最新人教版八年级数学下册单元测试题【最新整理】
最新人教版初中数学八年级数学下册第四单元《一次函数》测试题(答案解析)
一、选择题1.一次函数y=-3x-2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .函数图象不经过第一象限C .在y 轴上的截距为2D .与x 轴交于点(-2,0)2.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .3.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .4.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .55.如图,已知直线1:2l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点C ,过点C 作y 轴的垂线交直线l 于点D ,则点D 的坐标为( )A .()10,5B .()0,10C .()0,5D .()5,10 6.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→ D .A E D C →→→7.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2 C .3 D .48.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .3 9.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭ C .30,2⎛⎫ ⎪⎝⎭ D .(0,2)10.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D . 11.一个一次函数的图象与直线112y x =-平行,与x 轴、y 轴的交点分别为A ,B ,并且过点(1,5)--,则在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有( ) A .4个 B .5个C .6个D .7个 12.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5, max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ). A .-1 B .3 C .43 D .53二、填空题13.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______. 14.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)15.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -+-+=_________.16.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.17.如表,y 是x 的一次函数,则m 的值为_____________. x 1-0 1 y3 m0 18.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.19.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.20.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题21.如图,直线22y x =-+与x 轴、y 轴分别交于点A 、B .(1)求A 、B 两点的坐标;(2)在x 轴上有一点P ,使得PAB △的面积为5,求P 点的坐标.22.设一次函数y 1=kx ﹣2k (k 是常数,且k≠0).(1)若函数y 1的图象经过点(﹣1,5),求函数y 1的表达式.(2)已知点P(x 1,m )和Q(﹣3,n )在函数y 1的图象上,若m >n ,求x 1的取值范围. (3)若一次函数y 2=ax+b (a≠0)的图象与y 1的图象始终经过同一定点,探究实数a ,b 满足的关系式.23.上个周末,姚家中学的李老师开车带着家人从学校出发,沿着图①中的线路去绿博园、中牟黄河滩区游玩、然后去官渡中学探望朋友.李老师一家早上7:30开着电动汽车从学校出发行走一段时间到绿博园,在绿博园游玩了一段时间;又开车去雁鸣湖镇辖区的黄河滩,他们在滩区游玩了1.5h ;然后在中午12:30赶到官渡中学(电动汽车的行驶速度是40km/h ).图②中的图象表示李老师一家所行驶的路程()km y 与时间()h x 的函数关系.请结合图中信息解答下列问题:(1)点A 的坐标是______,他们在绿博园游玩了_____h ,线段OA 的函数表达式是______;(2)线段OA ,BC ,DE 平行吗?请简单说明理由.(3)请求出线段BC 的函数表达式;(4)如果李辉在11:30骑电动车从官渡中学出发,以20km/h 的速度沿图①中的线路前往黄河滩区游玩,那么李辉在几点钟会和李老师相遇?24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,12,y y 关于x 的图象如图所示:(1)客车的速度是 千米/小时,出租车的速度是 千米小时:(2)根据图象,分别直接写出12,y y 关于x 的关系式;(3)求两车相遇的时间;(4)x 为何值时,两车相距100千米.25.如果3个数位相同的自然数m ,n ,k 满足:m n k +=,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为123,765,888都是三位数,123765888+=,所以123和765是一对“黄金搭档数”.再如:因为26,29,55都是两位数,262955+=,所以26和29是一对“黄金搭档数”.(1)若326与一个个位上的数字是3的数a 是一对“黄金搭档数”,389与一个个位上的数字是8的数b 是一对“黄金搭档数”,直接写出a 和b 的值;(2)若10(19,09)s x y x y =+≤≤≤≤,10(19,09)t x z x z =+≤≤≤≤,且y z <,s 和t 是一对“黄金搭档数”,求这样的“黄金搭档数”一共有多少对?26.一次函数23y x =-+的图像经过点P (1,n ).(1)求n 的值;(2)若一次函数1y mx =-的图像经过点P (2n -1,n ),求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一次函数y=kx+b (k≠0)的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,即可判断A 项,解析式特点找到函数通过的象限即可判断B 项;使y=0时,对应的横坐标即可判断C ;使x=0时,对应的纵坐标即可判断D .【详解】A. 因为k=-3,所以y 随x 的增大而减小,故此项不正确;B. 根据函数解析式y=-3x-2特点,函数图象经过第二、三、四象限,故此项正确;C. y=-3x-2与y 轴的交点坐标(0,-2),那么在y 轴上的截距为-2,故此项不正确;D. y=-3x-2与x 轴交于点(23-,0),故此项不正确; 故选B【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键. 2.A解析:A【分析】根据正比例函数的增减性,确定k 的正负,再依据一次函数图象与系数的关系判断即可.【详解】解:∵函数(0)y kx k =≠中y 随x 的增大而减小,∴k<0,∴3k<0,k 2>0,一次函数23y kx k =+的图象经过第二、一、四象限,故选:A .【点睛】本题考查了正比例函数图象和一次函数图象的性质,解题关键是判断一次函数的系数的符号,并根据系数的正负判断图象所经过的象限.3.A解析:A【分析】依据函数的定义,x 取一个值,y 有唯一值对应,可直接得出答案.【详解】解:A 、根据图象知给自变量一个值,可能有2个函数值与其对应,故A 选项不是函数, B 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B 选项是函数, C 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C 选项是函数, D 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D 选项是函数, 故选:A .【点睛】此题主要考查了函数概念,任意画一条与x 轴垂直的直线,始终与函数图象有一个交点,那么y 是x 的函数.4.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性, 截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A .【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.5.A解析:A【分析】求出B 点的坐标,再求出直线BC 的解析式,从而可得CO 的长度,进一步得出CD 的长度,即可求解.【详解】解:∵A(1,0)∴OA=1当y=1时,112x=,即x=2,∴B(2,1)∵BC⊥l∴设直线BC的解析式为y=-2x+b,把B(2,1)代入得,b=5,∴CO=5,当y=5时,152x=,解得,x=10,∴点D的坐标为(10,5)故选:A【点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,解题时要注意相关知识的综合应用.6.D解析:D【分析】根据图像,以及点的运动变化情况,前两段是y关于x的一次函数图像,判断y随x的增减变化趋势,第一段的最高值与第二段的最高值不相等,即可排除A,B,C选项.【详解】根据图像,前端段是y关于x的一次函数图像,∴应在AC,BD两段活动,故A,B错误,第一段y随x的增大而减小,第二段y随x增大而增大,第一段的最高值与第二段的最高值不相等,∵AE=EC∴C错误故选:D【点睛】本题考查函数的图像,比较抽象,解题的关键是根据图像判断函数值随自变量的值的增减变化情况,以及理解分段函数的最值是解题的关键.7.B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A代表刚开始时两人的距离,B代表两人相遇,C代表小张到达终点,D代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 8.B解析:B【分析】根据关于x 轴的对称点的坐标特点可得B (2,−m ),然后再把B 点坐标代入y =−x +1可得m 的值.【详解】点A 关于x 轴的对称点B 的坐标为:(2,﹣m ),将点B 的坐标代入直线y =﹣x+1得:﹣m =﹣2+1,解得:m =1,故选:B .【点睛】此题主要考查了关于x 轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.9.C解析:C【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4, ∴在Rt ABC 中,AB =5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32, 故点C (0,32), 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.10.D解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.11.B解析:B【分析】首先根据一次函数的图象与直线112y x =-平行,图象经过点(-1,-5),用待定系数法求出函数关系式,然后求出A 、B 两点的坐标,最后根据所求点满足在线段AB 上(包括端点A 、B ),且横、纵坐标都是整数,得出结果;【详解】 一次函数的图象与直线112y x =-平行,设此直线为12y x b =+, 过点(-1,-5), ∴把此点代入,得152b -=-+, 解得92b , ∴此直线为1922y x =-. 当0x =时,92y =-; 0y =时,19022x =-,解得x=9, 故A(9,0),B(0,92-). 由直线的解析式可知,只要x 是奇数时,y 即为整数,而从9到0共有5个奇数,即1,3,5,7,9,故在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有5个.故选:B .【点睛】本题考查了一次函数平行的特点,列出方程,求出未知数,再根据题意求解;12.D解析:D【分析】分x≤43和x>43两种情况进行讨论计算. 【详解】解:当-x+3≥2x -1, ∴x≤43, 即-x≥-43时,y=-x+3, ∴当-x=-43时,y 的最小值=53, 当-x+3<2x-1,∴x>43, 即:x>43时,y=2x-1, ∵x>43, ∴2x >83, ∴2x-1>53, ∴y >53, ∴y 的最小值=53, 故选:D .【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段.二、填空题13.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键. 14.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 15.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可.【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限,∴20a -<,解得:2a <,=23a a =-+-23a a =-+-52a =-,故答案为:52a -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.16.y=-2x 【分析】由题意可设y=kx (k≠0)把xy 的值代入该函数解析式通过方程来求k 的值【详解】解:由题意可设y=kx (k≠0)则2=-k 解得k=-2所以y 关于x的函数解析式是y=-2x故答案为:解析:y=-2x【分析】由题意可设y=kx(k≠0).把x、y的值代入该函数解析式,通过方程来求k的值.【详解】解:由题意可设y=kx(k≠0).则2=-k,解得,k=-2,所以y关于x的函数解析式是y=-2x,故答案为:y=-2x.【点睛】本题考查了待定系数法求正比例函数解析式,利用待定系数法求得解析式是关键.17.【分析】首先利用待定系数法求得一次函数的解析式然后把x=0代入解析式即可解决问题【详解】解:设一次函数的解析式为y=kx+b则有解得∴一次函数的解析式为当x=0时m=故答案为:【点睛】本题考查了一次解析:3 2【分析】首先利用待定系数法求得一次函数的解析式,然后把x=0代入解析式即可解决问题.【详解】解:设一次函数的解析式为y=kx+b,则有3k bk b-++⎧⎨⎩==,解得3232kb⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数的解析式为3322y x=-+,当x=0时,m=32.故答案为:32.【点睛】本题考查了一次函数图象上点的坐标特征和用待定系数法求一次函数的解析式,能求出一次函数的解析式是解此题的关键.18.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟 解析:()15,0+()15,0-()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =,22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2), 故答案为:()15,0+、()15,0-、()0,2. .【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.19.【分析】由点P 的纵坐标为40代入求得点P 的坐标再利用两图象的交点坐标满足方程组方程组的解就是交点坐标据此求解即可【详解】∵点P 的纵坐标为40∴解得:∴点P 的坐标为()∴方程组即的解为故答案为:【点睛解析:240x y =⎧⎨=⎩【分析】由点P 的纵坐标为40,代入20y x =求得点P 的坐标,再利用两图象的交点坐标满足方程组,方程组的解就是交点坐标,据此求解即可.【详解】∵点P 的纵坐标为40,∴4020x =,解得:2x =,∴点P 的坐标为(2,40),∴方程组2040y x y ax =⎧⎨=-⎩即20040x y ax y -=⎧⎨-=⎩的解为, 故答案为:240x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程(组)的关系,函数图象交点坐标为两函数解析式组成的方程组的解,利用了数形结合思想.20.(0)【分析】过A 和B 分别作AF ⊥OC 于FBE ⊥OC 于E 利用已知条件可证明△AFC ≌△CEB 再有全等三角形的性质和已知数据即可求出B 点的坐标然后求出直线BC 的解析式即可得到结论【详解】解:过A 和B 分解析:(0,83) 【分析】过A 和B 分别作AF ⊥OC 于F ,BE ⊥OC 于E ,利用已知条件可证明△AFC ≌△CEB ,再有全等三角形的性质和已知数据即可求出B 点的坐标,然后求出直线BC 的解析式,即可得到结论.【详解】解:过A 和B 分别作AF ⊥OC 于F ,BE ⊥OC 于E ,∵∠ACB =90°,∴∠ACF +∠CAF =90°∠ACF +∠BCE =90°,∴∠CAF =∠BCE , 在△AFC 和△CEB 中,90AFC CBE CAF BCE AC AC ︒⎧∠=∠=⎪∠∠⎨⎪=⎩= , ∴△AFC ≌△CEB (AAS ),∴FC =BE ,AF =CE ,∵点C 的坐标为(﹣2,0),点A 的坐标为(﹣6,3),∴OC =2,AF =CE =3,OF =6,∴CF =OF ﹣OC =4,OE =CE ﹣OC =2﹣1=1,∴BE =4,∴则B 点的坐标是(1,4),设直线BC的解析式为:y=kx+b,则420k bk b+=⎧⎨-+=⎩,∴4383 kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC的解析式为:y=43x+83,当x=0时,y=83,∴D(0,83).故答案为:(0,83).【点睛】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题21.(1)(1,0)A,(0,2)B;(2)(6,0)P或(4,0)-.【分析】(1)分别令0y=和0x=即可;(2)设P的坐标(,0)a,根据题目条件列出等量关系即可求出a;【详解】解:(1)把0y=代入,220x-+=,1x=,(1,0)A∴,把0x=代入,2y=,(0,2)B∴;(2)设P的坐标(,0)a,152PA OB⨯=,5PA =,|1|5a -=,6a =或者4-,(6,0)P ∴或者(4,0)-;【点睛】本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.22.(1)151033y x =-+;(2)当k <0时,x 1<﹣3;当k >0时,x 1>﹣3;(3)2a +b =0.【分析】(1)将点(﹣1,5)代入y 1=kx ﹣2k ,求得k 值,即可得出函数解析式;(2)根据一次函数的性质,由k 值判断函数自变量的大小,即可得出结论; (3)根据一次函数y 1=kx ﹣2k 得y 1=k (x ﹣2),可得函数图象经过的定点为(2,0),再将定点坐标代入y 2=ax+b 即可求出实数a ,b 满足的关系式.【详解】解:(1)∵函数y 1的图象经过点(﹣1,5),∴5=﹣k ﹣2k ,解得k =53-, 函数y 1的表达式151033y x =-+; (2)当k <0时,若m >n ,则x 1<﹣3;当k >0时,若m >n ,则x 1>﹣3;(3)∵y 1=kx ﹣2k =k (x ﹣2),∴函数y 1的图象经过定点(2,0),当y 2=ax +b 经过(2,0)时,0=2a +b ,即2a +b =0.【点睛】本题考查了一次函数图象与性质,掌握一次函数的图象与性质并能准确理解题意进行解答是解题的关键.23.(1)点1,202A ⎛⎫ ⎪⎝⎭,1.5h ,40y x =;(2)线段,,OA BC DE 平行;理由见解析;(3)线段BC 的函数表达式4060y x =-,(4)李辉在12点10分会和李老师相遇.【分析】(1)用路程除以速度求出A 点的时间,用B 点的时间减去A 点的时间在绿博园游玩时间,OA 的表达式y 用时间x 乘以电动汽车的速度40即可,(2)利用电动汽车速度确定三段函数的k 值,k 相同则线段,,OA BC DE 位置关系即可判断,(3)先求出B 点坐标,设出BC 的解析式,由k 为电动汽车的速度,代入求b 即可,(4)先求李老师从黄河区出发的时间,再列出两者相遇的方程,求出相遇时间,加上李辉出发时的时间即可【详解】(1)20÷40=12,点1,202A ⎛⎫ ⎪⎝⎭,2-12=1.5h ,线段OA 表达式:40y x =; (2)线段,,OA BC DE 平行,因为电动汽车的行驶速度都是40/km h ,三条线段的函数表达式系数k 都是电动汽车的行驶速度,由一次函数的性质,k 相同,直线是平行的;(3)设BC 的函数表达式y kx b =+,由(1)(2)得40k =,又由图象可知,点B 的坐标是()2,20,所以,20402b =⨯+,解得60b =-,所以,线段BC 的函数表达式4060y x =-;(4)设李辉出发a 小时后,两车相遇,李老师所用时间7时30分出发到在黄河区游玩结束11时45分,比李辉晚出发14小时, 根据题意,得12040304a a ⎛⎫+-= ⎪⎝⎭, 解得23a =, 11时30分出发到相遇用260=403⨯分,即11时70分=12时10分, 所以,他们在12点10分相遇.【点睛】本题考查点的坐标,线段的表达式,线段的位置关系,相遇行程问题,掌握点的坐标求法,线段表达式的求法,会列行程问题应用题,会用数形结合的思想解一次函数中行程问题是解题关键.24.(1)60,100;(2)y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)两车相遇的时间为154小时;(4)258小时或358小时. 【分析】 (1)根据速度=路程÷时间,列式进行计算即可得解;(2)根据两函数图象经过的点的坐标,利用待定系数法求一次函数解析式解答即可; (3)由12y y =列出方程,求出即可;(4)由两车相距100千米,可得|y 1-y 2|=100,即可求解.【详解】解:(1)由图可知,甲乙两地间的距离为600km ,所以,客车速度=600÷10=60(km/h ),出租车速度=600÷6=100(km/h ),故答案为:60,100;(2)设客车的函数关系式为y 1=k 1x ,则10k 1=600,解得k 1=60,所以,y 1=60x (0≤x≤10),设出租车的函数关系式为y 2=k 2x+b ,则206600k b b +⎧⎨=⎩=, 解得2100600k b =-⎧⎨=⎩, 所以,y 2=-100x+600(0≤x≤6),故答案为:y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)当出租车与客车相遇时,60x=-100x+600,解得x=154. 所以两车相遇的时间为154小时;(4)由题意可得:|-100x+600-60x|=100,∴x=258或358, 答:x 为258小时或358小时,两车相距100千米. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.(1)673,388a b ==;(2)10对.【分析】(1)由黄金搭档数的定义可得:326+999,a =389+=777b ,解方程从而可得答案; (2)由10,10,s x y t x z =+=+可得,s t 的十位上的数字是相同的,再结合19,09,09,x y z ≤≤≤≤≤≤ y <,z 可得:,s t 都是两位数,s <t ,由20,s t x y z +=++可得0<4,x ≤ 结合x 为正整数,再分类讨论可得答案.【详解】解:(1) 326与一个个位上的数字是3的数a 是一对“黄金搭档数”,326∴与a 的和的个位数是9,且它们的和也是三位数,一对黄金搭档数的和各位数上的数字全部相同,326+999,a ∴=673,a ∴=同理可得:389+=777b ,388,b ∴=综上:673,388.a b ==(2)10,10,s x y t x z =+=+,s t ∴的十位上的数字是相同的,19,09,09,x y z ≤≤≤≤≤≤ y <,z1099,1099,s t ∴≤≤≤≤ 且,s t 都是两位数,s <t ,s 和t 是一对“黄金搭档数”,s ∴与t 的和也是一个两位数,且各位数上的数字全部相同,101020,s t x y x z x y z +=+++=++0∴<4,x ≤ x 为正整数, x 的可能的值为1,2,3,4.综上可得:满足条件的数有10对,分别是:当1x =时,10,12,s t ==当2x =时,20,24,s t == 或21,23,s t ==当3x =时,30,36,s t == 或31,35,s t == 或32,34,s t ==当4x =时,40,48,s t == 或41,47,s t == 或42,46,s t == 或43,45.s t == 综上:这样的“黄金搭档数”一共有10对.【点睛】本题考查的是新定义:黄金搭档数的定义的理解,利用定义借助方程,不等式,对变量的范围的理解进行分类讨论,解题的关键是弄懂题意,作出合适的分类.26.(1)1;(2)m =2【分析】(1)把点P (1, n )代入一次函数 y=−2x+3 即可求出n 的值;(2)由(1)可得P (1,1),由一次函数 y=mx−1 的图像经过点P (1,1),可得m 的值.【详解】(1)一次函数23y x =-+的图像经过点P (1,n ),n =-2+3=1;(2)由n =1,P (2n -1,n ),可得P (1,1),一次函数1y mx =-的图像经过点P (1,1),11m =-,解得m=2.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.。
最新人教版初中数学八年级数学下册第四单元《一次函数》测试题(含答案解析)
一、选择题1.若正比例函数y=(m﹣2)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<22.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或5+1 B.3或5C.2或5D.3或5+13.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x-3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.52B.42C.32D.54.已知点P(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C .D .5.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t <<6.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x < 7.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-8.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 234······应交电费y (元)0.55 1.1 1.65 2.2 ······x y x y x ②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( ) A .4个B .3个C .2个D .1个9.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③10.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( ) x ﹣1 0 1 1.5 ax+b﹣3﹣112A .3B .﹣5C .6D .不存在11.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( ) ①,B C 两港之间的距离为60海里 ②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时 ④甲船到达C 港时,乙船还需要一个小时才到达C 港 ⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个12.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <-二、填空题13.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.14.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.15.已知y 是x 的一次函数,下表中列出了部分对应值,则m 的值是________.x-1 0 my 1-2-516.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.17.若点()14,y -,()22,y 都在直线2y x =-+上,则1y __________2y (填“>”或“=”或“<”)18.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象,则关于x 、y 的二元一次方程组12y k xy k x b =⎧⎨=+⎩的解是___________.19.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.20.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________.三、解答题21.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.22.为了满足广大人民群众的消费需求,某商场计划于今年“五一黄金周”期间,用160000元购进一批家电,这批家电的进价和售价如下表:(1)若全部资金用来购买彩电和洗衣机共100台,问商店可以购买彩电和洗衣机各多少台?(2)若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价) 类别 彩电 冰箱 洗衣机 进价 2000 1600 1000 售价22001800110023.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值.(2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.24.已知在平面直角坐标系中,直线()11140y k x k =+≠与直线()2220y k x k =≠交于点()6,12C ,直线1y 分别与x 轴,y 轴交于点A 和点B .(1)求直线1y 与2y 的表达式及点A ,点B 的坐标;(2)x 轴上是否存在点P ,使ACP ∆的面积为30,若存在,求出点P 的坐标;若不存在,说明理由;(3)x 轴上是否存在点Q ,使OCQ ∆为等腰三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.25.某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当20x ≥时,求y 与x 之间的函数关系式; (3)种植时间为多少天时,总用水量达到3500米3. 26.已知直线36y x =+,求:(1)直线与x 轴,y 轴分别交于A B 、两点,求A 、B 两点坐标; (2)若点(),3C m 在图象上,求m 的值是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据正比例函数的大小变化规律判断k 的符号. 【详解】解:根据题意,知:y 随x 的增大而减小, 则k <0,即m ﹣2<0,m <2. 故选:D . 【点睛】本题考查了一次函数的性质:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.2.D解析:D 【分析】利用一次函数与坐标轴的交点求出△AOB 的两条直角边,并运用勾股定理求出AB .根据已知可得∠CAD=∠OBA,分别从∠ACD=90°或∠ADC=90°时,即当△ACD≌△BOA时,AD =AB,或△ACD≌△BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:∵直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,∴A(1,0),B(0,2).∴OA=1,OB=2.∴AB=2222OA OB+=+=.125∵AP⊥AB,点C是射线AP上,∴∠BAC=90°,即∠OAB+∠CAD=90°,∵∠OAB+∠OBA=90°,∴∠CAD=∠OBA,若以C、D、A为顶点的三角形与△AOB全等,则∠ACD=90°或∠ADC=90°,即△ACD≌△BOA或△ACD≌△BAO.如图1所示,当△ACD≌△BOA时,∠ACD=∠AOB=90°,AD=AB,∴OD=AD+OA51;如图2所示,当△ACD≌△BAO时,∠ADC=∠AOB=90°,AD=OB=2,∴OD=OA+AD=1+2=3.综上所述,OD的长为351.故选:D.【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.3.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为52故选A.【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.4.C解析:C【分析】根据点P在第二象限,确定m<0,n>0,根据k,b的符号,确定图像的分布即可.【详解】∵点P(m,n)在第二象限,∴m<0,n>0,∴图像分布在第一,第三象限,第四象限, 故选C. 【点睛】本题考查了根据k ,b 的符号确定一次函数图像的分布,熟记k ,b 的符号与图像分布的关系是解题的关键.5.C解析:C 【分析】分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围. 【详解】解:当直线y=-x+b 过点M (3,4)时,得4=-3+b ,解得:b=7, 则7=1+t ,解得t=6.当直线y=-x+b 过点N (5,6)时,得6=-5+b ,解得:b=11, 则11=1+t ,解得t=10.故若点M ,N 位于l 的异侧,t 的取值范围是:6<t <10. 故选:C . 【点睛】本题考查了坐标平面内一次函数的图象与性质,得出直线l 经过点M 、点N 时的t 值是解题关键.6.A解析:A 【分析】根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可. 【详解】∵当x=-3时,kx+b=2, 且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-, 故选A. 【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.7.B解析:B 【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可. 【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.8.B解析:B【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性.【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55,∴y 是x 的一次函数,故①正确,②正确,设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 9.A解析:A【分析】根据题意可以得出进水速度和出水速度,再根据图象中的折线走势,判断进水、出水状态解答即可.【详解】解:根据题意,每个进水口速度是每小时1万立方米,出水速度是每小时2万立方米, 由图象可知,①在0到3点,蓄水量每小时增加2万立方米,即0到3点只进水不出水,正确; ②在3点到4点,蓄水量每小时减少1万立方米,即打开一个进水口和一个出水口,错误;③在4点到6点,需水量没发生变化,即打开两个进水口和一个出水口,错误, 故选:A .【点睛】本题考查一次函数的图象与性质,能根据函数图象获取有效数据和所需条件是解答的关键.10.C解析:C【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求.【详解】解:设y =ax+b ,把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩, 解得:21a b =⎧⎨=-⎩, ∴2x ﹣1=11,解得:x =6.故选:C .【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.11.D解析:D【分析】根据甲、乙的图象去分析出甲、乙的行驶过程,从而求出速度,相遇时间等信息,去判断选项的正确性.【详解】解:通过乙的图象可以看出B 、C 两港之间距离是90海里,故①错误,甲从A 港出发,经过B 港,到达C 港,乙从B 港出发,到达C 港,甲比乙快,所以甲、乙只会相遇一次,故②正确,甲的速度:300.560÷=(海里/小时),乙的速度:90330÷=(海里/小时),甲比乙快30海里/小时,故③正确,A 港距离C 港3090120+=(海里),120602÷=(小时),即甲到C 港需要2小时,乙需要3小时,故④正确, ()3060301÷-=(小时),即甲追上乙需要1个小时,1个小时乙行驶了30海里,∴()1,30P ,故⑤正确,正确的有:②③④⑤.故选:D .【点睛】本题考查一次函数的应用,解题的关键是能够根据所给函数图象结合实际意义去进行分析得到想要的信息.12.B解析:B【分析】由当x1<x2时y1>y2,利用一次函数的性质可得出-(2m+3)<0,解之即可得出m的取值范围.【详解】解:∵当x1<x2时,y1>y2,∴-(2m+3)<0,解得:m>-32.故选:B.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.二、填空题13.【分析】由图像可知C点时正好甲车出现故障可求出甲车所走的路程为及时间为可求出甲车的速度进而可求出甲车返回A地时的速度D点为乙车遇到甲车并把货物搬运到乙车上可得乙车的行驶的总路程为和时间进而可求出乙车解析:()5.1,150【分析】由图像可知,C点时正好甲车出现故障,可求出甲车所走的路程为20012080km km km-=及时间为1.6h,可求出甲车的速度,进而可求出甲车返回A地时的速度,D点为乙车遇到甲车并把货物搬运到乙车上,可得乙车的行驶的总路程为120km 和时间3.6 1.60.5 1.5h--=,进而可求出乙车的速度,根据甲乙两车返回A地,B地的时间为甲车大于乙车,故乙车先到B地,点E是乙车先到达B地时甲乙两车相距的距离和对应的时间,进而可求出E点坐标.【详解】由题可知;点C(1.6,120)时正好甲车出现故障停车,∴甲车走的路程为:20012080km km km-=,所用时间为:1.6h,∴甲车的速度为:8050/1.6kmv km hh==,∴甲车返回A地的速度为:250/20/5km h km h ⨯=,∴甲车返回A 地的时间为:80420/km h km h=, 点D(3.6,0)为乙车遇到甲车并把货物搬运到乙车上,∴乙车走的路程为:20080120km km km -=,所用时间为:3.6 1.60.5 1.5h --=, ∴乙车的速度为:12080/1.5km v km h h==, 乙车返回B 地按原速度返回,∴乙车返回B 地时间为:1.5h ,可得乙车先返回到B 地点E 是乙车先到达B 地时甲乙两车相距的距离和对应的时间,设点E 的坐标为(,x y ),则 3.6 1.5 5.1x h =+=,甲乙两车各自返回1.5h 时相距的距离为:()20/80/ 1.5150y km h km h h km =+⨯=, 故答案为:(5.1,150 )【点睛】本题考查了一次函数的实际应用,读懂图像准确理解题意是解题关键14.②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断ab 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断cd 的正负即可得出结论;③以 解析:②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得d c ->-1,解此不等式即可作出判断. 【详解】解:①由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∴a <0,b >0,故①错误;②由图象可得:一次函数y =cx +d 图象经过一、二、三象限,∴c >0,d >0,∴ac <0,故②正确;③由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方, ∴ax +b <cx +d ,故③错误;④∵一次函数y =ax +b 与y =cx +d 的图象的交点P 的横坐标为1,∴a +b =c +d ,故④正确;⑤∵一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),且d c->-1,c >0,∴c >d .故⑤正确.故答案为:②④⑤.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.15.1【分析】根据给定点的坐标利用待定系数法可求出一次函数解析式再代入(m-5)求出m 的值即可【详解】解:设一次函数的解析式为y=kx+b (k≠0)将(-11)(0-2)代入y=kx+b 得:解得:∴一次解析:1【分析】根据给定点的坐标,利用待定系数法可求出一次函数解析式,再代入(m ,-5)求出m 的值即可.