AD=AB=20,∴DL =∴3EH =.【点睛】本题主要考查正方形的性质、勾股定理、旋转的性质及二次根式的运算,熟练掌握正方形的性质、勾股定理、旋转的性质及二次根式的运算是解题的关键.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.数据0.00000011用科学记数法表示正确的是()A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯3.已知一个n 边形的内角和等于1800°,则n =()A .6B .8C .10D .124.下列运算中正确的是()A .235x y xy+=B .()3263x y x y =C .824x x x ÷=D .32622x x x ⋅=5.若216x ax -+是完全平方式,则a 的值等于()A .2B .4或4-C .2或2-D .8或8-6.若分式41x x +-的值为零,则x 的值是()A .4x =B .4x =-C .1x =D .1x =-7.下列四个图中,正确画出△ABC 中BC 边上的高是()A .B .C .D .8.已知三角形的两边长分别为4和9,则下列数据中,能作为第三边长的是()A .2B .3C .4D .99.如图,∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是()A .AC =ADB .AC =BC C .∠ABC =∠ABD D .∠BAC =∠BAD10.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.5二、填空题11.若点(),1A a 与点()3,B b -关于x 轴对称,则ab =__________.12.计算:22c a a bc⋅=_______.13.分解因式:2m m +=___________.14.使得分式263x x -+有意义的条件是________.15.计算:1022021-+=______16.如图,AB ,CD 相交于点E ,若ABC ADE △≌△,且点B 与点D 对应,点C 与点E 对应,28BAC ∠=︒,则B Ð的度数是_____°.17.如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_______________.18.如图,ABC DEF ≅ ,B 、E 、C 、F 在同一直线上,7BC =,4EC =,则CF 的长为___________.三、解答题19.化简:()()()331x x x x +---.20.解方程:132x x =-21.先化简22213111-+⎛⎫÷- ⎪-+⎝⎭x x x x ,再从-1,2,3三个数中选一个合适的数作为x 的值代入求值.22.如图,点B ,F ,C ,E 在一直线上,B E ∠=∠,BF EC =,AB DE =.求证://AC DF .23.如图,在Rt ABC 中,90B ∠=︒.(1)作AC 的垂直平分线ED ,交BC 于点E ,交AC 于点D (尺规作图,不写作法,保留作图痕迹);(2)当3AB =,5BC =时,求ABE △的周长.24.如图,在ABC 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12∠=∠,AD DE =.(1)求证:ABD DCE △△≌;(2)若2BD =,5CD =,求AE 的长.25.已知:在△ABC 中,AD 是BC 边上的高.(1)尺规作图:作∠BAC 的平分线AE ,交BC 于点E ;(2)在(1)的条件下:若∠ABC =105°,∠C =45°,求∠EAD 的度数.26.某服装店用960元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.()1该服装店第一次购买了此种服装多少件?()2两次出售服装共盈利多少元?27.如图,点D 在射线BC 上运动,ABC 与ADE 都是以点A 为直角顶点的等腰直角三角形.(1)在图1中证明:①ABD ACE △△≌;②EC BC ⊥;(2)如图2,当点D 在BC 的延长线上时,若6BC =,()6BD x x =>,CDE △的面积为y ,试求出y 与x 之间的关系式.参考答案1.B【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A.是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.B【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000011=71.110-⨯,故选B .【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【分析】根据多边形的内角和公式,计算可得结论.【详解】解:∵(n ﹣2)×180=1800,∴n =12.故选:D .【点睛】本题考查了多边形的内角和,掌握多边形的内角和公式是解决本题的关键.4.B【分析】根据合并同类项、积的乘方、同底数幂的除法、单项式与单项式的乘法法则逐项分析即可.【详解】A.2x 与3y 不是同类项,不能合并,故不正确;B.()3263x y x y =,正确;C.826x x x ÷=,故不正确;D.32522x x x ⋅=,故不正确;故选B .【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.5.D【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a 的值.【详解】解:∵x 2-ax+16=x 2-ax+42,∴-ax=±2•x•4,解得a=8或-8.故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.6.B【分析】根据分式的值为0的条件,即可求解.【详解】解:根据题意得:40x +=且10x -≠,解得:4x =-.故选:B【点睛】本题主要考查了分式的值为0的条件,熟练掌握分式的值为0的条件——分子等于0,且分母不等于0是解题的关键.7.C【分析】根据三角形的高的定义,即可判断,从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高.【详解】A 选项不是三角形的高,不符合题意;B 选项是AC 边上的高,不符合题意;C 选项是BC 边上的高,符合题意;D 选项不是三角形的高,不符合题意;故选C .【点睛】本题考查了三角形的高的定义,理解定义是解题的关键.8.D【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:设这个三角形的第三边为x .根据三角形的三边关系定理,得:9-4<x <9+4,解得5<x <13.故选:D .【点睛】本题考查了三角形的三边关系定理.掌握构成三角形的条件:两边之和>第三边,两边之差<第三边是解决问题的关键.9.A【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL 证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD 或AC=AD.【详解】解:需要添加条件为:BC=BD 或AC=AD,理由为:若添加的条件为:BC=BD在Rt △ABC 与Rt △ABD 中,BC BD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL);若添加的条件为:AC=AD在Rt △ABC 与Rt △ABD 中,AC AD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL).故选:A.【点睛】本题考查了利用HL 公理判定直角三角形全等,熟练运用HL 公理是解题的关键10.D【详解】解:∵Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,∴AB=2BC=4(cm ).∵BC=2cm ,D 为BC 的中点,动点E 以1cm/s 的速度从A 点出发,∴BD=12BC=1(cm ),BE=AB ﹣AE=4﹣t (cm ),若∠DBE=90°,∵∠ABC=60°,∴∠BDE=30°.∴BE=12BD=12(cm ).当A→B 时,t=4﹣0.5=3.5;当B→A 时,t=4+0.5=4.5.若∠EDB=90°时,∵∠ABC=60°,∴∠BED=30°.∴BE=2BD=2(cm ).当A→B 时,∴t=4﹣2=2;当B→A 时,t=4+2=6(舍去).综上可得:t 的值为2或3.5或4.5.故选D .11.3【分析】关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,先求出a 、b 的值,然后得到答案.【详解】解:∵点(),1A a 与点()3,B b -关于x 轴对称,∴3a =-,1b =-,∴3(1)3ab =-⨯-=;故答案为:3.【点睛】本题考查了关于x 轴对称点的坐标,解题的关键是掌握点的坐标的变化规律.12.acb【分析】分式的乘法法则:把分子的积作为积的分子,把分母的积作为积的分母,再约分即可.【详解】解:22,c a ac a bc b⋅=故答案为:ac b【点睛】本题考查的是分式的乘法运算,掌握“分式的乘法运算的运算法则”是解题的关键.13.(1)m m +【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式的技巧正确计算是解题关键.14.x≠﹣3【分析】根据分式有意义的条件可得:x+3≠0,再解即可.【详解】解:由题意得:x+3≠0,解得:x≠﹣3,故答案为:x≠﹣3.【点睛】本题考查了分式有意义的条件,熟知分母不为零是解题的关键.15.32##1.5【分析】根据负整指数幂和0次幂的运算法则计算即可.【详解】解:原式=112+=32故答案为:32【点睛】本题主要考查负整指数幂和0次幂的运算,掌握相关运算方法是解题的关键.16.48【分析】由题意知28AC AE B D DAE BAC =∠=∠∠=∠=︒,,,AEC ACE ∠=∠,由三角形的内角和定理得AEC ∠的值,三角形的外角的性质得D ∠,进而得到B Ð的值.【详解】解:∵ABC ADE△≌△∴28AC AE B D DAE BAC =∠=∠∠=∠=︒,,∴AEC ACE∠=∠∵++180AEC ACE BAC ∠∠∠=︒∴180762BAC AEC ︒-∠∠==︒∵AEC D DAE∠=∠+∠∴48D ∠=︒∴48B ∠=︒故答案为:48︒.【点睛】本题考查了三角形全等的性质,等边对等角,三角形的内角和定理,三角形外角的性质等知识.解题的关键在于对知识的灵活运用.17.8【分析】连接AD ,AM ,由EF 是线段AB 的垂直平分线,得到AM=BM ,则△BDM 的周长=BD+BM+DM=AM+DM+BD ,要想△BDM 的周长最小,即要使AM+DM 的值最小,故当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,由此再根据三线合一定理求解即可.【详解】解:如图所示,连接AD ,AM ,∵EF 是线段AB 的垂直平分线,∴AM=BM ,∴△BDM 的周长=BD+BM+DM=AM+DM+BD ,∴要想△BDM 的周长最小,即要使AM+DM 的值最小,∴当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,∵AB=AC ,D 为BC 的中点,∴AD ⊥BC ,122BD BC ==,∴1122ABC S AD BC =⋅=△,∴AD=6,∴△BDM 的周长最小值=AD+BD=8,故答案为:8.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A 、M 、D 三点共线时,AM+DM 最小,即为AD .18.3【分析】直接用全等三角形的性质可得CF=EF-CE=BC-CE ,然后进行求解即可;【详解】∵△ABC ≌△DEF ,∴BC=EF ,∵BC=7,EC=4,∴CF=7-4=3,故答案为:3.【点睛】本题考查了全等三角形的性质以及应用,正确理解全等三角形的性质是解题的关键.19.9x -【分析】由平方差公式、整式乘法、整式的加减运算进行化简,即可得到答案.【详解】解:()()()2233199x x x x x x x x +---=--+=-.【点睛】本题考查了整式的混合运算,解题的关键是掌握运算法则,正确的进行化简.20.1x =-【分析】方程两边同乘以()2x x -,将分式方程化为整式方程,再解一元一次方程,最后要检验.【详解】解:方程两边同乘()2x x -,得23x x -=,移项及合并同类项,得22x =-,系数化为1,得1x =-,经检验,1x =-是原分式方程的解,∴原分式方程的解是1x =-.【点睛】本题考查解分式方程,是重要考点,掌握相关知识是解题关键.21.12x x --,2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可.【详解】解:原式=2(1)13()(1)(1)11x x x x x x -+÷-+-++=1211x x x x --÷++=1112x x x x -+⋅+-=12x x --,∵x≠±1且x≠2,∴x=3,则原式=3132--=2.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.22.见详解【分析】由题意易得BC EF =,然后可根据“SAS”证明三角形全等,进而根据全等三角形的性质可求证.【详解】证明:∵BF EC =,CF CF =,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌,∴ACB DFE ∠=∠,∴//AC DF .23.(1)见解析(2)8【分析】(1)利用基本作图作DE 垂直平分AC ;(2)根据线段垂直平分线的性质得到EA=EC ,然后利用等线段代换得到△ABE 的周长=AB+BC .(1)解:如图,ED为所作;(2)解:∵DE 垂直平分AC ,∴EA=EC ,∴△ABE 的周长=AB+BE+AE=AB+BE+EC=AB+BC=3+5=8.【点睛】本题考查了作图——基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.24.(1)见解析(2)3【分析】(1)根据AAS 可证明ABD DCE ≌△△.(2)根据ABD DCE ≌△△,得出AB =DC =5,CE =BD =3,求出AC =5,则AE 可求出.(1)证明:∵AB AC =,∴B C ∠=∠.又∵12∠=∠,AD DE =,∴ABD DCE ≌△△(AAS ).(2)解:∵ABD DCE ≌△△,∴5AB DC ==,2CE BD ==.∵AC AB =,∴5AC =.∴523AE AB EC =-=-=.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.25.(1)作图见解析;(2)30.︒【分析】(1)以A 为圆心,任意长为半径画弧,得与,AB AC 的两个交点,再分别以这两个交点为圆心,大于这两个交点间的距离的一半为半径画弧,得两弧的交点,以A 为端点,过两弧的交点作射线AE 交BC 于E ,即可得到答案;(2)根据三角形的内角和定理求解BAC ∠,再利用角平分线的定义求解BAE ∠,再利用三角形的高的含义与外角的性质求解BAD ∠,最后利用角的和差关系可得答案.【详解】解:(1)如图,射线AE 即为所求,(2)10545ABC C ∠=︒∠=︒ ,,1801054530BAC ∴∠=︒-︒-︒=︒,AE ∵平分BAC ∠,1152EAB BAC ∴∠=∠=︒,105ABC AD ∠=︒ ,为高,1059015BAD ABC ADC ∴∠=∠-∠=︒-︒=︒,151530.EAD EAB BAD ∴∠=∠+∠=︒+︒=︒【点睛】本题考查的是三角形的高的含义,角平分线的定义与作图,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.26.(1)该服装店第一次购买了此种服装30件;(2)两次出售服装共盈利960元【分析】(1)设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据单价总价数量结合第二次购进单价比第一次贵5元,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据销售单价x 销售数量两次进货总价利润,即可求出结论.【详解】解:()1设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据题意得:222096052x x-=,解得:x 30=,经检验,x 30=是原方程的根,且符合题意.答:该服装店第一次购买了此种服装30件.()()246303029602220960(⨯+⨯--=元).答:两次出售服装共盈利960元.【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算.27.(1)①证明见解析;②证明见解析(2)213(6)2y x x x =->【分析】(1)①由等腰直角三角形的性质得:90BAC ∠=︒,90DAE ∠=︒,AB AC =,AD AE =,和同角的余角相等可证BAD CAE ∠=∠,继而利用边角边可证得ABD ACE △△≌②根据全等三角形的性质和等腰三角形的性质可证(2)证明ABD ∆≌ACE ,根据全等三角形的性质得到BD EC =,45ACE B ∠=∠=︒,根据三角形的面积公式,求出y 与x 之间的关系式.(1)证明:①ABC ∆ 与ADE ∆都是以点A 为直角顶点的等腰直角三角形90BAC ∴∠=︒,90DAE ∠=︒,AB AC =,AD AE =90BAD DAC CAE DAC ∴∠+∠=∠+∠=︒BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆②ABD ∆ ≌ACE ∆,45ACE B ∴∠=∠=︒.45ACB =︒∠ ,90ECD ∴∠=︒,EC BC ∴⊥;(2)解:90BAD DAC CAE DAC ∠-∠=∠-∠=︒ BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆BD EC ∴=,45ACE B ∠=∠=︒45ACB =︒∠ 90ECD ∴∠=︒EC BC∴⊥12ECD S CD EC∆∴=⋅211(6)3(6)22y x x x x x ∴=-⋅=->.。