【详解】解:设一次函数的解析式为y=kx+b (k≠0),将(-1,1),(0,-2)代入y=kx+b ,得:12k b b -+⎧⎨-⎩==, 解得:32k b -⎧⎨-⎩==, ∴一次函数的解析式为y=-3x-2.当x=m 时,y=-3×m-2=-5,∴m=1.故答案为:1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据给定点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】根据图象上点的坐标性质得出点各点纵坐标进而利用三角形的面积得出继而得到规律据此解题即可【详解】解:是轴上的点且分别过点作轴的垂直交直线于点的横坐标为:纵坐标为:同理可得:的横坐标为:纵坐标为 解析:3820194040【分析】 根据图象上点的坐标性质得出点12321,,,,n n T T T T T --各点纵坐标,进而利用三角形的面积得出1231n S S S S -、、,继而得到规律1111n n S n n --⎛⎫=- ⎪⎝⎭,据此解题即可. 【详解】解:1231,,,,n P P P P +,是x 轴上的点且11223211n n OP PP P P P P n --=====, 分别过点12321,,,,,n n P P P P P --作x 轴的垂直交直线22y x =-+于点12321,,,,n n T T T T T --,1T ∴的横坐标为:1n ,纵坐标为:22n-, 111211212S n n n n ⎛⎫⎛⎫∴=⨯-=- ⎪ ⎪⎝⎭⎝⎭, 同理可得:2T 的横坐标为:2n ,纵坐标为:42n-, 2121S n n ⎛⎫∴=- ⎪⎝⎭, 3T 的横坐标为:3n ,纵坐标为:62n-, 3131S n n ⎛⎫∴=- ⎪⎝⎭, 4T 的横坐标为:4n ,纵坐标为:82n-, 以此规律可得:1111n n S n n --⎛⎫=- ⎪⎝⎭, 12311111(1)22n n S S S S n n n n --⎡⎤∴++++=---=⎢⎥⎣⎦, ∴当4n =时,1234413248S S S S -+++==⨯, 当2020n =时,1232019202012019220204040S S S S -++++==⨯. 故答案为:38;20194040. 【点睛】本题考查一次函数图象上点的坐标特征,是重要考点,难度一般,掌握相关知识是解题关键.17.>【分析】由y =−x +2可知k =−1<0故y 随x 的增大而减小由−4<2可得y1y2的大小关系【详解】解:∵k =−1<0∴y 随x 的增大而减小∵−4<2∵y1>y2故答案为:>【点睛】本题主要考查一次函解析:>【分析】由y =−x +2可知k =−1<0,故y 随x 的增大而减小,由−4<2,可得y 1,y 2的大小关系.【详解】解:∵k =−1<0,∴y 随x 的增大而减小,∵−4<2,∵y 1>y 2故答案为:>【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键.18.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题【详解】解:∵一次函数y1=k1x 与y=k2x+b 的图象的交点坐标为(12)∴二元一次方程组的解为故答案是:【点睛】本题考查了一次函解析:12x y =⎧⎨=⎩【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:∵一次函数y 1=k 1x 与y=k 2x+b 的图象的交点坐标为(1,2),∴二元一次方程组12y k x y k x b =⎧⎨=+⎩的解为12x y =⎧⎨=⎩. 故答案是:12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 19.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b ,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b 的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3. 故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k 的值不变.20.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A 坐标为(23)∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y =-计算即可.【详解】解:∵A 坐标为3),∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是-a ,3),∵恰好落在正比例函数y =-的图象上,∴)3a -=,解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.(1)y =2x+1;(2)(0,1)和(﹣12,0) 【分析】(1)由待定系数法可求得直线l 1的解析式;(2)令x=0可求得其与y 轴的交点坐标,令y=0,可求得其与x 轴的交点坐标.【详解】解:(1)∵直线l 1:y=kx+b 经过点A (12,2)和点B (2,5). ∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12,∴直线l1与坐标轴的交点坐标为(0,1)和(-12,0).【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.22.(1)商店可以购买彩电60台,洗衣机40台.(2)共有四种进货方案. a=37时商店获得的最大利润为17400元.【分析】(1)根据题意商店购买彩电x台,则购买洗衣机(100−x)台,列出一元一次方程,解方程即可得出答案;(2)根据题意设购买彩电和冰箱a台,则购买洗衣机为(100−2a)台,列出不等式,解不等式得共有四种进货方案,进而计算出当a=37时,获得的利润最大.【详解】解:(1)设商店购买彩电x台,则购买洗衣机(100−x)台.由题意,得2000x+1000(100−x)=160000,解得x=60,则洗衣机为:100−x=40(台),所以,商店可以购买彩电60台,洗衣机40台.(2)设购买彩电和冰箱各a台,则购买洗衣机为(100−2a)台.根据题意,得2000a+1600a+1000(100−2a)≤160000,∴整理得:4a≤150,a≤37.5.∵100−2a≤a,∴33 13≤a,解得33 13≤a≤37.5.因为a是整数,所以a=34、35、36、37.因此,共有四种进货方案.设商店销售完毕后获得的利润为w元,则w=(2200−2000)a+(1800−1600)a+(1100−1000)(100−2a),=200a+10000,∵200>0,∴w随a的增大而增大,∴当a=37时,w最大值=200×37+10000=17400,所以,商店获得的最大利润为17400元.【点睛】本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.23.(1)1k =,2b =;(2)()0,6P ;(3)5,02E ⎛⎫⎪⎝⎭,1,02D ⎛⎫ ⎪⎝⎭. 【分析】 (1)将C 的坐标代入正比例函数中,求出点C 坐标,进而用待定系数法即可得出结论; (2)利用三角形的两边之差小于第三边,判断出点P 是直线PC'和y 轴的交点,即可得出结论;(3)先判断出点D 的位置,先求出点G 的坐标,进而得出点F 的坐标,利用待定系数法求出直线BF 解析式即可得出结论.【详解】解:(1)把点C (4,c )代入32y x =, 解得:c=6,则点C (4,6),∵一次函数交y 轴于点B (0,2),∴函数表达式为:y=kx+2,把点C 坐标代入上式,解得:k=1,故:k=1,b=2,(2)如图,作A 关于y 轴的对称点A ',连接CA '交y 轴于P 点,此时PA PC -最大,()2,0A ',PA PA '=,设A C '的解析式为y ax m =+,将()4,6C ,()2,0A '代入得4620a m a m +=⎧⎨+=⎩,解得36a m =⎧⎨=-⎩, ∴36CA y x '=-PA PC PA PC CA --'==',∴()0,6P -.(3)以下各点的坐标分别为:B (0,2),C (4,6),过点C 作CG ∥DE ,使GC=DE ,则:四边形DECG 为平行四边形,作点G 作关于x 轴的对称点F ,连接BF ,交x 轴于D ,点D 即为所求点,则点G 坐标为(2,6),点F 坐标为(2,-6),则:DF=DG=EC ,DB+CE=BD+DG=BD+DF=BF ,即:BD+CE 最小,而:DE 、BC 长度为常数,故:在图示位置时,四边形BDEC 的周长取最小值,把点B 、F 点坐标代入一次函数表达式:y=nx+b′,解得:BF 所在的直线表达式为:y=-4x+2,令:y=0,则x=12, 则点D 和E 的坐标分别为(12,0)、(52,0), 【点睛】 此题为一次函数综合题,其中(3)的核心是确定点D 的位置,考查了学生综合运用所学知识的能力.24.(1)1443y x =+,22y x =,()30A -,,()0,4B ;(2)存在,()12,0P ,()28,0P -;(3)存在,1(65,0)Q ,2(65,0)Q -,3(12,0)Q ,4(15,0)Q【分析】(1)把()6,12C 代入直线表达式即求出1y 与2y 的表达式,从而可求得B 的坐标; (2)由三角形面积可得到AP 的长,要注意P 点可能在A 点的左侧或右侧;(3)分OC=OQ ,OC=CQ ,CQ=OQ 三种情况讨论即可.【详解】解:(1)把()6,12C 代入114y k x =+中,得11264k =+, 解,得143k =, 1443y x ∴=+. 把()6,12C 代入22y k x =,得2126k =,解,得22k =,22y x ∴=.把0y =代入1443y x =+,得3x =-, ()3,0A ∴-, 把0x =代入1443y x =+,得4y =, ()0,4B ∴.(2)存在. P 在x 轴上,30ACP S ∆=,点C 的纵坐标为12,12302ACP AP S ∆⋅∴==, 解得5AP =,点P 可以在A 点的左边,也可以在A 点的右边,()12,0P ∴,()28,0P -.(3)存在1Q ,2(Q -,3(12,0)Q ,4(15,0)Q .若OC=OQ 时,OC =,∴OQ =∴1Q ,2(Q -,若OC=CQ 时,根据等腰三角形“三线合一”可知OQ=12,∴3(12,0)Q ,若OQ=CQ 时,()2222612OQ CQ OQ -+==,解得OQ=15,∴4(15,0)Q ,综上所述,1Q ,2(Q -,3(12,0)Q ,4(15,0)Q .【点睛】本题考查了一次函数的解析式,等腰三角形的性质,注意分类讨论是解题的关键. 25.(1)500米3;(2)y=150x-2500;(3)40天【分析】(1)看x=20时,所对应的函数值是多少即可;(2)设出一次函数解析式,把(20,500),(30,2000)代入一次函数解析式,求得k ,b 的值即可;(3)把y=3500代入(2)得到的一次函数解析式,求得x 的值即可.【详解】解:(1)当x=20时,y=500,所以,第20天的总用水量为500米3;(2)设所求的函数解析式为y=kx+b ,把(20,500),(30,2000)代入一次函数解析式得:20500302000k b k b +⎧⎨+⎩==, 解得:1502500k b ⎧⎨-⎩==, ∴y=150x-2500;(3)当y=3500时,150x-2500=3500,解得,x=40答:时间为40天时,总用水量达到3500米3.【点睛】考查一次函数的应用;用待定系数法求得一次函数解析式是常用的解题方法. 26.(1)A (-2,0)、B (0,6);(2)-1【分析】(1)直线与x 轴交点的纵坐标等于零;直线与y 轴交点的横坐标等于零;(2)把该点代入已知函数解析式,列出关于m 的方程,通过解方程来求m 的值.【详解】解:(1)令y=0,则3x+6=0,解得:x=-2;令x=0,则y=6.所以,直线与x 轴,y 轴的交点坐标坐标分别是A (-2,0)、B (0,6);(2)把C (m ,3)代入y=3x+6,得到3m+6=3,即m=-1.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(-b k,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .。
人教版八年级数学下册单元测试题全套(含答案)
人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
人教版八年级数学下册单元测试《第18章平行四边形》(a卷)(解析版)
初中数学试卷新人教版八年级下册《第18章平行四边形》单元测试(A卷)一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于度,外角和等于度.2.正方形的面积为4,则它的边长为,一条对角线长为.3.一个多边形的内角和等于它的外角和的3倍,它是边形.4.如果四边形ABCD满足条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为cm.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.7.平行四边形ABCD,加一个条件,它就是菱形.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为cm.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为cm.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=,EF分梯形所得的两个梯形的面积比S1:S2为.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?新人教版八年级下册《第18章平行四边形》单元测试(A卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于360度,外角和等于360度.【考点】多边形内角与外角.【专题】计算题.【分析】n边形的内角和是(n﹣2)•180度,因而代入公式就可以求出四边形的内角和;任何凸多边形的外角和都是360度.【解答】解:四边形的内角和=(4﹣2)•180=360度,四边形的外角和等于360度.【点评】本题主要考查了多边形的内角和公式与外角和定理,是需要熟记的内容.2.正方形的面积为4,则它的边长为2,一条对角线长为2.【考点】正方形的性质.【分析】根据正方形的面积公式可得到正方形的边长,根据正方形的对角线的求法可得对角线的长.【解答】解:设正方形的边长为x,则对角线长为=x;由正方形的面积为4,即x2=4;解可得x=2,故对角线长为2;故正方形的边长为2,对角线长为2.故答案为2,2.【点评】本题考查正方形的面积公式以及正方形的性质,此题是基础题,比较简单.3.一个多边形的内角和等于它的外角和的3倍,它是八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.如果四边形ABCD满足四边形ABCD是菱形或正方形条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).【考点】正方形的性质;菱形的性质.【专题】开放型.【分析】符合对角线互相垂直的四边形有:菱形、正方形,选择一个即可.【解答】解:根据四边形的性质可得到对角线互相垂直的有菱形和正方形,从而答案为:四边形ABCD是菱形或正方形.【点评】此题主要考查菱形和正方形的对角线的性质.5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为2cm.【考点】正方形的性质.【专题】计算题.【分析】先求出长方形的面积,因为长方形的面积和正方形的面积相等,再根据正方形的面积公式即可求得其边长.【解答】解:边长分别为4cm和5cm的矩形的面积是20cm2,所以正方形的面积是20cm2,则这个正方形的边长为=2(cm).故答案为2.【点评】本题主要考查了正方形的面积计算公式,即边长乘边长.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是20cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半即可求得其面积.【解答】解:由已知得,菱形面积=×5×8=20cm2.故答案为20.【点评】本题主要考查了菱形的面积的计算公式.7.平行四边形ABCD,加一个条件一组邻边相等或对角线互相垂直,它就是菱形.【考点】菱形的判定.【专题】开放型.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.所以,可添加:一组邻边相等或对角线互相垂直.【解答】解:因为一组邻边相等的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.可补充条件:一组邻边相等或对角线互相垂直.【点评】本题考查菱形的判定.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为24+4 cm.【考点】等腰梯形的性质;勾股定理.【分析】过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【解答】解:过A,D作下底BC的垂线,则BE=CF=(14﹣10)=2cm,在直角△ABE中根据勾股定理得到:AB=CD==2,所以等腰梯形的周长=10+14+2×2=24+4cm.故答案为:24+4cm.【点评】等腰梯形的问题可以通过作高线转化为直角三角形的问题来解决.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为5cm.【考点】菱形的性质.【专题】计算题.【分析】设另一条对角线长为x,然后根据菱形的面积计算公式列方程求解即可.【解答】解:设另一条对角线长为xcm,则×12x=30,解之得x=5.故答案为5.【点评】主要考查菱形的面积公式:两条对角线的积的一半.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.【考点】平行四边形的性质.【专题】几何图形问题.【分析】平行四边形的面积=底×高,根据已知,代入数据计算即可.【解答】解:连接AC,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),=S△CDA,∴S△ABC即BC•AE=CD•AF,∵CD=AB=4,∴AF=.故答案为:.【点评】“等面积法”是数学中的重要解题方法.在三角形和四边形中,以不同的边为底其高也不相同,但面积是定值,从而可以得到不同底的高的关系.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=6,EF分梯形所得的两个梯形的面积比S1:S2为5:7.【考点】梯形中位线定理;梯形.【分析】要求EF的长,只需根据梯形的中位线定理求解;根据平行线等分线段定理,知两个梯形的高相等,只需根据梯形的面积公式,即可求得两个梯形的面积比.【解答】解:∵AD=4,BC=8,E、F分别为AB、DC的中点,∴EF=(4+8)=6,则S1=(4+6)=h,S2=(6+8)=.则S1:S2=5:7.【点评】此题主要考查梯形的中位线定理和梯形的面积公式.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形②(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).【考点】翻折变换(折叠问题).【专题】压轴题;操作型.【分析】通过动手操作易得出答案.【解答】解:对于①剪开后能拼出平行四边形和梯形两种,对于②剪开后能拼出三种图形,对于③剪开后能拼出三角形和平行四边形两种,对于④剪开后能拼出平行四边形,对于⑤剪开后能拼出平行四边形和梯形两种,故符合条件的图形为②.【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析,难度不大.13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是)n﹣1.【考点】正方形的性质;三角形中位线定理.【专题】压轴题;规律型.【分析】根据正方形的性质及三角形中位线的定理可分别求得第二个,第三个正方形的面积从而不难发现规律,根据规律即可求得第n个正方形的面积.【解答】解:根据三角形中位线定理得,第二个正方形的边长为=,面积为,第三个正方形的面积为=()2,以此类推,第n个正方形的面积为.【点评】根据中位线定理和正方形的性质计算出正方形的面积,找出规律,即可解答.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°【考点】平行四边形的性质.【专题】常规题型.【分析】根据平行四边形的性质和角平分线的性质求解.【解答】解:在▱ABCD中,∵AD∥BC,∴∠DAB=180°﹣∠B=180°﹣100°=80°.∵AE平分∠DAB,∴∠AED=∠DAB=40°.故选D.【点评】本题考查了平行四边形的性质,并利用了两直线平行,同旁内角互补和角的平分线的性质.16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形【考点】中心对称图形;轴对称图形.【专题】方案型.【分析】根据轴对称图形与中心对称图形的概念和等腰三角形、正三角形、等腰梯形、菱形的性质求解.【解答】解:等腰三角形、正三角形、等腰梯形都只是轴对称图形;菱形既是轴对称图形,也是中心对称图形.故选:D.【点评】解题时要注意中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条【考点】多边形内角与外角;多边形的对角线.【分析】先求出多边形的边数,再求从这个多边形的一个顶点出发的对角线的条数即可.【解答】解:∵多边形的每一个内角都等于140°,∴每个外角是180°﹣140°=40°,∴这个多边形的边数是360°÷40°=9,∴从这个多边形的一个顶点出发的对角线的条数是6条.故选:A.【点评】本题考查多边形的外角和及对角线的知识点,找出它们之间的关系是本题解题关键.18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4【考点】矩形的性质;全等三角形的判定.【分析】共有四对,分别为△ABO≌△C′DO,△ABD≌△CDB,△ABD≌△C′DB,△CDB ≌△C′DB.【解答】解:∵△BDC′是将矩形ABCD沿对角线BD折叠得到的∴C′D=CD,∠C=∠C′,BD=BD∴△CDB≌△C′DB同理可证其它三对三角形全等.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.【考点】平行四边形的性质.【分析】因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.【解答】解:在△DBC中,∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°﹣∠ADB=90°﹣70°=20°.【点评】此题主要考查了平行四边形的基本性质,以及等腰三角形的性质,难易程度适中.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.【考点】平行四边形的判定;三角形中位线定理.【专题】证明题.【分析】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题中给了两条中位线,利用中位线的性质,可利用一组对边平行且相等来证明.【解答】解:在△ABC中,∵BE、CD为中线∴AD=BD,AE=CE,∴DE∥BC且DE=BC.在△OBC中,∵OF=FB,OG=GC,∴FG∥BC且FG=BC.∴DE∥FG,DE=FG.∴四边形DFGE为平行四边形.【点评】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?【考点】平行四边形的性质.【专题】分类讨论.【分析】此题注意要分情况讨论:根据角平分线的定义以及平行线的性质,可以发现一个等腰三角形,即较短的边是2cm或3cm,又较长的边是2+3=5cm,所以平行四边形的周长是2(2+5)=14或2(3+5)=16cm.【解答】解:如图所示:∵在平行四边形ABCD中,AB=CD,AD=BC,AD∥BC,∴∠AEB=∠CBE.又∠ABE=∠CBE∴∠ABE=∠AEB∴AB=AE.(1)当AE=2时,则平行四边形的周长=2(2+5)=14.(2)当AE=3时,则平行四边形的周长=2(3+5)=16.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.【考点】平行四边形的判定与性质.【专题】证明题.【分析】此题要证明AC与EF互相平分,只需证明以AC,EF为对角线的四边形是平行四边形就可.根据已知的平行四边形,只需证明AE=CF.根据已知平行四边形的对边相等,即AB=CD,再加上已知BE=DF,就可证明AE=CF.根据一组对边平行且相等的四边形是平行四边形就可.【解答】解:连接AF,CE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵BE=DF∴AB+BE=CD+DF即AE=CF∴四边形AECF是平行四边形.∴AC与EF互相平分.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.【考点】正方形的性质.【分析】一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,有101块黑色瓷砖,由正方形的特殊性质知正方形知每边有(101+1)÷2=51块瓷砖,那么可求出瓷砖的总数.【解答】解:根据题意得正方形每边有(101+1)÷2=51块瓷砖,所以总数为:51×51=2601(块).【点评】解答本题要充分利用正方形的特殊性质.对角线上的瓷砖数等于每边的瓷砖数.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.【考点】等腰梯形的性质;三角形中位线定理;菱形的判定.【专题】综合题.【分析】由题意写出已知,画出图形,写出求证.由等腰梯形可得AC=BD,再由三角形中位线定理可得出小四边形四边的关系,即可知它是什么四边形.【解答】解:是菱形理由是:连接AC、BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=AC,GH=AC,EH=BD,GF=BD∵等腰梯形ABCD中AD∥BC,AB=CD,∴AC=BD∴EF=GH=EH=GF∴四边形EFGH菱形.【点评】本题考查了等腰梯形的性质和三角形中位线的性质.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?【考点】正方形的判定;等腰三角形的判定与性质;矩形的判定.【专题】探究型.【分析】(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【解答】解:(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.【点评】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.【考点】等腰梯形的性质;菱形的判定与性质;矩形的判定与性质;等腰梯形的判定.【专题】开放型.【分析】设四边形DBCE的中点分别为OPMN,根据已知条件及平行四边形的性质可得到是一个平行四边形;根据各四边的性质进行分析即可.【解答】解:(1)设四边形DBCE的中点分别为OPMN,则PM=ON,且PM∥ON⇒顺次连接任意四边形各边中点得到平行四边形;(2)平行四边形,矩形,菱形,根据各个四边形的性质:当四边形为菱形时,连接菱形各边中点所得出的为矩形;当四边形为矩形时,连接各边中点所得出的为菱形;当四边形为等腰梯形时,连接各边中点所得为菱形.【点评】本题考查的是各个四边形的性质以及等腰梯形的性质的运用.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【考点】矩形的判定;全等三角形的判定与性质;等边三角形的性质;平行四边形的判定.【分析】(1)四边形ADEF是平行四边形,可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【解答】解:(1)四边形ADEF是平行四边形,理由如下:∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.在△ABC与△DBE中,,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC满足角A=60°时,四边形ADEF不存在.【点评】此题主要考查了用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.。
最新人教版八年级数学下册 一次函数 单元测试题
人教版八年级数学下册第十九章一次函数单元测试题一、选择题1.下列关系式中,y不是x的函数的是( )(A)y=√x-1(B)y2=2x(C)y=x(D)y=x2-22.有一天,兔子与乌龟赛跑,比赛开始后,兔子飞快地奔跑,乌龟慢慢地爬行,不一会儿,乌龟就被远远地甩在了后面,兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行,当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是( )3.下列函数解析式中,y是x的正比例函数的是( )(A)y=-2x+1(B)y=3(x+2)(C)y=πx (D)y=3x4.若函数y=(1-k)x2|k|-3是正比例函数,且y随x的增大而减小,则(k-3)2 019 ()(A)-2(B)-1 (C)1(D)25.一个蓄水池有15 m3的水,以每分钟0.5 m3的速度向池中注水,蓄水池中的水量Q(m3)与注水时间t(分钟)之间的函数解析式为( ) (A)Q=0.5t (B)Q=15t(C)Q=15+0.5t(D)Q=15-0.5t6.函数y=(a-√3)x-1的函数值y随自变量x的增大而减小,下列描述中:①a<√3;②函数图象与y轴的交点为(0,-1);③函数图象经过第一象限;④点(a+√3,a2-4)在该函数图象上,正确的描述有()(A)①②④(B)①②③④(C)①②③(D)②③④7.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为( )x+5(A)y=34(B)y=2x+55(C)y=1x+54(D)y=4x+558.如图,直线y1=x+b与y2=kx-1相交于点P,若点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集是( )(A)x≥-1(B)x>-1(C)x≤-1(D)x<-19.已知一次函数y=kx-1,若y随x的增大而增大,则它的函数图象经过的象限是( )(A)一、二、三(B)一、二、四(C)一、三、四(D)二、三、四10.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是()(A)-2(B)-1 (C)1(D)2二、填空题的自变量x的取值范围是11.函数y=√x+312.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.根据图中提供的信息,下列说法:①以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多②以低于80 km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少③以高于80 km/h的速度行驶时,行驶相同路程,乙车比丙车省油④以80 km/h的速度行驶时,行驶100 km,甲车消耗的汽油量约为10 L正确的是(填写正确说法的序号).13.已知正比例函数y=kx 的图象经过(-2,4),则当x=1时,函数y 的值为.14.据调查,某地铁自行车存放处在某星期天的存车量为4 000辆次,其中每辆变速车存车费是0.30元/次,普通自行车存车费是每辆0.20元/次,若普通自行车存车数为x 辆,存车费总收入为y 元,则y 关于x 的函数解析式为15.在同一直角坐标系内分别作出一次函数y=12x+1和y=2x-2的图象,则①函数y=2x-2的图象与y 轴的交点是(-2,0);②方程组{2y -x =2,2x -y =2的解是{x =2,y =2;③两直线与y 轴所围成的三角形的面积为3. 其中正确的有.(填序号)三、解答题16.分别写出下列各题中的函数解析式及自变量的取值范围.(1)已知等腰三角形的面积为20,设它的底边长为x,底边上的高y 随x 的变化而变化.(2)水池中有水10 L,此后每小时漏水0.05 L,水池中的水量V随时间t 的变化而变化.17.已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当x=5时,y的值;(3)求当y=36时,x的值.18.已知y=(m+1)x2-|m|+n+4.(1)当m,n为何值时,y是x的一次函数?(2)当m,n为何值时,y是x的正比例函数?19.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60 km/h.(1)求甲车的速度;(2)当甲、乙两车相遇后,乙车速度变为a km/h,并保持匀速行驶,甲车速度不变,结果乙车比甲车晚38分钟到达终点,求a的值.20.已知y+2与x-2成正比例,且当x=3时,y=-3.(1)求y关于x的函数解析式;(2)若点P(a1,b1),Q(a2,b2)在该函数的图象上,且b1>b2,试判断a1与a2的大小关系;(3)点M(-1,2)与N(3,-3)是否在该函数的图象上?21.直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A,B点坐标;(2)过B点作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.22.某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.参考答案:一、选择题1.下列关系式中,y不是x的函数的是( B )(A)y=√x-1(B)y2=2x(C)y=x(D)y=x2-22.有一天,兔子与乌龟赛跑,比赛开始后,兔子飞快地奔跑,乌龟慢慢地爬行,不一会儿,乌龟就被远远地甩在了后面,兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行,当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是( D )3.下列函数解析式中,y是x的正比例函数的是( C )(A)y=-2x+1(B)y=3(x+2)(C)y=πx (D)y=3x4.若函数y=(1-k)x2|k|-3是正比例函数,且y随x的增大而减小,则(k-3)2 019 (B )(A)-2(B)-1 (C)1(D)25.一个蓄水池有15 m3的水,以每分钟0.5 m3的速度向池中注水,蓄水池中的水量Q(m3)与注水时间t(分钟)之间的函数解析式为( C ) (A)Q=0.5t (B)Q=15t(C)Q=15+0.5t(D)Q=15-0.5t6.函数y=(a-√3)x-1的函数值y随自变量x的增大而减小,下列描述中:①a<√3;②函数图象与y轴的交点为(0,-1);③函数图象经过第一象限;④点(a+√3,a2-4)在该函数图象上,正确的描述有( A )(A)①②④(B)①②③④(C)①②③(D)②③④7.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为( A )(A)y=3x+54(B)y=2x+55(C)y=1x+54x+5(D)y=458.如图,直线y1=x+b与y2=kx-1相交于点P,若点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集是( B )(A)x≥-1(B)x>-1(C)x≤-1(D)x<-19.已知一次函数y=kx-1,若y随x的增大而增大,则它的函数图象经过的象限是( C )(A)一、二、三(B)一、二、四(C)一、三、四(D)二、三、四10.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是( D )(A)-2(B)-1 (C)1(D)2二、填空题的自变量x的取值范围是x>-311.函数y=√x+312.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.根据图中提供的信息,下列说法:①以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多②以低于80 km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少③以高于80 km/h的速度行驶时,行驶相同路程,乙车比丙车省油④以80 km/h的速度行驶时,行驶100 km,甲车消耗的汽油量约为10 L正确的是③④(填写正确说法的序号).13.已知正比例函数y=kx 的图象经过(-2,4),则当x=1时,函数y 的值为 -2 .14.据调查,某地铁自行车存放处在某星期天的存车量为4 000辆次,其中每辆变速车存车费是0.30元/次,普通自行车存车费是每辆0.20元/次,若普通自行车存车数为x 辆,存车费总收入为y 元,则y 关于x 的函数解析式为 y=-0.10x+1 200(0≤x ≤4 000) .15.在同一直角坐标系内分别作出一次函数y=12x+1和y=2x-2的图象,则①函数y=2x-2的图象与y 轴的交点是(-2,0);②方程组{2y -x =2,2x -y =2的解是{x =2,y =2;③两直线与y 轴所围成的三角形的面积为3. 其中正确的有 ②③ .(填序号)三、解答题16.分别写出下列各题中的函数解析式及自变量的取值范围.(1)已知等腰三角形的面积为20,设它的底边长为x,底边上的高y 随x 的变化而变化.(2)水池中有水10 L,此后每小时漏水0.05 L,水池中的水量V随时间t 的变化而变化.,x>0.解:(1)y=40x(2)V=10-0.05t,0≤t≤200.17.已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当x=5时,y的值;(3)求当y=36时,x的值.解:(1)设y=k(x+2),因为当x=4时,y=12,所以12=k(4+2),解得k=2,所以y=2(x+2)=2x+4.(2)当x=5时,y=2×5+4=14.(3)当y=36时,36=2x+4,解得x=16.18.已知y=(m+1)x2-|m|+n+4.(1)当m,n为何值时,y是x的一次函数?(2)当m,n为何值时,y是x的正比例函数? 解:(1)若y是x的一次函数,则{m+1≠0, 2−|m|=1,解得m=1,所以当m=1,n为任意实数时,y是x的一次函数.(2)若y是x的正比例函数,则{m+1≠0,2−|m|=1,n+4=0,解得{m=1,n=−4,所以当m=1,n=-4时,y是x的正比例函数.19.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60 km/h.(1)求甲车的速度;(2)当甲、乙两车相遇后,乙车速度变为a km/h,并保持匀速行驶,甲车速度不变,结果乙车比甲车晚38分钟到达终点,求a 的值. 解:(1)由图象可得,甲车的速度为280−1202=80 km/h. (2)相遇时间为28080+60=2 h, 由题意可得,60×280+3860=80×2a ,解得,a=75, 经检验,a=75是所列分式方程的解,即a 的值是75.20.已知y+2与x-2成正比例,且当x=3时,y=-3.(1)求y 关于x 的函数解析式;(2)若点P(a 1,b 1),Q(a 2,b 2)在该函数的图象上,且b 1>b 2,试判断a 1与a 2的大小关系;(3)点M(-1,2)与N(3,-3)是否在该函数的图象上?解:(1)因为y+2与x-2成正比例,所以可设y+2=k(x-2),因为当x=3时,y=-3,所以-3+2=k(3-2),解得k=-1,所以y+2=-(x-2),即y=-x.(2)因为y=-x,所以y随x的增大而减小,因为b1>b2,所以a1<a2,(3)因为当x=-1时,y=-(-1)=1≠2,当x=3时,y=-3,所以点M(-1,2)不在该函数的图象上,N(3,-3)在该函数的图象上.21.直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A,B点坐标;(2)过B点作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.,解:(1)令x=0,则y=3,令y=0,则x=-32所以A(-32,0),B(0,3). (2)因为A(-32,0),所以AO=32, 因为OP=2OA,所以OP=3.如图,当点P 与点A 在y 轴异侧时,AP=OA+OP,即AP=32+3=92, 所以S △ABP =12AP ·OB=12×92×3=274,当点P 与点A 在y 轴同侧时,AP=OP-OA=3-32=32,所以S △ABP =12AP ·OB=12×32×3=94, 故△ABP 的面积为274或94. 22.某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种方案中y 与x 的函数关系式;(2)请计算并确定出最节省费用的购票方案.解:(1)按优惠方案1可得y 1=20×4+(x-4)×5=5x+60(x ≥4); 按优惠方案2可得y 2=(5x+20×4)×90%=4.5x+72(x ≥4).(2)因为y1-y2=0.5x-12(x≥4),①当y1-y2=0时,解得x=24,②当y1-y2<0时,解得x<24,③当y1-y2>0时,解得x>24,所以当购买24张票时,两种方案付款一样多. 当4≤x<24时,y1<y2,方案1付款较少.当x>24时,y1>y2,方案2付款较少.。
人教版八年级数学下册第一单元测试精选全文
可编辑修改精选全文完整版初中数学试卷八年级数学下册第一单元测试一、选择题(每题3分,共24分)1、下列各式中①a ;②1+b ; ③2a ; ④32+a ; ⑤12-x ;⑥122++x x 一定是二次根式的有( )个。
A . 1 个 B. 2个 C. 3个 D. 4个21a ab 有意义,则点P (a ,b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、下列二次根式中,最简二次根式是( )(A (B (C (D 4、下列计算正确的是( )(A 4+== (B 112==(C )5= (D )312314=5、m )(A )整数 (B )正整数 (C )正数 (D )负数6、下列各数中,与 ) (A)32+ (B)32- (C)32+- (D)37、下列根式不能与48 合并的是( )(A)、0.12 (B)、18 (C)、113(D)、-75 8、如果数轴上表示a 、b 两个数的点都在原点的左侧,且a 在b 的左侧,则的值为2)(b a b a ++-( )A .b 2-B .b 2C .a 2D .a 2-二、填空题(每题3分,共30分)9、计算:()22= , = 。
10、已知233x x +=-x 3+x ,则x 的取值范围是 。
11、在实数范围内分解因式23a -+=______________.12、若12+a 与34-a 的被开方数相同,则a = 。
13n 的最小值是 。
14、若2y =,则x =_______ ,y =___________。
15、比较大小:(1) 3 5 2 6 (2)-3 16.若m<0,则332||m m m ++= 。
17. 计算:20082009⋅=_________.18.若35-=x ,则562++x x 的值为 。
三、解答题(共66分)19.求使下列各式有意义的字母的取值范围:(8分)(1)43-x (2)||112x x -+ (3)42+m (4)x 1-20、计算(每题4分,共16分)① 3222233--+ ② )52453204(52+-③ 2+ ④ +-21、已知实数a a =,求22008a -的值是多少?(5分)22、当121-=x 时,求12+-x x 的值. (5分)23.若x ,y 是实数,且314114+-+-=x x y ,求)25()4932(3xy x xy x x +-+的值。
人教版八年级数学下册各单元及期中期末测试题及答案
人教版八年级数学下册各单元及期中期末测试题及答案 精品全套 共7套第十六章 分式单元测试题时间90分钟 满分100分班级____________姓名____________学号____________成绩______一、选一选请将唯一正确答案代号填入题后的括号内;每小题3分;共30分 1.已知x ≠y;下列各式与x yx y-+相等的是 .A ()5()5x y x y -+++B 22x yx y-+ C 222()x y x y -- D 2222x y x y -+2.化简212293m m +-+的结果是 . A269m m +- B 23m - C 23m + D 2299m m +- 3.化简3222121()11x x x x x x x x --+-÷+++的结果为 .Ax-1 B2x-1 C2x+1 Dx+14.计算11()a a a a -÷-的正确结果是 . A 11a + B1 C 11a - D-1 5.分式方程1212x x =-- . A 无解 B 有解x=1 C 有解x=2 D 有解x=0 6.若分式21x +的值为正整数;则整数x 的值为A0 B1 C0或1 D0或-17.一水池有甲乙两个进水管;若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开;那么注满空池的时间是A11a b + B 1ab C 1a b + D ab a b+ 8.汽车从甲地开往乙地;每小时行驶1v km;t 小时可以到达;如果每小时多行驶2v km;那么可以提前到达的小时数为A212v t v v + B 112v t v v + C 1212v vv v + D 1221v t v t v v -9.下列说法:①若a ≠0;m;n 是任意整数;则a m.a n=a m+n; ②若a 是有理数;m;n 是整数;且mn>0;则a mn =a mn ;③若a ≠b 且ab ≠0;则a+b 0=1;④若a 是自然数;则a -3.a 2=a -1.其中;正确的是 .A ①B ①②C ②③④D ①②③④10.张老师和李老师同时从学校出发;步行15千米去县城购买书籍;张老师比李老师每小时多走1千米;结果比李老师早到半小时;两位老师每小时各走多少千米 设李老师每小时走x 千米;依题意;得到的方程是:A1515112x x -=+ B 1515112x x -=+ C 1515112x x -=- D 1515112xx -=- 二、填一填每小题4分;共20分 11.计算22142a a a -=-- . 12.方程 3470x x=-的解是 . 13.计算 a 2b 3ab 2-2= . 14.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式;从而打开了光谱奥秘的大门;请你按这种规律写出第七个数据是 .15.如果记 221x y x =+ =fx;并且f1表示当x=1时y 的值;即f1=2211211=+;f 12表示当x=12时y 的值;即f 12=221()12151()2=+;……那么f1+f2+f 12+f3+f 13+…+fn+f 1n=结果用含n 的代数式表示.三、做一做16.7分先化简;再求值:62393m m m m -÷+--;其中m=-2.17.7分解方程:11115867x x x x +=+++++.18.8分有一道题“先化简;再求值: 2221()244x x x x x -+÷+-- 其中;x=-3”小玲做题时把“x=-3”错抄成了“x=3”;但她的计算结果也是正确的;请你解释这是怎么回事19.9分学校用一笔钱买奖品;若以1支钢笔和2本日记本为一份奖品;则可买60份奖品;若以1支钢笔和3本日记本为一份奖品;则可买50份奖品;问这笔钱全部用来买钢笔或日记本;可买多少20.9分A 、B 两地相距80千米;甲骑车从A 地出发1小时后;乙也从A 地出发;以甲的速度的1.5倍追赶;当乙到达B 地时;甲已先到20分钟;求甲、乙的速度.四、试一试21.10分在数学活动中;小明为了求2341111122222n+++++的值结果用n 表示;设计如图1所示的几何图形.1请你利用这个几何图形求2341111122222n+++++的值为 ; 2请你利用图2;再设计一个能求2341111122222n+++++的值的几何图形.12212图2图1第十七章 反比例函数单元测试题时间90分钟 满分100分班级____________姓名__________________座号____________成绩____________ 一、选择题每题4分;共24分1.下列函数关系式中不是表示反比例函数的是 A .xy=5 B .y=53x C .y=-3x -1 D .y=23x - 2.若函数y=m+1231m m x++是反比例函数;则m 的值为A .m=-2B .m=1C .m=2或m=1D .m=-2或-1 3.满足函数y=kx-1和函数y=kxk ≠0的图象大致是4.在反比例函数y=-1x的图象上有三点x 1;y 1;x 2;y 2;x 3;y 3;若x 1>x 2>0>x 3;则下列各式正确的是 A .y 3>y 1>y 2 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 1>y 3>y 25.如图所示;A 、C 是函数y=1x的图象上的任意两点;过A 点作AB ⊥x 轴于点B;过C•点作CD ⊥y 轴于点D;记△AOB 的面积为S 1;△COD 的面积为S 2;则A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定 6.如果反比例函数y=kx的图象经过点-4;-5;那么这个函数的解析式为 A .y=-20x B .y=20x C .y=20x D .y=-20x 二、填空题每题5分;共30分 7.已知y=a-122a x-是反比例函数;则a=_____.8.在函数y=25x -+13x -中自变量x 的取值范围是_________.9.反比例函数y=kxk ≠0的图象过点-2;1;则函数的解析式为______;在每一象限内 y 随x 的增大而_________.10.已知函数y=kx的图象经过-1;3点;如果点2;m•也在这个函数图象上;•则m=_____. 11.已知反比例函数y=12mx-的图象上两点A x 1;y 1;Bx 2;y 2;当x 1〈0〈x 2时有y 1〈y 2;则m 的取值范围是________.12.若点A x 1;y 1;Bx 2;y 2在双曲线y=kxk>0上;且x 1>x 2>0;则y 1_______y 2. 三、解答题共46分 13.10分设函数y=m-2255m m x -+;当m 取何值时;它是反比例函数 •它的图象位于哪些象限 求当12≤x ≤2时函数值y 的变化范围. 14.12分已知y =y 1+y 2;y 1与x 成正比例;y 2与x 成反比例;并且当x=-1时;y=-1;•当x=2时;y=5;求y 关于x 的函数关系式.15.10分水池内储水40m3;设放净全池水的时间为T小时;每小时放水量为Wm3;规定放水时间不得超过20小时;求T与W之间的函数关系式;指出是什么函数;并求W的取值范围.16.14分如图所示;点A、B在反比例函数y=kx的图象上;且点A、B•的横坐标分别为a、2aa>0;AC⊥x轴于点C;且△AOC的面积为2.1求该反比例函数的解析式.2若点-a;y1、-2a;y2在该函数的图象上;试比较y1与y2的大小. 3求△AOB的面积.第18章勾股定理单元测试时间:100分钟 总分:120分班级 学号 姓名 得分一、相信你一定能选对每小题4分;共32分1. 三角形的三边长分别为6;8;10;它的最短边上的高为A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7;8;9;②12;9;15;③m 2 + n 2; m 2–n 2; 2mnm ;n 均为正整数;m >n ;④2a ;12+a ;22+a .其中能组成直角三角形的三边长的是 A . ①② B . ②③ C . ①③ D . ③④3. 三角形的三边为a 、b 、c ;由下列条件不能判断它是直角三角形的是A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=b+cb-cD . a :b :c =13∶5∶124. 三角形的三边长为ab c b a 2)(22+=+;则这个三角形是A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4;则第三边长是 A .5 B .25 C .7 D .5或76.已知Rt △ABC 中;∠C =90°;若a +b =14cm ;c =10cm ;则Rt △ABC 的面积是A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9;另两边为连续自然数;则直角三角形的周长为A .121B .120C .90D .不能确定8. 放学以后;小红和小颖从学校分手;分别沿东南方向和西南方向回家;若小红和小颖行走的速度都是40米/分;小红用15分钟到家;小颖20分钟到家;小红和小颖家的直线距离为 A .600米 B . 800米 C . 1000米 D. 不能确定 二、你能填得又快又对吗 每小题4分;共32分9. 在△ABC 中;∠C=90°; AB =5;则2AB +2AC +2BC =_______.10. 如图;是2002年8月北京第24届国际数学家大会会标;由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4;那么一个直角三角形的两直角边的和等于 .11.直角三角形两直角边长分别为5和12;则它斜边上的高为_______. 12.直角三角形的三边长为连续偶数;则这三个数分别为__________.13. 如图;一根树在离地面9米处断裂;树的顶部落在离底部12米处.树折断之前有______米. 14.如图所示;是一个外轮廓为矩形的机器零件平面示意图;根据图中标出尺寸单位:mm 计算两圆孔中心A 和B 的距离为 .15.如图;梯子AB 靠在墙上;梯子的底端A 到墙根O 的距离为2米;梯子的顶端B 到地面的距6012014060BA C 第10题图 第13题图 第14题图 第15题图离为7米.现将梯子的底端A向外移动到A’;使梯子的底端A’到墙根O的距离等于3米;同时梯子的顶端B下降至B’;那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度;他把一根竹竿插到离岸边1.5m远的水底;竹竿高出水面0.5m;把竹竿的顶端拉向岸边;竿顶和岸边的水面刚好相齐;河水的深度为 .三、认真解答;一定要细心哟共72分17.5分右图是由16个边长为1的小正方形拼成的;任意连结这些小正方形的若干个顶点;可得到一些线段;试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.6分已知a、b、c是三角形的三边长;a=2n2+2n;b=2n+1;c=2n2+2n+1n为大于1的自然数;试说明△ABC为直角三角形.19.6分小东拿着一根长竹竿进一个宽为3米的城门;他先横着拿不进去;又竖起来拿;结果竿比城门高1米;当他把竿斜着时;两端刚好顶着城门的对角;问竿长多少米20.6分如图所示;某人到岛上去探宝;从A处登陆后先往东走4km;又往北走1.5km;遇到障碍后又往西走2km;再折回向北走到4.5km处往东一拐;仅走0.5km就找到宝藏..问登陆点A与宝藏埋藏点B之间的距离是多少AB41.524.50.521.7分如图;将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中;求细木棒露在盒外面的最短长度是多少22.8分印度数学家什迦逻1141年-1225“平平湖水清可鉴;面上半尺生红莲; 出泥不染亭亭立;忽被强风吹一边;渔人观看忙向前;花离原位二尺远; 能算诸君请解题;湖水如何知深浅 ” 请用学过的数学知识回答这个问题. 23.8分如图;甲乙两船从港口A 同时出发;甲船以16海里/时速度向北偏东40°航行;乙船向南偏东50°航行;3小时后;甲船到达C 岛;乙船到达B 岛.若C 、B 两岛相距60海里;问乙船的航速是多少24.10分如图;有一个直角三角形纸片;两直角边AC =6cm ;BC =8cm ;现将直角边AC 沿 ∠CAB 的角平分线AD 折叠;使它落在斜边AB 上;且与AE 重合;你能求出CD 的长吗25.10分如图;铁路上A 、B 两点相距25km ; C 、D 为两村庄;若DA =10km ;CB =15km ;DA ⊥AB 于A ;CB ⊥AB 于B ;现要在AB 上建一个中转站E ;使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处26.10分如图;一个牧童在小河的南4km 的A 处牧马;而他正位于他的小屋B 的西8km 北7km处;他想把他的马牵到小河边去饮水;然后回家.他要完成这件事情所走的最短路程是多少时间90分钟 满分100分小河A B班级 学号 姓名 得分一、选择题每小题3分;共24分1.在平行四边形ABCD 中;∠B =110°;延长AD 至F ; 延长CD 至E ;连结EF ;则∠E +∠F = A .110°B .30°C .50°D .70°2.菱形具有而矩形不具有的性质是 A .对角相等B .四边相等C .对角线互相平分D .四角相等3.如图;平行四边形ABCD 中;对角线AC 、BD 交于点O;点E 是BC 的中点.若OE =3 cm ;则AB 的长为 A .3 cm B .6 cm C .9 cm D .12 cm 4.已知:如图;在矩形ABCD 中;E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2;AD =4;则图中阴影部分的面积为A .8B .6C .4D .35.用两块全等的含有30°角的三角板拼成形状不同的平行四边形;最多可以拼成 A .1个B .2个C .3个D .4个6.如图是一块电脑主板的示意图;每一转角处都是直角;数据如图所示单位:mm ;则该主板的周长是 A .88 mm B .96 mm C .80 mmD .84 mm7.如图;平行四边形ABCD 中;对角线AC 、BD 相交于点O ;E 、F 是AC 上的两点;当E 、F 满足下列哪个条件时;四边形DEBF 不一定是平行四边形 A .∠ADE =∠CBF B .∠ABE =∠CDF C .OE =OFD .DE =BF8.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49;小正方形的面积为4;若用x 、y 表示小矩形的两边长x >y ;请观察图案;指出以下关系式中不正确的是A .7=+y xB .2=-y x第7题第6题C .4944=+xyD .2522=+y x二、填空题每小题4分;共24分9.若四边形ABCD 是平行四边形;请补充条件 写一个即可;使四边形ABCD 是菱形.10.如图;在平行四边形ABCD 中;已知对角线AC 和BD 相交于点O ;△ABO 的周长为15;AB =6;那么对角线AC +BD = 11.如图;延长正方形ABCD 的边AB 到E ;使BE =AC ;则∠E= °.12.已知菱形ABCD 的边长为6;∠A =60°;如果点P 是菱形内一点;且PB =PD =32;那么AP 的长为 .13.在平面直角坐标系中;点A 、B 、C 的坐标分别是A -2;5;B -3;-1;C1;-1;在第一象限内找一点D ;使四边形ABCD 是平行四边形;那么 点D 的坐标是 .14.如图;四边形ABCD 的两条对角线AC 、BD 互相垂直;A 1B 1C 1D 1是中点四边形.如果AC =3;BD =4; 那么A 1B 1C 1D 1的面积为 三、解答题52分15.8分如图;在矩形ABCD 中;AE 平分∠BAD ;∠1=15°.1求∠2的度数.2求证:BO =BE .16.8分已知:如图;D 是△ABC 的边BC 上的中点;DE ⊥AC ;DF ⊥AB ;垂足分别为E 、F ;且BF =CE .当∠A 满足什么条件时;四边形AFDE 是正方形 请证明你的结论.第14题第10题 第11题17.8分如图;在平行四边形ABCD中;O是对角线AC的中点;过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.18.8分已知:如图;在正方形ABCD中;AC、BD交于点O;延长CB到点F;使BF=BC;连结DF交AB于E.求证:OE=BF在括号中填人一个适当的常数;再证明.19.8分在一次数学探究活动中;小强用两条直线把平行四边形ABCD分割成四个部分;使含有一组对顶角的两个图形全等.1根据小强的分割方法;你认为把平行四边形分割成满足以上全等关系的直线有组.2请在下图的三个平行四边形中画出满足小强分割方法的直线.3由上述实验操作过程;你发现所画的两条直线有什么规律20.12分已知:如图;在△ABC中;AB=AC;若将△ABC绕点C顺时针旋转180°得到△FEC.1试猜想线段AE与BF有何关系说明理由.2若△ABC的面积为3cm2;请求四边形ABFE的面积.3当∠ACB为多少度时;四边形ABFE为矩形说明理由.第二十章数据分析单元测试班级____________姓名____________学号____________成绩______一、填空题每空4分;共32分1.对于数据组3;3;2;3;6;3;6;3;2中;众数是_______;平均数是______;•极差是_______;中位数是______.2.数据3;5;4;2;5;1;3;1的方差是________.3.某学生7门学科考试成绩的总分是560分;其中3门学科的总分是234分;则另外4门学科成绩的平均分是_________.4.在n个数中;若x1出现f1次;x2出现f2次;…x k出现f k次;且f1+f2+…+f k=n;则它的加权平均数x=________略.5.一组数据同时减去80;实得新的一组数据的平均数为 2.3;•那么原数据的平均数为__________.二、选择题每题5分;共20分6.已知样本数据为5;6;7;8;9;则它的方差为.A.10 B.2 D7.8个数的平均数12;4个数的平均为18;则这12个数的平均数为.A.12 B.18 C.14 D.128.甲、乙两个样本的容量相同;甲样本的方差为0.102;乙样本的方差是0.06;那么.A.甲的波动比乙的波动大 B.乙的波动比甲的波动大C.甲、乙的波动大小一样 D.甲、乙的波动大小无法确定9.在某次数学测验中;随机抽取了10份试卷;其成绩如下:85;81;89;81;72;82;77;81;79;83则这组数据的众数、平均数与中位数分别为.A.81;82;81 B.81;81;76.5C.83;81;77 D.81;81;81三、解答题每题16分;共48分10.某公司员工的月工资如下:员工经理副经理职员A 职员B 职员C 职员D 职员E月工资元 6000 3500 1500 1500 1500 1100 10001求该公司员工月工资的中位数、众数、平均数;2用平均数还是用中位数和众数描述该公司员工月工资的一般水平比较恰当11.为了了解学校开展“尊敬父母;从家务事做起”活动的实施情况;•该校抽取初二年级50名学生;调查他们一周按七天计算的家务所用时间单位:小时;•得到一组数据;并绘制成下表;请根据该表完成下列各题:1填写频率分布表中未完成的部分;2这组数据的中位数落在什么范围内;3由以上信息判断;每周做家务的时间不超过1.5小时的学生所占的百分比.12.小红的奶奶开了一个金键牛奶销售店;主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”;可奶奶经营不善;经常有品种的牛奶滞销没卖完或脱销量不够;造成了浪费或亏损;细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况;并绘制了下表:1计算各品种牛奶的日平均销售量;并说明哪种牛奶销量最高2计算各品种牛奶的方差保留两位小数;并比较哪种牛奶销量最稳定3假如你是小红;你会对奶奶有哪些好的建议.附加题10分下图是某篮球队队员年龄结构直方图;根据图中信息解答下列问题: 1该队队员年龄的平均数;2该队队员年龄的众数和中位数.八年级下期期中数学综合测试时间:120分钟 总分:120分班级 学号 姓名 得分一、选择题每小题3分;共30分1. 在式子a 1;π xy 2;2334a b c ;x + 65; 7x +8y ;9 x +y 10 ;x x 2 中;分式的个数是A .5B .4C .3D .2 2. 下列各式;正确的是A .1)()(22=--a b b a B .ba b a b a +=++122 C .b a b a +=+111 D .x x ÷2=2 3. 下列关于分式的判断;正确的是A .当x =2时;21-+x x 的值为零 B .无论x 为何值;132+x 的值总为正数 C .无论x 为何值;13+x 不可能得整数值 D .当x ≠3时;xx 3-有意义4. 把分式)0,0(22≠≠+y x yx x中的分子分母的x 、y 都同时扩大为原来的2倍;那么分式的值将是原分式值的A .2倍B .4倍C .一半D .不变 5. 下列三角形中是直角三角形的是A .三边之比为5∶6∶7B .三边满足关系a +b =cC .三边之长为9、40、41D .其中一边等于另一边的一半 6.如果△ABC 的三边分别为12-m ;m 2;12+m ;其中m 为大于1的正整数;则 A .△ABC 是直角三角形;且斜边为12-m ;B .△ABC 是直角三角形;且斜边为m 2 C .△ABC 是直角三角形;且斜边为12+m ; D .△ABC 不是直角三角形 7.直角三角形有一条直角边为6;另两条边长是连续偶数;则该三角形周长为 A. 20 B . 22 C . 24 D . 26 8.已知函数xky =的图象经过点2;3;下列说法正确的是 A .y 随x 的增大而增大 B.函数的图象只在第一象限 C .当x <0时;必有y <0 D.点-2;-3不在此函数的图象上 9.在函数xky =k >0的图象上有三点A 1x 1; y 1 、A 2x 2; y 2、A 3x 3; y 3 ;已知x 1<x 2<0<x 3;则下列各式中;正确的是A.y 1<y 2<y 3B.y 3<y 2<y 1C. y 2< y 1<y 3D.y 3<y 1<y 2 10.如图;函数y =kx +1与xky =k <0在同一坐标系中;图象只能是下图中的二、填空题每小题2分;共20分11.不改变分式的值;使分子、分母的第一项系数都是正数;则________=--+-yx yx .12.化简:3286ab a =________; 1111+--x x =___________. 13.已知a 1 -b1 =5;则b ab a b ab a ---2232+ 的值是 .14.正方形的对角线为4;则它的边长AB = .15.如果梯子的底端离建筑物9米;那么15米长的梯子可以到达建筑物的高度是______米. 16.一艘帆船由于风向的原因先向正东方向航行了160km;然后向正北方向航行了120km;这时它离出发点有____________km.17.如下图;已知OA =OB ;那么数轴上点A 所表示的数是____________.18.某食用油生产厂要制造一种容积为5升1升=1立方分米的圆柱形油桶;油桶的底面面积s与桶高h 的函数关系式为 . 19.如果点2;3和-3;a 都在反比例函数xk y = 的图象上;则a = . 20.如图所示;设A 为反比例函数xky =图象上一点;且矩形ABOC 的面积为3;则这个反比例函数解析式为 .三、解答题共70分21.每小题4分;共16分化简下列各式:1422-a a +a -21 . 2)()()(3222a b a b b a -÷-⋅-.ABCD第14题图1-30-1-2-4231BA 第20题图3)252(423--+÷--x x x x . 4y x x - -y x y -2 ·y x xy 2- ÷x 1 +y 1 .22.每小题4分;共8分解下列方程:1223-x +x -11 =3. 2482222-=-+-+x x x x x .23.6分比邻而居的蜗牛神和蚂蚁王相约;第二天上午8时结伴出发;到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训;于是给蚂蚁王留下一纸便条后提前2小时独自先行;蚂蚁王按既定时间出发;结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍;求它们各自的速度.24.6分如图;某人欲横渡一条河;由于水流的影响;实际上岸地点C偏离欲到达地点B相距50米;结果他在水中实际游的路程比河的宽度多10米;求该河的宽度AB为多少米B CA25.6分如图;一个梯子AB长2.5 米;顶端A靠在墙AC上;这时梯子下端B与墙角C距离为1.5米;梯子滑动后停在DE的位置上;测得BD长为0.5米;求梯子顶端A下落了多少米26.8分某空调厂的装配车间原计划用2个月时间每月以30天计算;每天组装150台空调.1从组装空调开始;每天组装的台数m单位:台/天与生产的时间t单位:天之间有怎样的函数关系2由于气温提前升高、厂家决定这批空调提前十天上市;那么装配车间每天至少要组装多少空调27.10分如图;正方形OABC 的面积为9;点O 为坐标原点;点B 在函数xky =k >0;x >0的图象上;点Pm 、n 是函数xky =k >0;x >0的图象上任意一点;过点P 分别作x 轴、y 轴的垂线;垂足分别为E 、F ;并设矩形OEPF 和正方形OABC 不重合部分的面积为S .1求B 点坐标和k 的值;2当S =错误!时;求点P 的坐标;3写出S 关于m 的函数关系式.28.10分如图;要在河边修建一个水泵站;分别向张村A 和李庄B 送水;已知张村A 、李庄B到河边的距离分别为2km 和7km;且张、李二村庄相距13km .1水泵应建在什么地方;可使所用的水管最短 请在图中设计出水泵站的位置;2如果铺设水管的工程费用为每千米1500元;为使铺设水管费用最节省;请求出最节省的铺设水管的费用为多少元AB河边l人教实验版八年级下期末测试题学校______班级_______姓名______得分_________一、选择题每题2分;共24分1、下列各式中;分式的个数有31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223y x y-中的x 和y 都扩大5倍;那么分式的值 A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大4倍3、已知正比例函数y =k 1xk 1≠0与反比例函数y =2k xk 2≠0的图象有一个交点的坐标为 -2;-1;则它的另一个交点的坐标是A. 2;1B. -2;-1C. -2;1D. 2;-1 4、一棵大树在一次强台风中于离地面5米处折断倒下;倒下部分与地面成30°夹角;这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行;并且对角线互相垂直且相等的四边形是A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xx x 的两边同时乘以x-2; 约去分母;得A .1-1-x=1B .1+1-x=1C .1-1-x=x-2D .1+1-x=x-2 7、如图;正方形网格中的△ABC;若小方格边长为1;则△ABC 是A 、直角三角形B 、锐角三角形C 、钝角三角形D 、以上答案都不对第7题 第8题 第9题8、如图;等腰梯形ABCD 中;AB ∥DC;AD=BC=8;AB=10;CD=6;则梯形ABCD 的面积是 A 、1516 B 、516 C 、1532 D 、17169、如图;一次函数与反比例函数的图像相交于A 、B 两点;则图中使反比例函数的值小于一次函数的值的x 的取值范围是A 、x <-1B 、x >2C 、-1<x <0;或x >2D 、x <-1;或0<x <210、在一次科技知识竞赛中;两组学生成绩统计如下表;通过计算可知两组的方差为2S 172甲=;2S 256乙=..下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80;但成绩≥80的人数甲组比乙组多;从中位数来看;甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多;高分段乙组成绩比甲组好..其中正确的共有 .分数 50 60 70 80 90 100 人 数甲组251013146乙组 4 4 16 2 12 12A2种 B3种 C4种 D5种11、小明通常上学时走上坡路;途中平均速度为m 千米/时;放学回家时;沿原路返回;通常的速度为n 千米/时;则小明上学和放学路上的平均速度为 千米/时A B CD A BCAB C DEGA 、2n m + B 、 n m mn + C 、 n m mn +2 D 、mnnm + 12、李大伯承包了一个果园;种植了100棵樱桃树;今年已进入收获期..收获时;从中任选并采樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为A. 2000千克;3000元B. 1900千克;28500元C. 2000千克;30000元D. 1850千克;27750元 二、填空题每题2分;共24分 13、当x 时;分式15x -无意义;当m = 时;分式2(1)(3)32m m m m ---+的值为零 14、各分式121,1,11222++---x x x x x x 的最简公分母是_________________15、已知双曲线xky =经过点-1;3;如果A 11,b a ;B 22,b a 两点在该双曲线上;且1a <2a <0;那么1b 2b .16、梯形ABCD 中;BC AD //;1===AD CD AB ;︒=∠60B 直线MN 为梯形ABCD 的对称轴;P 为MN 上一点;那么PD PC +的最小值 .. 第16题 第17题 第19题17、已知任意直线l 把□ABCD 分成两部分;要使这两部分的面积相等;直线l 所在位置需满足的条件是 _________ 18、如图;把矩形ABCD 沿EF 折叠;使点C 落在点A 处;点D 落在点G 处;若∠CFE=60°;且DE=1;则边BC 的长为 .19、如图;在□ABCD 中;E 、F 分别是边AD 、BC 的中点;AC 分别交BE 、DF 于G 、H;试判断下列结论:①ΔABE ≌ΔCDF ;②AG=GH=HC ;③EG=;21BG ④S ΔABE =S ΔAGE ;其中正确的结论是 __ 个 20、点A 是反比例函数图象上一点;它到原点的距离为10;到x 轴的距离为8;则此函数表达式可能为_________________A E DH CB F GD21、已知:24111A Bx x x =+--+是一个恒等式;则A =______;B=________.. 22、如图; ΔP 1OA 1 、ΔP 2A 1A 2是等腰直角三角形;点1P 、2P 在函数4(0)y x x=>的图象上;斜边1OA 、12A A 都在x 轴上;则点2A 的坐标是____________.第24题 23、小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分;第二单元得76分;第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算;那么小林该学期数学书面测验的总评成绩应为_____________分..24、在直线l 上依次摆放着七个正方形如图所示..已知斜放置的三个正方形的面积分别是1、2、3;正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4;则S 1+S 2+S 3+S 4=_______.. 三、解答题共52分25、5分已知实数a 满足a 2+2a -8=0;求22213211143a a a a a a a +-+-⨯+-++的值.26、5分解分式方程:22416222-+=--+x x x x x -27、6分作图题:如图;Rt ΔABC 中;∠ACB=90°;∠CAB=30°;用圆规和直尺作图;用两种方法把它分成两个三角形;且要求其中一个三角形的等腰三角形..保留作图痕迹;不要求写作法和证l321S 4S 3S 2S 1第22题明28、6分如图;已知四边形ABCD 是平行四边形;∠BCD 的平分线CF 交边AB 于F ;∠ADC 的平分线DG 交边AB 于G .. 1求证:AF=GB ;2请你在已知条件的基础上再添加一个条件;使得△EFG 为等腰直角三角形;并说明理由.29、6分张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”;对两位同学进行了辅导;并在辅导期间进行了10次测验;两位同学测验成绩记录如下表:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次王军 68 80 78 79 81 77 78 84 83 92 张成86807583857779808075利用表中提供的数据;解答下列问题:平均成绩 中位数 众数 王军8079.5AB C ABC1填写完成下表:2张老师从测验成绩记录表中;求得王军 10次测验成绩的方差2S 王=33.2;请你帮助张老师计算张成10次测验成绩的方差2S 张;3请你根据上面的信息;运用所学的统计知识;帮助张老师做出选择;并简要说明理由..30、8分制作一种产品;需先将材料加热达到60℃后;再进行操作.设该材料温度为y ℃;从加热开始计算的时间为x 分钟.据了解;设该材料加热时;温度y 与时间x 成一次函数关系;停止加热进行操作时;温度y 与时间x 成反比例关系如图.已知该材料在操作加工前的温度为15℃;加热5分钟后温度达到60℃.1分别求出将材料加热和停止加热进行操作时;y 与x 的函数关系式;2根据工艺要求;当材料的温度低于15℃时;须停止操作;那么从开始加热到停止操作;共经历了多少时间31、6分甲、乙两个工程队合做一项工程;需要16天完成;现在两队合做9天;甲队因有其他任务调走;乙队再做21天完成任务..甲、乙两队独做各需几天才能完成任务张成 80 80。
最新人教版初中数学八年级数学下册第五单元《数据的分析》测试题(含答案解析)(1)