人教版八年级上册数学期末试卷及答案

人教版八年级上册数学期末试卷及答案

人教版八年级上册数学期末试题一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.以下列数值为长度的各组线段中,不能围成三角形的是()A .2,3,4B .3,5,6C .2,2,5D .4,4,63.下列计算正确的是()A .22a a a ⋅=B .330a a ÷=C .()3253ab a b =D .221a a -=4.下列分式是最简分式的()A .223ac a bB .23aba a -C .22ab a b ++D .222a aba b --5.若224x mx ++是完全平方式,则m 的值是()A .16±B .4±C .2±D .1±6.已知图中的两个三角形全等,则∠1的度数为()A .43B .55C .82D .677.等腰三角形的周长为10cm ,其中一边长为4cm ,则该等腰三角形的底边长为()A .5cmB .4cmC .3cm 或4cmD .2cm 或4cm 8.一个多边形的内角和比四边形内角和多360 ,则这个多边形是()A .五边形B .六边形C .七边形D .八边形9.若2x y +=,15xy =,则()()22x y --的值是()A .11B .14C .15D .1810.如图,已知△ABC 中,D 、E 分别为BC 、AC 上的点,且满足AB AD CD CE ===,若∠36BAD = ,则∠ADE 的度数为()A .36°B .35°C .26°D .72°二、填空题11.因式分解:224a b -=_____.12.点()2,3P -关于x 轴对称的点的坐标为_________.13.数据0.0000001米,用科学记数法表示为_______米.14.甲完成一项工作需t 小时,乙完成同样工作比甲少用1小时,设工作总量为1,则乙的工作效率为__________.15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,AB=5,CD=2,则△ABD 的面积是________.16.如图,已知AD ∥BC ,∠BAD=90°,∠C=60°,CB=CD ,若AD=1,则BC=____.三、解答题17.计算:(1)()()3421x x +-(2)2(2)(2)()m n m n m n +---18.解分式方程:(1)15122x x x +=++(2)2351311x x x x +=---19.先化简,再求值:()22212•21121a a a a a a a -+-÷++--,其中12a =.20.如图,点A 、E 、B 、D 在同一直线上,AC 、DF 相交于点G ,FE AD ⊥,垂足为E ,CB AD ⊥垂足为B ,且FE CB =,AE BD =.求证:△ABC ≌△DEF .21.如图,在平面直角坐标系中,已知A (3,3),B (1,1),C (4,-1).(1)画出△ABC 关于y 轴的轴对称图形△A 1B 1C 1,并写出A 1、B 1、C 1坐标;(2)在(1)的条件下,连接AA 1、AB 1,直接写出△AA 1B 1的面积.22.如图,D 、E 分别是AB 、AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,求证:AC=AB .23.某学校为美化校园,安排甲、乙两工程队对面积为990m 2的区域进行绿化.已知甲队每天能完成的绿化面积是乙队每天能完成绿化面积的2倍,若先由乙队完成面积的13,再由甲、乙共同完成,时间共用11天.问甲、乙两工程队每天能完成绿化的面积分别是多少平方米?24.如图,正方形ABCD 的边长为4,动点P 从点A 开始沿A→D→C 的方向,以每秒2个单位的长度运动,动点Q 从点B 出发,沿B→C→D 以每秒1个单位的长度运动.当点P 到达C 点后,P 、Q 两点同时停止运动.设运动时间为t ,△BPQ 的面积为S .(1)填空:当动点P 到达D 点时,t=;(2)请用含t 的式子表示面积S .25.轴对称变换是几何证明中重要的图形变换之一,即寻找对称轴,将对称轴的一侧图形进行翻折,来构造满足条件的几何辅助线.例:在△ABC 中,过点A 作AD ⊥BC 于点D ,若AC+CD=BD ,则∠B 与∠C 满足什么关系?分析:将△ADC 沿直线AD 翻折,得到△ADE ,通过相关定理即可得到结论.(1)请猜想∠B 与∠C 的关系,并说明理由;(2)如图3,A 、D 为线段BC 同侧两点,∠BAC=∠BDC=60°,∠ACB+12∠ACD=90°,求证:AB=AC+CD .26.如图,在平面直角坐标系中,点(0)A m ,、点(,0)B n 分别在y 轴、x 轴的正半轴上,若m 、n 满足()()2240m n n -+-=.(1)填空:m =,n =;(2)如图,点P 是第一象限内一点,连接AP 、OP ,使∠APO=45°.过点B 作BC ⊥OP 于点D ,交y 轴于点C ,证明:DP=DB .(3)若在线段OA 上有一点M (0t ,),连接BM ,将BM 绕点B 逆时针旋转90°得到BN ,连接AN 交x 轴于点E ,请直接写出点E 的坐标(用含有t 的代数式表示).参考答案1.A2.C3.D4.C5.C6.C7.D8.B9.C10.A11.()()22a b a b +-【详解】解:原式=(a+2b)(a-2b).故答案为:(a+2b )(a-2b )12.()2,3--【详解】解:点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.13.7110-⨯【详解】解:70.0000001110-=⨯故答案为:7110-⨯14.1t-1【详解】解:∵乙的工作时间为(t-1),工作总量为1,∴乙的工作效率为11t -.故答案为:11t -.15.5【详解】解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE=∠DAC ,∠DEA=∠DCA=90°,DA=DA ,∴△DAE ≌△DAC (AAS ),∴DE=DC=2,∴△ABD 的面积=12×AB×DE=12×5×2=5,故答案为:5;16.2【分析】连接BD ,证明△BCD 是等边三角形,可得BD =BC ,∠DBC =60°,求出∠ABD =30°,然后根据含30°角的直角三角形的性质求出BD 即可.【详解】解:连接BD ,∵∠C=60°,CB=CD ,∴△BCD 是等边三角形,∴BD =BC ,∠DBC =60°,∵AD ∥BC ,∠BAD=90°,∴∠ABC =90°,∴∠ABD =30°,∵∠BAD=90°,AD=1,∴BD =2AD =2,∴BC =BD =2,故答案为:2.17.(1)2654x x +-(2)22322m mn n +-【分析】(1)根据多项式乘多项式进行计算即可;(2)运用平方差与完全平方公式进行计算即可.(1)解:()()3421x x +-=26834x x x +--=2654x x +-(2)2(2)(2)()m n m n m n +---=()222242m n m mn n ---+=222242m n m mn n --+-=22322m mn n +-18.(1)-3x =(2)12x =-【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(1)解:15122x x x +=++,方程两边同时乘以21x +()得:25x =+,解得-3x =,把-3x =代入2123140x +=-+=-≠()(),所以-3x =是原方程的解;(2)解:2351311x x x x +=---,方程两边同时乘以(1)(1)x x -+得:()()()3151311x x x x x -+=+-+-,化简得:84x -=,解得12x =-,把12x =-代入()()1131111224x x ⎛⎫⎛⎫-+=---+=- ⎪⎪⎝⎭⎝⎭≠0,所以原方程的解为12x =-.19.()211a a -+,23-【分析】根据分式的乘除法可以化简题目中的式子,再把a 值代入化简式子中求解即可.【详解】解:()22212•21121a a a a a a a -+-÷++--=()()222121••121a a a a a a --+--+=()211a a -+,把12a =代入原式得原式=121122133122⎛⎫⨯- ⎪-⎝⎭==-+.20.见解析【详解】证明:∵EF ⊥AD ,CB ⊥AD ,∴∠ABC=∠DEF=90°,又∵AE=BD ,∴AE+EB=BD+EB ,∴AB=DE ,在△ABC 与△DEF 中FE CB ABC DEF AB DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).21.(1)图见解析,A 1(-3,3),B 1(-1,1),C 1(-4,-1)(2)△AA 1B 1的面积为6【分析】(1)直接利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)利用三角形面积公式进而得出答案.(1)解:如图所示:△A 1B 1C 1,即为所求;A 1(-3,3),B 1(-1,1),C 1(-4,-1);(2)解:△AA 1B 1的面积为:12×6×2=6.22.证明见解析【分析】连接BC ,由CD 垂直于AB ,且D 为AB 中点,即CD 所在直线为AB 的垂直平分线,根据线段垂直平分线上的点到线段两端点的距离相等,得到AC=BC ,又E 为AC 中点,且BE 垂直于AC ,即BE 所在的直线为AC 的垂直平分线,同理可得BC=AB ,等量代换即可得证.【详解】证明:如图,连接BC∵CD ⊥AB 于D ,D 是AB 的中点,即CD 垂直平分AB ,∴AC=BC (中垂线的性质),∵E 为AC 中点,BE ⊥AC ,∴BC=AB (中垂线的性质),∴AC=AB .23.甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米【分析】设乙工程队每天能完成绿化的面积为x 平方米,根据“由甲、乙共同完成,时间共用11天”列分式方程求解即可.【详解】解:设乙工程队每天能完成绿化的面积为x 平方米,则甲工程队每天能完成绿化的面积为2x 平方米,由题意得:1299099033112x x x⨯⨯+=+,整理得:33022011x x +=,即55011x =,方程两边同时乘以x ,得,11550x =,解得50x =,验根:当50x =时分母不为0,所以50x =是原方程的解,答:甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米.24.(1)2(2)22(02)4(24)t x S t t x <≤⎧=⎨-+<≤⎩【分析】(1)用AD 的长除以动点P 的速度可求出t ;(2)分0<t≤2时和2<t≤4时两种情况,分别利用三角形的面积公式列式计算即可.(1)解:∵正方形ABCD 的边长为4,动点P 的速度为每秒2个单位的长度,∴t =4÷2=2,故答案为:2;(2)当0<t≤2时,点P 在线段AD 上,如图:∵BQ =t ,∴114222S BQ CD t t =⋅=⨯=;当2<t≤4时,点P 在线段CD 上,如图:∵BQ =t ,CP =8-2t ,∴()21182422S BQ CP t t t t =⋅=⨯-=-+;综上所述:()()2202424t t S t t t ⎧<≤⎪=⎨-+<≤⎪⎩.25.(1)∠C=2∠B ,证明见解析(2)见解析【分析】(1)在DB 上截取一点E ,使DE=DC ,利用SAS 证明△ADE ≌△ADC ,推出AE=AC ,∠AED=∠C ,再证明BE=AE ,利用三角形的外角性质即可得到∠C=2∠B ;(2)延长AC 至E ,使AE=AB ,设∠ACD=2α,得到∠BCE=90°+α,∠BCD=90°-α+2α=90°+α,再推出△ABE 是等边三角形,利用AAS 证明△BCD ≌△BCE ,据此即可证明AB=AC+CD .(1)解:结论:∠C=2∠B ,证明:在DB 上截取一点E ,使DE=DC ,连接AE ,∵AD⊥BC,∴∠ADC=∠ADE=90°,在△ADE与△ADC中,AD AD ADE ADCDE DC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADC(SAS),∴AE=AC,∠AED=∠C,∴BD=BE+ED,又∵BD=AC+CD,∴AC=BE,∴BE=AE,∴∠B=∠BAE,∴∠AED=2∠B,∴∠C=2∠B;(2)证明:延长AC至E,使AE=AB,连接BE,设∠ACD=2α,∵∠ACB+12∠ACD=90°,则∠ACB=90°-α,∴∠BCE=90°+α,∴∠BCD=90°-α+2α=90°+α,∵∠BAC=60°,BA=BE ,∴△ABE 是等边三角形,∴∠E=60°,AB=AE ,在△BCD 与△BCE 中,D E BCD BCE BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△BCE(AAS),∴CD=CE ,∵AE=AC+CE=AC+CD ,∴AB=AC+CD .26.(1)4,4m n ==(2)见解析(3)E (2-12t ,0)【分析】(1)根据()()2240m n n -+-=得到040m n n -=⎧⎨-=⎩即可求解;(2)过点A 向OP 作垂线交于点E ,证明△AOE ≌△BOD ,进而可得到结论;(3)过点N 作NC ⊥x 轴交于点C ,可证△BOM ≌△BCN ,之后再证明△AOE ≌△ECN ,即可得到结论;(1)解:()()2240m n n -+-= ,040m n n -=⎧∴⎨-=⎩,4m n ∴==,故答案为:4,4m n ==;(2)证明:过点A 向OP 作垂线交于点E ,则∠AEP=90°,∵∠AOP+∠POB=90°,∠AOP+∠OAE=90°,∴∠POB=∠OAE ,又OA=OB ,∠AEO=∠BDO=90°,∴△AOE ≌△BOD ()AAS ,∴DB=OE ,AE=OD ,又∵∠APO=45°,∠AEP=90°,∴AE=EP,∴EP=OD ,∵OE=OD+DE ,DP=DE+EP ,∴OE=DP ,∴DP=DB ,(3)解:如图,过点N 作NC ⊥x 轴交于点C ,由题可知BM BN =,90MBN MOB ∠=∠=︒,90MBO OBN ∠+∠=︒ ,90OBN CNB ∠+∠=︒,MBO CNB ∴∠=∠,∴△BOM ≌△BCN ()AAS ,OM BC t ∴==,OB NC =,OA OB = ,OA NC ∴=,90AOC NCE ∠=∠=︒ ,OEA CEN ∠=∠,∴△AOE ≌△ECN ()AAS ,12OE EC OC ∴==,4OC OB CB t =-=- ,∴OC=4-t ,∴OE=12OC=2-12t ,∴E (2-12t ,0).。