一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定3.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( ) 年龄 13 14 15 16 人数2341A .15,15B .14,15C .14,14.5D .15,14.54.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”5.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,856.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( )A .平均数是-2B .中位数是-2C .众数是-2D .方差是57.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .88.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( ) A .甲射击成绩比乙稳定 B .乙射击成绩比甲稳定C .甲,乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较9.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101D .方差是9310.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( ) A .89,90B .90,90C .88,95D .90,9511.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大12.为了解某小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表: 锻炼时间(时) 3 4 5 6 7 人数(人)6131452这40名居民一周体育锻炼时间的众数和中位数是( ) A .14,5B .14,6C .5,5D .5,6第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.一组数据1x ,2x ,3x ,4x ,5x 的平均数是5,方差是3,则143x -,243x -,343x -,443x -,543x -的平均数是________,方差是________.15.若这8个数据-3, 2,-1,0,1,2,3,x 的极差是11,则这组数据的平均数是______.16.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某单位使用共享单车的情况,该单位有200名员工,某研究小组随机采访10位员工,得到这10位员工一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是(2)试用平均数估计该单位员工一周内使用共享单车的总次数.17.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.18.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差2S 甲=2.8,2S 乙=1.5,则射击成绩较稳定的是______.(填“甲”或“乙”)19.已知一组数据为:5,3,3,6,3则这组数据的方差是______.20.若样本数据1,2,3,2的平均数是a ,中位数是b ,众数是c ,则数据a ,b ,c 的方差是___.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图. (1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B 8C5(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,___________,___________;(2)求这个公司平均每人所创年利润.23.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.24.学校为了让同学们走向操场、积极参加体育锻炼,启动了“学生阳光体育运动”,张明和李亮在体育运动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:平均数 中位数 方差 张明13.30.004 李亮13.30.02(1)张明第2次的成绩为: 秒;(2)张明成绩的平均数为: ;李亮成绩的中位数为: ;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.25.某区正在积极创建国家模范卫生城市,学校为了普及学生卫生健康知识,提高学生创卫意识,举办了创卫知识竞赛,以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:75 88 93 65 78 94 89 68 95 50 89 88 89 89 77 95 87 88 92 91 初二:74 96 96 89 97 74 69 76 72 78 99 72 97 85 98 74 89 73 98 74 (1)整理、描述数据: 成绩x 5059x ≤≤6069x ≤≤7079x ≤≤8089x ≤≤ 90100x ≤≤初一(频数) 1 2 3 m6 初二(频数)1937(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下不合格) 分析数据:平均数 中位数 众数 初一 84 a89初二8481.5b请根据上述的数据,填空:m =______;a =______;b =______;(2)得出结论:你认为哪个年级掌握创卫知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).26.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级: 79,85,73,80, 75,76,87, 70, 75,94,75,79,81,71, 75,80,86,59, 83, 77.八年级: 92,74, 87,82,72,81, 94,83,77, 83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据方差的意义即可判断.【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选:B.【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B解析:B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.D解析:D【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15;10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5.故选:D.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.C解析:C【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论.【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确,所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A不正确;因为B中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3,所以选项B说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定,所以甲组数据比乙组数据稳定,故选项C说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D说法不正确.故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.5.A解析:A 【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可. 【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872+=87. 故选A . 【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.6.D解析:D 【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断. 【详解】解:A 、平均数是-2,结论正确,故A 不符合题意; B 、中位数是-2,结论正确,故B 不符合题意; C 、众数是-2,结论正确,故C 不符合题意; D 、方差是203,结论错误,故D 符合题意; 故选:D . 【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.7.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.8.B解析:B 【解析】 【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a ,b ,c 中至少有两个是8,而平均数是6,则可以得到a ,b ,c 三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果. 【详解】∵这组数中的众数是8, ∴a ,b ,c 中至少有两个是8, ∵平均数是6,∴a ,b ,c 三个数其中一个是2, ∴(4+1+1+4+4+16)=5,∵5>4,∴乙射击成绩比甲稳定. 故选:B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.10.B解析:B 【解析】 【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可. 【详解】把这组数据从小到大排列:84,89,90,90,90,91,96, 最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90; 故选B . 【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.11.D解析:D 【解析】 【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案. 【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8, 甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环), 甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差, 故选D . 【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.12.C解析:C【解析】【分析】众数是一组数据中出现次数最多的数据,中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【详解】由统计表可知:体育锻炼时间最多的是5小时,故众数是5小时;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C .【点睛】本题考查了确定一组数据的众数和中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.1748【分析】根据平均数和方差公式的变形即可得到结果【详解】一组数据x1x2x3x4x5的平均数是5则4x1-34x2-34x3-34x4-34x5-3的平均数是4(x1+x2+x3+x4+x5)解析:17 48【分析】根据平均数和方差公式的变形即可得到结果.【详解】一组数据x1,x2,x3,x4,x5的平均数是5,则4x1-3,4x2-3,4x3-3,4x4-3,4x5-3的平均数是15[4(x1+x2+x3+x4+x5)-15]=17,∵新数据是原数据的4倍减3;∴方差变为原来数据的16倍,即48.故答案为:17;48.【点睛】本题考查方差的计算公式的运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.15或-05【分析】根据极差的概念求出x的值然后根据平均数的概念求解【详解】一组数据-32-10123x的极差是11当x为最大值时x﹣(﹣3)=11x=8平均数是:;当x是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x的极差是11,当x为最大值时,x﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=();当x是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键16.(1)1617;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列计算出中间两个数的平均数即是中位数出现次数最多的即为众数;(2)根据平均数的概念将所有数解析:(1)16,17;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;【详解】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)110×(0+7+9+12+15+17×3+20+26)=14,答:这10位居民一周内使用共享单车的平均次数是14次;【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.17.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:7048106⨯+⨯=76(分),故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数.18.乙【解析】【分析】直接利用方差的意义方差越小越稳定进而分析得出答案【详解】∵方差=1515<28∴射击成绩较稳定的是:乙故答案为:乙【点睛】此题主要考查了方差正确把握方差的意义是解题关键解析:乙【解析】【分析】直接利用方差的意义,方差越小越稳定,进而分析得出答案.【详解】∵方差222.8,S S=甲乙=1.5,1.5<2.8,∴射击成绩较稳定的是:乙.故答案为:乙.【点睛】此题主要考查了方差,正确把握方差的意义是解题关键.19.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n 个数据的平均数为则方差它反映了一组数据的波动大小方差越大 解析:1.6【解析】【分析】先求出平均数,再根据方差的公式计算即可.【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6.【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 20.0【解析】【分析】先确定出abc 后根据方差的公式计算abc 的方差【详解】解:平均数;中位数;众数;bc 的方差故答案是:0【点睛】考查了平均数中位数众数和方差的意义解题的关键是正确理解各概念的含义解析:0.【解析】【分析】先确定出a ,b ,c 后,根据方差的公式计算a ,b ,c 的方差.【详解】解:平均数()123242a =+++÷=;中位数()2222b =+÷=;众数2c =;a ∴,b ,c 的方差(222[(22)(22)22)30⎤=-+-+-÷=⎦.故答案是:0.【点睛】考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义. 三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果.【详解】解:(1)样本容量是:10÷20%=50.70≤a<80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数.(3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人).【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)①108°;②9,6;(2)7.6万元.【解析】试题分析:(1)①在扇形图中,由C部门所占比例乘以360°即可得出C部门所对应的圆心角的度数.②先计算出A部门所占比例,再计算出总人数,根据B、C部门所占比例即可求出b、c的值.(2)利用加权平均数的计算公式计算即可.试题(1)①360°×30%=108°;②∵a%=1-45%-30%=25%5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.23.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.24.(1)13.4;(2)13.3秒,13.3秒;(3)选择张明,理由见解析.【分析】(1)根据统计图给出的数据可直接得出答案;(2)利用平均数的计算公式可得出张明成绩的平均数;先将李亮的成绩按照从小到大排列,然后即可得到这组数据的中位数;(3)在平均数、中位数相同的情况下,再根据方差越小数据越稳定,即可得出答案.【详解】解:(1)根据统计图可知,张明第2次的成绩为13.4秒,故答案为:13.4;(2)张明成绩的平均数为:13.313.413.313.213.35++++=13.3(秒);李亮的成绩是:13.2,13.4,13.1,13.5,13.3,把这些数从小到大排列为:13.1,13.2,13.3,13.4,13.5,则李亮成绩的中位数是:13.3秒;故答案为:13.3秒,13.3秒;(3)选择张明参加比赛,因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明成绩比李亮成绩稳定.【点睛】本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.25.(1)8,88.5,74;(2)初一的水平较好,理由见解析.【分析】(1)根据所给数据可得出m的值,根据中位数和众数的定义可得a,b的值;(2)从中位数和众数的角度分析可知初一的水平较好.【详解】解:(1)由初一的成绩可知,m=8,将初一的成绩按从低到高排列,第10、11名的成绩分别为:88,89,故初一的中位数a=888988.52;初二的成绩中74分的人数最多,故初二的众数b=74,故答案为:8,88.5,74;(2)初一的水平较好,理由:因为初一和初二的平均数都是84分,但是初一的中位数是88.5分,众数是89分,而初二的中位数是81.5分,众数是74分,即初一年级学生成绩的中位数和众数明显高于初二年级的学生成绩的中位数和众数,故初一的水平较好.【点睛】本题考查了频数分布表、中位数和众数的意义,掌握中位数和众数的求法是解题的关键.26.(1)11,10,78,81;(2)90人;(3)八年级学生对经典文化知识掌握的总体水平较好,理由是八年级学生成绩的中位数较高【分析】(1)根据已知数据及中位数和众数的概念求解即可.(2)利用样本估计总体思想求解可得.(3)答案不唯一,合理即可.【详解】(1)a=11,b=10,c=78,d=81(2)312009040⨯=(人)答:估计七八年级90分以上的学生共90人(3)八年级学生对经典文化知识掌握的总体水平较好,理由:八年级学生成绩的中位数较高【点睛】。
人教版八年级数学下册单元测试《第18章平行四边形》(b卷)(解析版)
初中数学试卷新人教版八年级下册《第18章平行四边形》单元测试卷(B卷)一、填空题(共14小题,每题2分,共28分)1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件,就可得BE=DF.2.将一矩形纸条,按如图所示折叠,则∠1=度.3.如图,矩形ABCD中,MN∥AD,PQ∥AB,则S1与S2的大小关系是.4.已知平行四边形ABCD的面积为4,O为两条对角线的交点,那么△AOB的面积是.5.菱形的一条对角线长为6cm,面积是6cm2,则菱形的另一条对角线长为cm.6.如果梯形的面积为216cm2,且两底长的比为4:5,高为16cm,那么两底长分别为.7.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为.8.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.9.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于度.10.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片张,B类卡片张,C类卡片张.11.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为.12.如图所示,正方形ABCD的周长为16cm,顺次连接正方形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于cm,四边形EFGH的面积等于cm2.13.如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,连接AE交PQ于点M,求PM:MQ的值.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有个.二、选择题(共4小题,每题3分,共12分)15.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确16.在菱形ABCD中,AC与BD相交于点O,则下列说法不正确的是()A.AO⊥BO B.∠ABD=∠CBD C.AO=BO D.AD=CD17.已知等腰梯形的两底之差等于腰长,则腰与下底的夹角为()A.15°B.30°C.45°D.60°18.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关三、解答题(共60分)19.我们学习了四边形和一些特殊的四边形,如图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.20.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.21.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E.求证:四边形CDC′E是菱形.22.如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.23.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.24.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.25.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.26.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.27.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.28.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.新人教版八年级下册《第18章平行四边形》单元测试卷(B卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件AE=CF 或BE∥DF,就可得BE=DF.【考点】平行四边形的判定与性质.【专题】开放型.【分析】要使BE=DF,需使四边形EBFD为平行四边形,已有ED∥BF,再加AE=CF,或BE∥DF都可使其为平行四边形.【解答】解:∵BE=DF,DE∥BF∴四边形EBFD为平行四边形故答案为:AE=CF,BE∥DF(即为要增加的条件,任选一个).【点评】主要考查平行四边形的判定:一组对边平行且相等的四边形是平行四边形、两组对边分别平行的四边形是平行四边形.2.将一矩形纸条,按如图所示折叠,则∠1=52度.【考点】平行线的性质;翻折变换(折叠问题).【专题】计算题.【分析】根据平行线的性质,折叠变换的性质及邻补角的定义可直接解答.【解答】解:∵该纸条是折叠的,∴∠1的同位角的补角=2×64°=128°;∵矩形的上下对边是平行的,∴∠1=∠1的同位角=180°﹣128°=52°.【点评】本题主要考查平行线的性质:两直线平行,同位角相等;邻补角的定义;折叠变换的性质.3.如图,矩形ABCD中,MN∥AD,PQ∥AB,则S1与S2的大小关系是S1=S2.【考点】矩形的性质.【分析】设AM=y,MK=x,故S1=xy,KN=a,KQ=b,故S2=ab,由勾股定理推得:S2=ab=xy,从而得到S1=S2.【解答】解:设AM=y,MK=x,故S1=xyKN=a,KQ=b,故S2=ab.BD2=AD2+AB2=(x+a)2+(y+b)2DK=,BK=∴(+)2=(x+a)2+(y+b)2化简可得(ab﹣xy)2=0,ab﹣xy=0,故ab=xy.∴S1=S2.【点评】本题考查的是矩形的性质,但需要需注意的是要把等量关系转化求解.本题难度中上.4.已知平行四边形ABCD的面积为4,O为两条对角线的交点,那么△AOB的面积是1.【考点】平行四边形的性质.【分析】根据平行四边形的对角线互相平分,可推出三角形的中线;三角形的中线把三角形分成面积相等的两个三角形.【解答】解:根据平行四边形的对角线性质可知,AO为△ABD的中线,=S△AOB,所以,S△AOD=S△BOC=S△COD,同理可得,S△AOB=S平行四边形ABCD=1.所以,S△AOB【点评】平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形,并且平行四边形被对角线分成的四个小三角形的面积相等.5.菱形的一条对角线长为6cm,面积是6cm2,则菱形的另一条对角线长为2cm.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两条对角线的积的一半,即可求得.【解答】解:设菱形的另一条对角线长为xcm,则×6×x=6cm2,∴x=2cm.故答案为:2.【点评】此题主要考查菱形的性质,属于基础题,注意掌握菱形的面积等于两条对角线的积的一半.6.如果梯形的面积为216cm2,且两底长的比为4:5,高为16cm,那么两底长分别为12cm,15cm.【考点】梯形.【分析】设梯形两底分别为4x,5x,利用梯形面积公式求出x的值,即可得两底的长.【解答】解:设梯形的两底分别是4x,5x∴梯形的面积=(4x+5x)×16=216,得x=3∴梯形的两底分别是12,15.【点评】当知道两条线段的比的时候,注意用设未知数方法,根据梯形的面积公式列方程求解.7.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为96.【考点】菱形的性质.【专题】计算题;压轴题.【分析】根据菱形的性质利用勾股定理求得OB的长,从而得到BD的长,再根据菱形的面积公式即可求得其面积.【解答】解:连接DB,于AC交与O点∵在菱形ABCD中,AB=10,AC=16∴OB===6∴BD=2×6=12∴菱形ABCD的面积=×两条对角线的乘积=×16×12=96.故答案为96.【点评】此题考查学生对菱形的性质及勾股定理的理解及运用.8.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.9.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于30度.【考点】平行四边形的性质.【专题】计算题;压轴题.【分析】要使其面积为矩形面积的一半,平行四边形ABCD的高必须是矩形宽的一半,根据直角三角形中30°的角对的直角边等于斜边的一半可知,这个平行四边形的最小内角等于30度.【解答】解:∵平行四边形的面积为矩形的一半且同底BC,∴平行四边形ABCD的高AE是矩形宽AB的一半.在直角三角形ABE中,AE=AB,∴∠ADC=30°.故答案为:30.【点评】主要考查了平行四边形的面积公式和基本性质.平行四边形的面积等于底乘高.10.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片2张,B类卡片1张,C类卡片3张.【考点】多项式乘多项式.【专题】计算题.【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.【解答】解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为b2,C图形面积为ab,则可知需要A类卡片2张,B类卡片1张,C类卡片3张.故答案为:2;1;3.【点评】此题考查的内容是整式的运算与几何的综合题,方法较新颖.注意对此类问题的深入理解.11.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为3.【考点】翻折变换(折叠问题).【专题】几何图形问题.【分析】根据翻折变换的特点可知.【解答】解:根据翻折变换的特点可知:DE=GE∵∠CFE=60°,∴∠GAE=30°,∴AE=2GE=2DE=2,∴AD=3,∴BC=3.故答案为:3.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.12.如图所示,正方形ABCD的周长为16cm,顺次连接正方形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于8cm,四边形EFGH的面积等于8cm2.【考点】正方形的性质;三角形中位线定理.【分析】根据已知可求得ABCD的边长及对角线的长,根据中位线的性质可得到EFGH 的边长,从而可求得其周长及面积.【解答】解:正方形ABCD的周长为16cm,则它的边长为4,对角线是4,顺次连接正方形ABCD各边的中点,得到四边形EFGH,所以利用中线性质可得四边形EFGH的边长为2,所以四边形EFGH的周长等于8.由正方形的定义可知四边形EFGH是正方形,所以面积等于8.故答案为8,8.【点评】此题主要利用正方形的周长公式和面积公式进行计算,中位线性质是本题的关键.13.如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,连接AE交PQ于点M,求PM:MQ的值.【考点】翻折变换(折叠问题).【分析】由于四边形ABCD是正方形,那么∠D=90°,利用勾股定理可求AE,而线段AE 关于PQ对称,于是AE⊥PQ,可证△AMP∽△ADE,利用比例线段可求PM,再利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE=13,继而得到比值.【解答】解:作PN⊥BC交BC于N点,∵四边形ABCD是正方形,∴∠D=90°,又∵AD=12,DE=5,∴AE==13,∵线段AE关于PQ对称,∴AE⊥PQ,∴∠AMP=∠ADE=90°,AM=AE=,又∵∠PAM=∠EAD,∴△AMP∽△ADE,∴PM:DE=AM:AD,∴PM==.∵PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQN,则∠PQN=∠APQ=∠AED,∠D=∠PNQ,PN=AD∴△PQN≌△ADE,∴PQ=AE=13,∴PM:MQ=【点评】所求线段应进行平移,构造相应的全等三角形求解.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有40个.【考点】坐标与图形性质;正方形的性质.【专题】规律型.【分析】可以发现第n个正方形的整数点有4n个点,故第10个有40个整数点.【解答】解:第一个正方形有4×1=4个整数点;第2个正方形有4×2=8个整数点;第3个正方形有4×3=12个整数点;…∴第10个正方形有4×10=40个整数点.故答案为:40.【点评】此题考查点的坐标规律、正方形各边相等的性质,解决本题的关键是观察分析,得到规律,这是中考的常见题型.二、选择题(共4小题,每题3分,共12分)15.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确【考点】平行四边形的性质;三角形三边关系.【分析】因为平行四边形的对角线互相平分,根据三角形三边之间的关系,可先求得另一对角线的一半的取值为大于7而小于13,则它的另一条对角线α的取值范围为14<α<26.【解答】解:如图,已知平行四边形中,AB=10,AC=6,求BD的取值范围,即a的取值范围.∵平行四边形ABCD∴a=2OB,AC=2OA=6∴OB=α,OA=3∴在△AOB中:AB﹣OA<OB<AB+OA即:14<α<26故选B.【点评】此题主要考查平行四边形的性质和三角形三边之间的关系.16.在菱形ABCD中,AC与BD相交于点O,则下列说法不正确的是()A.AO⊥BO B.∠ABD=∠CBD C.AO=BO D.AD=CD【考点】菱形的性质.【分析】根据菱形的对角线垂直、平分且平分每一组对角的性质对各个选项进行验证.【解答】解:A、正确,菱形的对角线互相垂直平分;B、正确,一条对角线平分一组对角;C、不正确,菱形的对角线不相等;D、正确,菱形的四边均相等;故选C.【点评】此题主要考查菱形的基本性质:菱形的四条边都相等;菱形的对角线互相垂直平分,且每一条对角线平分一组对角.17.已知等腰梯形的两底之差等于腰长,则腰与下底的夹角为()A.15°B.30°C.45°D.60°【考点】等腰梯形的性质.【分析】过点D作DE∥BC,可知△ADE是等边三角形,从而得到∠C=60°.【解答】解:如图,过点D作DE∥BC,交AB于点E.∴DE=CB=AD,∵AD=AE,∴△ADE是等边三角形,所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.18.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关【考点】三角形中位线定理.【专题】压轴题.【分析】因为AR的长度不变,根据中位线定理可知,线段EF的长不变.【解答】解:因为AR的长度不变,根据中位线定理可知,EF平行与AR,且等于AR的一半.所以当点P在CD上从C向D移动而点R不动时,线段EF的长不变.故选C.【点评】主要考查中位线定理.在解决与中位线定理有关的动点问题时,只要中位线所对应的底边不变,则中位线的长度也不变.三、解答题(共60分)19.我们学习了四边形和一些特殊的四边形,如图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.【考点】矩形的判定;菱形的判定;正方形的判定;梯形.【专题】阅读型.【分析】根据图中图形各四边形的不同的定义和性质进行解答即可.【解答】解:③﹣﹣相邻两边垂直;④﹣﹣相邻两边相等;⑤﹣﹣相邻两边相等;⑥﹣﹣相邻两边垂直;⑦﹣﹣两腰相等;⑧﹣﹣一条腰垂直于底边.【点评】本题考查菱形、矩形、正方形和梯形等的判定区别.20.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题;压轴题.【分析】要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB.【解答】证明:(1)∵AE=CF,∴AE+EF=CF+FE,即AF=CE.又ABCD是平行四边形,∴AD=CB,AD∥BC.∴∠DAF=∠BCE.在△ADF与△CBE中,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E.求证:四边形CDC′E是菱形.【考点】菱形的判定.【专题】证明题.【分析】根据题意可知△CDE≌△C′DE,则CD=C′D,CE=C′E,要证四边形CDC′E为菱形,证明CD=CE即可.【解答】证明:根据题意可知△CDE≌△C′DE,则CD=C′D,∠C′DE=∠CDE,CE=C′E,∵AD∥BC,∴∠C′DE=∠CED,∴∠CDE=∠CED,∴CD=CE,∴CD=C′D=C′E=CE,∴四边形CDC′E为菱形.【点评】本题利用了:1、全等三角形的性质;2、两直线平行,内错角相等;3、等边对等角;4、菱形的判定.22.如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.【考点】平行四边形的判定;全等三角形的判定.【专题】证明题;压轴题;探究型.【分析】(1)利用CF∥BE和D是BC边的中点可以得到全等条件证明△BDE≌△CDF;(2)根据(1)的结论和平行四边形的判定容易证明四边形BECF是平行四边形.【解答】(1)证明:∵CF∥BE,∴∠FCD=∠EBD.∵D是BC的中点,∴CD=BD.∵∠FDC=∠EDB,∴△CDF≌△BDE(ASA).(2)解:四边形BECF是平行四边形.理由:∵△CDF≌△BDE,∴DF=DE,DC=DB.∴四边形BECF是平行四边形.【点评】此题主要考查了全等三角形的判定与性质,平行四边形的判定,要求对这些知识很熟练.23.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.【考点】菱形的判定;平行四边形的性质;正方形的判定.【专题】证明题.【分析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得△AOE≌△COE,∴∠AOE=∠COE=90°,∴BE⊥AC,∴四边形ABCD是菱形;(2)根据有一个角是90°的菱形是正方形.由题意易得∠ADO=∠DAE+∠DEA=15°+30°=45°,∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴四边形ABCD是正方形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC(三线合一),即AC⊥BD,∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO平分∠AEC(三线合一),∴∠AED=∠AEC=×60°=30°,又∵∠AED=2∠EAD∴∠EAD=15°,∴∠ADO=∠DAE+∠DEA=15°+30°=45°(三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴平行四边形ABCD是正方形.【点评】此题主要考查菱形和正方形的判定,要灵活应用判定定理及等腰三角形的性质、外角的性质定理.24.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.【考点】矩形的性质;全等三角形的判定与性质.【专题】探究型.【分析】由全等三角形的判定定理直接可证△ADE≌△FCD,即证AD=CF.【解答】解:(1)AD=CF.(2)证明:∵四边形ABCD是矩形,∴CD∥AE,AB=CD,∴∠AED=∠FDC,∵DE=AB,∴DE=AB=CD.(3分)又∵CF⊥DE,∴∠CFD=∠A=90°.(4分)∴△ADE≌△FCD(AAS).∴AD=CF.(6分)【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.【考点】正方形的判定;三角形中位线定理;平行四边形的判定.【专题】证明题.【分析】通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.【解答】证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.【点评】主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.26.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.【考点】全等三角形的判定;菱形的判定.【专题】几何综合题.【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA判定△ABE≌△AD′F;(2)四边形AECF是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【解答】(1)证明:由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE和△AD′F中∵∴△ABE≌△AD′F(ASA).(2)解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.【点评】此题考查了全等三角形的判定及菱形的判定方法,做题时要求学生对常用的知识点牢固掌握.27.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】全等三角形的判定与性质;正方形的性质.【专题】几何综合题.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.【点评】本题可围绕结论寻找全等三角形,根据正方形的性质找全等的条件,运用全等三角形的性质判定线段相等,垂直关系.28.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【考点】矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.【专题】证明题;开放型.【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.【点评】本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.——————————唐玲制作仅供学习交流——————————唐玲。
精品解析2022年最新人教版八年级数学下册第十九章-一次函数单元测试试卷(含答案详细解析)