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试卷一、单选题1.下列选项中,属于最简二次根式的是()A B C D2x的取值范围是()A .4x >B .4x <C .4x ≥D .4x ≤3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A .6B .7C .8D .94.在ABC 中,D ,E 分别是AB ,AC 的中点,若10BC =,12AB =,则DE 的长为()A .4B .5C .6D .75.如图,每个小正方形的边长都是1,A ,B ,C 分别在格点上,则ABC ∠的度数为()A .30°B .45︒C .50︒D .60︒6.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是20.55s =甲,20.65s =乙,20.50s =丙,则成绩最稳定的是()A .甲B .乙C .丙D .无法确定7.小明向东走80m 后,沿方向A 又走了60m ,再沿方向B 走了100m 回到原地,则方向A 是A .南向或北向B .东向或西向C .南向D .北向8.若函数3y x m =-+的图象如图所示,则函数1y mx =+的大致图象是()A .B .C .D .9.如图,将边长分别是4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则BF 的长是()A .2B .3CD .410.已知矩形的对角线为1,面积为m ,则矩形的周长为()A .212m -B .212m +C .D .二、填空题11.在ABCD 中,50A ∠=︒,则C ∠=______.12.若0a >,0b >,则0ab >.的逆命题为______(填“真”或“假”)命题.13.如图,在ABC 中,90ABC ∠=︒,AD DC =,4BD =,则AC =______.14.如图,已知直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,若12y y <,则x 的取值范围为______.15.一组数据4,2,x ,6,3的平均数是4,则这组数据的中位数是______.16.观察311111122=+-=11111236=+-=,111113412=+-==_____;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是______.17.计算:三、解答题18.在Rt ABC 中,90C ∠=︒,30A ∠=︒,3AC =,求AB 的长.19.如图,在ABCD 中,点E ,F 分别在AB ,DC 上,且AE CF =.求证:四边形DEBF 是平行四边形.20.某公司有15名员工,他们所在部门及相应每人所创年利润如表所示.部门人数每人所创年利润/万元A53B28C17D44E39(1)这个公司平均每人所创年利润是多少?(2)公司规定,个人所创年利润由高到低前40%的人可以获奖.试判断D部门的员工能否获奖,并说明理由.21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的中线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB为邻余线,E,F在格点上.22.A、B两家物流公司为了吸引顾客,推出不同的优惠方案,其中A公司原运费是5元/千克,现按8折计费.B公司原运费是6元/千克,优惠方案为:10千克以内不优惠,超过10千克部分按5折计费.(1)以x(单位:千克)表示商品重量,y(单位:元)表示运费,分别就两家公司的优惠方案写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中两个函数的大致图象.23.如图,直线6y ax =+与直线2y x =相交于点(),4A m ,且与x 轴相交于点B .(1)求a 和m 值;(2)求AOB 的边AB 上的高.24.已知在平面直角坐标系中,直线28y x =-与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 的坐标;(2)平移线段AB ,使得点A 、B 的对应点M ,N 分别落在直线1l :36y x =+和直线2l :4y x =+上,求M ,N 的坐标;(3)试证明直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.25.正方形ABCD 的CD 边长作等边△DCE,AC 和BE 相交于点F ,连接DF.求AFD 的度数.26.下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少?(2)计算这些车辆的平均数度;(3)车速的中位数是多少?参考答案1.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A,是最简二次根式,符合题意;B==C=能化简,不是最简二次根式,不符合题意;D=故选A.【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.C【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】由题意得,40x-≥,解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:∵6,7,9,8,9这5个数中9出现了两次,出现的次数最多,∴这组数据的众数为9,故选D.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义.4.B【解析】【分析】由于DE分别是AB、AC的中点,根据中位线性质可知中位线是底边长度的一半.【详解】∵DE分别是AB、AC的中点∴DE为△ABC的中位线∴DE=12BC=1102⨯=5故选B【点睛】本题考查中位线的判定和性质,掌握这两点是解体的关键.5.B 【解析】【分析】利用勾股定理的逆定理证明△ACB 为等腰直角三角形即可得到∠ABC 的度数.【详解】解:连接AC ,由勾股定理得:AC =BC AB =∵AC 2+BC 2=AB 2=10,∴△ABC 为等腰直角三角形,∴∠ABC =45°,故选B .【点睛】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.6.C 【解析】【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.【详解】解:由于222=0.50=0.55=0.65SS S <<甲乙丙,∴成绩较稳定的是丙.故选C .【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.A 【解析】【分析】设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,由题意得OC =80m ,CD =60m ,OD =100m ,然后利用勾股定理的逆定理得到∠OCD =90°即可求解.【详解】解:设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,∴由题意得OC =80m ,CD =60m ,OD =100m ,∴2222226080100OC CD OD +=+==,∴∠OCD =90°,∵OC 的方向为东,∴CD 的方向为南或北,即A 的方向为南或北,故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【解析】【分析】根据一次函数的图象的性质确定m 的符号,进而解答即可.【详解】解:由函数3y x m =-+的图象可得:0m <,所以函数1y mx =+的大致图象经过第一、二、四象限,故选:D .【点睛】本题考查了一次函数的图象和性质,关键是根据一次函数的图象的性质确定m 的符号.9.B 【解析】【分析】由折叠的性质可得出AF =CF ,设BF =m ,则AF =8−m ,在Rt △ABF 中,利用勾股定理可得出关于m 的方程,解之即可得出结论.【详解】解:由折叠的性质可知:AF =CF .设BF =m ,则AF =CF =8−m ,在Rt △ABF 中,∠ABF =90°,AB =4,BF =m ,AF =8−m ,∴222AF AB BF =+,即()22284m m -=+,∴m =3.故选:B .【点睛】本题考查了翻转变换、矩形的性质以及勾股定理,在Rt △ABF 中,利用勾股定理找出m (AF 的长)的方程是解题的关键.10.C 【解析】【分析】设矩形的长、宽分别为a 、b ,根据矩形的性质和面积、周长公式计算即可.【详解】解:设矩形的长、宽分别为a 、b ,∵矩形的对角线为1,面积为m ,∴221a b +=,ab m =,∴a b +=∴矩形的周长为()2a b +=故选:C .【点睛】本题考查矩形的性质,关键是用22a b +和ab 表示出a b +.11.50°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠C =50°.故答案为:50°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.假【解析】【分析】根据逆命题的定义:把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题,进行求解即可.【详解】解:若0a >,0b >,则0ab >的逆命题为:若0ab >,则0a >,0b >,这是一个假命题,故答案为:假.【点睛】本题主要考查了判定命题的真假和命题的逆命题,解题的关键在于能够熟练掌握逆命题的定义.13.8【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:∵∠ABC =90°,AD =DC ,BD =4,∴AC =2BD =8.故答案为:8.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.14.1x <【解析】【分析】根据函数图像,写出直线111y k x b =+的图像在直线222y k x b =+的下方所对应的自变量的范围即可.【详解】由题意知,直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,当12y y <时,1x <,故答案为:1x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.4【解析】【分析】根据平均数的定义可以先求出x 的值,再根据中位数的定义求出这组数的中位数即可.【详解】解:利用平均数的计算公式,得(4+2+x +6+3)=4×5,解得x =5,这组数据为2,3,4,5,6,中位数为4.故答案为:4.【点睛】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.16.1120()211n nn n+++【解析】【分析】利用题中的等式可得第四个式子的结果为11145+-,第n个二次根式的结果为1111n n+-+,然后进行分式的加减运算即可.【详解】111111112122+-=+=⨯;111111123236+-=+=⨯;1111111343412+-=+=⨯;1111111454520=+-=+=⨯;第n()()()()2111111111n n n n n nn n n n n n+++-+++-==+++.故答案为1120;()211n nn n+++.【点睛】本题考查了二次根式的加减混合运算,列代数式.找出结果与序号之间的关系是解题的关键.17.【解析】【分析】根据实数的计算规则与顺序按步骤计算即可,注意结果能开出来的要开出来.【详解】解:原式===+故答案为4362+【点睛】本题考查实数的混合运算,掌握运算定律和顺序是解题关键.18.23【解析】【分析】由30°角的直角三角形的性质可得12BC AB =,再根据勾股定理可求解.【详解】解:∵90C ∠=︒,30A ∠=︒∴12BC AB =在Rt ABC 中,3AC =22222132AB BC AC AB ⎛⎫=+=+ ⎪⎝⎭解得23AB =【点睛】本题主要考查含30°角的直角三角形的性质,勾股定理,由含30度角的直角三角形的性质得12BC AB =是解题的关键.19.见解析【解析】【分析】根据一组对边平行且相等判断四边形DEBF 是平行四边形即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,//EB DF .又AE CF =,∴AB AE CD CF-=-.即EB DF=.∴四边形DEBF是平行四边形.【点睛】本题主要考查了矩形的性质,平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定定理进行求解.20.(1)5.4万元;(2)不能,理由见解析【解析】【分析】(1)利用加权平均数,即可求解;(2)算出能获奖的人数,然后个人所创年利润由高到低进行排列,进而即可求解.【详解】解:(1)公司平均每人所创年利润=532817443981 5.41515⨯+⨯+⨯+⨯+⨯==(万元)答:这个公司平均每人所创年利润是5.4万元;(2)D部门员工不能获奖,理由如下:获奖人数为:1540%6⨯=(人)个人所创年利润由高到低分别为E部门3人,B部门2人,C部门1人,共6人,所以D部门不能获奖.【点睛】本题主要考查加权平均数以及统计表,准确找出表格中的相关数据是解题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)根据邻余四边形的概念画出图形即可.【详解】(1)证明:∵AB=AC AD是△ABC的中线∴AD⊥BC∴∠ADB=90°∴∠FAB+∠B =90°∴四边形ABEF 是邻余四边形(2)如图所示,即为所求.【点睛】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质,读懂定义并明确相关性质及定理是解题的关键.22.(1)A 公司:4y x =(0x ≥),B 公司:()()601033010x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)见解析【解析】【分析】(1)根据两个公式的优惠政策进行求解即可得到答案;(2)根据(1)求得的结果,在坐标系中描点连线画出函数图像即可【详解】解:(1)A 公司:4y x =(0x ≥),B 公司:()()601033010y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(2)如图所示,即为所求.【点睛】本题主要考查了画一次函数图像,求函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.23.(1)1a =-,2m =;(2)32【解析】【分析】(1)先把A 点坐标代入直线2y x =求出A 点的坐标,然后代入到6y ax =+求解即可;(2)过点A 作AC OB ⊥于点C ,然后求出B 点的坐标,即可得到AB 的长,设AOB 的边AB上的高为h ,根据1122AOB S OB AC AB h =⋅=⋅△求解即可.【详解】解:(1)把点(),4A m 代入2y x =得:42m =,∴2m =把点()2,4A 代入6y ax =+得426a =+,∴1a =-;(2)把1a =-代入6y ax =+得6y x =-+令0y =,得6x =∴()6,0B ,6OB =.过点A 作AC OB ⊥于点C ,∵()2,4A ∴4AC =,2OC =,4CB =在Rt ACB 中,224442AB =+=设AOB 的边AB 上的高为h ,∴1116412222AOB S OB AC AB h =⋅=⋅=⨯⨯=△116422h ⨯=⨯⨯,解得h =∴△AOB 的边AB 上的高为【点睛】本题主要考查了求一次函数解析式,两直线的交点问题,三角形的高,一次函数与坐标轴的交点问题,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)()4,0A ,()0,8B -;(2)()1,9M ,()3,1N -;(3)见解析【解析】【分析】(1)与x 相交时,y =0;与y 轴相交时,x =0;据此解出第一问;(2)设其中一个变化后的点的坐标为未知数,再根据平移的数量关系和一次函数等量关系建立等式,解出未知数从而求出M 、N 坐标.(3)根据直线的解析式,求出直线恒过的点的坐标,再证明这个坐标就是平行四边形对角线的交点,从而证明该直线横平分平行四边形面积.【详解】解:(1)在直线28y x =-中,令0y =得280x -=,4x =,∴()4,0A 令0x =,∴8y =-,∴()0,8B -(2)点N 在直线2l 上,可设(),4N t t +,又线段MN 是由线段AB 平移得到,由()0,8B -移动到点(),4N t t +,则()4,0A 相应移动到点()4,48M t t +++把()4,48M t t +++代入直线1l ,得()12346t t +=++解得3t =-∴()1,9M ,()3,1N -另解:设()4,0A 移动到点(),M m n ,则()0,8B -相应移动到点()4,8N m n --,分别代入直线解析式中,得方程组36448m n m n +=⎧⎨-+=-⎩解得19m n =⎧⎨=⎩,∴()1,9M ,()3,1N -(3)∵()11111122222y kx k kx k k x ⎛⎫=+-=+-=-+ ⎪⎝⎭当12x =时,12y =∴直线过定点11,22⎛⎫ ⎪⎝⎭∵线段AB 平移得到线段MN∴四边形ABNM 是平行四边形∵()4,0A ,()3,1N -ABNM 的对角线的交点为4301,22-+⎛⎫ ⎝⎭,即11,22⎛⎫ ⎪⎝⎭∴直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.【点睛】本题考查平面直角坐标系中的平移问题,一次函数的表达式,平行四边形的性质,掌握基础知识是解题关键.25.60°【解析】【详解】根据正方形及等边三角形的性质求得∠ABF ,∠BAF 的度数,再根据外角的性质即可求得答案解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形,∴BC=BE,∴∠BEC=∠BCF=15°,在△CBF和△ABF中,BF=BF,∠CBF=∠ABF,BC=BA,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠FAB=15°+45°=60°“点睛”本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键. 26.(1)车速的众数是42千米/时;(2)这些车辆的平均数度是42.6千米/时;(3)车速的中位数是42.5千米/时.【解析】【详解】试题分析:(1)根据条形统计图所给出的数据求出出现的次数最多的数即可,(2)根据加权平均数的计算公式和条形统计图所给出的数据列出算式计算即可,(3)根据中位数的定义求出第10和11个数的平均数即可.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.考点:条形统计图;加权平均数;中位数;众数.21。

人教版八年级上学期数学《期末测试题》及答案

人教版八年级上学期数学《期末测试题》及答案
12.如图,△ABC中,AB=AC,BC=5, , 于D,EF垂直平分AB,交AC于F,在EF上确定一点P使 最小,则这个最小值为()
A.3B.4C.5D.6
二、填空题
13.已知4y2+my+9是完全平方式,则m=____.
14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.
15.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.
B、右边不是整式积的形式,不是因式分解,故本选项错误;
C、是符合因式分解的定义,故本选项正确;
D、右边不是整式积的形式,不是因式分解,故本选项错误;
故选C.
点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.
12.如图,△ABC中,AB=AC,BC=5, , 于D,EF垂直平分AB,交AC于F,在EF上确定一点P使 最小,则这个最小值为()
15.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.
[答案]100°
[解析]
[分析]
依据轴对称的性质可得到∠C=∠C′,然后依据三角形的内角和定理求解即可.
[详解]解:∵△ABC与△A′B′C′关于直线l对称,
∴∠C=∠C′=30°.
∴∠B=180°-∠A-∠C=180°-50°-30°=100°.
26.如图,在四边形 中, , 是 的中点,连接 并延长交 的延长线于点 ,点 在边 上,且 .
(1)求证: ≌ .
(2)连接 ,判断 与 位置关系并说明理由.
27.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米 少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.

人教版八年级上册数学期末试题带答案

人教版八年级上册数学期末试题带答案

人教版八年级上册数学期末试卷一、单选题1.下列四个地铁标志中,是轴对称图形的是()A .B .C .D .2.将0.000045用科学记数法表示为()A .64510-⨯B ..64510-⨯C .54.510-⨯D .50.4510-⨯3.将一副三角板如图放置,若AE //BC ,则AFD ∠的度数为()A .85°B .75°C .45°D .15°4.下面运算中正确的是()A .236m m m ⋅=B .2242m m m +=C .2242(3)6a b a b -=D .246(2)(5)10x x x -⋅-=5.如图,在 ABC 中,分别以点A 和点B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,交AB 于点E ,连接AD .若 ADC 的周长为12, ABC 的周长为20,则AE 的长为()A .12B .4C .20D .86.若一个多边形的内角和是外角和的2倍,则此多边形是()A .三角形B .四边形C .六边形D .八边形7.下列各式中,从左到右的变形是因式分解的是()A .725632x x x =⋅B .()33535x y x y +-=+-C .()24441x x x x +=+D .()()2111x x x +-=-8.若关于x 的分式方程21333++=--x a a x x 的解是非负数,则a 的取值范围为()A .a >1B .a≥1C .a≥1且a≠3D .a >1且a≠39.在△ABC 中,已知点D 、E 、F 分别是BC 、AD 、CE 的中点,且S △ABC=4cm 2,则S △BEF=()A .2cm 2B .1cm 2C .0.5cm 2D .0.25cm 210.如图,已知ABC 和CDE 都是等边三角形,点B 、C 、D 在同一条直线上,BE 交AC 于点M ,AD 交CE 于点N ,AD ,BE 交于点P .则下列结论:①AD BE =;②BMC ANC ∠=∠;③60APM ∠=︒;④AN BM =;⑤CMN 是等边三角形、其中,正确的有()A .2个B .3个C .4个D .5个二、填空题11.若分式32x -有意义,则x 的取值范围是___.12.若210m m +-=,则3222021m m ++=________.13.分解因式3218m m -=____________.14.如图,AB=AC=4cm ,DB =DC ,若∠ABC 为60°,则BE 为________.15.如图,在ABC 中,D 在AC 上,连接BD ,且ABC C BDC ∠=∠=∠,A ABD ∠=∠,则A ∠的度数为_______度.16.计算:(-2a -2b)3÷2a -8b -3=____.17.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为_______.18.如图,已知30MON ∠=︒,点1A ,2A ,3,A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形,若12OA =,则202220222023A B A △的边长为________.19.如图,在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .若33DBC ∠=︒,A ∠的度数为________.三、解答题20.(1()1019 3.145π-⎛⎫-+ ⎪⎝⎭;(2)计算:()()()2232a b ab bb a b a b --÷-+-;(3)分解因式:3327x x -;(4)解方程:214111x x x +-=--.21.先化简:22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,再从12x -≤≤的范围内选取一个合适的整数作为x 的值代入求值.22.如图所示的坐标系中,△ABC 的三个顶点的坐标依次为A (﹣1,2),B (﹣4,1),C (﹣2,﹣2)(1)请在这个坐标系中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)分别写出A 1、B 1、C 1的坐标;(3)求△ABC 的面积.23.如图,ABC 为等边三角形,点D ,E 分别在BC ,AC 边上,且AE CD =,AD 与BE 相交于点F ,BG AD ⊥,垂足为G .(1)求证:AD BE=;(2)若4BF=,求FG的长.24.铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?∠的平分线,E为AD上一点,以BE为一边25.如图,在等边三角形ABC中,AD是BAC且在BE下方作等边三角形BEF,连接CF.∆;(1)求证:ABE∆≌CBF∠的度数.(2)求ACF26.【问题情境】∠.点A为OM上一点,利用角平分线构造全等三角形是常用的方法,如图1,OP平分MON过点A 作AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据ASA 证明AOC BOC ≅ ,则AO BO =,AC BC =(即点C 为AB 的中点).【问题探究】如图2,ABC 中,AB AC =,90BAC ∠=︒,CD 平分ACB ∠,BE CD ⊥,垂足E 在CD 的延长线上,试探究BE 和CD 的数量关系,并证明你的结论:【拓展延伸】如图3,ABC 中,AB AC =,90BAC ∠=︒,点D 在线段BC 上,且12BDE ACB ∠=∠,BE DE ⊥于E ,DE 交AB 于F ,试探究BE 和DF 之间的数量关系,并证明你的结论.27.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?28.如图,在ABC ∆中,45B C == ∠∠,点D 在BC 边上,点E 在AC 边上,且ADE AED ∠=∠,连接DE ,当60BAD ∠= 时,求CDE ∠的度数.参考答案1.B【分析】直接利用轴对称图形的定义得出答案.【详解】解:A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不合题意;D 、不是轴对称图形,不合题意.故选B .【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a < ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:50.000045 4.510-=⨯.故选:C .【点睛】本题考查了用科学记数法表示绝对值小于1的数,关键是确定出10n a ⨯中n 与a 的值.3.B【分析】先根据两直线平行,求出BAE ∠的度数,再根据三角板90BAC ∠= ,求出EAF ∠的度数,有三角板得知45E ∠= ,进而根据三角形外角和定理求得AFD ∠的度数.【详解】//,60AE BC B ∠=120BAE ∴∠= (两直线平行,同旁内角互补)又90BAC ∠=30EAF ∴∠=45E ∠=453075AFD E EAF ∴∠=∠+∠=+= (三角形外角和定理)故选:B .【点睛】本题考查平行线的性质,三角形外角和定理,解决本题的关键是性质和定理的合理应用.4.D【分析】根据同底数幂相乘、幂的乘方及积的乘方法则,同类项的合并,单项式乘以单项式分别进行各选项的运算即可作出判断.【详解】A 、m 2⋅m 3=m 5,故此选项错误;B、m2+m2=2m2,故此选项错误;C、(−3a2b)2=9a4b2,故此选项错误;D、(−2x2)⋅(−5x4)=10x6,故此选项正确.故选:D.【点睛】本题考查了同底数幂相乘、幂的乘方及积的乘方法则,同类项的合并,单项式乘以单项式,做题的关键是熟练掌握法则,正确计算.5.B【分析】根据基本作图可判断MN为AB的垂直平分线,则根据线段垂直平分线的性质得到DA=DB,则利用AC+CD+AD=12得到AC+CD+BD=12,即AC+BC=12,再结合 ABC 的周长即可求得答案.【详解】解:由作法可得MN为AB的垂直平分线,则DA=DB,∵ ADC的周长为12,∴AC+CD+AD=12,∴AC+CD+BD=12,即AC+BC=12,又∵ ABC的周长=AC+BC+AB=20,∴AB=20-12=8,∵MN垂直平分AB,∴142AE AB==.故选:B.【点睛】本题考查了作图﹣基本作图(作已知线段的垂直平分线),也考查了线段垂直平分线的性质,熟练掌握垂直平分线的性质是解决本题的关键.6.C【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n-2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【详解】设这个多边形是n边形,根据题意,得(n-2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选C .【点睛】此题考查多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.7.C【分析】将一个多项式写成几个整式的积的形式,叫将多项式因式分解,根据定义依次判断即可.【详解】解:A .725632x x x =⋅是单项式乘以单项式的逆运算,故不符合题意;B .()33535x y x y +-=+-不符合因式分解定义,故不符合题意;C .()24441x x x x +=+符合因式分解定义,故符合题意;D .()()2111x x x +-=-是整式乘法,不不符合定义;故选:C .【点睛】此题考查了因式分解的定义,正确理解多项式因式分解的形式是解题的关键.8.C【分析】先根据解分式方程的一般步骤求出x 的表达式,然后根据分式方程的解为非负数列不等式求解即可.【详解】解:∵21333++=--x a a x x ,∴3(x+a )﹣6a =x ﹣3,整理,可得:2x =3a ﹣3,解得:x =332-a ,∵关于x 的分式方程21333++=--x a a x x 的解是非负数,∴332-a ≥0,且332-a ≠3,解得:a≥1且a≠3.故选:C .【点睛】本题主要考查解分式方程,根据分式方程解得情况求参数的范围,掌握解分式方程的一般步骤是解题的关键.9.B【分析】由三角形中线的性质得到ABEDBE DCE AEC S S S S === ,结合三角形面积公式解题.【详解】解:D E F 、、分别是BC AD CE 、、的中点,ABE DBE DCE AEC S S S S ∴=== ,211()222BCE ABD ADC ABC S S S S cm ∴=+== ,2112122BEF BEC S S cm ∴==⨯= .故选:B .【点睛】本题考查三角形的中线,是重要考点,难度较易,掌握相关知识是解题关键.10.D【分析】根据等边三角形的性质得CA=CB ,CD=CE ,∠ACB=60°,∠DCE=60°,则∠ACE=60°,利用“SAS”可判断△ACD ≌△B CE ,则AD=BE ;由△ACD ≌△BCE 得到∠CAD=∠CBE ,再由对顶角相等知∠AMP=∠BMC ,所以∠APM==∠ACB=60°,再根据“ASA”判断△ACN ≌△BCM ,所以AN=BM ,∠BMC=∠ANC ;由△ACN ≌△BCM 得到CN=BM ,加上∠MCN=60°,则根据等边三角形的判定即可得到△CMN 为等边三角形.【详解】证明:∵△ABC 和△CDE 都是等边三角形,∴CA=CB ,CD=CE ,∠ACB=60°,∠DCE=60°,∴∠ACE=60°,∴∠ACD=∠BCE=120°,在△ACD 和△BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS ),∴AD=BE ;故①正确;∵△ACD ≌△BCE ,∴∠CAD=∠CBE ;又∵∠AMP=∠BMC ,∴∠APM==∠ACB=60°;故③正确;在△ACN 和△BCM 中,ACN ANC CA CB CAN CBM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACN ≌△BCM (ASA ),∴AN=BM ,∠BMC=∠ANC ;故②,④正确;∵△ACN ≌△BCM ,∴CN=BM ,而∠MCN=60°,∴△CMN 为等边三角形.故⑤正确;故选:D .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.11.2x ≠【分析】根据分式有意义的条件计算即可;【详解】∵分式32x -有意义,∴20x -≠,∴2x ≠;故答案是:2x ≠.【点睛】本题主要考查了分式有意义的条件,准确计算是解题的关键.12.2022【分析】由已知可得21m m +=,再把3222021m m ++化为含有2m m +的式子,即可求得其值.【详解】解:210m m +-= ,21m m ∴+=3222021m m ∴++()222021m m m m =+++22021m m =++12021=+2022=故答案为:2022.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键.13.2(3)(3)m m m -+【分析】先提取公因式,再利用平方差公式分解即可.【详解】3218m m-()()()229233m m m m m =-=-+故答案为:2(3)(3)m m m -+.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.14.2cm【分析】先判断△ABC 为等边三角形.由题意可得AE 为中垂线,进而可得BE 的长.【详解】解:因为AB=AC ,∠ABC=60°,所以△ABC 为等边三角形,又DB=DC ,所以可得AE 为△ABC 的中垂线,所以BE=12BC=2cm故答案为:2cm .【点睛】本题考查等边三角形的判定和中垂线的性质.判断△ABC 为等边三角形是解题的关键.15.36【分析】由三角形外角的性质可得∠BDC=2∠A ,求得∠CBD ,再由三角形内角和定理列方程求解即可;【详解】解:由三角形外角的性质可得:∠BDC=∠A+∠ABD=2∠A ,∵∠ABC=∠C=∠BDC=2∠A ,∴∠CBD=∠ABC-∠ABD=∠A ,由三角形内角和定理可得:∠CBD+∠C+∠BDC=180°,∴5∠A=180°,∠A=36°,故答案为:36;【点睛】本题考查了三角形外角的性质,三角形内角和定理,掌握相关性质和定理是解题关键.16.-4a2b6【分析】根据整式的除法运算法则进行运算即可.【详解】(-2a -2b)3÷2a -8b -3=﹣8a -6b 3÷2a -8b -3=-4a 2b 6.【点睛】本题主要考察了整式的除法,牢牢掌握其运算法则是解答本题的关键.17.10【分析】连接AD ,由于ABC ∆是等腰三角形,点D 是BC 边的中点,故AD BC ⊥,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线,可知点C 关于直线EF 的对称点为点A ,故AD 的长为CM MD +的最小值,由此即可得出结论.【详解】解:如图,连接AD ,ABC ∆ 是等腰三角形,点D 是BC 边的中点,AD BC ∴⊥,1141622S ABC BC AD AD ∴∆=⋅=⨯⨯=,解得8AD =,EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,AD ∴的长为CM MD +的最小值,CDM ∴∆周长的最小值()11841022CM MD CD AD BC =++=+=+⨯=.故答案为:10.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.20222【分析】利用等边三角形的性质得到∠B1A1A2=60°,A1B1=A1A2,则可计算出∠A1B1O=30°,所以A1B1=A1A2=OA1,利用同样的方法得到A2B2=A2A3=OA2=2OA1,A3B3=A3A4=22•OA1,A4B4=A4A5=23•OA1,利用此规律得到AnBn=AnAn+1=2n-1•OA1,即可求解.【详解】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,∵∠MON=30°,∴∠A1B1O=30°,∴A1B1=OA1,∴A1B1=A1A2=OA1,同理可得A2B2=A2A3=OA2=2OA1,∴A3B3=A3A4=OA3=2OA2=22•OA1,A4B4=A4A5=OA4=2OA3=23•OA1,…∴AnBn=AnAn+1=2n-1•OA1=2n-1×2=2n.当n=2022时,A2022B2022=A2022A2022+1=22022,故答案为:22022.【点睛】本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.也考查了等边三角形的性质.19.38°【分析】设∠A的度数为x,根据线段的垂直平分线的性质得到DB=DA,用x表示出∠ABC、∠C的度数,根据三角形内角和定理列式计算即可.【详解】解:设∠A的度数为x,∵MN是AB的垂直平分线,∴DB=DA,∴∠DBA=∠A=x,∵AB=AC,∴∠ABC=∠C=33°+x,∴33°+x+33°+x+x=180°,解得x=38°.故答案为:38°.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.(1)7;(2)2ab -;(3)()()333x x x +-;(4)原分式方程无解【分析】(1)分别计算算术平根、零指数幂、负整数指数幂,再进行加减运算;(2)先计算整式的除法和乘法,再合并同类项;(3)先提取公因式,再利用平方差公式分解因式;(4)先去分母,去括号,移项,合并同类项,系数化1,再对求出的解进行检验.【详解】解:(1()1013.145π-⎛⎫-+ ⎪⎝⎭315=-+7=;(2)()()()2232a b ab b b a b a b --÷-+-()22222a ab b a b =----22222a ab b a b =---+2ab =-;(3)3327x x-()2=39x x -()()333x x x =+-;(4)方程两边同乘以()()11x x +-得:()22141x x +-=-,去括号得:222141x x x ++-=-,移项、合并得:22x =,系数化为1得:1x =.检验:当1x =时,()()110x x +-=,因此,1x =不是原分式方程的解,所以原分式方程无解.【点睛】本题考查实数的混合运算,整式的混合运算,分解因式,解分式方程等,掌握各运算法则并正确计算是解题的关键.21.12-.【分析】首先将原分式化简,然后根据分式有意义的条件,求得x 的取值范围,再取值求解即可.【详解】解:原式22(1)(1)11(2)2x x x x x x x -+-+=⋅=---,12x -≤≤ x ∴的取值有1012-、、、20x -≠ 且10x -≠且10x +≠1x ∴≠±且2x ≠∴当0x =时,原式12=-.22.(1)见解析;(2)1(1,2)A ,1(4,1)B ,1(2,2)C -;(3) 5.5ABC S = 【分析】(1)作出△ABC 关于y 轴对称的△A 1B 1C 1即可;(2)根据画出的图形写出A 1、B 1、C 1的坐标即可;(3)用△ABC 所在的矩形面积减去△ABC 周围三个直角三角形的面积即可.【详解】解:(1)如图即为所作:;(2)1(1,2)A ,1(4,1)B ,1(2,2)C -;(3)11134131423 5.5222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= .【点睛】本题考查了坐标与图形-轴对称变换,根据题意画出相应的轴对称图形是解本题的23.(1)见解析(2)2FG =【分析】(1)由等边三角形的性质可得60BAC C ∠=∠=︒,AB AC =,再由ADC BEA ≌便可证明;(2)由ADC BEA ≌可得CAD ABE ∠=∠,由三角形外角的性质可得∠BFG=60°,再由直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半便可解答;(1)证明:∵ABC 为等边三角形,∴60BAC C ∠=∠=︒,AB AC =,在ADC △和BEA △中,AC BA C BAE CD AE =⎧⎪∠=∠⎨⎪=⎩,∴ADC BEA ≌(SAS ),∴AD BE =;(2)解:∵ADC BEA ≌,∴CAD ABE ∠=∠,∴60BFD ABE BAF CAD BAF ∠=∠+∠=∠+∠=︒,∵BG AD ⊥,∴30FBG ∠=︒,∴12=FG BF ,∵4BF =,∴122FG BF ==;【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形外角的性质,掌握30°直角三角形的边长关系是解题关键.24.(1)试销时该品种苹果的进货价是每千克5元;(2)商场在两次苹果销售中共盈利4160【分析】(1)求单价,总价已知,应根据数量来列等量关系.关键描述语是:“苹果数量是试销时的2倍”;等量关系为:2×试销时的数量=本次数量.(2)根据盈利=总售价一总进价进行计算.【详解】解:(1)设试销时该品种苹果的进货价是每千克x 元10000110000.5x x =+解得x=5经检验:x=5是原方程的解,并满足题意答:试销时该品种苹果的进货价是每千克5元.(2)两次购进苹果总重为:50001100030005 5.5+=(千克)共盈利:(3000400)740070.75000110004160-⨯+⨯⨯--=(元)答:共盈利4160元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.25.(1)证明见解析;(2)90°【分析】(1)由△ABC 是等边三角形的性质得出AB=BC ,∠ABE+∠EBC=60°,EB=BF ,∠CBF+∠EBC=60°,求出∠ABE=∠CBF ,根据SAS 证出△ABE ≌△CBF ;(2)根据等边三角形的性质得出∠BAE=30°,∠ACB=60°,再根据△ABE ≌△CBF ,得出∠BCF=∠BAE=30°,从而求出∠ACF 的度数.【详解】(1)证明:∵ABC ∆是等边三角形,∴AB BC =,60ABE EBC ∠+∠=︒,∵BEF ∆是等边三角形,∴BE BF =,60CBF EBC ∠+∠=︒,∴ABE CBF ∠=∠,在ABE ∆和CBF ∆,AB CB ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩,∴ABE ∆≌CBF ∆(SAS );(2)解:∵等边ABC ∆中,AD 是BAC ∠的角平分线,∴30BAE ∠=︒,60ACB ∠=︒,∵ABE ∆≌CBF ∆,∴30BCF BAE ∠=∠=︒,∴306090ACF BCF ACB ∠=∠+∠=︒+︒=︒.【点睛】此题考查了等边三角形的性质和全等三角形的判定与性质等知识;熟练掌握等边三角形的性质,证明三角形全等是解题的关键.26.【问题探究】2CD BE =,证明见解析;【拓展延伸】12BE DF =.证明见解析【问题探究】延长BE 交CA 延长线于F ,证明CEF CEB ASA ≌(),推出FE BE =,再证明ACD ABF ASA ≌(),可得结论;【拓展延伸】过点D 作DG CA ∥,交BE 的延长线于点G ,与AE 相交于H ,证明()BGH DFH ASA △△≌,推出BG DF =,再证明()BDE GDE ASA △△≌得到BE EG =来求解.【详解】问题探究:解:2CD BE =,理由如下:延长BE 交CA 延长线于F ,∵CD 平分ACB ∠,∴FCE BCE ∠=∠,在CEF △和CEB 中,90FCE BCE CE CE CEF CEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴()CEF CEB ASA △△≌,∴FE BE =.,∵90DAC CEF ∠=∠=︒,∴90ACD F ABF F ∠+∠=∠+∠=︒,∴ACD ABF ∠=∠,在ACD 和ABF △中,90ACD ABF AC AB CAD BAF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴()ACD ABF ASA ≌,∴CD BF =,∴2CD BE =;拓展延伸:解:12BE DF =.证明:过点D 作DG CA ∥,交BE 的延长线于点G ,与AE 相交于H ,∵DG AC ∥,∴GDB C ∠=∠,90BHD A ∠=∠=︒,∵12EDB C ∠=∠,∴12EDB EDG C ∠=∠=∠.∵BE ED ⊥,∴90BED ∠=︒,∴BED BHD ∠=∠,∵EFB HFD ∠=∠,∴EBF HDF ∠=∠.∵AB AC =,90BAC ∠=︒,∴45C ABC ∠=∠=︒.∵GD AC ∥,∴45GDB C ∠=∠=︒,∴45GDB ABC ∠=∠=︒,∴BH DH =,在BGH V 和DFH 中,90HBG HDFBH DH BHG DHF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴()BGH DFH ASA △△≌∴BG DF =,在BDE △和GDE △中,90BDE GDE DE DE BED GED ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴()BDE GDE ASA △△≌∴BE EG =,∴1122BE BG DF ==.【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.【分析】(1)可设甲每天修路x 千米,则乙每天修路(x ﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a 天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【详解】(1)设甲每天修路x 千米,则乙每天修路(x ﹣0.5)千米,根据题意,可列方程:15151.50.5x x ⨯=-,解得x=1.5,经检验x=1.5是原方程的解,且x ﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a 天,则乙需要修(15﹣1.5a )千米,∴乙需要修路15 1.515 1.51a a -=-(天),由题意可得0.5a+0.4(15﹣1.5a )≤5.2,解得a≥8,答:甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.