人教版八年级数学下册第十九章-一次函数单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:①A,B港口相距400km;②B,C港口相距300km;③甲船的速度为100km/h;④乙船出发4h时,两船相距220km,其中正确的个数是()A.1 B.2 C.3 D.42、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.3、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y24、下列函数中,为一次函数的是()A.12yx=B.2y x C.1y=D.1y x=-+5、如果函数y=(2﹣k)x+5是关于x的一次函数,且y随x的值增大而减小,那么k的取值范围是()A.k≠0B.k<2 C.k>2 D.k≠26、下列各图中,不能表示y是x的函数的是()A.B.C.D.7、已知两个一次函数y1=ax+b与y2=bx+a,它们在同一平面直角坐标系中的图象可能是下列选项中的()A.B.C.D.8、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,y甲表示甲的路程,y乙表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有()个A.1 B.2 C.3 D.410、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B 车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y (千米),则能大致表示y与x之间函数关系的图象是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线23y x =-+,则它与x 轴的交点坐标为________,与坐标轴围成的三角形面积为_______.2、甲、乙两施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务.下表根据每天工程进度绘制而成的.下列结论:①甲队每天修路20米;②乙队第一天修路15米;③乙队技术改进后每天修路35米;④前7天甲、乙两队修路长度相等.其中正确的结论有_______.(填序号).3、一次函数y =kx +b (k ≠0)中两个变量x 、y 的部分对应值如下表所示:那么关于x 的不等式kx +b ≥-1的解集是________.4、华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:(1)m =______;(2)若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为_______.5、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;三、解答题(5小题,每小题10分,共计50分)y+4的图象分别与x轴、y轴交于点A、B,点C在线段1、在平面直角坐标系中,一次函数y=−43OB上,将△AOB沿AC翻折,点B恰好落在x轴上的点D处,直线DC交AB于点E.(1)求点C的坐标;(2)若点P在直线DC上,点Q是y轴上一点(不与点B重合),当△CPQ和△CBE全等时,直接写出点P的坐标(不包括这两个三角形重合的情况).2、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P 从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.3、某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:(1)当通讯时间为500分钟时,①方式收费元,②方式收费元;(2)②收费方式中y与x之间的函数关系式是;(3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是(填①或②).4、已知一次函数y=−2y−6.(1)画出函数图象.(2)不等式−2y−6>0的解集是_______;不等式−2y−6<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.x+4的图象相交于点A.5、如图,函数y=2x和y=-23(1)求点A的坐标;x+4的解集.(2)根据图象,直接写出不等式2x≥-23---------参考答案-----------一、单选题1、B【解析】【分析】根据图象可知A、B港口相距400km,从而可以判断①;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断②;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.【详解】解:由题意和图象可知,A、B港口相距400km,故①正确;∵甲船的速度是乙船的1.25倍,∴乙船的速度为:100÷1.25=80(km/h),∵乙船的速度为80km/h,S)÷100-1,∴400÷80=(400+BCS=200km,故②错误;解得:BC∵甲船4个小时行驶了400km,∴甲船的速度为:400÷4=100(km/h),故③正确;乙出发4h时两船相距的距离是:4×80+(4+1-4)×100=420(km),故④错误.故选B【点睛】本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.2、D【解析】【分析】根据题意分析出托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当0<3x≤时, 1.5y=,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.3、A【解析】【分析】先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.【详解】解:∵一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0∴y随x增大而减小,∵1<3,∴y1>y2.故选:A.本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m 、n 的取值范围成为解答本题的关键.4、D【解析】【分析】根据一次函数的定义即可求解.【详解】 A.12y x=不是一次函数, B.2y x 不是一次函数, C.1y =不是一次函数,D.1y x =-+是一次函数故选D .【点睛】一次函数的定义一般地,形如y=kx+b (k ,b 是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.5、C【解析】【分析】由题意()25y x k =-+,y 随x 的增大而减小,可得自变量系数小于0,进而可得k 的范围.【详解】解:∵关于x 的一次函数()25y x k =-+的函数值y 随着x 的增大而减小,∴>.k2故选C.【点睛】k>,y随x的增大而增本题主要考查了一次函数的增减性问题,解题的关键是:掌握在y kx b=+中,0k<,y随x的增大而减小.大,06、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.7、B【解析】【分析】先由一次函数y1=ax+b图象得到字母系数的符号,再与一次函数y2=bx+a的图象相比较看是否一致.【详解】解:A、∵一次函数y1=ax+b的图象经过一二四象限,∴a>0,b>0;由一次函数y2=bx+a图象可知,b<0,a>0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;C、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a>0,b>0,两结论矛盾,故错误;D、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a<0,b=0,两结论相矛盾,故错误.故选:B.【点睛】本题主要考查了一次函数图象与系数的关系,一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+经过一、三、四象限;③当=+经过一、二、三象限;②当k>0,b<0时,函数y kx bk<0,b>0时,函数y kx b=+经过二、三、四象=+经过一、二、四象限;④当k<0,b<0时,函数y kx b限,解题的关键是掌握一次函数图像与系数的关系.8、B【解析】【分析】由一次函数的图象的走势结合一次函数与y 轴交于正半轴,可判断A ,B ,由图象可得:当x >4时,函数图象在x 轴的下方,可判断C ,先求解一次函数的解析式,再利用一次函数图象的平移可判断D ,从而可得答案.【详解】解:一次函数y =kx +b 的图象从左往右下降,所以y 随x 的增大而减小,故A 不符合题意; 一次函数y =kx +b , y 随x 的增大而减小,与y 轴交于正半轴,所以0,0,k b 故B 符合题意; 由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB 段为甲休息的时间即可判断③;设乙需要t 分钟追上甲,10006001006006040t t -=+-,求出t 即可判断④. 【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB 段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确; ∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t 分钟追上甲,10006001006006040t t -=+-, 解得t =7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C .【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.10、C【解析】【分析】分别求出两车相遇、B 车到达甲地、A 车到达乙地时间,分0≤x ≤45、45<x ≤43、43<x ≤2三段求出函数关系式,进而得到当x =43时,y =80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B 车到达甲地时间为120÷90=43小时,A 车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.二、填空题1、3,02⎛⎫⎪⎝⎭94【解析】【分析】先令y=0即可求出直线与x轴的交点坐标,再令x=0及可求出直线与y轴的交点坐标,由三角形的面积公式即可得出结论.【详解】解:∵令x=0,则y=3,令y=0,则x=32,∴直线y=−2x+3与x轴的交点坐标是(32,0);直线与两坐标轴围成的三角形的面积=12×32×3=94.故答案为:3,02⎛⎫⎪⎝⎭;94【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、①②③【解析】【分析】根据表格数据准确分析分析计算即可;【详解】由表格可以看出乙队是第五天停工的,所以甲队每天修路:16014020-=(米),故①正确;乙队第一天修路352015-=(米),故②正确;乙队技术改进之后修路:2151602035--=(米),故③正确;前7天,甲队修路:207140⨯=(米),乙队修路:270140130-=,故④错误;综上所述,正确的有①②③.故答案是:①②③.【点睛】本题主要考查了行程问题的实际应用,准确分析判断是解题的关键.3、x≤1【解析】【分析】由表格得到函数的增减性后,再得出1y=-时,对应的x的值即可.【详解】解:当1x =时,1y =-,根据表可以知道函数值y 随x 的增大而减小,∴不等式1kx b +≥-的解集是1x ≤.故答案为:1x ≤.【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键.4、 100 a =32+1.8b【解析】【分析】(1)由表格数据可知华氏温度与摄氏温度满足一次函数关系,利用待定系数法解题;(2)由表格数据规律,得到华氏温度=摄氏温度95⨯+32,据此解题.【详解】解:(1)设华氏温度与摄氏温度满足的一次函数关系为:(0)y kx b k =+≠代入(10,50)(20,68)得10502068k b k b +=⎧⎨+=⎩ 9532k b ⎧=⎪⎨⎪=⎩ 9325y x ∴=+ 当212y =时,9322125m +=100m ∴=故答案为:100;(2)由(1)得,华氏温度=摄氏温度95⨯+32,若华氏温度为a ,摄氏温度为b ,则把摄氏温度转化为华氏温度的公式为:a = 95b +32,故答案为:a =32+1.8b .【点睛】本题考查华氏温度与摄氏温度的换算,是基础考点,掌握相关知识是解题关键.5、V =100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V 与h 的关系为V =100h ;故答案为:V =100h .【点睛】本题主要考查了列函数关系式,题目比较简单.三、解答题1、(1)C (0,32);(2)(﹣2,0)或(2,3)或(﹣65,35)【解析】【分析】(1)首先求出A (3,0),B (0,4),得出AB =5,设OC =x ,则BC =4﹣x ,在Rt △OCD 中,由勾股定理得:x 2+22=(4﹣x )2,解方程即可;(2)首先可证∠BEC =∠COD =90°,分当点D 与P 重合,当CQ =BC =52时,当PC =BE =2,yy =yy =32,∠yyy =∠yyy =90°时,再分别根据图形性质求出点P 的坐标即可.【详解】解:(1)∵ y =−43y +4,令y =0, 则y =4, 令y =0, 则y =3,∴ A (3,0),B (0,4),∴OA =3,OB =4,∵∠AOB =90°,由勾股定理得,AB =√yy 2+yy 2=5,∵将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,∴AD =AB =5,∴OD =2,设OC =x ,则yy =yy =4−y ,在Rt △OCD 中,由勾股定理得:x 2+22=(4﹣x )2,解得x =32,∴C (0,32);(2)设yy 为y =yy +y ,∴{−2y +y =0y =32解得:{y =34y =32所以直线CD 的解析式为y =34y +32,∵将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,∴∠ABO =∠CDO ,∵∠BCE =∠DCO ,∴∠BEC =∠COD =90°,①当点D 与P 重合时,OP =2,OC =32,yy =4−32=52, CP =√22+(32)2=52, 而∠yyy =∠yyy ,∠yyy =∠yyy , 则△CPQ ≌△CBE ,此时y ,y 重合,∴P (﹣2,0);yy =yy =yy =2,yy =yy =yy =32,②当CQ =BC =52时,则点Q 的纵坐标为﹣1时,如图,当△CPQ ≌△CEB 时,∴yy =yy =32,yy =yy =2,∠yyy =∠yyy =90°,∴12×(−y y)×52=12×32×2,解得:y y=−65,∴y y=34×(−65)+32=35,∴y(−65,35 );③当PQ=BE=2,yy=yy=32,∠yyy=∠yyy=90°时,如图,△yyy≌△yyy,∴y y=2,y y=34×2+32=3,∴点P(2,3),综上,点P的坐标为(﹣2,0)或(2,3)或(−65,35 ).【点睛】本题考查的是一次函数与坐标轴的交点坐标问题,轴对称的性质,勾股定理的应用,利用待定系数法求解一次函数的解析式,全等三角形的判定与性质,清晰的分类讨论是解(2)的关键.2、(1)PQ=5cm;(2)t=53;(3)S四边形APQB=30﹣5t+t2.【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ=√yy2+yy2=√(5−y)2+(2y)2,∵t=2,∴PQ=√32+42=5cm,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=53,∴t=53秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ=12yy⋅yy−12yy⋅yy=12×5×12−12×(5−y)×2y=30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)80,100;(2)y 2=0.2x ;(3)②【解析】【分析】(1)根据题意由函数图象就可以得出①②收费;(2)根据题意设②中y 与x 的关系式为y 2=k 2x ,由待定系数法求出k 2值即可;(3)根据题意设①中y 与x 的关系式为y 1=k 1x +b ,再讨论当y 1>y 2,y 1=y 2,y 1<y 2时求出x 的取值就可以得出结论.【详解】解:(1)由函数图象,得:①方式收费80元,②方式收费100元,故答案为:80,100;(2)设②中y 与x 的关系式为y 2=k 2x ,由题意,得100=500k 2,∴k =0.2,∴函数解析式为:y 2=0.2x ;(3)设①中y 与x 的关系式为y 1=k 1x +b ,由函数图象,得:{y =30500y 1+y =80, 解得:{y 1=0.1y =30 , ∴y 1=0.1x +30,当y 1>y 2时,0.1x +30>0.2x ,解得:x<300,当y1=y2时,0.1x+30=0.2x,解得:x=300,当y1<y2时,0.1x+30<0.2x,x>300,∵200<300,∴方式②省钱.故答案为:②.【点睛】本题考查待定系数法求一次函数的解析式的运用,分类讨论思想的运用,设计方案的运用,解答时认真分析函数图象的意义是解题的关键.4、(1)见解析;(2)x<-3;x>-3;(3)BC=3√5.【解析】【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y =-2x -6与x 轴交点B 的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x <-3时,一次函数y =-2x -6的图象在x 轴上方;当x >-3时,一次函数y =-2x -6的图象在x 轴下方.∴不等式-2x -6>0的解集是x <-3;不等式-2x -6<0的解集是x >-3.故答案是:x <-3,x >-3;(3)∵B (-3,0),C (0,-6),∴OB =3,OC =6,∴BC =√yy 2+yy 2=3√5【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x 轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.5、 (1) (32,3);(2) x ≥32.【解析】【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得{y =2y ,y =−23y +4,解得{y =32,y =3.∴点A 的坐标为(32,3);(2)由图象得不等式2x ≥-23x +4的解集为x ≥32.【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.。
最新人教版初中数学八年级数学下册第五单元《数据的分析》检测题(有答案解析)
一、选择题1.反映一组数据变化范围的是( ) A .极差B .方差C .众数D .平均数2.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( ) A .6℃B .6.5℃C .7℃D .7.5℃3.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲 乙 丙 丁 平均数(环) 9.14 9.15 9.14 9.15 方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲B .乙C .丙D .丁4.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分B .中位数C .极差D .平均数5.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”6.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( ) A .8,16B .10,6C .3,2D .8,87.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是( )A .这组数据的众数是14B .这组数据的中位数是31C .这组数据的标准差是4D .这组是数据的极差是98.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。
已知某同学从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a,b的值,下列选项正确的是( )A.a=15 B.a=16 C.b=24 D.b=359.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B.全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C.这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D.这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩10.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐11.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.812.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大二、填空题13.某中学篮球队12名队员的年龄情况如下:年龄(单位:1415161718岁)人数14322则这个队队员年龄的众数和中位数分别是_____岁、_____岁.14.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示: 应聘者 网页制作 语言 甲 80 70 乙7080该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 15.若一组数据1,2,a ,3,5的平均数是3,则这组数据的标准差是______. 16.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,那么该月份白菜价格最稳定的是______市场.17.一组数2、a 、4、6、8的平均数是5,这组数的中位数是______.18.为迎接2018年的体育中考,甲、乙两位同学参加排球训练,体育老师根据训练成绩算出他们成绩的方差分别为S 甲2=1.6,S 乙2=2.8,则_____(填“甲”或“乙”)成绩较稳定. 19.已知一组数据的方差s 2=14[(x 1﹣6)2+(x 2﹣6)2+(x 3﹣6)2+(x 4﹣6)2],那么这组数据的总和为_____.20.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为________.三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图; (2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?22.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目(每个项目按百分制计分).若按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李颖和张明两位同学的各项成绩如表所示:项目形象知识面普通话选手李颖708088张明8075x(2)若张明同学要在总成绩上超过李颖同学,求x的范围.23.甲、乙两人在相同条件下各立定跳远5次,距离如下(单位:cm):甲:225,230,240,230,225;乙:220,235,225,240,230.(1)计算这两组数据的方差;(2)谁的跳远技术较稳定?为什么?24.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.25.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?26.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分).甲9582888193798478乙8375808090859295(1)请你计算这两组数据的平均数、中位数.(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.B解析:B【分析】由于10天天气,根据数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数.【详解】解:10天的气温排序为:4,4,5,5,6,7,7,7,7,8, 中位数为:6+72=6.5, 故选B . 【点睛】本题属于基础题,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.B解析:B 【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B .5.C解析:C 【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论. 【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确, 所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A 不正确; 因为B 中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3, 所以选项B 说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定, 所以甲组数据比乙组数据稳定,故选项C 说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D 说法不正确. 故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.6.A解析:A 【分析】如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变. 【详解】根据题意可知:这组数据的平均数为:2×5-2=8;方差为:24216⨯=. 故选:A 【点睛】本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.7.D解析:D 【解析】 【分析】根据中位数,众数、极差、标准差的定义即可判断. 【详解】解:七个整点时数据为:22,22,23,26,28,30,31 所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+= ;极差是31-22=9,标准差是:故D 正确, 故选:D 【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据8.A解析:A 【分析】先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案. 【详解】解:∵甲箱98−49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49−1)÷2=24(颗),∴甲箱中小于40的球有39−24=15(颗),大于40的有49−15=34(颗),即a=15,b=34.故选:A【点睛】本题考查了中位数,正确进行分析,掌握中位数的概念是解题的关键.9.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.10.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键11.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B.【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.12.D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题13.1615【分析】根据中位数和众数的定义求解【详解】解:从小到大排列此数据数据15出现了四次最多为众数16和16处在第5位和第六位它两个数的平均数为16为中位数故答案为:1615【点睛】本题属于基础题解析:16 15【分析】根据中位数和众数的定义求解.【详解】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为:16,15.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.网页制作【分析】根据加权平均数的定义解答即可【详解】解:设网页制作的权重为a语言的权重为b则甲的分数为80a+70b乙的分数为70a+80b而甲的分数高所以80a+70b>70a+80b解得a>b则解析:网页制作【分析】根据加权平均数的定义解答即可.【详解】解:设网页制作的权重为a,语言的权重为b,则甲的分数为80a+70b,乙的分数为70a+80b,而甲的分数高,所以80a+70b>70a+80b,解得a>b,则本次招聘测试中权重较大的是网页制作项目.故答案为:网页制作.【点睛】本题考查了加权平均数的和解一元一次不等式的知识,属于基础题型,熟练掌握加权平均数的定义是关键.15.【分析】根据题意可得×(1+3+2+5+a)=3解这个方程就可以求出a的值;根据标准差的计算公式即可求出样本标准差【详解】根据题意由平均数的定义得×(1+3+2+5+a)=3解得a=4所以方差为:S【分析】根据题意可得15×(1+3+2+5+a)=3,解这个方程就可以求出a的值;根据标准差的计算公式即可求出样本标准差.【详解】根据题意由平均数的定义得15×(1+3+2+5+a)=3,解得,a=4.所以方差为:S 2=()()()()()2222213-1+3-3+3-2+3-5+3-4=5⎡⎤⨯⎣⎦2,.【点睛】此题考查平均数的概念,解题关键在于掌握计算公式.16.乙【分析】根据方差的定义方差越小数据越稳定即可得出答案【详解】该月份白菜价格最稳定的是乙市场;故答案为乙【点睛】本题考查了方差的意义方差是用来衡量一组数据波动大小的量方差越大表明这组数据偏离平均数越 解析:乙【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,222S S S ∴>>甲乙丙,∴该月份白菜价格最稳定的是乙市场;故答案为乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.5【解析】【分析】由平均数可求解a 的值再根据中位数的定义即可求解【详解】解:由平均数可得a=5×5-2-4-6-8=5则该组数由小至大排序为:24568则中位数为5故答案为:5【点睛】本题考查了平均解析:5【解析】【分析】由平均数可求解a 的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.18.甲【分析】根据方差的意义即方差越小波动越小方差越大波动越大解答【详解】∵<∴甲稳定【点睛】本题考查的知识点是方差解题的关键是熟练的掌握方差解析:甲【分析】根据方差的意义,即方差越小波动越小,方差越大波动越大解答.【详解】∵2S甲<2S乙,∴甲稳定.【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差.19.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24【分析】根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和.【详解】∵s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24.故答案为24.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].20.3【分析】首先根据这组数据的总和等于各个数据之和或等于这组数据的平均数乘以这组数据的个数列出方程得出x的值再根据众数的概念这组数据中出现次数最多的是3从而得出答案【详解】解:1+3+2+7+x+2+解析:3【分析】首先根据这组数据的总和等于各个数据之和,或等于这组数据的平均数乘以这组数据的个数,列出方程,得出x的值,再根据众数的概念,这组数据中出现次数最多的是3,从而得出答案.【详解】解: 1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为3.点睛: 本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.三、解答题21.(1)40;补图见详解;(2)36°;(3)13200元.【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解;(3)计算出本次调查的平均数,再根据题意列式计算即可求解.【详解】解:(1)10÷25%=40(人),40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=36 40⨯︒︒;(3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元),答:七年级学生捐款约为13200元.【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.(1)83;(2)90<x≤100【分析】(1)按照各项目所占比求得总成绩;(2)各项目所占比求得总成绩大于83分即可,列出不等式求解.【详解】(1)70×10%+80×40%+88×50%=83(分);(2)80×10%+75×40%+50%•x>83,∴x >90.∵每个项目按百分制计分∴90<x≤100∴李颖同学的总成绩是83分,张明同学要在总成绩上超过李颖同学,则他的普通话成绩应90<x≤100.【点睛】本题综合考查平均数的运用.解题的关键是正确理解题目的含义.23.(1)30;50(2)甲稳定;见解析.【分析】(1)根据平均数的计算公式先求出甲和乙的平均数,再代入方差公式()()()2221221=.....n S x x x x x x n ⎡⎤-+-++-⎢⎥⎣⎦,进行计算即可得出答案; (2)根据方差的意义,方差越小数据越稳定,即可得出答案.【详解】 解:(1)甲的平均数是:()1225+230+240+230+225=2305cm ⨯, 乙的平均数是:()1220+235+240+230+225=2305cm ⨯, 甲的方差是:()()()()()22222221=225230230230240230230230225230305S cm ⎡⎤⨯-+-+-+-+-=⎣⎦, 乙的方差是:()()()()()22222221=220230235230240230230230225230505S cm ⎡⎤⨯-+-+-+-+-=⎣⎦;(2)由(1)知,S 甲2<S 乙2,∴甲的跳远技术较稳定.【点睛】本题主要考查平均数与方差,熟练掌握方差及平均数的运算公式是解题的关键.24.(1)30元;(2)50元;(3)250.【分析】(1)根据众数的定义即可判判断;(2)根据中位数的定义即可判断;(3)先计算出样本中计划购买课外书花费50元的学生所占的比例,然后在乘以总人数即可;【详解】(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人. 25.(1)a =10,b =8,c =8.6;(2)推荐丙班级为网上教学先进班级.【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断.【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、88分出现次数最多,∴乙班的众数是:8分;∵(9+10+8+7+9)÷5=8.6(分),∴丙班的平均分是:8.6分;∴a =10,b =8,c =8.6.(2) 甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分)乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分)丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),∴推荐丙班级为网上教学先进班级.【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.26.(1)甲、乙两组数据的平均数都是85分,中位数分别为83分、84分;(2)派乙参赛更合适.理由见解析.【分析】(1)根据平均数、中位数的计算方法分别计算即可;(2)从平均数、中位数、方差以及数据的变化趋势分析.【详解】()1()19582888193798478858x =+++++++=甲(分),()18375808090859295858x =+++++++=乙 将甲工人的测试成绩从小到大排序,处在第45、位的平均数为()8284283+÷=(分), 因此甲工人测试成绩的中位数是83分,将乙工人的测试成绩从小到大排序,处在第45、位的平均数为()8385284+÷=(分), 因此乙工人测试成绩的中位数是84分,答:甲、乙两组数据的平均数都是85分,中位数分别为83分、84分.()2(答案不唯一,合理即可) ()()()2222195858285...788535.58S =-+-+⎤⎣⎦=⎡+-甲(分2)()()()2222183857585...9585418S =-+-+-⎡⎤⎣⎦+=乙(分2) ①从平均数看,甲、乙均为85分,平均水平相同;②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为22S S <甲乙,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次, 故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以派乙参赛更合适.【点睛】考查平均数、中位数、方差的意义及计算方法,从多角度分析数据的发展趋势是一项基本的能力.。
人教版八年级下册数学全册单元测试卷
第16章 二次根式 单元测试试卷班级: 座号 姓名: 成绩:1. 下列式子一定是二次根式的是【 】A .2--xB .xC .22+xD .22-x 2.若b b -=-3)3(2,则【 】A .b >3B .b <3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是【 】A .0=mB .1=mC .2=mD .3=m4.若x <0,则xx x 2-的结果是【 】A .0B .2-C .0或2-D .2 5.下列二次根式中属于最简二次根式的是【 】 A .14 B .48 C .baD .44+a 6.如果)6(6-=-•x x x x ,那么【 】A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 7.小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112; ④a a a =-23.做错的题是【 】A .①B .②C .③D .④ 8.化简3121+的结果为【 】 A .630 B .306 C .65 D .569.若最简二次根式a a 241-+与的被开方数相同,则a 的值为【 】 A .43-=a B .34=a C .1=a D .1-=a 10.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是【 】A .9B .10C .24D .172二、耐心填一填,一锤定音!(每小题3分,共18分)11.若12-x 有意义,则x 的取值范围是 ; 12.比较大小:13.=•y xy 82 ,=•2712 ;第10题图B14.已知a 、b为两个连续的整数,且a b <<,则a b += ;15.当=x 时,二次根式1+x 取最小值,其最小值为 ; 16,则这个三角形的 周长为 ;三、用心做一做,马到成功!(共52分)17.(每小题3分,共12分)直接写出使下列各式有意义的字母的取值范围: (1)43-x (2)a 831- (3)42+m (4)x1-; ; ; 18.(每小题3分,共12分)化简: (1))169()144(-⨯- (2)2531- (3)512821⨯- (4)n m 21819.(每小题4分,共16分)计算:(1)2232⎪⎪⎭⎫ ⎝⎛- (4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-12212713(3)2484554+-+ (4)2332326--20.(本题6分)先化简,再求值:244(2)24x x x x -+⋅+-,其中x =21.(本题8分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)利用你观察到的规律,化简:12322+(2)计算:1111 (12233299100)++++++++勾股定理单元测试题1、如图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ).A .16πB .12πC .10πD .8π2、已知直角三角形两边的长为3和4,则此三角形的周长为( ).A .12B .7+7C .12或7+7D .以上都不对 3、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′, 使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降 至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m 4、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取 值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm 5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____. 6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.9、如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.(1)记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,……,a n ,请求出a 2,a 3,a 4的值;150o20米30米(2)根据以上规律写出a n的表达式.10、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1.4m,BC=30米,请帮助小明计算出树高AB.(3取1.732,结果保留三个有效数字)11、如图,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少海里?12、去年某省将地处A 、B 两地的两所大学合并成了一所综合性大学,为了方便A 、B 两地师生的交往,学校准备在相距2.732km 的A 、 B 两地之间修筑一条笔直公路(即图中的线段AB ),经测量,在A 地 的北偏东60°方向、B 地的西偏北45°方向C 处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)参考答案与提示1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=21πR 2=21π×(28)2=8π.故选D ); 2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,故选D ). 5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有(3k )2+(2k )2=(213)2,解得a =b ,b =4.);6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);7.3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8); 8、150a .9、解析:利用勾股定理求斜边长.(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC =22BC AB +=2211+=2.同理:AE =2,EH =22,…,即a 2=2,a 3=2,a 4=22.(2)a n =12-n (n 为正整数).10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D 作DE ⊥AB 于点E ,则ED =BC =30米,EB =DC =1.4米.设AE =x 米,在Rt △ADE 中,∠ADE =30°,则AD =2x .由勾股定理得:AE 2+ED 2=AD 2,即x 2+302=(2x )2,解得x =103≈17.32.∴AB =AE +EB ≈17.32+1.4≈18.7(米). 答:树高AB 约为18.7米.11、解析:本题要注意判断角的大小,根据题意知:∠1=∠2=45°,从而证明△ABC 为直角三角形,这是解题的前提,然后可运用勾股定理求解.B 在O 的东南方向,A 在O 的西南方向,所以∠1=∠2=45°,所以∠AOB =90°,即△AOB 为Rt △.BO =16×23=24(海里),AB =30海里,根据勾股定理,得AO 2=AB 2-BO 2=302-242=182,所以AO =18.所以乙船的速度=18÷23=18×32=12(海里/时).答:乙船每小时航行12海里. 12、解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =x ,∴AC =2x .由勾股定理 得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732,∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7, ∴计划修筑的这条公路不会穿过公园.第十八章《平行四边形》单元考试卷(完卷时间:45分钟,满分100分)班级: 座号姓名: 成绩:一、精心选一选,慧眼识金!(每小题4分,共32分)题号 1 2 3 4 5 6 7 8选项1.已知正方形的边长为4cm,则其对角线长是【】4cmA.8cm B.16cm C.32cm D.22.矩形、菱形、正方形都具有的性质是【】A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角3.关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有【】A.1个B.2个C.3个D.4个4.在等腰梯形中,下列说法:①两腰相等;②两底平行;③对角线相等;④同一底上的两底角相等,其中正确的有【】A.1个B.2个C.3个D.4个5.若顺次连结四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必定是【】A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形6.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是【】A.B.C.D.7.如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE=BF ,添加一个条件,仍不能证明四边形BECF 为正方形的是【 】A .BC=ACB .CF ⊥BFC .BD=DFD .AC=BF8.如图,矩形ABCD 中,DE ⊥AC 于E , 且∠ADE :∠EDC=3:2,则∠BDE 的度 数为【 】A .36°B .9°C .27°D .18°二、耐心填一填,一锤定音!(每小题4分,共24分)9.平行四边形ABCD 中,∠A=500,AB=30cm ,则∠B=____ ,DC=___ _ cm 。
最新人教版初中数学八年级数学下册第一单元《二次根式》测试题(有答案解析)(2)
一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22==2.x 的取值范围是( ) A .0x ≥ B .1x ≤C .1x ≥-D .1≥x3.下列二次根式的运算:==5=,2=-;其中运算正确的有( ).A .1个B .2个C .3个D .4个 4.下列各式中,一定是二次根式的个数为( )10),22a a a ⎫+<⎪⎭ A .3个 B .4个 C .5个 D .6个5.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .6.n 为( ).A .2B .3C .4D .57.合并的是( )A B C D 8.下列各式计算正确的是( )A +=B .26=(C 4=D = 9.下列二次根式中,最简二次根式是( )A B C D 10.下列计算中,正确的是()A .=B .10==C .(33+-=-D .2a b =+11.已知,2那么a 应满足什么条件 ( ) A .a >0 B .a≥0 C .a =0 D .a 任何实数 12.下列各式不是最简二次根式的是( )A .21a +B .21π+C .24bD .0.1y二、填空题13.13的整数部分为a ,13的小数部分为b ,那么2(2)b a +-的值是________. 14.化简()3750a b b >=________.15.如果最简二次根式123b a ++和3a b +是同类二次根式,则ab =____________. 16.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.17.33918.数轴上有A ,B ,C 三点,相邻两个点之间的距离相等,其中点A 表示2-,点B 表示1,那么点C 表示的数是________.19.已知2(3)4y x x =-+,当x 分别取1,2,3,⋯,99时,所对应的y 值的总和是___.20.已知5ab =,则b a a b=__. 三、解答题21.化简(1)2323212+ (21188822.计算:(127125032+ (2)321872223.计算:(14011010(2)20525; (3)2(231)(32)(32)+;(4 24.计算(1)2)25.已知1x =,x 的整数部分为a ,小数部分为b ,求a b的值.26.先化简,再求值:22111121x x x x x x --÷+--+,其中x .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;故选:C .【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:D .【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 3.C解析:C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】=,故①正确;==②正确;=,故③正确;2,故④错误;∴正确的3个;故选:C .【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.4.A解析:A【分析】根据二次根式的定义即可作出判断.【详解】当m <0对于任意的数x ,x 2+1>0是三次方根,不是二次根式;﹣m 2﹣1<0(0)a 是二次根式;当a <12时,2a +1可能小于00)a ,共3个, 故选:A .【点睛】 主要考查了二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数. 5.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a bb a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 6.B解析:B【分析】27n 一定是一个完全平方数,把27分解因数即可确定.【详解】27n 一定是一个完全平方数,把27分解因数即可确定.∵22733=⨯,∴n 的最小值是3.故选B .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非==.解题关键是分解成一个完全平方数和一个代数式的积的形式.7.D解析:D【分析】先化简选项中各二次根式,然后找出被开方数为2的二次根式即可.【详解】的同类二次根式.A 6无法合并,故A 错误;B 43无法合并,故B 错误;C 25无法合并,故C 错误;D 32可以合并,故D 正确.故选D.【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.8.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB、错误,212=(;C==D==故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.9.A解析:A【分析】根据最简二次根式的定义逐项判断即可得.【详解】A是最简二次根式,此项符合题意;B===C a==不是最简二次根式,此项不符题意;D2故选:A.【点睛】本题考查了最简二次根式,熟记定义是解题关键.10.C解析:C【分析】根据二次根式的加法、乘法运算法则对每个选项的式子计算,判断正误即可.【详解】A、=A选项错误.B、=B选项错误.C 、22(339123+-=-=-=-,故C 选项正确.D 、2a b =+,故D 选项错误.故选:C .【点睛】本题主要考查二次根式的加法、乘法运算,熟记二次根数的加法、乘法运算法则是解题关键.11.B解析:B【分析】与a 的取值范围即可得到答案.【详解】 ∵a 的取值范围是0a ≥a 的取值范围是任意实数, 故a 应满足的条件是0a ≥,故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件. 12.D解析:D【分析】满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,据此判断即可.【详解】A 是最简二次根式,故本选项错误;B 是最简二次根式,故本选项错误;C 是最简二次根式,故本选项错误;D =,不是最简二次根式. 故选:D .【点睛】本题考查了最简二次根式的定义,掌握最简二次根式条件,是解题的关键.二、填空题13.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案.【详解】 解:3134<<,3a ∴=,3b ∴=-,()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.14.【分析】根据二次根式的性质化简【详解】故答案为:【点睛】此题考查二次根式的化简掌握二次根式的性质是解题的关键解析:5【分析】根据二次根式的性质化简.【详解】=5故答案为:5【点睛】此题考查二次根式的化简,掌握二次根式的性质是解题的关键.15.0【分析】根据最简二次根式及同类二次根式的定义得求出ab 的值代入计算即可【详解】由题意得解得∴ab=0故答案为:0【点睛】此题考查最简二次根式及同类二次根式的定义解二元一次方程组熟记定义是解题的关键 解析:0【分析】根据最简二次根式及同类二次根式的定义得12233b a a b+=⎧⎨+=+⎩,求出a 、b 的值代入计算即可.【详解】由题意得12233b a a b +=⎧⎨+=+⎩, 解得10b a =⎧⎨=⎩, ∴ab=0,故答案为:0.【点睛】此题考查最简二次根式及同类二次根式的定义,解二元一次方程组,熟记定义是解题的关键.16.【分析】设两个正方形AB的边长是xy(x<y)得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x)x求出即可【详解】解:设两个正方形AB的边长是xy(x<y)则x2=2y2=6x=y=解析:2【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=6,求出,,代入阴影部分的面积是(y-x)x求出即可.【详解】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=6,,,-,则阴影部分的面积是(y-x)x=-=2-.故答案为:2【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.17.【分析】首先把和化成与原根式相等的根指数相等的根式再进行比较即可【详解】故答案为:【点睛】本题考查了实数的大小比较和根式的性质的应用关键是把根式化成与原根式相等的根指数相等的根式解析:<【分析】【详解】63==,327==,6298166∴<,<故答案为:<.【点睛】本题考查了实数的大小比较和根式的性质的应用,关键是把根式化成与原根式相等的根指数相等的根式.18.或或【分析】分点C在点A的左侧点C在点AB的中间点C在点B的右侧三种情况再分别利用数轴的定义建立方程解方程即可得【详解】设点C表示的数是由题意分以下三种情况:(1)当点C在点A的左侧时则即解得;(2解析:1--或12或2+【分析】 分点C 在点A 的左侧、点C 在点A 、B 的中间、点C 在点B 的右侧三种情况,再分别利用数轴的定义建立方程,解方程即可得.【详解】设点C 表示的数是x ,由题意,分以下三种情况:(1)当点C 在点A 的左侧时,则AC AB =,即1(x =-,解得1x =--(2)当点C 在点A 、B 的中间时,则AC BC =,即(1x x -=-,解得x = (3)当点C 在点B 的右侧时,则AB BC =,即1(1x -=-,解得2x =综上,点C 表示的数是1--或2故答案为:1--12或2+ 【点睛】本题考查了实数与数轴、一元一次方程的应用,熟练掌握数轴的定义是解题关键. 19.105【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:①当时此时②当时此时当分别取12399时故答案为:105【点睛】本题考查了二次根式的化简求值绝对值运算等知识点解析:105【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:434y x x x =+=--+,①当3x 时,|3|3x x -=-,此时43472y x x x x =+=--+=-, 1x =,725y x =-=,2x =,723y x =-=,3x =,721y x =-=,②当3x >时,33x x -=-,此时4341y x x x =-+=--+=,∴当x 分别取1,2,3,⋯,99时,4y x =+,5311(993)105=+++⨯-=.故答案为:105.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.20.【分析】先利用二次根式化简然后分和两种情况解答即可【详解】解:原式当时原式;当时原式;即故答案为【点睛】本题主要考查了二次根式的性质和绝对值的性质根据二次根式的性质化简所给的二次根式是解答本题的关键解析:±【分析】先利用二次根式化简,然后分0a >、0b >和0a <,0b <两种情况解答即可.【详解】解:原式=+a b=+,=5ab =,∴当0a >,0b >时,原式==当0a <,0b <时,原式=-=-即=±故答案为±【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据二次根式的性质化简所给的二次根式是解答本题的关键.三、解答题21.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.22.(1)6;(2)7.【分析】(1)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可; (2)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可.【详解】解:(1)原式=3-2+5=6;(2==4-3+6=7.【点睛】0,0)a b =≥>是解题关键.23.(12)-1;(3)12﹣4)14 【分析】(1)先化简二次根式,再利用二次根式的加减法法则计算即可;(2)先化简二次根式,再利用二次根式的运算法则计算即可;(3)利用完全平方公式和平方差公式计算即可;(4)利用二次根式的混合运算法则计算即可.【详解】解:(1﹣=﹣5×10=﹣2=2;(2)2=2=2﹣3=﹣1;(3)21)2)+=12﹣﹣4=12﹣(4+4 =10+4=14.【点睛】本题考查二次根式的混合运算,熟练掌握二次根式运算法则是解题的关键.24.(1;(2)-17【分析】(1)先化简二次根式,再合并即可;(2)利用平方差计算即可.【详解】解:(1)=(68=-+=(2)22=-320=-17=-【点睛】本题考查了二次根式的运算、平方差公式,准确掌握运算法则,合理利用公式是解题关键.25【分析】由2<31的整数部分与小数部分,即,a b的值,再代入ab进行分母有理化,从而可得答案.【详解】解:2<3,3∴<4,x的整数部分为a,小数部分为b,3 a∴=,132 b=-=,)32322.74ab∴====-【点睛】本题考查的是无理数的估算,整数部分与小数部分的含义,二次根式的除法运算,平方差公式的应用,掌握分母有理化是解题的关键.26.11xx-+,3.【分析】先根据分式的混合运算法则化简原式,然后再将x的值代入计算即可.【详解】解:22111121x xx x x x--÷+--+21(1)1(1)(1)1x xx x x x-=-++--111xxx=-++11xx-=+,当1x=时,原式==3=.【点睛】本题主要考查分式的混合运算和化简求值,分母有理化,灵活运用分式的混合运算顺序和运算法则是解答本题的关键.。
人教版八年级数学下册全册单元测试题全套及答案
最新人教版八年级数学下册单元测试题全套及答案(含期中,期末试题,带答案)第十六章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.二次根式2-x有意义,则x的取值范围是( D)A.x>2 B.x<2 C.x≥2 D.x≤22.(2016·自贡)下列根式中,不是最简二次根式的是( B)A.10B.8C. 6D. 23.下列计算结果正确的是( D)A.3+4=7 B.35-5=3 C.2×5=10 D.18÷2=34.如果a+a2-6a+9=3成立,那么实数ɑ的取值范围是( B)A.a≤0 B.a≤3 C.a≥-3 D.a≥35.估计32×12+20的运算结果应在( C)A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间6.12x4x+6xx9-4x x的值一定是( B)A.正数 B.非正数 C.非负数 D.负数7.化简9x2-6x+1-(3x-5)2,结果是( D)A.6x-6 B.-6x+6 C.-4 D.48.若k,m,n都是整数,且135=k15,450=15m,180=6n,则下列关于k,m,n的大小关系,正确的是( D)A.k<m=n B.m=n>k C.m<n<k D.m<k<n9.下列选项错误的是( C)A.3-2的倒数是3+ 2B.x2-x一定是非负数C.若x<2,则(x-1)2=1-x D.当x<0时,-2x在实数范围内有意义10.如图,数轴上A,B两点对应的实数分别是1和3,若A点关于B点的对称点为点C,则点C 所对应的实数为( A )A .23-1B .1+ 3C .2+ 3D .23+1 二、填空题(每小题3分,共24分)11.如果两个最简二次根式3a -1与2a +3能合并,那么a =__4__. 12.计算:(1)(2016·潍坊)3(3+27)=__12__; (2)(2016·天津)(5+3)(5-3)=__2__.13.若x ,y 为实数,且满足|x -3|+y +3=0,则(x y)2018的值是__1__.14.已知实数a ,b 在数轴上对应的位置如图所示,则a 2+2ab +b 2-b 2=__-a __.,第17题图)15.已知50n 是整数,则正整数n 的最小值为__2__.16.在实数范围内分解因式:(1)x 3-5x =__x (x +5)(x -5)__;(2)m 2-23m +3=__(m -3)2__.17.有一个密码系统,其原理如图所示,输出的值为3时,则输入的x =__22__. 18.若xy >0,则化简二次根式x -yx2的结果为__--y . 三、解答题(共66分) 19.(12分)计算: (1)48÷3-12×12+24; (2)(318+1672-418)÷42; 解:(1)4+ 6 (2)94(3)(2-3)98(2+3)99-2|-32|-(2)0. 解:120.(5分)解方程:(3+1)(3-1)x =72-18. 解:x =32221.(10分)(1)已知x =5-12,y =5+12,求y x +xy的值; 解:∵x +y =252=5,xy =5-14=1,∴y x +x y =y 2+x 2xy =(x +y )2-2xy xy =(5)2-2×11=3(2)已知x ,y 是实数,且y <x -2+2-x +14,化简:y 2-4y +4-(x -2+2)2.解:由已知得⎩⎨⎧x -2≥0,2-x ≥0,∴x =2,∴y <x -2+2-x +14=14,即y <14<2,则y -2<0,∴y 2-4y +4-(x -2+2)2=(y -2)2-(2-2+2)2=|y -2|-(2)2=2-y -2=-y22.(10分)先化简,再求值:(1)[x +2x (x -1)-1x -1]·xx -1,其中x =2+1;解:原式=2(x-1)2,将x=2+1代入得,原式=1(2)a2-1a-1-a2+2a+1a2+a-1a,其中a=-1- 3.解:∵a+1=-3<0,∴原式=a+1+a+1a(a+1)-1a=a+1=-323.(7分)先化简,再求值:2a-a2-4a+4,其中a= 3.小刚的解法如下:2a-a2-4a+4=2a-(a-2)2=2a-(a-2)=2a-a+2=a+2,当a=3时,2a-a2-4a+4=3+2.小刚的解法对吗?若不对,请改正.解:不对.2a-a2-4a+4=2a-(a-2)2=2a-|a-2|.当a=3时,a-2=3-2<0,∴原式=2a+a-2=3a-2=33-224.(10分)已知长方形的长a=1232,宽b=1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.解:(1)2(a+b)=2×(1232+1318)=62,∴长方形周长为62(2)4×ab=4×1232×1318=4×22×2=8,∵62>8,∴长方形周长大25.(12分)观察下列各式及其验证过程:223=2+23,验证:223=233=23-2+222-1=2(22-1)+222-1=2+23;338=3+38,验证:338=338=33-3+332-1=3(32-1)+332-1=3+38. (1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.解:(1)猜想:4415=4+415,验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+415(2)nnn2-1=n+nn2-1,证明:nnn2-1=n3n2-1=n3-n+n n2-1=n(n2-1)+nn2-1=n+nn2-1第十七章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知Rt△ABC的三边长分别为a,b,c,且∠C=90°,c=37,a=12,则b的值为( B) A.50 B.35 C.34 D.262.由下列线段a,b,c不能组成直角三角形的是( D)A.a=1,b=2,c= 3 B.a=1,b=2,c= 5C.a=3,b=4,c=5 D.a=2,b=23,c=33.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( A)A.365B.1225C.94D.3344.已知三角形三边长为a,b,c,如果a-6+|b-8|+(c-10)2=0,则△ABC是( C) A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形 D.不是直角三角形5.(2016·株洲)如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有( D)A.1 B.2 C.3 D.46.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( D)A.1.5 B.2 C.2.5 D.37.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于点D,E是垂足,连接CD,若BD=1,则AC的长是( A)A.2 3 B.2 C.4 3 D.4,第7题图) ,第9题图) ,第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是( C)A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( D)A.12 m B.13 m C.16 m D.17 m10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( B)A.132B.312C.3+192D.27二、填空题(每小题3分,共24分)11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__如果两个角相等,那么它们是对顶角__.12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB的长为__5__.13.三角形的三边a,b,c满足(a-b)2=c2-2ab,则这个三角形是__直角三角形__.14.如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8).以点A为圆心,以AB为半径画弧交x轴正半轴于点C,则点C的坐标为__(4,0)__.,第14题图) ,第15题图),第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__64__.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种__21__棵树.17.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=__2018__.18.在△ABC中,AB=22,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为__13或5__.三、解答题(共66分)19.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.解:(1)可求得AB=20,AC=13,所以△ABC的周长为20+13+21=54(2)∵AB2+AC2=202+132=569,BC2=212=441,∴AB2+AC2≠BC2,∴△ABC不是直角三角形20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.解:如图:21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD=DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22222.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC223.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD 中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A爬到点B所走的路程为AD+BD=42+32+22+32=(5+13)cm(2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB=(4+6)2+22=104=226 (cm);②将前面与右面展到一个平面内,AB=(4+2)2+62=72=62(cm);③将前面与上面展到一个平面内,AB=(6+2)2+42=80=45(cm),∵62<45<226,∴蜘蛛从A点爬到B点所走的最短路程为6 2 cm25.(12分)如图,已知正方形OABC 的边长为2,顶点A ,C 分别在x 轴的负半轴和y 轴的正半轴上,M 是BC 的中点,P(0,m)是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D.(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是以AP 为腰的等腰三角形时,求m 的值;解:(1)先证△DBM ≌△PCM ,从中可得BD =PC =2-m ,则AD =2-m +2=4-m ,∴点D 的坐标为(-2,4-m ) (2)分两种情况:①当AP =AD 时,AP 2=AD 2,∴22+m 2=(4-m )2,解得m =32;②当AP =PD 时,过点P 作PH ⊥AD 于点H ,∴AH =12AD ,∵AH =OP ,∴OP =12AD ,∴m=12(4-m ),∴m =43,综上可得,m 的值为32或43第十八章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( B ) A .30° B.45° C.60° D.75°2.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E是BC的中点,以下说法错误的是( D)A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE,第2题图) ,第3题图) ,第6题图)3.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为( D)A. 3 cm B.2 cm C.2 3 cm D.4 cm4.已知四边形ABCD是平行四边形,下列结论中不正确的是( D)A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( C)A.矩形 B.一组对边相等,另一组对边平行的四边形C.对角线相等的四边形 D.对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( C)A.20° B.25° C.30° D.35°7.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下结论正确的有( B)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( D)A.12 B.24 C.12 3 D.16 3,第8题图) ,第9题图) ,第10题图)9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( C)A.1 B. 2 C.4-2 2 D.32-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF 沿EF 折叠,点D恰好落在BE上点M处,延长BC,EF交于点N,有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF =3S△DEF,其中正确的结论是( B)A.①②③ B.①②④ C.②③④ D.①②③④二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=6,当BD=__8__时,四边形ABCD是菱形.,第11题图) ,第12题图),第14题图)12.(2016·江西)如图,在▱ABCD中,∠C=40°,过点D作CB的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__50°__.13.在四边形ABCD中,AD∥BC,分别添加下列条件之一:①AB∥CD;②AB=CD;③∠A =∠C;④∠B=∠C.能使四边形ABCD为平行四边形的条件的序号是__①或③__.14.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=14CD,过点B作BF∥DE交AE的延长线于点F,若BF=10,则AB的长为__8__.15.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是__22.5__度.,第15题图) ,第16题图) ,第17题图),第18题图)16.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,E,F,G,H分别为边AD,AB,BC,CD的中点,若AC=8,BD=6,则四边形EFGH的面积为__12__.17.已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是__5__.18.(2016·天津)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQS正方形AEFG的值等于__89__.三、解答题(共66分)19.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF,若AE=8 cm,∠A=60°,求线段EF的长.解:(1)菱形,理由:根据题意得AE=AF=ED=DF,∴四边形AEDF是菱形(2)∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8 cm20.(8分)(2016·宿迁)如图,已知BD是△ABC的角平分线,点E,F分别在边AB,BC 上,ED∥BC,EF∥AC.求证:BE=CF.解:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD =∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF21.(9分)(2016·南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,∴△BEF≌△CDF(ASA) (2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF =CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形22.(9分)如图,在▱ABCD中,E,F两点在对角线BD上,BE=DF.(1)求证:AE=CF;(2)当四边形AECF为矩形时,请求出BD-ACBE的值.解:(1)由SAS证△ABE≌△CDF即可(2)连接CE,AF,AC.∵四边形AECF是矩形,∴AC=EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BEBE=223.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=__1∶2__时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形24.(10分)(2016·遵义)如图,在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF∥BC 交BE 的延长线于点F.(1)求证:△AEF≌△DEB; (2)求证:四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.解:(1)由AAS 易证△AFE ≌△DBE (2)由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC ,∴四边形ADCF 是菱形 (3)连接DF ,由(2)知AF 綊BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC·DF =12×4×5=1025.(12分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q.(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明; (2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ.证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP (SAS ),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ.证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ第十九章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(2016·扬州)函数y=x-1中,自变量x的取值范围是( B) A.x>1 B.x≥1 C.x<1 D.x≤12.若函数y=kx的图象经过点(1,-2),那么它一定经过点( B)A.(2,-1) B.(-12,1) C.(-2,1) D.(-1,12)3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车的速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是( D)4.已知一次函数y=kx+b的图象如图所示,当x<0时,y的取值范围是( C) A.y>0 B.y<0 C.y>-2 D.-2<y<0,第4题图) ,第9题图),第10题图)5.当kb<0时,一次函数y=kx+b的图象一定经过( B)A.第一、三象限 B.第一、四象限 C.第二、三象限 D.第二、四象限6.已知一次函数y=(2m-1)x+1的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y 1<y2,那么m的取值范围是( B)A.m<12B.m>12C.m<2 D.m>07.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y轴交点的坐标为( A )A .(0,-1)B .(-1,0)C .(0,2)D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是( A )A .1<m <7B .3<m <4C .m >1D .m <49.(2016·天门)在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km /h ,b km /h 匀速骑行,他们骑行的时间t(h )与骑行的路程s(km )之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km .其中正确的说法有( C )A .1个B .2个C .3个D .4个10.(2016·苏州)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .(3,43)C .(3,53) D .(3,2)二、填空题(每小题3分,共24分) 11.(2015·上海)同一温度的华氏度数y()与摄氏度数x(℃)之间的函数关系是y =95x+32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是__77__.12.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是__0.2__千米/分钟.,第12题图) ,第14题图),第16题图)13.一次函数y =(m -1)x +m 2 的图象过点(0,4),且y 随x 的增大而增大,则m =__2__. 14.如图,利用函数图象回答下列问题:(1)方程组⎩⎨⎧x +y =3,y =2x 的解为__⎩⎨⎧x =1,y =2__;(2)不等式2x >-x +3的解集为__x >1__.15.已知一次函数y =-2x -3的图象上有三点(x 1,y 1),(x 2,y 2),(3,y 0),并且x 1>3>x 2,则y 0,y 1,y 2这三个数的大小关系是__y 1<y 0<y 2__.16.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O′A′B′,点A 的对应点A′落在直线y =-34x 上,则点B 与其对应点B′间的距离为__8__.17.过点(-1,7)的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线y =-32x +1平行,则在线段AB 上,横、纵坐标都是整数的点坐标是__(3,1),(1,4)__.18.设直线y =kx +k -1和直线y =(k +1)x +k(k 为正整数)与x 轴所围成的图形的面积为S k (k =1,2,3,…,8),那么S 1+S 2+…+S 8的值为__49__.三、解答题(共66分)19.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5. (1)求x 与y 之间的函数关系,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a 的值. 解:(1)y =32x +2,是一次函数 (2)a =020.(8分)已知一次函数y =(a +8)x +(6-b). (1)a ,b 为何值时,y 随x 的增大而增大? (2)a ,b 为何值时,图象过第一、二、四象限? (3)a ,b 为何值时,图象与y 轴的交点在x 轴上方? (4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =621.(9分)画出函数y =2x +6的图象,利用图象:(1)求方程2x +6=0的解; (2)求不等式2x +6>0的解; (3)若-1≤y≤3,求x 的取值范围.解:图略,(1)x =-3 (2)x >-3 (3)当-1≤y ≤3,即-1≤2x +6≤3,解得-72≤x ≤-3222.(9分)电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图),根据图象解答下列问题.(1)分别写出当0≤x≤100和x >100时,y 与x 间的函数关系式;(2)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?解:(1)y =⎩⎨⎧0.65x (0≤x ≤100)0.8x -15(x >100) (2)40.3元;150度23.(10分)如图,在平面直角坐标系xOy 中,矩形ABCD 的边AD =3,A(12,0),B(2,0),直线l 经过B ,D 两点.(1)求直线l 的解析式;(2)将直线l 平移得到直线y =kx +b ,若它与矩形有公共点,直接写出b 的取值范围.解:(1)y =-2x +4 (2)1≤b ≤724.(10分)今年我市水果大丰收,A ,B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两个销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.解:(1)W =35x +11200(80≤x ≤380) (2)∵⎩⎨⎧W ≤18300,x ≥200,∴⎩⎨⎧35x +11200≤18300,x ≥200,解得200≤x ≤20267,∵35>0,∴W 随x 的增大而增大,∴当x =200时,W 最小=18200,∴运费最低的运输方案为:A →甲:200件,A →乙:180件,B →甲:200件,B →乙:120件,最低运费为18200元25.(12分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车,设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__千米; (2)求快车与慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.解:(2)设快车速度为m 千米/时,慢车速度为n 千米/时,则有⎩⎨⎧4(m +n )=560,3m =4n ,解得⎩⎨⎧m =80,n =60,∴快车速度为80千米/时,慢车速度为60千米/时 (3)D (8,60),E (9,0),线段DE 的解析式为y =-60x +540(8≤x ≤9)期中检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是( A)A. 5B.8C.12D.0.32.(2016·泸州)如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( B)A.10 B.14 C.20 D.22,第2题图) ,第5题图) ,第8题图) ,第9题图)3.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是( D) A.a=9,b=41,c=40 B.a=5,b=5,c=5 2C.a∶b∶c=3∶4∶5 D.a=11,b=12,c=154.