【点睛】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.28.30°【分析】根据三角形的外角的性质求出∠ADC ,由三角形内角和定理求出∠BAC=90°,得出∠DAE 的度数,求出∠ADE=∠AED=75°,即可得出答案.【详解】解:∵ADC ∠是ABD ∆的外角,∴6045105ADC BAD B ∠=∠+∠=︒+︒=︒,∵45B C ∠==︒∠,∴90BAC ∠=︒,∴30DAE BAC BAD ∠=∠-∠=︒,∴75ADE AED ∠=∠=︒,∴1057530CDE ∠=︒-︒=︒.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中是轴对称图形的是()A .B .C .D .2.如果三条线段之比是:(1)2:2:3;(2)2:3:5;(3)1:4:6;(4)3:4:5,其中能构成三角形的有()A .1组B .2组C .3组D .4组3.一个多边形的每一个内角都是135°,则这个多边形是()A .七边形B .八边形C .九边形D .十边形4.某病毒的直径为100纳米(1纳米=0.000000001米),100纳米用科学记数法表示为()A .81010-⨯米B .7110-⨯米C .9110-⨯米D .80110-⨯.米5.在直角坐标系中,点A (–2,2)与点B 关于x 轴对称,则点B 的坐标为()A .(–2,2)B .(–2,–2)C .(2,–2)D .(2,2)6.把一副三角板按如图叠放在一起,则α∠的度数是()A .165B .160C .155D .150 7.下列各式中,正确的是()A .2242ab b a c c =B .1a b b ab b ++=C .23193x x x -=-+D .22x y x y -++=-8.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B ,下列结论中不一定成立的是()A .PA PB =B .PO 平分APB ∠C .=OA OBD .AB 垂直平分OP9.如图,在四边形ABCD 中,AB ∥DC ,DAB ∠的平分线交BC 于点E ,DE AE ⊥,若6AD =,4BC =,则四边形ABCD 的周长为()A .14B .15C .16D .1710.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h ,则下面所列方程正确的是()A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =-11.在ABC 中,已知8AB =,5AC =,6BC =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD (如图所示).则下列结论:①DE AB ⊥②ADE V 的周长等于7③:3:4BCD ABD S S = ④CD AD =,其中正确的是()A .①②B .②③C .①②③D .②③④12.由图,可得代数恒等式()A .()2222a b a ab b +=++B .()()22232a b a b a ab b ++=++C .()()2224a b a b a ab b ++=++D .()222232a b a ab b +++=二、填空题13.计算:(20112-⎛⎫-= ⎪⎝⎭________.14.若分式211x x--的值为零,则x 的值为________.15.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是________°.16.如图,在ABC 中,AB AC =,点P 在ABC ∠的平分线上,将PBC 沿PC 对折,使点B 恰好落在AC 边上的点D 处,连接PD ,若AD PD =,则A ∠=______.17.分解因式:a -2ax+a 2x =__________.18.如图,∠B =50°,∠C =70°,∠BAD 平分线与∠ADC 外角平分线交于点F ,则∠F =_____.三、解答题19.计算:(1)()()322ab ab ÷-;(2)()()()2412525x x x +-+-.20.解方程:21324x x =--.21.先化简:542()11x x x x x ---÷++,再从-1,0,2三个数中任选一个你喜欢的数代入求值.22.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点△A 1,B 1,C 1的坐标(直接写答案):A 1;B 1;C 1;(3)求△A 1B 1C 1的面积.23.如图,点,,,A B C D 在一条直线上,且AB CD =,若12∠=∠,EC FB =.求证:E F ∠=∠.24.如图,已知ABC 中,12AB AC ==厘米.9BC =厘米,点D 为AB 的中点.(1)如果点P 在BC 边上以3厘米/秒的速度由B 向C 点运动,同时点Q 在CA 边上由C 点向A 点运动.①若点Q 与点P 的运动速度相等,1秒钟时,BPD △与CQP V 是否全等?请说明理由:②若点Q 与点P 的运动速度不相等,要使BPD △与CQP V 全等,点Q 的运动速度应为多少?并说明理由;(2)若点Q 以②的运动速度从点C 出发点,P 以原来运动速度从点B 同时出发,都沿ABC 的三边按逆时针方向运动,当点P 与点Q 第一次相遇时,求它们运动的时间,并说明此时点P 与点Q 在ABC 的哪条边上.25.在直角ABC 中,90ACB ∠= ,60B ∠= ,AD ,CE 分别是BAC ∠和BCA ∠的平分线,AD ,CE 相交于点F .()1求EFD ∠的度数;()2判断FE 与FD 之间的数量关系,并证明你的结论.26.水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?27.晓芳利用两张正三角形纸片,进行了如下探究:初步发现:如图1,△ABC 和△DCE 均为等边三角形,连接AE 交BD 延长线于点F ,求证:∠AFB =60°;深入探究:如图2,在正三角形纸片△ABC 的BC 边上取一点D ,作∠ADE =60°交∠ACB 外角平分线于点E ,探究CE ,DC 和AC 的数量关系,并证明;拓展创新:如图3,△ABC 和△DCE 均为正三角形,连接AE 交BD 于P ,当B ,C ,E 三点共线时,连接PC ,若BC =3CE ,直接写出下列两式分别是否为定值,并任选其中一个进行证明:(1)3AP PD PC -;(2)2AP PC PD BD PC PE++-+.参考答案1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,判断即可.【详解】解:(1)223+>,232+>,223-<,322-<,能构成;(2)235+=,不能构成;(3)146+<,不能构成;(4)345+>,354+>,453+>,435-<,534-<,543-<能构成;故选:B .【点睛】本题是对三角形三边关系的考查,熟练掌握三角形三边关系是解决本题的关键.3.B【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【详解】多边形的边数是:n =360°÷(180°﹣135°)=8.故选:B .【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.4.B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100纳米=0.0000001米7110-=⨯米.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a < ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.B【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A (-2,2)与点B 关于x 轴对称,∴点B 的坐标为(-2,-2).故选B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.6.A【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.C【分析】根据分式的基本性质对选项逐一判断即可.【详解】A 、2242ab b a c ac=,故错误;B 、11a b ab a b+=+,故错误;C 、23193x x x -=-+,故正确;D 、22x y x y -+-=-,故错误;故选C .【点睛】本题考查了分式的基本性质,熟记分式的基本性质是解题的关键.8.D【分析】根据角平分线的性质,垂直平分线的判定和三角形全等的判定和性质逐项进行判定即可.【详解】解:对A 、B 、C 选项,∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,∴PA PB =,∵在Rt PAO ∆和Rt PBO ∆中==PA PB OP OP⎧⎨⎩,∴Rt Rt OPA OPB ∆∆≌,∴APO BPO ∠=∠,=OA OB ,∴PO 平分APB ∠,故A 、B 、C 正确,不符合题意;D .∵PA PB =,=OA OB ,∴OP 垂直平分AB ,但AB 不一定垂直平分OP ,故D 错误,符合题意.【点睛】本题主要考查了角平分线的性质,垂直平分线的判定,全等三角形的判定和性质,根据题意证明Rt Rt OPA OPB ∆∆≌,是解题的关键.9.C【分析】延长AB 、DE 相交于点F ,根据AED AEF ∆∆≌得到DE EF =,AD AF =,再证明DEC FEB ∆∆≌得到DC BF =,从而推算出四边形ABCD 的周长等于2AD BC +得到答案.【详解】解:如下图所示,延长AB 、DE 相交于点F,DAB ∠的平分线交BC 于点E ,∴DAE FAE ∠=∠,∵DE AE ⊥,90AED AEF ∠=∠=︒∴,∵AE=AE ,∴AED AEF ∆∆≌,∴DE EF =,AD AF =,∵AB ∥DC ,∴CDE EFB ∠=∠,∵CDE EFB DE EF DEC FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DEC FEB ∆∆≌,∴DC BF =,∵6AB DC AB BF AF +=+==,∴四边形ABCD 的周长为66416AD AB BC DC AD AF BC +++=++=++=,故选:C .【点睛】本题考查全等三角形、平行线和角平分线的性质,解题的关键是熟练掌握全等三角形、平行线和角平分线的相关知识.10.A【分析】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,根据线路二的用时预计比线路一用时少半小时,列方程即可.【详解】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,由题意得:759011.82x x =+,故选A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.11.B【分析】由折叠的性质得到CBD EBD ≅ ,继而得到BED C ∠=∠,根据题意90C ∠<︒,据此判断①错误;由折叠的性质得到DC=DE ,BE=BC=6,求得AED △的周长为:AD+AE+DE=AC+AE=7,可判断②;设点D 到AB 的距离为h ,根据三角形面积公式得到11::6:83:422BCD ABD S S h BE AB =⋅⋅== ,可判断③;设点B 到AC 的距离为m ,根据三角形面积公式得到11:::3:422BCD ABD S S m CD m AD CD AD =⋅⋅== ,可判断④.【详解】解:沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,CBD EBD≅ ,CBD EBD BED C∴∠=∠∠=∠90C ∠<︒90DEB ∴∠<︒DE ∴不垂直AB ,故①错误;由折叠的性质可知DC=DE ,BE=BC=68AB = 2AE AB BE ∴=-=AED ∴ 的周长为:AD+AE+DE=AC+AE=7,故②正确;设点D 到AB 的距离为h ,11::6:83:422BCD ABD S S h BE h AB ∴=⋅⋅== ,故③正确;设点B 到AC 的距离为m ,11:::3:422BCD ABD S S m CD m AD CD AD ∴=⋅⋅== ,故④错误,故选:B.【点睛】本题考查翻折变换,三角形周长的求法、三角形的面积公式等知识,是基础考点,掌握相关知识是解题关键.12.B【分析】根据大长方形的面积等于3个正方形的面积加上3个长方形的面积即可求解.【详解】解:依题意,得()()22232a b a b a ab b ++=++.故选B .【点睛】本题考查了多项式乘法与图形的面积,数形结合是解题的关键.13.3【分析】原式根据负整数指数幂、零指数幂的运算法则化简各项后,再进行减法运算即可得到答案.【详解】解:(201141=32-⎛⎫-=- ⎪⎝⎭.故答案为:3.【点睛】本题主要考查了负整数指数幂、零指数幂,熟练掌握负整数指数幂、零指数幂的运算法则是解答本题的关键.14.=1x -【分析】根据分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零,即可得到答案.【详解】解;根据分式的值为零的条件得:210x -=,且10x -≠,解得:=1x -,故答案为:=1x -.【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.15.60【分析】连接,BP BE ,先根据等边三角形的性质可得60,ACB BE AC ∠=︒⊥,从而可得30CBE ∠=︒,再根据等边三角形的性质、线段垂直平分线的性质可得PB PC =,从而可得PC PE PB PE +=+,然后根据两点之间线段最短可得当点,,B P E 共线时,PB PE +最小,最后根据等腰三角形的性质可得30BCP CBE ∠=∠=︒,利用三角形的外角性质即可得出答案.【详解】解:如图,连接,BP BE ,ABC 是等边三角形,E 是AC 的中点,60ACB ∠=︒∴,BE AC ⊥,9030CBE ACB ∴∠=︒-∠=︒,AD 是等边ABC 的BC 边上的高,AD ∴垂直平分BC ,PB PC ∴=,PC PE PB PE ∴+=+,由两点之间线段最短得:如图,当点,,B P E 共线时,PB PE +最小,最小值为BE ,此时有30BCP CBE ∠=∠=︒,则60CPE BCP CBE ∠=∠+∠=︒,故答案为:60.【点睛】本题考查了等边三角形的性质、两点之间线段最短等知识点,利用两点之间线段最短找出PC PE +最小时,点P 的位置是解题关键.16.36︒【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得PBC PCB ∠=∠,从而得到BP PC =,PD PC =,进一步证明PDC PCD ∠=∠,再根据ABP ACP ∆∆≌得到PDC BAC ∠=∠,推算出2ABC BCA BAC ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如下图所所示,连接AP ,∵点P 在ABC ∠的平分线上,∴ABP PBC ∠=∠,∵AB AC =,∴A ABC CB =∠∠,∵折叠,∴PCB DCP ∠=∠,∴PBC PCB ∠=∠,∴BP PC =,∵BP PD =,∴PD PC =,∴PDC PCD ∠=∠,∴ABP PBC BCP PCD PDC ∠=∠=∠=∠=∠,∵AD PD =,∴PAD APD ∠=∠,∵2PDC PAD APD PAD ∠=∠+∠=∠,∵AB ACAP AP BP PC=⎧⎪=⎨⎪=⎩,∴ABP ACP ∆∆≌,∴BAP PAC ∠=∠,∴PDC BAC ∠=∠,∴2ABC BCA BAC ∠=∠=∠,∵180ABC BCA BAC ∠+∠+∠=︒∴22180BAC BAC BAC ∠+∠+∠=︒,∴36BAC ∠=︒.【点睛】本题考查等腰三角形、角平分线、全等三角形、三角形内角和定理和三角形外角定理,解题的关键是证明2ABC BCA BAC ∠=∠=∠.17.a 2(1)x -【分析】首先提取公因式a ,然后利用完全平方公式.【详解】解:原式=a(1-2x+2x )=a 2(1)x -.18.80︒【分析】设∠ADC=x ,则∠ADG=180°-x ,先证明∠BAE=∠C+∠EDC-∠B=x+20°,再由角平分线的定义得到1902ADF x =︒-∠,1102DAF x =︒+∠,再利用三角形内角和定理求解即可.【详解】解:设∠ADC=x ,则∠ADG=180°-x ,∵∠AEB=∠DEC ,∠AEB+∠B+∠BAE=180°,∠DEC+∠C+∠EDC=180°,∴∠B+∠BAE=∠C+∠EDC ,∴∠BAE=∠C+∠EDC-∠B=x+20°,∵AF 平分∠BAD ,DF 平分∠ADG ,∴119022ADF ADG x ==︒-∠∠,111022DAF BAD x ==︒+∠∠,∴1118018090108022F ADF DAF x x =︒--=︒-︒+-︒-=︒∠∠∠,故答案为:80︒.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,正确得到∠BAE=∠C+∠EDC-∠B 是解题的关键.19.(1)4ab(2)8x 29+【分析】(1)根据积的乘方、同底数幂的除法法则解答;(2)根据完全平方公式、平方差公式解答.(1)解:()()322ab ab ÷-6322a b a b =÷4ab =;(2)解:()()()2412525x x x +-+-()()22421425x x x =++--22484425x x x =++-+829x =+.20.1x =【分析】先去分母,方程两边同时乘以(2)(2)x x +-,转化为解一元一次方程,再验根即可.【详解】解:方程两边同时乘以(2)(2)x x +-得,23x +=1x ∴=经检验,1x =是分式方程的解1x ∴=.21.-2【详解】试题分析:原式括号中两边通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将0x =代入计算即可求出值.试题解析:原式2541,112x x x x x x x ⎛⎫+-+=-⋅ ⎪++-⎝⎭2541,12x x x x x x +-++=⋅+-()221,12x x x x -+=⋅+-2x =-.当0x =时,原式 2.=-22.(1)见解析;(2)(3,2);(4,-3);(1,-1);(3)6.5【分析】(1)根据关于y 轴对称点的性质得出各对应点位置进而得出答案;(2)利用(1)中作画图形,进而得出各点坐标;(3)利用△ABC 所在长方形面积减去△ABC 周围三角形面积进而求出即可;【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)A 1(3,2);B 1(4,-3);C 1(1,-1);故答案为:(3,2);(4,-3);(1,-1);(3)△A 1B 1C 1的面积为:3×5-12×2×3-12×1×5-12×2×3=6.5.【点睛】此题主要考查了轴对称变换以及三角形面积求法等知识,正确利用轴对称图形的性质得出是解题关键.23.证明见解析.【分析】由∠1=∠2,根据补角的性质可求出DBF ACE ∠=∠,根据AB=CD 可得AC DB =,根据SAS 推出ACE DBF ∆≅∆,根据全等三角形的性质即可得出答案.【详解】∵01DBF 180∠∠+=,02ACE 180∠∠+=.又∵12∠∠=,∴DBF ACE ∠∠=,∵AB CD =,∴AB BC CD BC +=+,即AC DB =,在ΔACE 和ΔDBF 中,EC FB ACE DBF AC DB =⎧⎪∠=∠⎨⎪=⎩∴()ΔACE ΔDBF SAS ≅,∴E F ∠∠=.24.(1)①△BPD ≌△CQP ,理由见解析;②点Q 的运动速度为4cm/s ,理由见解析;(2)经过了24秒,点P 与点Q 第一次在BC 边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C ,最后根据SAS 即可证明;②因为VP≠VQ ,所以BP≠CQ ,又∠B=∠C ,要使△BPD 与△CQP 全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q 的运动速度;(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,据此列出方程,解这个方程即可求得.(1)①1秒钟时,△BPD 与△CQP 全等;理由如下:∵t=1秒,∴BP=CQ=3(cm )∵AB=12cm ,D 为AB 中点,∴BD=6cm ,又∵PC=BC-BP=9-3=6(cm ),∴PC=BD∵AB=AC ,∴∠B=∠C ,在△BPD 与△CQP 中,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵VP≠VQ ,∴BP≠CQ ,又∵∠B=∠C ,要使△BPD ≌△CPQ ,只能BP=CP=4.5,∵△BPD ≌△CPQ ,∴CQ=BD=6.∴点P 的运动时间 4.5 1.533BP t ===(秒),此时641.5Q CQ V t ===(cm/s ).(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得:4x=3x+2×12,解得:x=24,此时P 运动了24×3=72(cm )又∵△ABC 的周长为33cm ,72=33×2+6,∴点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇.【点睛】本题是三角形综合题目,考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用;熟练掌握三角形全等的判定和性质是解决问题的关键.25.(1)120°;(2)FE=FD ;见解析.【分析】(1)由已知条件易得∠BAC=30°,结合AD ,CE 分别是∠BAC 和∠ACB 的角平分线可得∠FAC=15°,∠FCA=45°,由此结合三角形内角和定理可得∠AFC=120°,由此即可得到∠EFD=∠AFC=120°.(2)如下图,在AC 是截取AG=AE ,连接FG ,在由已知条件易证△AGF ≌△AEF ,由此可得∠AFG=∠AFE=∠FAC+∠ECA=60°,结合∠AFC=120°,可得∠CFG=60°,∠CFD=60°,这样结合∠GCF=∠DCF ,CF=CF 即可得到△GCF ≌△DCF ,由此可得FG=FD ,结合FE=FG 即可得到FE=FD.【详解】(1)∵ABC 中,90ACB ∠= ,60B ∠=∴30BAC ∠= ,∵AD 、CE 分别是BAC ∠、BCA ∠的平分线,∴1152FAC BAC ∠=∠= ,1452FCA ACB ∠=∠= ,∴180120AFC FAC FCA ∠=-∠-∠= ,∴120EFD AFC ∠=∠= ;()2FE 与FD 之间的数量关系为FE FD =;在AC 上截取AG AE =,连接FG,∵AD 是BAC ∠的平分线,∴EAF GAF∠=∠在EAF △和GAF 中,∵AEAGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴AEF △≌AGF ,∴FE FG =,∠AFG=∠AFE=∠FAC+∠ECA=60°,∴∠CFD=∠AFE=60°,∴∠CFD=∠CFG ,∵在FDC △和FGC △中,DFC GFCFC FC FCG FCD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴CFG △≌CFD △,∴FG FD =,∴FE FD =.26.(1)5;(2)962.【分析】(1)设第一次所购水果的进货价是每千克多少元,由题意可列方程求解;(2)求出两次的购进千克数,根据利润=售价-进价,可求出结果.【详解】(1)设第一次所购水果的进货价是每千克x 元,依题意,得1650x 0.5+=3500x⨯,解得,x=5,经检查,x=5是原方程的解.答:第一次进货价为5元;(2)第一次购进:500÷5=100千克,第二次购进:3×100=300千克,获利:[100×(1-5%)×8-500]+[300×(1-2%)×8-1650]=962元.答:第一次所购水果的进货价是每千克5元,该水果店售完这些水果可获利962元.27.初步发现:证明见解析;深入探究:CE+DC=AC ,证明见解析;拓展创新:(1)2,证明见解析;(2)1,证明见解析【分析】初步发现:只需要利用SAS 证明△BCD ≌△ACE 得到∠CBD=∠CAE ,由∠BOC=∠AOF ,推出∠AFO=∠BCO=60°,由此即可证明结论;深入探究:在AB 上取一点G 使得BG=BD ,连接DG ,先证明△BDG 是等边三角形,得到BG=BD=DG ,∠BGD=60°,再利用ASA 证明△AGD ≌△DCE 得到CE=GD=BD ,即可证明CE+DC=AC ;拓展创新:(1)如图所示,在AE 上取一点F ,使得EF=PD ,先证明△ACE ≌△BCD 得到AE=BD ,∠AEC=∠BDC ,再证明△CPD ≌△CFE 得到PD=FE ,∠PCD=∠FCE ,PC=CF ,进而证明△PCF 是等边三角形,得到PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,利用面积法证明CG=CH ,得到3BP PE =,得到34AE BD PC PD ==+23AP PC PD =+,由此即可得到结论;(2)根据(1)所求分别用PC 和PD 表示出分子和分母的线段的和差即可得到答案.