(2016·南充)下列计算正确的是( A)A.12=2 3B.32=32C.-x3=x-xD.x2=x5.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC 的周长是( C)A.8 B.10 C.12 D.146.(2016·益阳)下列判断错误的是( D)A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形 D.两条对角线垂直且平分的四边形是正方形7.若x-1-1-x=(x+y)2,则x-y的值为( C)A.-1 B.1 C.2 D.38.如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( A)A.2 3 B.3 3 C.4 D.4 39.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=52,如果Rt△ABC的面积为1,则它的周长为( D)A.5+12B.5+1C.5+2D.5+310.(2016·眉山)如图,在矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD 交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ∶S△BCM=2∶3.其中正确结论的个数是( B)A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.若代数式xx-1有意义,则x的取值范围为__x≥0且x≠1__.12.如图,在平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于点F,则CF=__2__.,第12题图) ,第13题图) ,第14题图) ,第15题图)13.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=__16__时,∠ACB=90°.14.如图,它是一个数值转换机,若输入的a值为2,则输出的结果应为__-233.15.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件__答案不唯一,如:OA=OC__,使ABCD成为菱形.(只需添加一个即可)16.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C 作CH⊥AE于点H,并延长交AB于点F,连接DH,则线段DH的长为__1__.,第16题图) ,第17题图),第18题图)17.(2016·南京)如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为__13__ cm.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标__(2,4)或(8,4)__.三、解答题(共66分)19.(8分)计算:(1)8+23-(27-2); (2)(43-613)÷3-(5+3)(5-3).解:(1)32- 3 (2)020.(8分)已知a=7-5,b=7+5,求值:(1)ba+ab; (2)3a2-ab+3b2.解:a+b=27,ab=2,(1)ba+ab=(a+b)2-2abab=12(2)3a2-ab+3b2=3(a+b)2-7ab=7021.(8分)如图,四边形ABCD是平行四边形,E,F为对角线AC上两点,连接ED,EB,FD,FB.给出以下结论:①BE∥DF;②BE=DF;③AE=CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.解:答案不唯一,如:补充条件①BE∥DF.证明:∵BE∥DF,∴∠BEC=∠DFA,∴∠BEA =∠DFC,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∴△ABE≌△CDF(AAS),∴BE=DF,∴四边形BFDE是平行四边形,∴ED∥BF,∴∠1=∠222.(7分)如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某方向以每小时15海里的速度前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你能知道乙船沿哪个方向航行吗?解:(1)由题意得BM=2×8=16(海里),BP=2×15=30(海里),∵BM2+BP2=162+302=1156,MP2=342=1156,∴BM2+BP2=MP2,∴∠MBP=90°,∴乙船沿南偏东30°的方向航行23.(8分)如图,四边形ABCD是菱形,BE⊥AD,BF⊥CD,垂足分别为点E,F.(1)求证:BE=BF;(2)当菱形ABCD 的对角线AC =8,BD =6时,求BE 的长.解:(1)由AAS 证△ABE ≌△CBF 可得 (2)∵四边形ABCD 是菱形,∴OA =12AC =4,OB =12BD =3,∠AOB =90°,∴AB =OA 2+OB 2=5,∵S 菱形ABCD =AD ·BE =12AC ·BD ,∴5BE =12×8×6,∴BE =24524.(8分)如图,在四边形ABCD 中,AB =AD =2,∠A=60°,BC =25,CD =4.(1)求∠ADC 的度数; (2)求四边形ABCD 的面积.解:(1)连接BD ,∵AB =AD =2,∠A =60°,∴△ABD 是等边三角形,∴BD =2,∠ADB =60°,在△BDC 中,BD =2,DC =4,BC =25,∴BD 2+DC 2=BC 2,∴△BDC 是直角三角形,∴∠BDC =90°,∴∠ADC =∠ADB +∠BDC =150° (2)S 四边形ABCD=S △ABD +S △BDC =12×2×3+12×2×4=3+425.(9分)如图,在▱ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E. (1)求证:△AOD≌△EOC;(2)连接AC ,DE ,当∠B=∠AEB=____°时,四边形ACED 是正方形,请说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D =∠OCE ,∠DAO =∠E ,∵O 是CD 的中点,∴OD =OC ,∴△AOD ≌△EOC (AAS ) (2)当∠B =∠AEB =45°时,四边形ACED 是正方形,理由:∵△AOD ≌△EOC ,∴OA =OE ,又∵OC =OD ,∴四边形ACED 是平行四边形,∵∠B =∠AEB =45°,∴AB =AE ,∠BAE =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠COE =∠BAE =90°,∴▱ACED 是菱形,∵AB =AE ,AB =CD ,∴AE =CD ,∴菱形ACED 是正方形26.(10分)已知正方形ABCD 和正方形EBGF 共顶点B ,连接AF ,H 为AF 的中点,连接EH ,正方形EBGF 绕点B 旋转.(1)如图①,当F 点落在BC 上时,求证:EH =12CF ;(2)如图②,当点E 落在BC 上时,连接BH ,若AB =5,BG =2,求BH 的长.解:(1)延长FE 交AB 于点Q ,∵四边形EBGF 是正方形,∴EF =EB ,∠EFB =∠EBF =45°,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴∠BQF =∠QBE =45°,∴QE =EB ,∴QE =EF ,又∵AH =FH ,∴EH =12AQ ,∵∠BQF =∠BFQ =45°,∴BQ =BF ,∵AB =BC ,∴AQ =CF ,∴EH =12CF (2)延长EH 交AB 于点N ,∵四边形EBGF 是正方形,∴EF ∥BG ,EF =EB =BG =2,∵EF ∥AG ,∴∠FEH =∠ANH ,∠EFH =∠NAH.又∵AH =FH ,∴△ANH ≌△FEH (AAS ),∴NH =EH ,AN =EF.∵AB =5,AN =EF =2,∴BN =AB -AN =3,∵∠NBE =90°,BE =2,BN =3,∴EN =22+32=13.∵∠NBE =90°,EH =NH ,∴BH =12EN =132期末检测题(一)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列根式有意义的范围为x≥5的是( D )A.x+5B.1x-5C.1x+5D.x-52.(2016·来宾)下列计算正确的是( B) A.5-3= 2 B.35×23=615C.(22)2=16 D.33=13.由线段a,b,c组成的三角形不是直角三角形的是( D) A.a=7,b=24,c=25 B.a=41,b=4,c=5C.a=54,b=1,c=34D.a=13,b=14,c=154.若一次函数y=x+4的图象上有两点A(-12,y1),B(1,y2),则下列说法正确的是( C)A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y25.已知A样本的数据如下:72,73,76,76,77,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( B)A.平均数 B.方差 C.中位数 D.众数6.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论正确的是( A) A.S▱ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形,第6题图) ,第9题图),第10题图)7.李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量17 21 19 18 20 19) A.18,2000 B.19,1900 C.18.5,1900 D.19,18508.下列说法中,错误的是( B)A.两条对角线互相平分的四边形是平行四边形 B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的平行四边形是菱形 D.两条对角线相等的菱形是正方形9.如图,在矩形ABCD中,AD=2AB,点M,N分别在边AD,BC上,连接BM,DN,若四边形MBND是菱形,则AMMD等于( C)A.38B.23C.35D.4510.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( A) A.①②③ B.仅有①② C.仅有①③ D.仅有②③二、填空题(每小题3分,共24分)11.已知x,y为实数,且x-1+3(y-2)2=0,则x-y的值为__-1__.12.(2016·天津)若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是__-1(答案不唯一,b<0即可)__.(写出一个即可)13.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是__13__元.,第13题图) ,第14题图) ,第16题图) ,第18题图)14.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是__x<2__.15.(2016·邵阳)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环) 9.5 9.5方差0.035 0.015__乙__.16.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连接DE和BF,分别取DE,BF 的中点M,N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为__26__.17.在平面直角坐标系中,直线y=kx+x+1过一定点A,坐标系中有点B(2,0)和点C,要使以A,O,B,C为顶点的四边形为平行四边形,则点C的坐标为__(2,1)或(2,-1)或(-2,1)__.18.如图,长方形纸片ABCD中,AB=6 cm,BC=8 cm,点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为__3或6__cm.三、解答题(共66分)19.(8分)计算:(1)27-12+45; (2)27×13-(5+3)(5-3).解:(1)原式=3+3 5 (2)原式=120.(8分)如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.求证:(1)BE=DF;(2)AF∥CE.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵∠1=∠2,∴∠AEB=∠CFD,∴△ABE≌△CDF(AAS),∴BE=DF(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE21.(8分)在直角坐标系中,一条直线经过A(-1,5),P(-2,a),B(3,-3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.解:(1)直线解析式为y=-2x+3,把P(-2,a)代入y=-2x+3中,得a=7(2)由(1)得点P(-2,7),当x=0时,y=3,∴D(0,3),∴S△OPD =12×3×2=322.(7分)如图,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4 m 的半圆,其边缘AB =CD =20 m ,点E 在CD 上,CE =4 m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,π取3)解:展开图如图,作EF ⊥AB ,由于平铺,∴四边形ABCD 是矩形,∴∠C=∠B =90°,∵EF ⊥AB ,∴∠EFA =∠EFB =90°,∴四边形CBFE 是矩形,∴EF =BC =4×2×3×12=12(m ),FB =CE =4 m ,∴AF =20-4=16(m ),∴AE =122+162=20(m ),即他滑行的最短距离为20 m23.(8分)(2016·乐山)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是__8__,乙的中位数是__7.5__;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?解:x 乙=8,s 甲2=1.6,s 乙2=1.2,∵s 甲2>s 乙2,∴乙运动员的射击成绩更稳定。
最新人教版初中数学八年级数学下册第四单元《一次函数》测试(有答案解析)(2)
一、选择题1.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y(米)与出发时间x(分)之间的函数关系如图所示,则下列说法正确的是()A.小明到达球场时小华离球场3150米B.小华家距离球场3500米C.小华到家时小明已经在球场待了8分钟D.整个过程一共耗时30分钟2.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20210x yy x+-=⎧⎨-+=⎩B.20210x yy x-+=⎧⎨+-=⎩C.20210x yy x-+=⎧⎨--=⎩D.2010x yy x++=⎧⎨+-=⎩3.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.4.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A .B .C .D .5.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤- 6.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m <B .12m >C .m 1≥D .1m <7.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定 8.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D . 9.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,02⎛⎫ ⎪ ⎪⎝⎭C .10,010⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 10.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =- 11.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .12.甲、乙两辆汽车分别从A 、B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为()y km 甲、()y km 乙,甲车行驶的时间为(h)x ,y 甲、y 乙与x 之间的函数图象如图所示,结合图象下列说法不正确的是( )A .甲车的速度是80/km hB .乙车休息前的速度为100/km hC .甲走到200km 时用时2.5hD .乙车休息了1小时二、填空题13.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.14.某生物小组观察一植物生长,得到植物高度y (位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴)请你算一下,该植物的最大高度是________厘米.15.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.16.如表,y 是x 的一次函数,则m 的值为_____________.x 1-0 1 y3 m0 17.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.18.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.19.某一列动车从A 地匀速开往B 地,一列普通列车从B 地匀速开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.根据图像进行探究,图中t 的值是__.20.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.三、解答题21.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?22.设一次函数y 1=kx ﹣2k (k 是常数,且k≠0).(1)若函数y 1的图象经过点(﹣1,5),求函数y 1的表达式.(2)已知点P(x 1,m )和Q(﹣3,n )在函数y 1的图象上,若m >n ,求x 1的取值范围. (3)若一次函数y 2=ax+b (a≠0)的图象与y 1的图象始终经过同一定点,探究实数a ,b 满足的关系式.23.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y (千米)与甲出发时间x (小时)的函数关系如图所示.(1)求甲、乙两人的速度.(2)求OC 和BD 的函数关系式.(3)求学校和博物馆之间的距离.24.如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通,A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km ,现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货,该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为km x ,这辆货车每天行驶的路程为km y .(1)用含的代数式填空:当025x ≤≤时:货车从H 到A 往返1次的路程为2km x ,①货车从H 到B 往返1次的路程为_______km .②货车从H 到C 往返2次的路程为_______km ,当2535x <≤时,这辆货车每天行驶的路程y =__________.(2)求y 与x 之间的关系式;(3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)25.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式;(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?26.如图直线:x 6=+l y k 与x 轴、y 轴分别交于点B C 、两点,点B 的坐标是()8,0-,点A 的坐标为()6,0-.(1)求k 的值.(2)若点P 是直线l 上的一个动点且在第二象限,当PAC ∆的面积为3时,求出此时点P 的坐标.(3)在x 轴上是否存在点M ,使得BCM ∆为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先设小华的速度为x 米/分,再根据小华返回时与小明相遇时所走的路程之和=小华家与球场之间的距离列出方程求出小华的速度为450米/分,再根据图象求出小明到达球场的时间,从而求出当小时到达球场时小华从球场出发返回家所用的时间为7分钟,所以根据“路程=速度×时间”即可求出当小时到达球场时小华离球场的距离.【详解】解:设小华的速度为x 米/分,则依题意得:(20-18)x+180×20=10x解得:x=450∴(450×10-3600)÷180=5(分)∴当小明到达球场时小华离球场的距离为:450×(5+2)=3150(米).故A 选项正确;小华家距球场450×10=4500米,故B 选项错误;小华到达家时小明在球场呆的时间为:10+8+10-4500÷180=3(分)故C 选项错误;整个过程耗时10+8+10=28(分)故D 选项错误.故选A .【点睛】本题考查了从函数图象上获取信息的能力,注意观察函数图象,设出合适的未知数求出小华的速度是解题的关键.2.B解析:B【分析】由图易知两条直线分别经过(-1,1)、(1,0)两点和(0,2)、(-1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题.【详解】由图知,设经过(-1,1)、(1,0)的直线解析式为y=ax+b (a≠0).将(-1,1)、(1,0)两点坐标代入解析式中,解得1-212a b ⎧=⎪⎪⎨⎪=⎪⎩故过(-1,1)、(1,0)的直线解析式y=1122x -+,对应的二元一次方程为2 y +x -1=0. 设经过(0,2)、(-1,1)的直线解析式为y=kx+h (k≠0).将(0,2)、(-1,1)两点代入解析式中,解得12k h =⎧⎨=⎩ 故过(0,2)、(-1,1)的直线解析式为y=x+2,对应的二元一次方程为x-y+2=0. 因此两个函数所对应的二元一次方程组是+20210x y y x -=⎧⎨+-=⎩故选择:B【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式. 3.B解析:B【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题.【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限,∴k <0,b >0,∴b >0,-k >0,∴一次函数y=bx-k 图象第一、二、三象限,故选:B .【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.4.A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限.故选:A .【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.5.D解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.6.A解析:A【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.【详解】解:∵点P(-1,y1)、点Q(3,y2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m-1<0,解得m<1,2故选:A.【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.7.B解析:B【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y在y乙上面,即y甲>y乙,甲∴当游泳次数为30次时,选择乙种方式省钱.故选:B.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.8.A解析:A【分析】根据△ABC为等边三角形,得到∠A=∠C=∠ABC=60︒,利用DE//AC,证得△DEB是等边三角形,求出DE=BD=2-x,利用EF⊥DE,求出=,再根据面积公式求出函数解析式,依据函数的性质确定函数图象.【详解】∵△ABC为等边三角形,∴∠A=∠C=∠ABC=60︒,∵DE//AC,∴∠DEB=∠C=60︒,∠EDB=∠A=60︒,∴∠DEB=∠EDB=∠DBE=60︒,∴△DEB是等边三角形,∴DE=BD=2-x,∵EF ⊥DE ,∴∠DEF=90︒,∴∠DFE=30,∴DF=2DE=4-2x, ∴EF=223DF DE =-(2-x),∴△DEF 的面积为y=213(2)3(2)(2)22x x x -⋅-=-(0<x<2), ∵此函数为二次函数,开口向上,对称轴为直线x=2,且0<x<2,故选:A .【点睛】此题考查等边三角形的判定及性质,平行线的性质,勾股定理,直角三角形30度角所对的直角边等于斜边的一半,函数的性质,函数图象,根据题意分别求出DE 、EF ,由此得到函数解析式是解题的关键.9.A解析:A【分析】作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,依据待定系数法即可得到直线A'D 的解析式,进而得出点P 的坐标为2,03⎛⎫ ⎪⎝⎭. 【详解】解:如图所示,作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,∴AP+DP=A'P+DP ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,∵AC=BC=2,AB 的中点为D ,∴A (0,2),B (2,0),D (1,1),A'(0,-2),设直线A'D 的解析式为y=kx+b (k≠0),则12k b b =+⎧⎨-=⎩,解得:32k b =⎧⎨=-⎩, ∴y=3x -2,当y=0时,x=23, ∴点P 的坐标为(23,0), 故选:A .【点睛】本题主要考查了最短路线问题以及等腰直角三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.B解析:B【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可.【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.11.A解析:A【分析】先作出合适的辅助线,再证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x ,OA=1,∠AOB=90°,∠BAC=90°,AB=AC ,点C 的纵坐标是y , 作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC ,在△OAB 和△DAC 中,AOB ADC OAB DAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OAB ≌△DAC (AAS ),∴OB=CD ,∴CD=x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1,∴y=x+1(x >0).故选A .【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键. 12.D解析:D【分析】根据题意和函数图象可以判断题目中的各个选项是否正确,从而可以解答本题;【详解】解:由图象可得,甲车的速度为:400580/km h ÷=,故A 正确;乙车休息前行驶的速度为:2002100/km h ÷=,故B 正确;甲车与乙车相遇时,甲车行驶的时间为:(400200)80 2.5h -÷=,故C 正确; 乙车休息的时间为2.520.5h -=,故D 错误.故选:D .【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答;二、填空题13.1<x <4【分析】先解不等式0<mx+n 结合图像可知上的点在轴的上方可得<再解mx+n <kx+b 结合图像可知上的点在的上方可得>从而可得0<mx+n <kx+b 的解集【详解】解:不等式0<mx+n 上的解析:1<x <4【分析】先解不等式0<mx+n ,结合图像可知2l 上的点在x 轴的上方,可得x <4,再解mx+n <kx+b ,结合图像可知1l 上的点在2l 的上方,可得x >1,从而可得0<mx+n <kx+b 的解集. 【详解】 解: 不等式0<mx+n ,2l ∴上的点在x 轴的上方,()40C ,, x <4,mx+n <kx+b ,1l ∴上的点在2l 的上方,()1,A p , x >1,∴ 不等式组0<mx+n <kx+b 的解集为1<x <4,故答案为:1<x <4,【点睛】本题考查的是一次函数与不等式组的关系,掌握利用一次函数的图像解不等式组是解题的关键.14.16【分析】根据平行线间的距离相等可知50天后植物的高度不变也就是停止长高设直线AC 的解析式为y=kx+b (k≠0)然后利用待定系数法求出直线AC 的解析式再把x=50代入进行计算即可得解【详解】设直解析:16【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高,设直线AC 的解析式为y=kx+b (k≠0),然后利用待定系数法求出直线AC 的解析式,再把x=50代入进行计算即可得解.【详解】设直线AC 的解析式为y=kx+b (k≠0),∵经过点A (0,6),B (30,12),∴63012b k b =⎧⎨+=⎩,解得156k b ⎧=⎪⎨⎪=⎩.所以,直线AC 的解析式为165y x =+(0≤x≤50), 当x=50时,15065y =⨯+=16cm . 答:该植物最高长16cm .【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.15.【分析】设点P 的坐标为过点B 作轴于点C 由旋转的性质得到再根据角的和差解得继而证明由全等三角形对应边相等解得进一步得到点的坐标为由此知点在直线上运动设直线与x 轴交于点E 与y 轴交于点F 作点O 关于直线的对解析:【分析】设点P 的坐标为()0,m ,过点B 作BC y ⊥轴于点C ,由旋转的性质得到PA PB =,90BPA ∠=︒再根据角的和差解得PBC APO ∠=∠,继而证明(AAS)BPC PAO △≌△,由全等三角形对应边相等解得,BC OP PC AO ==,进一步得到点B 的坐标为(,8)m m +,由此知点B 在直线8y x =+上运动,设直线8y x =+与x 轴交于点E ,与y 轴交于点F ,作点O 关于直线8y x =+的对称点为O ',连接O F ',O E ',O A ',O B ',由三角形三边关系可得O B BA '+的最小值为O A ',继而证明四边形O EOF '为正方形,得到O '的坐标为(8,8)-,再利用勾股定理解得O A '的长,即可解题.【详解】解:∵点P 为y 轴上一动点,∴设点P 的坐标为()0,m ,如图所示,过点B 作BC y ⊥轴于点C ,∵线段PA 绕着点P 按逆时针方向旋转90°到PB ,,90PA PB BPA ∴=∠=︒,又BC y ⊥轴,90POA ∠=︒,90BCP POA ∴∠=∠=︒,∴在BCP 中,18090BPC PBC BCP ∠+∠=︒-∠=︒,又18090BPC APO BPA ∠+∠=-∠=︒︒,PBC APO ∴∠=∠, ∴在BPC △和PAO 中,BCP POA PBC APO PB AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BPC PAO ∴△≌△,,BC OP PC AO ∴==,又(0,),(8,0)P m A ,,8BC OP m PC AO ∴====,∴点B 的坐标为(,8)m m +,设,8x m y m ==+,8y x ∴=+,∴点B 在直线8y x =+上运动,如图所示,设直线8y x =+与x 轴交于点E ,与y 轴交于点F ,作点O 关于直线8y x =+的对称点为O ',连接O F ',O E ',O A ',O B ',则O B OB '=,EF 垂直平分OO ',BO BA O B BA '∴+=+,又O B BA O A ''+,O B BA '∴+的最小值为O A ',即BO BA +的最小值为O A ',又8OE OF ==,45FEO ∴∠=︒,∴四边形O EOF '为正方形, ∴O '的坐标为(8,8)-,O A '∴===故BOBA +的最小值为,故答案为【点睛】本题考查轴对称—最短路线问题、坐标与图形变化—旋转、全等三角形的判定与性质、勾股定理、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键. 16.【分析】首先利用待定系数法求得一次函数的解析式然后把x=0代入解析式即可解决问题【详解】解:设一次函数的解析式为y=kx+b 则有解得∴一次函数的解析式为当x=0时m=故答案为:【点睛】本题考查了一次解析:32【分析】首先利用待定系数法求得一次函数的解析式,然后把x=0代入解析式即可解决问题.【详解】解:设一次函数的解析式为y=kx+b ,则有30k b k b -++⎧⎨⎩==, 解得3232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数的解析式为3322y x =-+, 当x=0时,m=32. 故答案为:32. 【点睛】本题考查了一次函数图象上点的坐标特征和用待定系数法求一次函数的解析式,能求出一次函数的解析式是解此题的关键.17.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟 解析:()15,0+()15,0-()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =,22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2), 故答案为:()15,0+、()15,0-、()0,2. .【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.18.22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1A2A3的坐标即可根据正方形的性质得出C1C2C3的纵坐标根据点的坐标的变化可找出变化规律:点Cn 的纵坐标为2n-1再代入n解析:22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A 1,A 2,A 3的坐标,即可根据正方形的性质得出C 1,C 2,C 3的纵坐标,根据点的坐标的变化可找出变化规律:点C n 的纵坐标为2n-1,再代入n=2020即可得出结论.【详解】解:作1C D ⊥x 轴于D ,当x=0时,y=x+1=1,当y=0时,x=-1,∴点A 1的坐标为(0,1),点A 的坐标为(-1,0),∵四边形A 1B 1C 1A 2为正方形,∴∠111A AO A B A ∠==∠1145C B D =︒,∴11111A A A B C B ==,∴Rt △1A AO ≅Rt △11C B D ,∴11A O C D =,∴点C 1的纵坐标与点A 1的纵坐标相同,都为1,当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).同理,点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.……,∴点C n 的纵坐标为2n-1,∴点C 2020的纵坐标为22019.故答案为:22019.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律:点C n 的纵坐标为2n-1是解题的关键.19.4【分析】根据题意和函数图象中的数据:AB 两地相距900千米两车出发后3小时相遇普通列车全程用12小时即可求得普通列车的速度和两车的速度和进而求得动车的速度解答即可【详解】由图象可得:AB 两地相距9【分析】根据题意和函数图象中的数据:AB 两地相距900千米,两车出发后3小时相遇,普通列车全程用12小时,即可求得普通列车的速度和两车的速度和,进而求得动车的速度,解答即可.【详解】由图象可得:AB 两地相距900千米,两车出发后3小时相遇, 普通列车的速度是:90012=75千米/小时, 动车从A 地到达B 地的时间是:900÷(9003-75)=4(小时), 故填:4.【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k ,再求出b ,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b ,∵y=2x+b 的图象经过A (4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.三、解答题21.(1)y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)30本【分析】(1)根据题意,可以分别写出y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式; (2)将y=24分别代入甲和乙的函数解析式,求出相应的x 的值,然后比较大小,即可得到最多可以买多少本练习本.解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22.(1)151033y x =-+;(2)当k <0时,x 1<﹣3;当k >0时,x 1>﹣3;(3)2a +b =0.【分析】(1)将点(﹣1,5)代入y 1=kx ﹣2k ,求得k 值,即可得出函数解析式;(2)根据一次函数的性质,由k 值判断函数自变量的大小,即可得出结论;(3)根据一次函数y 1=kx ﹣2k 得y 1=k (x ﹣2),可得函数图象经过的定点为(2,0),再将定点坐标代入y 2=ax+b 即可求出实数a ,b 满足的关系式.【详解】解:(1)∵函数y 1的图象经过点(﹣1,5),∴5=﹣k ﹣2k ,解得k =53-, 函数y 1的表达式151033y x =-+; (2)当k <0时,若m >n ,则x 1<﹣3;当k >0时,若m >n ,则x 1>﹣3;(3)∵y 1=kx ﹣2k =k (x ﹣2),∴函数y 1的图象经过定点(2,0),当y 2=ax +b 经过(2,0)时,0=2a +b ,即2a +b =0.【点睛】本题考查了一次函数图象与性质,掌握一次函数的图象与性质并能准确理解题意进行解答是解题的关键.23.(1)甲、乙的速度分别是80千米/小时,40千米/小时;(2)OC 的函数关系式为:80y x =,BD 的函数关系式为:4030y x =+;(3)140千米.【分析】(1)根据函数图像,甲0.75小时行驶60千米,计算得出甲的速度;结合题意,乙行驶60千米时,所用总时间为:(0.750.75)+小时,计算得出乙的速度.(2)观察函数图像,根据A 点坐标,计算得出OC 的函数解析式;根据题意得出A 、B 两点的坐标,用待定系数法求出BD 的函数解析式.(3)设甲行驶时间为x 小时,根据甲乙两人行驶路程相等,列出一元一次方程,计算得出行驶时间,根据“路程=速度×时间”计算得出学校和博物馆之间的距离.【详解】解:(1)甲的速度:600.7580÷=(千米/小时),从8:00到8:45经过0.75小时,乙的速度为:60(0.750.75)40÷+=(千米/小时),甲、乙的速度分别是80千米/小时,40千米/小时.(2)∵根据题意得:A 点坐标为(0.75,60),当乙运动了45分钟后即0.75小时,距离学校:400.7530⨯=(千米),∴B 点坐标为(0,30).∵设直线OC 的函数关系式为1y k x =,将点A 代入得:1600.75k =,解得:180k =,∴直线OC 的函数关系式为80y x =,∵设BD 的函数关系式为2y k x b =+,将A 、B 两点的坐标值代入得:220.7560030k b k b +=⎧⎨⨯+=⎩,解得:24030k b =⎧⎨=⎩, ∴直线BD 的函数关系式为:4030y x =+.(3)∵设甲的行驶时间为x 小时,则乙所用的时间为:0.751 1.75x x ++=+(小时),列方程为:()8040 1.75x x =+ 解得:74x =, 7801404⨯=(千米). ∴学校和博物馆之间的距离是140千米.【点睛】本题考查一次函数的实际应用,从函数图像中获取相关信息是解题关键.24.(1)①602x -;②1404x -;100;(2)2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩;(3)建在CD 段,100km .【分析】(1)根据当0≤x ≤25时,结合图象分别得出货车从H 到A ,B ,C 的距离,进而得出y 与x 的函数关系,再利用当25<x ≤35时,分别得出从H 到A ,B ,C 的距离,即可得出y =100;(2)利用(1)的结论可得y 与x 的函数关系;(3)根据一次函数的性质解答即可.【详解】解:(1)①如图1,当025x ≤≤时,货车从H 到A 往返1次路程为22km AH S x =货车从H 到B 往返1次的路程为:()22(255)HD DB S S x +=-+2(30)x =-602x =-;②货车从H 到C 往返2次的路程为:()44(2510)DH CD S S x +=-+4(35)x =-1404x =-,如图2,25DH S x =-,25,10(25)35DH CH S x S x x =-=--=-,∴2535x <≤时,货车从H 到A 往返1次路程为:2x ,货车从H 到B 往返1次的路程为:2(525)240x x +-=-,货车从H 到C 往返2次的路程为:4(35)1404x x -=-,∴这辆货车每天行驶的路程为:22401404100km y x x x =+-+-=.(2)由(1)可得:025x ≤≤时,26021404y x x x =+-+-2004x =-,2535x <≤时,100y =,∴2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩.(3)由②得,025x ≤≤时,4200y x =-+,2535x <≤时,100y =,如图所示,由图象可知,配货中心建在CD 段时,这辆货车每天行驶的路程最短为100km .【点睛】此题主要考查了一次函数的应用,利用已知分别表示出从P 到A ,B ,C ,D 距离是解题关键.25.(1)143y x =,2210003y x =+;(2)当每月行驶1500千米时,租两家的费用相同;(3)当每月行驶的路程为2400千米时,选择出租车公司合算.【分析】 (1)1y 是正比例函数,2y 是一次函数,利用待定系数法求解即可;(2)根据函数图象分析即可;(3)当路程为2400千米时,求出1y ,2y ,比较大小即可;【详解】解:(1)设11y k x =,根据题意,得120001500k =,解得143k =, ∴143y x =, 设22y k x b =+,根据题意,得,1000b =,①220001500k b =+②,将①代入②得223=k , ∴2210003y x =+; (2)当每月行驶1500千米时,租两家的费用相同. (3)当2400x =时,14240032003y =⨯=(元), 222400100026003y =⨯+=(元),12y y >, 所以,当每月行驶的路程为2400千米时,选择出租车公司合算.。