【详解】解:初步发现:如图所示,设AC 与BF 交于O ,∵△ABC 和△CDE 都是等边三角形,∴CB=CA ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB-∠ACD=∠DCE-∠ACD ,即∠BCD=∠ACE ,∴△BCD ≌△ACE (SAS ),∴∠CBD=∠CAE ,∵∠BOC=∠AOF ,∠AOF+∠AFO+∠OAF=180°,∠CBO+∠BOC+∠BCO=180°,∴∠AFO=∠BCO=60°,即∠AFB=60°;深入探究:CE+DC=AC ,证明如下:如图所示,在AB 上取一点G 使得BG=BD ,连接DG ,∵△ABC 是等边三角形,∴AC=BC=AB ,∠ACB=∠B=60°,∴∠ACF=120°,△BDG 是等边三角形,∴BG=BD=DG ,∠BGD=60°,∴∠AGD=120°,AG=DC ,∵CE 平分∠ACF ,∴1602ECF ACE ACF ∠=∠=∠=︒,∴∠DCE=120°,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD ,∠B=∠ADE=60°,∴∠CDE=∠BAD ,在△AGD 和△DCE 中,DAG EDCAG DC AGD DCE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△DCE (ASA ),∴CE=GD=BD ,∴CE+DC=BD+DC=BC ,∴CE+DC=AC;拓展创新:(1)32AP PDPC -=,证明如下:如图所示,在AE 上取一点F ,使得EF=PD ,∵△ABC 和△CDE 都是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD ,∴∠BCD=∠ACE ,在△ACE 和△BCD 中,AC BCACE BCD CE CD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴AE=BD ,∠AEC=∠BDC ,在△CPD 和△CFE 中,CD CECDP CEF DP EF=⎧⎪∠=∠⎨⎪=⎩,∴△CPD ≌△CFE (SAS ),∴PD=FE ,∠PCD=∠FCE ,PC=CF ,∴∠PCD+∠DCF=∠FCE+∠DCF ,∴∠PCF=∠DCE=60°,∴△PCF 是等边三角形,∴PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,∵△ACE ≌△BCD ,∴ACE BCD S S =△△,∴1122BD CG AE CH ⋅=⋅,∴CG=CH ,∵BC=3CE ,∴3BCP PCE S S =△△,∴11322BP CG PE CH ⋅=⨯⋅,∴3BP PE =,∴33334AE BD BP PD PE PD PF EF PD PC PD ==+=+=++=+,∴3423AP AE PE PC PD PF EF PC PD =-=+--=+,∴32322AP PD PC PD PDPC PC -+-==;(2)21AP PC PDBD PC PE ++=-+,证明如下:由(1)可得223235AP PC PD PC PD PC PD PC PD ++=+++=+,343435BD PC PE PC PD PC PF EF PC PD PC PC PD PC PD -+=+-++=+-++=+,∴21AP PC PDBD PC PE ++=-+;。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下面的图形是轴对称图形的是()A .B .C .D .2.数据0.00000164用科学记数法可表示为()A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯3.下列多项式中,能运用平方差公式分解因式的是()A .22a b +B .22a b-C .22a b -+D .22a b --4.计算:3223x y ⎛⎫-= ⎪⎝⎭()A .632x y-B .63827x y C .53827x y -D .63827x y -5.将分式222x x y+中的x ,y 同时扩大4倍,则分式的值()A .扩大4倍B .扩大2倍C .缩小到原来的一半D .保持不变6.已知2x =是分式方程113k x x x -+=-的解,那么k 的值为()A .0B .1C .2D .47.在ABC 中,AB AC =,AD BC ⊥于点D ,若8AB =,5CD =,则ABC 的周长为()A .13B .18C .21D .268.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是()A .90°B .180°C .270°D .360°9.如图,两个正方形的边长分别为a 、b ,若7a b +=,3ab =,则阴影部分的面积是()A .40B .492C .20D .2310.如图,已知直角三角形ABC 中,90ACB ∠=︒,60CAB ∠=︒,在直线BC 或AC 上取一点P ,使得ABP △为等腰三角形,则符合条件的点有()A .4个B .5个C .6个D .7个二、填空题11.正五边形的外角和等于_______◦.12.已知221x x -=-,则代数式()52x x +-的值为______.13.已知30x yx -=,则y x=______.14.分式方程:2211x x x+=--的解是___________.15.在ABC 中,AB AC =,AB 的垂直平分线与AC 所在直线相交所得的锐角为42°,则B ∠=______.16.如图,B C ∠=∠,译添加一个条件______使得ABE ACD △△≌.17.如图,5AB AC ==,110BAC ∠=︒,AD 是∠BAC 内的一条射线,且25BAD ∠=︒,P 为AD 上一动点,则PB PC -的最大值是______.18.如图,在平面直角坐标系中,已知()2,0A ,()0,3B ,若在第一象限中找一点C ,使得AOC OAB ≅△△,则C 点的坐标为_______.三、解答题19.计算:()()()323235a a a a a -+-+÷.20.已知23m n=,求224421n mn n m m m ⎛⎫--+÷ ⎪⎝⎭的值.21.在()()223x x a x b -++的运算结果中,2x 的系数为4-,x 的系数为7-,求a ,b 的值并对式子224ax b +进行因式分解.22.如图,AB ,CD 相交于点E 且互相平分,F 是BD 延长线上一点,若2FAC BAC ∠=∠,求证:AC DF AF +=.23.某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.该商场实际购进彩灯的单价是多少元?24.如图1,射线BD 交△ABC 的外角平分线CE 于点P ,已知∠A=78°,∠BPC=39°,BC=7,AB=4.(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.25.如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N.求证:(1)AD=BE;(2)∠BMC=∠ANC;(3)△CMN是等边三角形.26.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF//AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.参考答案1.C 2.B 3.C 4.D 5.A 6.D 7.D 8.B 9.C 10.C 11.36012.413.1314.0x =15.66°或24°16.AB AC =(答案不唯一)【详解】解: B C ∠=∠,,A A ∠=∠添加:,AB AC =∴(),ABE ACD ASA ≌△△故答案为:,AB AC =(答案不唯一)17.5【分析】作点B 关于射线AD 的对称点B ',连接AB '、CB '、B'P .则AB AB '=,PB PB '=,AB C 'V 是等边三角形,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.所以PB PC '-的最大值是5.【详解】解:如图,作点B 关于射线AD 的对称点B ',连接AB '、CB ',B'P .则AB AB '=,PB PB '=,25B AD BAD ∠=∠='︒,110252560B AC BAC BAB ∠=∠-∠=︒-︒-︒=''︒.∵5AB AC ==,∴5AB AC '==,∴AB C 'V 是等边三角形,∴5B C '=,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.∴PB PC '-的最大值是5.故答案为:5.18.()2,3【详解】根据题意C 点在第一象限内,且AOC OAB ≅△△,如图,又已知OAB 和AOC △有已知公共边AO ,∴(23)C ,.故答案为(2)3,.【点睛】本题考查全等三角形的性质,由已知公共边结合三角形全等的性质找到点C 的位置是解答本题的关键.19.210a --【分析】先利用平方差公式进行整式的乘法运算,同步计算多项式除以单项式,再合并同类项即可.【详解】解:原式222495110a a a =---=--.【点睛】本题考查的是平方差公式的运用,多项式除以单项式,掌握“整式的混合运算”是解本题的关键.20.2【分析】先计算括号内分式的加法,再把除法转化为乘法,约分后可得结果,再把23m n =化为23,n m =再整体代入即可.【详解】解:原式222442n mn m mm n m-+=⋅-()22222n m m n mm n m m--=⋅=-∵23m n=∴23n m =,代入上式,得:原式322m m mm m-===.【点睛】本题考查的是分式的化简求值,掌握“整体代入法求解分式的值”是解本题的关键.21.1a =-,2b =,()()411x x +-【分析】先计算多项式乘以多项式,再结合题意可得64b -=-,327a b -=-,解方程组求解,a b 的值,再利用平方差公式分解因式即可.【详解】解:∵()()223x x a x b -++3223623x bx x bx ax ab =+--++()()323623x b x b a x ab=+-+-++∴64b -=-,327a b -=-解得:1a =-,2b =∴()()222444411ax b x x x +=-+=+-.22.【详解】证明:∵AB ,CD 互相平分∴AE BE =,CE DE =又∵AEC BED ∠=∠∴AEC BED△△≌∴CAE DBE =∠∠,AC BD =∵2FAC BAC ∠=∠∴CAE FAE ∠=∠∴DBE FAE ∠=∠∴AF BF =∵BF BD DF =+∴AC DF AF +=.23.商场实际购进彩灯的单价是60元【分析】设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,由题意:某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.列出分式方程,解方程即可.【详解】解:设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,根据题意得:3000030000100(120%)x x-=+,解得:50x =,经检验,50x =是原分式方程的解,且符合题意,则(120%)60x +=(元),答:商场实际购进彩灯的单价为60元.24.(1)见解析(2)MC=1.5【分析】(1)由∠ACF=∠A+∠ABF ,∠ECF=∠BPC+∠DBF ,得∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,再根据CE 平分∠ACF ,得∠ACF=2∠ECF ,则∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF ,从而证明结论;(2)连接AQ ,CQ ,过点Q 作BA 的垂线交BA 的延长线于N ,利用HL 证明Rt△QNA≌Rt△QMC,得NA=MC,再证明Rt△QNB≌Rt△QMB(HL),得NB=MB,则BC=BM+MC=BN+MC=AB+AN+MC,从而得出答案.(1)证明:∵∠ACF=∠A+∠ABF,∠ECF=∠BPC+∠DBF,∴∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,∵CE平分∠ACF,∴∠ACF=2∠ECF,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据等边三角形的性质和题意,可以得到△ACD ≌△BCE 的条件,从而可以证明结论成立;(2)由△ACD ≌△BCE 得∠CBE=∠CAD ,由△ABC 和△DEC 都是等边三角形得60ACB ECD ∠=∠=︒,由平角定义得60ACN ∠=︒,再由三角形内角和定理可得结论;(3)根据(1)中的结论和等边三角形的判定可以证明△CMN 是等边三角形.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴BC=AC ,CE=CD ,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE ,∠ACE=60°,∴∠BCE=∠ACD ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS );∴AD =BE ;(2)由(1)得△ACD ≌△BCE ∴∠CBE=∠CAD ,∵△ABC 和△DEC 都是等边三角形∴60ACB ECD ∠=∠=︒∴60ACN ∠=︒∵180,180CBM BCM BMC CAN ACN ANC ∠+∠+∠=︒∠+∠+∠=︒∴∠BMC =∠ANC ;(3)由(1)知,△ACD ≌△BCE ,则∠ADC=∠BEC ,即∠CDN=∠CEM ,∵∠ACE=60°,∠ECD=60°,∴∠MCE=∠NCD ,在△MCE 和△NCD 中,MCE NCD MEC NDC CE CD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△MCE≌△NCD(AAS),∴CM=CN,∵∠MCN=60°,∴△MCN是等边三角形.26.(1)BF=5;(2)见解析.【分析】(1)证明△AEM≌△BFM即可;(2)证明△AEC≌△BFD,得到EC=FD,利用等式性质,得到CD=FE.【详解】(1)∵BF//AE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BF//AE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .2,4,7B .1,3,2C .6,8,10D .3,2,63.下列计算正确的是()A .()235aa =B .()2322a a =C .34a a a ⋅=D .2a-a=24.已知等腰三角形的两边长分别为6和2,则它的周长是()A .10B .14C .10或8D .10或145.若分式211x x --的值为0,则x 的值是()A .1B .0C .1-D .±16.如图,∠AOB 内一点P ,P 1,P 2分别是P 关于OA 、OB 的对称点,P 1P 2交OA 于点M ,交OB 于点N .若△PMN 的周长是5cm ,则P 1P 2的长为()A .6cmB .5cmC .4cmD .3cm7.若23m =,22n =,则22m n +=()A .5B .6C .7D .128.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB=10cm ,则△DEB 的周长为()A .4cmB .6cmC .10cmD .不能确定9.如果a+b=3,那么2b aa a ab ⎛⎫-⋅⎪-⎝⎭的值是()A .3B .-3C .13D .13-10.如图,在Rt ABC 中,AD 是BAC ∠的平分线,DE AB ⊥,垂足为E .若8cm,5cm BC BD ==,则DE 的长为()A .23cmB .3cmC .4cmD .5cm二、填空题11.点P (-2,4)关于x 轴对称的点的坐标为________.12.分解因式:3m 2﹣3n 2=_____.13.要使分式13x -有意义,x 需满足的条件是________.14.如果等腰三角形的一个内角为50度,那么这个等腰三角形的底角是____度.15.(﹣8)2019×0.1252020=_________.16.建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x 米,那么可得方程是________.17.在一自助夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B 、C 两地相距_________m .18.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是___________.三、解答题19.(1)计算:212232-⎛⎫--+⎪⎝⎭;(2)分解因式:22363x xy y -+-.20.解方程:(1)31511x x =---;(2)214111x x x +-=--.21.先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.22.如图,在平面直角坐标系中,A (1,2),B (3,1),C (-2,-1).(1)在图中作出△ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上画出点P ,使PA+PB 最小(保留作图痕迹).23.已知:如图所示,点B ,E ,C ,F 在同一直线上,AB ∥DE ,∠ACB=∠F ,AC=DF .求证:BE=CF .24.已知:如图,在△ABC 中,D 为BC 上的一点,AD 平分∠EDC ,且∠E=∠B ,DE=DC ,求证:AB=AC .25.某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?26.观察下列等式,用你发现的规律解答问题.111122=-⨯,1112323=-⨯,1113434=-⨯……(1)计算:111111223344556++++⨯⨯⨯⨯⨯的值.(2)求()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 的值(用含n 的式子表示).27.如图所示,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E .(1)若∠C=50°,∠BAC=60°,求∠ADB 的度数;(2)若∠BED=45°,求∠C 的度数;(3)猜想∠BED 与∠C 的关系,并说明理由.参考答案1.A 2.C 3.C 4.B 5.C 6.B 7.D 8.C 9.A 10.B 11.(2,4)--12.()()3m n m n +-13.3x ≠14.50或65【详解】试题解析:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50或65.15.-0.125【详解】解:()()20192019202080.1250.12580.1250.125-⨯=-⨯⨯=-.故答案为:-0.125.【点睛】本题主要考查积的乘方,熟练掌握积的乘方是解题的关键.16.400400210x x-=-【分析】设实际每天修x 米,则原计划每天修(x−10)米,根据实际比原计划提前2天完成了任务,列出方程即可.【详解】解:设建筑公司实际每天修x 米,由题意得:400400210x x-=-,故答案为:400400210x x-=-.【点睛】本题考查分式方程的应用,理解题意,找到合适的等量关系是解决问题的关键.本题的等量关系为原计划用的天数-实际用的天数=2.17.200【详解】解:由已知得:∠ABC=90°+30°=120°,∠BAC=90°﹣60°=30°,∴∠ACB=180°﹣∠ABC ﹣∠BAC=180°﹣120°﹣30°=30°,∴∠ACB=∠BAC ,∴BC=AB=200.18.75︒【分析】根据直角三角板的已知角度以及三角形外角性质即可求解.【详解】如图,304575DCB ABC α∠=∠+∠=︒+︒=︒故答案为:75︒19.(1)1-;(2)()23x y --【分析】(1)先化简绝对值、计算负整数指数幂与零指数幂,再计算加减法即可得;(2)综合利用提取公因式法和完全平方公式分解因式即可得.【详解】解:(1)原式241=-+1=-;(2)原式()2232x xy y=--+()23x y =--.20.(1)95x =(2)无解【分析】(1)先去分母,即方程两边同时乘以(x-1),将方程化成整式方程求解,然后检验即可求解;(2)先去分母,即方程两边同时乘以(x-1)(x+1)将方程化成整式方程求解,然后检验即可求解;(1)解:方程两边同时乘以(1-x),得-3=1-5(x-1)解得:95x =,检验:把95x =代入x-1=45≠0,所以95x =是原分式方程的解,∴95x =;(2)解:方程两边同时乘以(x-1)(x+1),得()()()21114x x x +-+-=222114x x x -+-+=-2x=2x=-1,检验:把x=-1代入(x-1)(x+1)=0,所以x=-1不是原分式方程的解,∴原方程无解.21.x 1x 2+-,4【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x 的值代入计算即可求出值.【详解】解:原式=()()()2x 2x 11x 1x 1x 1---÷-+-()()()2x 1x 1x 2x 1x 2+--=⋅--x 1x 2+=-.当x=3时,原式=31432+=-.【点睛】本题考查分式的化简求值、完全平方公式、平方差公式,熟练掌握分式的混合运算法则是解答的关键.22.(1)见解析(2)见解析【分析】(1)分别作出三个顶点关于y 轴的对称点,再顺次连接即可得;(2)作点A 关于x 轴的对称点A ',连接A B '与x 轴的交点即为所求.(1)解:111A B C △如图所示,(2)如图所示,点P 即为所求.【点睛】本题考查了作图—轴对称变换以及轴对称最短路径问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.【详解】证明:∵AB DE ∥,∴B DEF ∠=∠,在ABC 和DEF 中,B DEF ACB F AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF AAS △≌△,∴BC EF =,∴BE CF =.24.【详解】证明:∵AD 平分∠EDC ,∴∠ADE=∠ADC ,又DE=DC ,AD=AD ,∴△ADE ≌△ADC ,∴∠E=∠C ,又∠E=∠B ,∴∠B=∠C ,∴AB=AC.25.2元.【分析】设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购口罩的数量是第一批所购口罩数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:2500100020.5x x=⨯+,解得:x =2,经检验,x =2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)56(2)1n n +【分析】(1)根据所给的等式的特点进行求解即可;(2)根据所给的等式得出规律,然后对所求的式子进行拆项即可求解.(1)解:111111223344556++++⨯⨯⨯⨯⨯1111111111223344556=-+-+-+-+-116=-56=;(2)解:∵111122=-⨯,1112323=-⨯,1113434=-⨯,…,∴()11111n n n n =-⨯++,∴()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 1111111111112233445561n n =-+-+-+-+-++-+ 111n =-+1n n =+.27.(1)80°(2)90°(3)1902BED C ∠=︒-∠,理由见解析【分析】(1)由角平分线的定义可得∠DAC =30°,再由三角形外角性质即可求∠ADB 的度数;(2)由三角形的外角性质可得∠BAD +∠ABE =45°,再由角平分线的定义得∠BAC =2∠BAD ,∠ABC =2∠ABE ,从而得∠BAC +∠ABC =90°,利用三角形的内角和即可求∠C 的度数;(3)由三角形的外角性质得∠BED =∠BAD +∠ABE ,结合角平分线的定义可求得∠BAD +∠ABE =12(∠BAC +∠ABC ),由三角形的内角和可求解.(1)∴1302DAC BAC ∠=∠=︒.∵ADB ∠是ADC 的外角,∴503080ADB C DAC ∠=∠+∠=︒+︒=︒;(2)∵BED ∠是ABE △的外角,45BED ∠=︒,∴45BAD ABE BED ∠+∠=∠=︒.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴2BAC BAD ∠=∠,2ABC ABE ∠=∠,∴()290BAC ABC BAD ABE ∠+∠=∠+∠=︒.11∵180BAC ABC C ∠+∠+∠=︒,∴()1801809090C BAC ABC ∠=︒-∠+∠=︒-︒=︒;(3)1902BED C ∠=︒-∠.理由:∵BED ∠是ABE △的外角,∴BED BAD ABE ∠=∠+∠.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴12BAD BAC ∠=∠,12ABE ABC ∠=∠,∴()12BAD ABE BAC ABC ∠+∠=∠+∠.∵180BAC ABC C +=︒-∠∠∠,∴()()11118090222BED BAD ABE BAC ABC C C ∠=∠+∠=∠+∠=︒-∠=︒-∠,即:1902BED C ∠=︒-.。

人教版八年级下学期期末数学试卷(含解析)

人教版八年级下学期期末数学试卷(含解析)

人教版八年级下学期期末考试数学试卷及答案 一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列图案是中心对称图形的是( )A .B .C .D . 2.在函数y =中,自变量x 的取值范围是( ) A .x >2 B .x ≠2 C .x <2 D .x ≤23.下列不能判定四边形ABCD 是平行四边形的条件是( )A .AB ∥CD ,AD ∥BCB .OA =OC ,OB =OD C .AB ∥CD ,AD =BC D .AB =CD ,AD =BC4.已知一次函数y =kx ﹣1,若y 随x 的增大而增大,则它的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 5.正方形具有而矩形不具有的性质是( )A .对角相等B .对角线互相平分C .对角线相等D .对角线互相垂直 6.某校有25名同学参加比赛,预赛成绩各不相同,要取前12名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这25名同学成绩的( )A .中位数B .众数C .平均数D .方差7.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D8.某农场2017年玉米产量为100吨,2019年玉米产量为169吨,求该农场玉米产量的年平均增长率.设该农场玉米产量的年平均增长率为x ,则依题意可列方程为( )A .100(1+x )2=169B .169(1﹣x )2=100C .169(1+x )2=100D .100(1﹣x )2=1699.如图,设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车原地返回.设x小时后两车间的距离为y千米,y关于x的函数关系如图所示,则乙车的速度为()A.50千米/小时B.45千米/小时C.40千米/小时D.35千米/小时10.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.B.3+3C.6+D.二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.方程x2=2x的解为.12.在▱ABCD中,∠A=42°,则∠C=°.13.一组数据:2,3,4,5,6的方差是.14.(4分)已知一次函数y=2x﹣1的图象经过点(3,m),则m的值是.15.(4分)已知m、n是方程x2﹣2x﹣5=0的两个根,那么m2+mn+2n=.16.(4分)如图,已知直线l1:y=kx+b与直线l2:y=mx+n相交于点P(﹣4,﹣3),则关于x的不等式mx+n<kx+b的解集为.17.(4分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于点F,若CF=2,FD=4,则BC的长为.18.(4分)已知过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,则k的取值范围为.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)解方程:(1)x2+2x=3;(2)x(x﹣4)=8﹣2x.20.(10分)“新型冠状病毒肺炎”疫情牵动着亿万国人的心,为进一步加强疫情防控工作,某校利用网络平台进行疫情防控知识测试,测试题共10道题目,每小题10分.小明同学对801和802两个班各40名同学的测试成绩进行了整理和分析,数据如下:①801班成绩频数分布直方图如图:②802班成绩平均分的计算过程如下,=80.5(分);③数据分析如下:班级平均数中位数众数方差80182.5m90158.7580280.575n174.75根据以上信息,解决下列问题:(1)m=,n=;(2)你认为班的成绩更加稳定,理由是;(3)在本次测试中,801班甲同学和802班乙同学的成绩均为80分,你认为两人在各自班级中谁的成绩排名更靠前?请说明理由.21.(10分)已知直线l1:y=2x+4分别与x轴,y轴交于点A,B,直线l2经过直线l1上的点C(m,2),且与y 轴的负半轴交于点D,若△BCD的面积为3.(1)直接写出点A,B,C的坐标;(2)求直线l2的解析式.22.(11分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE ∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.23.(11分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.(1)求证:方程总有两个实数根;(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.24.(11分)某商场以每件220元的价格购进一批商品,当每件商品售价为280元时,每天可售出30件,为了迎接“618购物节”,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每天就可以多售出3件.(1)降价前商场每天销售该商品的利润是多少元?(2)要使商场每天销售这种商品的利润达到降价前每天利润的两倍,且更有利于减少库存,则每件商品应降价多少元?25.(14分)如图,点E是矩形ABCD的边CB延长线上一点,点F是AE的中点.(1)如图①,若点G,H分别是ED,BC的中点;①判断FG和HC之间的关系,并说明理由;②求证:∠DEH=∠FHE;(2)如图②,若CE=AC,连接BF,DF.求证:BF⊥DF.26.(14分)如图1①②③,平面内三点O,M,N,如果将线段OM绕点O旋转90°得ON,称点N是点M关于点O的“等直点”,如果OM绕点O顺时针旋转90°得ON,称点N是点M关于点O的“正等直点”,如图1②.(1)如图2,在平面直角坐标系中,已知点P(2,1).①在P1(﹣1,2),P2(2,﹣1),P3(1,﹣2)三点中,是点P关于原点O的“等直点”;②若直线l1:y=kx+4交y轴于点M,若点N是直线l1上一点,且点N是点M关于点P的“等直点”,求直线l1的解析式;(2)如图3,已知点A的坐标为(2,0),点B在直线l2:y=3x上,若点B关于点A的“正等直点”C在坐标轴上,D是平面内一点,若四边形ABCD是平行四边形,直接写出点D的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列图案是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:B.2.在函数y=中,自变量x的取值范围是()A.x>2B.x≠2C.x<2D.x≤2【分析】根据被开方数是非负数,可得自变量x的取值范围.【解答】解:由题意,得2﹣x≥0,解得x≤2,故选:D.3.下列不能判定四边形ABCD是平行四边形的条件是()A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AB∥CD,AD=BC D.AB=CD,AD=BC【分析】根据平行四边形的判定定理分别对各个选项进行判断即可.【解答】解:如图所示:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故本选项不符合题意;B、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故本选项不符合题意;C、∵AB∥CD,AD=BC,∴四边形ABCD是等腰梯形,故本选项符合题意;D、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项不符合题意,故选:C.4.已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【分析】根据“一次函数y=kx﹣1且y随x的增大而增大”得到k>0,再由k的符号确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx﹣1且y随x的增大而增大,∴k>0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.5.正方形具有而矩形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对角线互相垂直【分析】根据正方形、矩形的性质即可判断.【解答】解:因为正方形的对角相等,对角线相等、垂直、且互相平分,矩形的对角相等,对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:D.6.某校有25名同学参加比赛,预赛成绩各不相同,要取前12名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这25名同学成绩的()A.中位数B.众数C.平均数D.方差【分析】由于有25名同学参加比赛,要取前12名参加决赛,故应考虑中位数的大小.【解答】解:∵某校有25名同学参加比赛,取前12名参加决赛,∴成绩超过中位数(即第13名成绩)即可参加决赛,∴她想知道自己能否进入决赛,只需再知道这25名同学成绩的中位数,故选:A.7.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D【分析】连接PP1、NN1、MM1,分别作PP1、NN1、MM1的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.8.某农场2017年玉米产量为100吨,2019年玉米产量为169吨,求该农场玉米产量的年平均增长率.设该农场玉米产量的年平均增长率为x,则依题意可列方程为()A.100(1+x)2=169B.169(1﹣x)2=100C.169(1+x)2=100D.100(1﹣x)2=169【分析】根据该农场2017年及2019年玉米的产量,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得:100(1+x)2=169.故选:A.9.如图,设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车原地返回.设x小时后两车间的距离为y千米,y关于x的函数关系如图所示,则乙车的速度为()A.50千米/小时B.45千米/小时C.40千米/小时D.35千米/小时【分析】设甲车的速度为mkm/h,乙车的速度为nkm/h,根据题意列出方程即可求出答案.【解答】解:设甲车的速度为mkm/h,乙车的速度为nkm/h,由图象可知:,∴解得:n=45,故选:B.10.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.B.3+3C.6+D.【分析】过点D作DE⊥AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.【解答】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB=DC=BC,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE===3,∴2DE=6.∴MA+MB+MD的最小值是6.故选:D.二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.方程x2=2x的解为x1=0,x2=2.【分析】首先移项,再提取公因式,即可将一元二次方程因式分解,即可得出方程的解.【解答】解:∵x2=2x∴x2﹣2x=0,x(x﹣2)=0,解得:x1=0,x2=2,故答案为:x1=0,x2=2.12.在▱ABCD中,∠A=42°,则∠C=42°.【分析】由平行四边形的性质对角相等,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=42°,故答案为:42°.13.一组数据:2,3,4,5,6的方差是2.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差计算公式可以解答本题.【解答】解:,=2,故答案为:2.14.(4分)已知一次函数y=2x﹣1的图象经过点(3,m),则m的值是5.【分析】利用一次函数图象上点的坐标特征可求出m的值,此题得解.【解答】解:∵一次函数y=2x﹣1的图象经过点(3,m),∴m=2×3﹣1=5.故答案为:5.15.(4分)已知m、n是方程x2﹣2x﹣5=0的两个根,那么m2+mn+2n=4.【分析】根据根与系数的关系得出m+n=2,mn=﹣5,根据m2﹣2m﹣5=0求出m2=5+2m,代入即可.【解答】解:∵m、n是方程x2﹣2x﹣5=0的两个根,∴m+n=2,mn=﹣5,m2﹣2m﹣5=0,∴m2=2m+5,∴m2+mn+2n=2m+5+mn+2n=﹣5+2×2+5=4.故答案为:4.16.(4分)如图,已知直线l1:y=kx+b与直线l2:y=mx+n相交于点P(﹣4,﹣3),则关于x的不等式mx+n<kx+b的解集为x>﹣4.【分析】观察函数图象得到当x>﹣4时,直线l2:y=mx+n在直线l1:y=kx+b的下方,于是得到不等式mx+n <kx+b的解集.【解答】解:根据图象可知,不等式mx+n<kx+b的解集为x>﹣4.故答案为x>﹣4.17.(4分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于点F,若CF=2,FD=4,则BC的长为4.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC==4.故答案为:4.18.(4分)已知过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,则k的取值范围为<k<1.【分析】由点P(m,km﹣1)可知:过点P(m,km﹣1)的直线恒过点(0,﹣1),由于过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,结合图象即可求出k的范围.【解答】解:∵点P(m,km﹣1),∴m=0时,km﹣1=﹣1,∴过点P(m,km﹣1)的直线恒过(0,﹣1),设过点P(m,km﹣1)的直线l为y=kx﹣1,当直线l经过点(3,0)时,则3k﹣1=0,∴k=,∵过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,∴直线不能与y=x﹣3平行,∴k<1,∴<k<1,故答案为:<k<1.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)解方程:(1)x2+2x=3;(2)x(x﹣4)=8﹣2x.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+2x+1=4,∴(x+1)2=4,∴x+1=2,x+1=﹣2,则x1=1,x2=﹣3.(2)∵x(x﹣4)+2(x﹣4)=0,∴(x+2)(x﹣4)=0,∴x+2=0,x﹣4=0,即x1=﹣2,x2=4.20.(10分)“新型冠状病毒肺炎”疫情牵动着亿万国人的心,为进一步加强疫情防控工作,某校利用网络平台进行疫情防控知识测试,测试题共10道题目,每小题10分.小明同学对801和802两个班各40名同学的测试成绩进行了整理和分析,数据如下:①801班成绩频数分布直方图如图:②802班成绩平均分的计算过程如下,=80.5(分);③数据分析如下:班级平均数中位数众数方差80182.5m90158.7580280.575n174.75根据以上信息,解决下列问题:(1)m=85,n=70;(2)你认为801班的成绩更加稳定,理由是801班成绩的方差小于802班的方差,说明波动小,更稳定;(3)在本次测试中,801班甲同学和802班乙同学的成绩均为80分,你认为两人在各自班级中谁的成绩排名更靠前?请说明理由.【分析】(1)将801班的学生成绩排序后,计算中间位置的两个数的平均数即可得到中位数,从802班的平均数的计算过程可得成绩为70分出现次数最多,因此众数是70;(2)从方差的大小进行判断;(3)从甲、乙两位学生的成绩和所在班级的成绩的中位数进行比较得出答案.【解答】解:(1)将40名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为=85,因此中位数是85,即m=85;根据802班的平均数的计算可知,成绩为70分出现的次数最多,是17次,因此众数是70,即n=70;故答案为:85,70;(2)801班,因为801班成绩的方差小于802班的方差,说明波动小,更稳定;故答案为:801班,801班成绩的方差小于802班的方差,说明波动小,更稳定;(3)乙同学,因为801班的中位数大于80分,说明有一半以上的同学比甲成绩好,而802班的中位数小于80分,说明乙同学比一半以上的同学成绩好,所以乙同学在班级的排名更靠前.21.(10分)已知直线l1:y=2x+4分别与x轴,y轴交于点A,B,直线l2经过直线l1上的点C(m,2),且与y 轴的负半轴交于点D,若△BCD的面积为3.(1)直接写出点A,B,C的坐标;(2)求直线l2的解析式.【分析】(1)根据图象上点的坐标特征求得即可;(2)根据三角形BCD的面积求得D的坐标,然后根据待定系数法即可求得.【解答】解:(1)直线l1:y=2x+4中,令y=0,则2x+4=0,解得x=﹣2,∴A(﹣2,0),令x=0,则y=4,∴B(0,4),∵直线l1:y=2x+4经过C(m,2),∴2=2m+4,解得m=﹣1,∴C(﹣1,2);(2)∵S△BCD=BD•|x C|=3 且C(﹣1,2),∴BD×1=3∴BD=6,∵点D在y轴的负半轴上,且B为(0,4)∴D(0,﹣2),设直线l2的解析式为y=kx+b(k≠0),∵直线l2过C(﹣1,2),D(0,﹣2)∴,解得,∴直线l2的解析式为y=﹣4x﹣2.22.(11分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE ∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.【分析】(1)根据平行四边形的判定和菱形的判定证明即可;(2)根据菱形的性质和勾股定理解答即可.【解答】证明:(1)∵AB∥DC,∴∠CAB=∠ACD.∵AC平分∠BAD,∴∠CAB=∠CAD.∴∠CAD=∠ACD,∴DA=DC.∵AB=AD,∴AB=DC.∴四边形ABCD是平行四边形.∵AB=AD,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.∵AB=4,∴OB=2,AO=OC=2.∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=4,∠ACE=90°.∴.23.(11分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.(1)求证:方程总有两个实数根;(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.【分析】(1)根据根的判别式和非负数的性质即可求解;(2)根据一元二次方程的根与系数的关系可以得到x1+x2=1﹣k,x1x2=k﹣2,再将它们代入x12﹣3x1x2+x22=1,即可求出k的值.【解答】解:(1)△=(k﹣1)2﹣4(k﹣2)=(k﹣3)2,∵(k﹣3)2≥0,∴△≥0,∴此方程总有两个实数根.(2)由根与系数关系得x1+x2=1﹣k,x1x2=k﹣2,∵x12﹣3x1x2+x22=1,∴(x1+x2)2﹣5x1x2=1,∴(1﹣k)2﹣5(k﹣2)=1,解得k1=2,k2=5.由(1)得无论k取何值方程总有两个实数根,∴k的值为2或5.24.(11分)某商场以每件220元的价格购进一批商品,当每件商品售价为280元时,每天可售出30件,为了迎接“618购物节”,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每天就可以多售出3件.(1)降价前商场每天销售该商品的利润是多少元?(2)要使商场每天销售这种商品的利润达到降价前每天利润的两倍,且更有利于减少库存,则每件商品应降价多少元?【分析】(1)根据总利润=单件利润×销售数量解答;(2)根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)(280﹣220)×30=1800 (元).∴降价前商场每天销售该商品的利润是1800元.(2)设每件商品应降价x元,由题意,得(280﹣x﹣220)(30+3x)=1800×2,解得x1=20,x2=30.∵要更有利于减少库存,∴x=30.答:每件商品应降价30元.25.(14分)如图,点E是矩形ABCD的边CB延长线上一点,点F是AE的中点.(1)如图①,若点G,H分别是ED,BC的中点;①判断FG和HC之间的关系,并说明理由;②求证:∠DEH=∠FHE;(2)如图②,若CE=AC,连接BF,DF.求证:BF⊥DF.【分析】(1)①证明FG是△AED的中位线,得出FG=AD,FG∥AD,由H是BC的中点,得出CH=BC,由矩形的性质得AD=BC,AD∥BC,即可得出FG=HC,FG∥HC;②由直角三角形斜边上的中线性质得CG=DE=GE,则∠GEH=∠GCE,由①结论得四边形FHCG是平行四边形,得出FH∥GC,则∠FHE=∠GCE,即可得出结论;(2)连接FC,由直角三角形斜边上中线性质得出BF=AE=AF,由SAS证得△BFC≌△AFD,得出∠BFC=∠AFD,由等腰三角形的性质得CF⊥AE,即∠CFD+∠AFD=90°,推出∠CFD+∠BFC=90°,即可得出结论.【解答】(1)①解:判断:FG=HC,FG∥HC;理由如下:∵点F,G分别是AE,DE的中点,∴FG是△AED的中位线,∴FG=AD,FG∥AD,∵H是BC的中点,∴CH=BC,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴FG=HC,FG∥HC;②证明:∵四边形ABCD是矩形,∴∠BCD=90°∵G是DE的中点,∴CG=DE=GE,∴∠GEH=∠GCE,∵FG=HC,FG∥HC,∴四边形FHCG是平行四边形,∴FH∥GC,∴∠FHE=∠GCE,∴∠GEH=∠FHE,即∠DEH=∠FHE;(2)证明:连接FC,如图②所示:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AD=BC,∴∠ABE=90°∵F是AE的中点,∴BF=AE=AF,∴∠FBA=∠F AB,∴∠FBC=∠F AD,在△BFC和△AFD中,,∴△BFC≌△AFD(SAS)∴∠BFC=∠AFD∵CE=AC,F是AE的中点,∴CF⊥AE,∴∠CFD+∠AFD=90°,∴∠CFD+∠BFC=90°,∴BF⊥DF.26.(14分)如图1①②③,平面内三点O,M,N,如果将线段OM绕点O旋转90°得ON,称点N是点M关于点O的“等直点”,如果OM绕点O顺时针旋转90°得ON,称点N是点M关于点O的“正等直点”,如图1②.(1)如图2,在平面直角坐标系中,已知点P(2,1).①在P1(﹣1,2),P2(2,﹣1),P3(1,﹣2)三点中,P1,P3是点P关于原点O的“等直点”;②若直线l1:y=kx+4交y轴于点M,若点N是直线l1上一点,且点N是点M关于点P的“等直点”,求直线l1的解析式;(2)如图3,已知点A的坐标为(2,0),点B在直线l2:y=3x上,若点B关于点A的“正等直点”C在坐标轴上,D是平面内一点,若四边形ABCD是平行四边形,直接写出点D的坐标.【分析】(1)①将OP顺时针旋转90°或逆时针旋转90°,求出旋转后点P的对应点坐标,即可求解;②分两种情况讨论,利用全等三角形的判定和性质可求点N坐标,代入解析式,可求解;(2)分点C在x轴上和点C在y轴上,由平行四边形的性质可求解.【解答】解:(1)如图2,连接OP,作PF⊥y轴,将OP绕点O顺时针旋转90°得到OE,过点E作EH⊥y轴,∴PF=2,OF=1,∠PFO=∠EHO=90°,∵将OP绕点O顺时针旋转90°得到OE,∴OP=OE,∠POE=90°,∴∠POF+∠EOH=90°,∵∠POF+∠FPO=90°,∴∠FPO=∠EOH,又∵∠PFO=∠EHO=90°,OE=OP,∴△PFO≌△OHE(AAS),∴HE=OF=1,PF=OH=2,∴点E(1,﹣2),将OP绕点O顺时针旋转90°得到OG,同理可求点G(﹣1,2),∴P1,P3是点P关于原点O的“等直点”,故答案为:P1,P3;②∵y=kx+4交y轴于点M,∴点M(0,4),∵点N是点M关于点P的“等直点”,∴MP=NP,MP⊥NP,如图,当线段MP绕点P顺时针旋转90°得PN,过P作PQ⊥y轴于点Q,NK⊥PQ交QP的延长线于点K,则∠MQP=∠NKP=90°,∠QMP+∠QPM=∠QPM+∠NPK=90°,∴∠QMP=∠KPN,∴△MPQ≌△PNK(AAS),∴MQ=PK=4﹣1=3,PQ=NK=2,∴点N(5,3),∵点N是直线l1上一点,∴3=5k+4,解得k=﹣,∴直线l1的解析式为:y=﹣x+4,当线段MP绕点P逆时针旋转90°得PN,同理可得点N(﹣1,﹣1),∴﹣1=﹣k+4,解得k=5,∴直线l1的解析式为:y=5x+4,∴综上所述:直线l1的解析式为y=﹣x+4或y=5x+4;(2)如图3,当点C在x轴上时,∵点A的坐标为(2,0),∴OA=2,∵点C是点B关于点A的“正等直点”,∴∠BAC=90°,AB=AC,∴点B的横坐标为2,∴点B的坐标(2,6),∴AB=6=AC,∴OC=8,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=6,∴点D(8,﹣6);若点C在y轴上时,过点B作BE⊥x轴于E,∵点C是点B关于点A的“正等直点”,∴∠BAC=90°,AB=AC,∴∠BAE+∠CAO=90°,又∵∠CAO+∠ACO=90°,∴∠BAE=∠ACO,又∵AC=AB,∠AOC=∠AEB=90°,∴△ACO≌△ABE(AAS),∴BE=AO=2,AE=OC,∴点B的纵坐标为﹣2,∴点B坐标为(﹣,﹣2),∴EO=,∴CO=2+=,∴点C(0,),设点D(x,y),∵四边形ABCD是平行四边形,∴AC与BD互相平分,∴,∴∴点D(,),综上所述:点D坐标为(8,﹣6)或(,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《课程标准》终结性质量监测八年级数学试题(时间:120分钟)亲爱的同学,时间过的真快!新课程又伴你走过了一个新的学年,相信你在知识与能力方面都得到了充实和提到,更加懂得应用数学来解决实际问题.现在让我们一起走进考场,仔细思考,认真作答,相信成功将属于你――数学学习的主人!一、细心填一填,一锤定音(每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,1、同学们都知道,蜜蜂建造的蜂房既坚固又省料。

那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m 。

此数据用科学计数法表示为( )A 、m 4103.7-⨯ B 、m 5103.7-⨯ C 、m 6103.7-⨯ D 、m 51073-⨯2、若一个四边形的两条对角线相等,则称这个四边形为对角线四边形。

下列图形不是对角线四边形的是( ) A 、平行四边形 B 、矩形 C 、正方形 D 、等腰梯形3、某地连续10天的最高气温统计如下:这组数据的中位数和众数分别是( )A 、24,25B 、24.5,25C 、25,24D 、23.5,24 4、下列运算中,正确的是( ) A 、b a b a =++11 B 、a b b a =⨯÷1 C 、b a a b -=-11 D 、01111=-----x xx x 5、下列各组数中以a ,b ,c 为边的三角形不是Rt △的是 ( ) A 、a=2,b=3, c=4 B 、a=5, b=12, c=13 C 、a=6, b=8, c=10 D 、a=3, b=4, c=5 6、一组数据 0,-1,5,x ,3,-2的极差是8,那么x 的值为( )A 、6B 、7C 、6或-3D 、7或-37、已知点(3,-1)是双曲线)0(≠=k xky 上的一点,则下列各点不在该双曲线上的是( ) A 、 ),(931- B 、 ),(216- C 、(-1,3) D 、 (3,1) 8、下列说法正确的是( )A 、一组数据的众数、中位数和平均数不可能是同一个数B 、一组数据的平均数不可能与这组数据中的任何数相等C 、一组数据的中位数可能与这组数据的任何数据都不相等D 、众数、中位数和平均数从不同角度描述了一组数据的波动大小八年级数学共6页 第1页9、如图(1),已知矩形ABCD 的对角线AC 的长为10cm ,连结各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( ) A 、20cm B、 C、 D 、25cm 10、若关于x 的方程3132--=-x mx 无解,则m 的取值为( ) A 、-3 B 、-2 C 、 -1 D 、311、在正方形ABCD 中,对角线AC=BD=12cm ,点P 为AB 边上的任一点,则点P 到AC 、BD 的距离之和为( ) A 、6cm B 、7cm C 、12、如图(2)所示,矩形ABCD 的面积为102cm ,它的两条对角线交于点1,以AB 、1AO 为邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为邻边作平行四边形22O ABC ,……,依次类推,则平行四边形55O ABC 的面积为( )A 、12cm B 、22cm C 、852cm D 、1652cm二、细心填一填,相信你填得又快又准13、若反比例函数xk y 4-=的图像在每个象限内y 随x 的增大而减小,则k 的值可以为_______(只需写出一个符合条件的k 值即可)14、某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为79=甲x 分,79=乙x 分,23520122==乙甲,S S ,则成绩较为整齐的是________(填“甲班”或“乙班”)。

15、如图(3)所示,在□ABCD 中,E 、F 分别为AD 、BC 边上的一点,若添加一个条件_____________,则四边形EBFD 为平行四边形。

16、如图(4),是一组数据的折线统计图,这组数据的平均数是 ,极差是 .17、如图(5)所示,有一直角梯形零件ABCD ,A D ∥BC ,斜腰DC=10cm ,∠D=120°,则该零件另一腰AB 的长是_______cm;2 B八年级数学共6页 第2页18、如图(6),四边形ABCD 是周长为20cm 的菱形,点A 的坐标是(4,0),则点B 的坐标为 . 19、如图(7)所示,用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形有__________(只填序号)。

20、任何一个正整数n 都可以进行这样的分解:t s n ⨯=(s 、t 是正整数,且s ≤t),如果q p ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称q p ⨯是最佳分解,并规定q p F n =)(。

例如:18可以分解成1×18,2×9,3×6,这是就有2163)==n F (。

结合以上信息,给出下列)n F (的说法:①212=)(F ;②8324=)(F ;③327=)(F ;④若n 是一个完全平方数,则1)=n F (,其中正确的说法有_________.(只填序号)三、开动脑筋,你一定能做对(解答应写出文字说明、证明过程或推演步骤)21、解方程482222-=-+-+x x x x x22、先化简,再求值11)1113(2-÷+--x x x ,其中x=2图(7)A B CDE F图(3)第15题图O D CBA yx图(4)图(6)A BCD图(5)56 八年级数学共6页 第3页23、某校八年级(1)班50名学生参加2007年济宁市数学质量监测考试,全班学生的成绩统计如下表:成绩(分)71 74 78 80 82 83 85 86 88 90 91 92 94 人数 1 2 3 5 4 5 3 7 8 4 3 3 2 请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数和中位数分别是多少?(2)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中偏上水平?试说明理由.24、如图(8)所示,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在图(8-1)、图(8-2)、图(8-3)中分别画出满足以下要求的图形.(用阴影表示)(1)使所得图形成为轴对称图形,而不是中心对称图形;(2)使所得图形成为中心对称图形,而不是轴对称图形;(3)使所得图形既是轴对称图形,又是中心对称图形.图(8-1)图(8-2)图(8-3)图(8)八年级数学共6页第4页25、某青少年研究机构随机调查了某校100名学生寒假零花钱的数量(钱数取整数元),以便研究分析并引导学生树立正确的消费观.现根据调查数据制成了如下图所示的频数分布表. (1)请将频数分布表和频数分布直方图补充完整;(2)研究认为应对消费150元以上的学生提出勤俭节约合理消费的建议.试估计应对该校1200名学生中约多少名学生提出该项建议?(3)你从以下图表中还能得出那些信息?(至少写出一条)26、如图(9)所示,一次函数b kx y +=的图像与反比例函数xmy =的图像交于M 、N 两点。

(1)根据图中条件求出反比例函数和一次函数的解析式; (2)当x 为何值时一次函数的值大于反比例函数的值?27、 如图(10)所示,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知AB=8cm,BC=10cm 。

图(9)(元) 频数分布表 频数分布直方图求CE 的长?28、如图(11)所示,在梯形ABCD 中,A D ∥BC ,∠B=90°,AD=24 cm ,BC=26 cm ,动点P 从点A 出发沿AD 方向向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动。

点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动。

(1)经过多长时间,四边形PQCD 是平行四边形? (2)经过多长时间,四边形PQBA 是矩形? (3)经过多长时间,四边形PQCD 是等腰梯形?请再仔细检查一下,也许你会做的更好,考试成功的秘诀在于把会做的题做对,祝你成功!八年级数学试题答案 Q图 (11)PDCBA八年级数学共6页 第6页一、选择题(3分×12=36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BAADACDCABAD二、填空题(3分×8=24分)13、k>4的任何值(答案不唯一); 14、___甲班___; 15、答案不唯一; 16、 46.5 , 31 ; 17、35cm; 18、 (0,3) ; 19、__①③⑤__; 20、 __①③④__.三、开动脑筋,你一定能做对(共60分)21、(6分)解:方程两边同乘)2)(2(-+x x 得:8)2()2(2=+--x x x 解得:2-=x检验:把2-=x 代入)2)(2(-+x x =0 所以-2是原方程的增根, 原方程无解.22、(6分)解: 原式=42+x把x=2 代入原式=823、(8分)(1)众数为88,中位数为86;(2)不能,理由略.24、(6分)25、(9分) (1)略 (2)5401200%451200%10010045=⨯=⨯⨯(名)(3)略26、(8分)解: (1)反比例函数解析式为:xy 6=图(8-1) 图(8-2) 图(8-3)4分6分 4分 6分 6分 8分 4分 7分9分八年级数学答案共2页 第1页一次函数的解析式为:33-=x y(2) 当01<<-x 或3>x 时一次函数的值大于反比例函数的值.27、(8分)CE=328、(9分)(1)(3分)设经过xs ,四边形PQCD 为平行四边形,即PD=CQ,所以x x 324=- 得6=x(2)(3分) 设经过ys ,四边形PQBA 为矩形, 即A P=B Q,所以x x 326-= 得213=x (3)(3分) 设经过ts ,四边形PQCD 是等腰梯形.(过程略)八年级数学答案共2页 第2页6分8分。

相关文档
最新文档