八年级下册 数学 全册 ·单元测试卷·(1-5单元·)新人教版
第16章 二次根式单元测试试卷班级: 座号 姓名: 成绩:1. 下列式子一定是二次根式的是【 】A .2--xB .xC .22+xD .22-x2.若b b -=-3)3(2,则【 】A .b >3B .b <3C .b ≥3D .b ≤33.若13-m 有意义,则m 能取的最小整数值是【 】A .0=mB .1=mC .2=mD .3=m 4.若x <0,则xx x 2-的结果是【 】 A .0 B .2- C .0或2- D .25.下列二次根式中属于最简二次根式的是【 】A .14B .48C .b a D .44+a 6.如果)6(6-=-•x x x x ,那么【 】A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数7.小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a a a a=•=112; ④a a a =-23.做错的题是【 】A .①B .②C .③D .④8.化简3121+的结果为【 】 A .630 B .306 C .65 D .56 9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为【 】第10题图BA .43-=aB .34=a C .1=a D .1-=a 10.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是【 】A .9B .10C .24D .172二、耐心填一填,一锤定音!(每小题3分,共18分)11.若12-x 有意义,则x 的取值范围是 ;12.比较大小:13.=•y xy 82 ,=•2712 ;14.已知a 、b 为两个连续的整数,且a b <<,则a b += ; 15.当=x 时,二次根式1+x 取最小值,其最小值为 ;16,则这个三角形的周长为 ;三、用心做一做,马到成功!(共52分)17.(每小题3分,共12分)直接写出使下列各式有意义的字母的取值范围:(1)43-x (2)a 831- (3)42+m (4)x 1-; ; ;18.(每小题3分,共12分)化简:(1))169()144(-⨯- (2)2531-(3)512821⨯-(4)n m 218。
最新人教版初中数学八年级数学下册第五单元《数据的分析》检测题(答案解析)(1)
一、选择题1.反映一组数据变化范围的是( ) A .极差 B .方差C .众数D .平均数2.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或63.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( ) A .10,12B .12,11C .11,12D .12,124.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是( ) A .70分,80分 B .80分,80分 C .90分,80分 D .80分,90分 5.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .06.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 7.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( )A .平均数改变,方差不变B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变8.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分 B .中位数C .极差D .平均数9.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个 B .2个 C .3个 D .4个 10.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x ( ) A .2B .3C .5D .711.八(1)班45名同学一天的生活费用统计如下表: 生活费(元) 1015 2025 30学生人数(人)3915126A .15B .20C .21D .2512.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .8二、填空题13.北京市 7月某日 10 个区县的最高气温如表(单位:C ):34343234323431333234区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温则这 10 个区县该日最高气温的众数是__________,中位数是__________.14.小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.15.已知一组数据:3,3,x ,5,5的平均数是4,则这组数据的方差是___________. 16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.17.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.18.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____.19.某组数据按从小到大的顺序如下:2、4、8、x 、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.20.已知5个数据的平均数是7,另外还有3个数据的平均数是k , 则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:第1次 第2次 第3次 第4次 第5次 甲成绩 80 40 70 50 60 乙成绩705070a70= ,甲同学成绩的极差为 ;(2)小颖计算了甲同学的成绩平均数为60,方差是S 甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差; (3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.22.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下: 学部 平均数 中位数最高分 众数 初一 88 a98 98初二8886100ba =(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?23.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.24.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100; 乙组:50,60,60,60,70,70,70,70,80,90. (1)以上成绩统计分析表如表:则表中a = ,b = ,c = .(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.25.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照04x ≤<,48x ≤<,…,2832x ≤<分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.26.甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次第2次第3次第4次第5次甲1089108乙109a b9()1若甲、乙射击平均成绩一样,求+a b的值;()2在()1条件下,若,a b是两个连续整数,试问谁发挥的更稳定?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.3.C解析:C【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.4.B解析:B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.5.A解析:A【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x的方差比数据5791113,,,,的方差大,∴这组数据可能是x(x<0),2,4,6,8或2,4,6,8,x(x>10),观察只有A选项符合,6.B解析:B 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.A解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.8.B解析:B 【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B .9.B解析:B 【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可. 【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误;②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确; ④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°,∴三角形的这个内角为180°÷2=90°则这个三角形是直角三角形,故正确.综上:正确的有2个故选B.【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.10.C解析:C【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x的值即可得到答案.【详解】解:∵一组数据:3,2,5,3,7,5,x,它们的众数为5,∴5出现的次数最多,故5x=,故选C.【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.11.C解析:C【分析】根据加权平均数公式列出算式求解即可.【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=.故答案为C.【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键12.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.二、填空题13.34335【分析】找中位数要把数据按从小到大的顺序排列位于最中间的一个数或两个数的平均数为中位数众数是一组数据中出现次数最多的数据注意众数可以不止一个【详解】解:将10个区的气温数据进行从小到大重排解析:34 33.5 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】解:将10个区的气温数据进行从小到大重排: 31,32,32,32,33,34,34,34,34,34,则中位数为:333433.52+=, 众数为:34,故答案为:34,33.5. 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,按要求将重新排列,是找中位数的关键.14.82【分析】设第三次考试成绩为x 根据三次考试的平均成绩不少于80分列不等式求出x 的取值范围即可得答案【详解】设第三次考试成绩为x ∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少得82分解析:82 【分析】设第三次考试成绩为x ,根据三次考试的平均成绩不少于80分列不等式,求出x 的取值范围即可得答案. 【详解】设第三次考试成绩为x ,∵三次考试的平均成绩不少于80分,∴7286803x++≥, 解得:82x ≥,∴他第三次数学考试至少得82分, 故答案为:82本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.15.【分析】先由平均数的定义求得x 的值再根据方差的公式计算方差【详解】根据题意得:3+3+x+5+5=4×5解得:x=4则这组数据的方差为×2(3-4)2+(4-4)2+2(5-4)2=08故答案是:0 解析:0.8【分析】先由平均数的定义求得x 的值,再根据方差的公式计算方差. 【详解】 根据题意得: 3+3+x+5+5=4×5, 解得:x=4, 则这组数据的方差为15×[2(3-4)2+(4-4)2+2(5-4)2]=0.8, 故答案是:0.8. 【点睛】考查了求一组数的方差,解题关键是熟记方差计算公式:()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦. 16.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙 【分析】通过图示波动的幅度即可推出. 【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙 【点睛】考查数据统计的知识点17.30【分析】根据计算方差的公式能够确定数据的个数和平均数从而求得所有数据的和【详解】解:∵S2=(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2∴平均数为3共10个数据∴x1+x2+x3+…+x解析:30 【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和. 【详解】解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据,∴x 1+x 2+x 3+…+x 10=10×3=30.故答案为30.【点睛】 本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.18.2【分析】先用平均数是3可得x 的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)210=2故解析:2【分析】先用平均数是3可得x 的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x +5),解得:x =4, ∴方差是S 215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2. 故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大. 19.10【解析】分析:根据中位数为9可求出x 的值继而可判断出众数详解:由题意得:(8+x )÷2=9解得:x=10则这组数据中出现次数最多的是10故众数为10故答案为10点睛:本题考查了中位数及众数的知识解析:10【解析】分析:根据中位数为9,可求出x 的值,继而可判断出众数.详解:由题意得:(8+x )÷2=9,解得:x =10,则这组数据中出现次数最多的是10,故众数为10.故答案为10.点睛:本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键. 20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k 因此这8个数的和为35+3k 因此其平均数为(35+3k )÷8即故答案为: 解析:35+38k 【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k,因此这8个数的和为35+3k,因此其平均数为(35+3k)÷8,即35+3 8k.故答案为:35+3 8k.三、解答题21.(1)40,40;(2)平均数为60,方差160;(3)见解析.【分析】(1)由“他们5次考试的总成绩相同”可求得a的值,利用极差的定义求解可得;(2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论.【详解】解:(1)a=(80+40+70+50+60)﹣(70+50+70+70)=40,甲同学成绩的极差为:80﹣40=40,故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60,方差S乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160;(3)因为甲乙两位同学的平均数相同,S甲2>S乙2,所以乙同学的成绩更稳定.【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人.【分析】(1)根据条形图排序中位数在C组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可;(2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可.【详解】解:(1)A与B组共有6个,D组有6个为此中位数落在C组,而C组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上,第8个数据为85,中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100, 100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40%30+⨯, 此次测试成绩达到90分及以上的学生约:80040%320⨯=,答:此次测试成绩达到90分及以上的学生约有320人.【点睛】 本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.23.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.【分析】(1)根据平均数、中位数、众数的概念以及求解方法分别进行求解即可;(2)分析不低于平均数、中位数、众数的人数,根据题意进行确定即可.【详解】(1)这15名销售人员该月销售量数据的平均数为177048022031803120390415++⨯+⨯+⨯+⨯=278, 排序后位于中间位置的数为180,故中位数180,数据90出现了4次,出现次数最多,故众数为90;(2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【点睛】本题考查了平均数、中位数、众数,熟练掌握平均数、中位数、众数的概念,意义以及求解方法是解题的关键.24.(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a 、c 的值,根据平均数的定义计算出b 的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a =60; 乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68; 乙组学生成绩的中位数为70702+=70,即b =68,c =70; 故填:60,68,70;(2)选择乙组.理由如下: 乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116, 因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键.25.(1)100,14.72;(2)不合理,见解析【分析】(1)先确定a 的值,然后求这些数据的加权平均数即可;(2)由14.72在1216x ≤<内,然后确定小于16t 的户数,再求出小于16t 的户数占样本的百分比,最后用这个百分比和70%相比即可说明.【详解】解:(1)依题意得a=(1000-40-180-280-220-60-20)÷2=100.这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ∴估计这1000户家庭月均用水量的平均数是14.72.(2)不合理.理由如下:由(1)可得14.72在1216x ≤<内,∴这1000户家庭中月均用水量小于16t 的户数有40100180280600+++=(户),∴这1000户家庭中月均用水量小于16t 的家庭所占的百分比是600100%60%1000⨯=, ∴月均用水量不超过14.72t 的户数小于60%.∵该市政府希望70%的家庭的月均用水量不超过标准m ,而60%70%<,∴用14.72作为标准m 不合理.【点睛】本题考查了频数分布直方图、用样本估计总体、加权平均数,正确求得加权平均数是解答本题的关键.26.(1)17a b +=;(2)乙更稳定【分析】(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出+a b 的值;(2)根据题意令8,9a b ==,分别计算甲、乙的方差,方差越小.成绩越稳定.【详解】解:(1) 108910895x ++++==甲(环) 109995a b x ++++==乙(环) 17a b ∴+=(2)17a b +=且,a b 为连续的整数∴令8,9a b ==()()()()()22222211098999109890.85S ⎡⎤=-+-+-+-+-=⎣⎦甲, ()()()()()2222221109999989990.45S ⎡⎤=-+-+-+-+-=⎣⎦乙, 22S S >甲乙∴乙更稳定【点睛】本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.。
最新人教版八年级数学下册第二十章-数据的分析单元测试试卷(名师精选)
人教版八年级数学下册第二十章-数据的分析单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、2022年将在北京--张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,选手成绩更稳定的是()A.甲B.乙C.都一样D.不能确定a的平均数是5,则a的值()2、如果一组数据3,7,2,,4,6A.8 B.5 C.4 D.23、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定4、八(3)班七个兴趣小组人数分别为4、4、5、x、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是()A.6 B.5 C.4 D.35、抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码):则鞋厂最感兴趣的是这组数据的()A.平均数B.中位数C.众数D.方差6、已知一组数据3,7,5,3,2,这组数据的众数为()A.2 B.3 C.4 D.57、一组数据分别为a,b,c,d,e,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是()A.中位数B.方差C.平均数D.众数8、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A .平均数、中位数和众数都是3B .极差为4C .方差是53D9、数据3,6,4,3,8,7的众数是( )A .4B .6C .5D .310、一组数据x 、0、1、﹣2、3的平均数是1,则这组数据的中位数是( )A .0B .1C .2.5D .3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据:2021,2021,2021,2021,2021,2021的方差是______.2、某商店销售S ,M ,L ,XL ,XXL 5种尺码的上衣.商店经理想通过调查每种上衣的销量来决定多进哪种上衣,则应该从这5种尺码的上衣的销量中选择_______(从“平均数”“中位数”“众数”中选择)作为参考依据.3、在方差计算公式222212201(15)(15)(15)20s x x x ⎡⎤=-+-++-⎣⎦中,可以看出15表示这组数据的______________.4、一组数据3,5,a ,4,3的平均数是4,这组数据的方差为______.5、若多项式5x 2+17x ﹣12可因式分解成(x +a )(bx +c ),其中a 、b 、c 均为整数,则a ,b ,c 的中位数是_____三、解答题(5小题,每小题10分,共计50分)1、光明中学八年级(1)班在一次测试中,某题(满分为5分)的得分情况如图,计算这题得分的众数、中位数和平均数.2、某鞋厂为了了解初中学生穿鞋的尺码情况,对某中学八年级(1)班的20名男生进行了调查,结果如图所示.(1)写出这20个数据的平均数、中位数、众数;(2)在平均数、中位数和众数中,鞋厂最感兴趣的是哪一个?3、某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100)七年级10名学生的成绩是:80,86,99,96,90,99,100,82,89,99.八年级10名学生的成绩在C组中的数据是:94,90,93.七、八年级抽取的学生成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?4、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为 ,图中的a 值为 ;(2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?5、甲、乙两台包装机同时分装质量为400g 的奶粉.从它们各自分装的奶粉中各随机抽取了10袋,测得它们的实际质量(单位:g )如下:甲:401,400,408,406,410,409,400,393,394,394;乙:403,404,396,399,402,401,405,397,402,399.哪台包装机包装的奶粉质量比较稳定?---------参考答案-----------一、单选题1、A【解析】【分析】分别计算计算出甲乙选手的方差,根据方差越小数据越稳定解答即可.【详解】 解:甲选手平均数为:1(78898)85⨯++++=, 乙选手平均数为:1(1081165)85⨯++++=, 甲选手的方差为:2222212(78)(88)(88)(98)(88)55⎡⎤⨯-+-+-+-+-=⎣⎦,乙选手的方差为: 222221(108)(88)(118)(68)(58) 5.25⎡⎤⨯-+-+-+-+-=⎣⎦ ∵可得出:22S S >乙甲,则甲选手的成绩更稳定,故选:A .【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、A【解析】【分析】根据平均数的计算公式计算即可;【详解】∵数据3,7,2,,4,6a 的平均数是5, ∴3724656a +++++=, ∴8a =;故选A .【点睛】本题主要考查了平均数的计算,准确计算是解题的关键.3、C【解析】【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.4、B【解析】【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.5、C【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.【详解】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.故选:C.【点睛】本题考查学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用.6、B【解析】【分析】根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.【详解】解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;故选:B.【点睛】此题考查了众数的定义;熟记众数的定义是解决问题的关键.7、B【解析】【分析】根据方差的意义及平均数、众数、中位数的定义求解可得.解:一组数据a,b,c,d,e的每一个数都加上同一数m(m>0),则新数据a+m,b+m,…e+m的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;故选:B.【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.8、D【解析】【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=16×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=53,C选项不符合题意;S D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.9、D【解析】【分析】根据众数是一组数据中出现次数最多的数据可求解.【详解】解:数据3,6,4,3,8,7的众数是3.故选择:D .【点睛】本题考查众数,掌握众数定义是解题关键.10、B【解析】【分析】先根据算术平均数的定义列方程求出x 的值,再将这组数据从小到大重新排列,利用中位数的定义可得答案.【详解】解:∵数据x 、0、1、-2、3的平均数是1, ∴()1012315x ++-+=,解得x =3,所以这组数据为-2、0、1、3、3,所以这组数据的中位数为1,故选:B .【点睛】本题主要考查了中位数和算术平均数,解题的关键是掌握算术平均数和中位数的定义.二、填空题1、0【解析】【分析】根据方差的定义求解.【详解】∵这一组数据都一样∴平均数为2021∴方差=21(20212021)606⎡⎤-⨯=⎣⎦ 故答案为:0.【点睛】本题考查方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、众数【解析】【分析】根据几种数据的性质解答.【详解】解:商店经理应关注的是销售数量,销售数量最多的应选择众数,故答案为:众数.【点睛】此题考查平均数、中位数、众数的性质,理解各性质是解题的关键.3、平均数【解析】【分析】方差是由每个数据与平均值的差的平方之和除以总数得到,由此判断即可.【详解】解:根据方差计算公式可知,公式中15是这组数据的平均数,故答案为:平均数.【点睛】本题考查方差公式的理解,理解方差公式中每个数据的含义是解题关键.4、0.8【解析】【分析】根据平均数的计算公式先求出a 的值,再根据方差公式代数计算即可.【详解】解:∵3,5,a ,4,3的平均数是4,∴(3+5+a +4+3)÷5=4,解得:a =5,则这组数据的方差S 2=15 [(3-4)2+(5-4)2+(5-4)2+(4-4)2+(3-4)2]=0.8,故答案为:0.8.【点睛】本题考查了方差,一般地设n 个数据,x 1,x 2,…xn 的平均数为x ,则方差(2222121[()())n S x x x x x x n ⎤=-+-++-⎦,此题难度不大.5、4【解析】【分析】首先利用十字交乘法将5x 2+17x -12因式分解,继而求得a ,b ,c 的值.【详解】利用十字交乘法将5x 2+17x -12因式分解,可得:5x 2+17x -12=(x +4)(5x -3)=(x +a )(bx +c ).∴4,5,3a b c ===-,∵453-、、的中位数是4 ∴a ,b ,c 的中位数是4故答案为:4.【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a 、b 、c 的值是得出正确答案的关键.三、解答题1、众数为3分、中位数为3分、平均数为2.86分【分析】根据中位线和众数的定义、加权平均数的定义进行计算.【详解】解:由于得分最多的是3分,占总数的40%,因此众数是3,因为6%+8%+16%=30%<50%,6%+8%+16%+40%=54%>50%,所以得分位于中间的数是3分,即中位数是3,全班同学在该题的平均分为:06%+56%+18%+216%+424%+340%=2.86⨯⨯⨯⨯⨯⨯(分).【点睛】本题考查扇形统计图、众数、中位数、加权平均数等知识,是重要考点,解题的关键是明确扇形统计图中百分比的含义.2、(1)平均数为39.1码,中位数为39码,众数为40码;(2)鞋厂最感兴趣的是众数【分析】(1)根据平均数、众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.(2)鞋厂最感兴趣的是使用的人数,即众数.【详解】解:(1)平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,(39+39)÷2=39,故答案为:平均数为39.1码,中位数为39码,众数为40码;(2)鞋厂最感兴趣的是使用的人数,即众数,故答案为:鞋厂最感兴趣的是众数.【点睛】本题考查平均数,众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.正确理解中位数、众数及平均数的概念,是解决本题的关键.3、(1)40,93.5,99;(2)八年级掌握得更好,理由见解析;(3)780人【分析】(1)由八年级学生成绩的扇形统计图可求得得分在C组的百分比,根据各百分比的和为1即可求得a 的值;由扇形统计图可求得八年级得分在各个组的人数,从而可求得中位数b;根据七年级10名学生成绩中出现次数最多的是众数,则可得c;(2)两个年级得分的平均数相同,但八年级得分的方差较小,根据方差的特征即可判断八年级学生掌握得更好;(3)求出两个年级得分的优秀率做为全校得分的优秀率,即可求得得分为优秀的学生人数.【详解】(1)由八年级学生成绩的扇形统计图,成绩在C组的学生所占的百分比为:3100%30%10⨯=,则%110%20%30%40%a=---=∴a=40八年级得分在A组的有:10×20%=2(人),得分在B组的有:10×10%=1(人),得分在D组的有:10×40%=4(人)由此可知,得分的中位数为:939493.52b+==七年级10名学生的成绩中99分出现的次数最多,即众数为99,故c=99(2)八年级学生掌握得更好理由如下:因为两个年级的平均数相同,而八年级的众数与中位数都比七年级的高,说明八年级高分的学生更多;八年级成绩的方差比七年级的方差小,说明八年级成绩的波动更小,成绩更接近.(3)两个年级得分的优秀率为:67100%65% 20+⨯=1200×65%=780(人)所以参加此次调查活动成绩优秀的学生人数约为780人【点睛】本题是统计图与统计表的综合,考查了扇形统计图,方差、中位数、众数,样本估计总体等知识,读懂统计图,从中获取信息是关键.4、(1)100,18;(2)见解析;(3)1.5,1.5,1.32(4)72人【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为18%,400乘以18%即可求得.【详解】(1)总人数为:3030%100÷=(人);18100%18%100⨯= 故答案为:100,18(2)每天平均课外阅读时间为1.5小时的人数为:10012301840---=(人)补充条形统计图如下:(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5中位数为1.5,平均数为()10.512130 1.540182 1.32100⨯⨯+⨯+⨯+⨯=; (4)40018%72⨯=(人)∴估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有72人【点睛】本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键.5、乙包装机包装的奶粉质量比较稳定【分析】先分别求出甲、乙两台包装机分装奶粉质量的平均数,再求甲、乙两台包装机分装奶粉质量的方差.【详解】解:x甲=110(401 +400+ 408 +……+394 +394)= 401.5(g),x乙 =110(403+ 4+39+……+ 402 + 399) =400.8(g),S=110[ (401-401.5)2+(400- 401. 5)2+……+(394- 401.5)2]= 38.05,S=110[(403- 400.8)2 +(404- 400.8)2+……+(399- 400. 8)2]=7. 96,因为S> S,所以乙包装机分装的奶粉质量比较稳定.【点睛】本题考查了平均数、方差的计算以及它们的意义,做题的关键是熟练的计算平均数和方差.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版八年级数学下册单元测试题(含期中,期末试题,带答案)第十六章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.二次根式2-x 有意义,则x 的取值范围是( D ) A .x >2 B .x <2 C .x ≥2 D .x ≤22.(2016·自贡)下列根式中,不是最简二次根式的是( B ) A.10 B.8 C. 6 D. 2 3.下列计算结果正确的是( D )A.3+4=7 B .35-5=3 C.2×5=10 D.18÷2=3 4.如果a +a 2-6a +9=3成立,那么实数ɑ的取值范围是( B ) A .a ≤0 B .a ≤3 C .a ≥-3 D .a ≥3 5.估计32×12+20的运算结果应在( C ) A .6到7之间 B .7到8之间 C .8到9之间 D .9到10之间 6.12x 4x +6x x9-4x x 的值一定是( B ) A .正数 B .非正数 C .非负数 D .负数 7.化简9x 2-6x +1-(3x -5)2,结果是( D ) A .6x -6 B .-6x +6 C .-4 D .48.若k ,m ,n 都是整数,且135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( D )A .k <m =nB .m =n >kC .m <n <kD .m <k <n 9. 下列选项错误的是( C )A.3-2的倒数是3+ 2B.x 2-x 一定是非负数 C .若x <2,则(x -1)2=1-x D .当x <0时,-2x在实数范围内有意义 10.如图,数轴上A ,B 两点对应的实数分别是1和3,若A 点关于B 点的对称点为点C ,则点C 所对应的实数为( A )A .23-1B .1+ 3C .2+ 3D .23+1 二、填空题(每小题3分,共24分)11.如果两个最简二次根式3a -1与2a +3能合并,那么a =__4__. 12.计算:(1)(2016·潍坊)3(3+27)=__12__;(2)(2016·天津)(5+3)(5-3)=__2__.13.若x ,y 为实数,且满足|x -3|+y +3=0,则(xy)2018的值是__1__.14.已知实数a ,b 在数轴上对应的位置如图所示,则a 2+2ab +b 2-b 2=__-a __.,第17题图)15.已知50n 是整数,则正整数n 的最小值为__2__.16.在实数范围内分解因式:(1)x 3-5x =__x (x +5)(x -5)__;(2)m 2-23m +3=__(m -3)2__. 17.有一个密码系统,其原理如图所示,输出的值为3时,则输入的x =__22__. 18.若xy >0,则化简二次根式x -yx2的结果为__--y __. 三、解答题(共66分) 19.(12分)计算: (1)48÷3-12×12+24; (2)(318+1672-418)÷42; 解:(1)4+ 6 (2)94(3)(2-3)98(2+3)99-2|-32|-(2)0. 解:120.(5分)解方程:(3+1)(3-1)x =72-18. 解:x =32221.(10分)(1)已知x =5-12,y =5+12,求y x +xy的值; 解:∵x +y =252=5,xy =5-14=1,∴y x +x y =y 2+x 2xy =(x +y )2-2xy xy =(5)2-2×11=3(2)已知x ,y 是实数,且y <x -2+2-x +14,化简:y 2-4y +4-(x -2+2)2.解:由已知得⎩⎨⎧x -2≥0,2-x ≥0,∴x =2,∴y <x -2+2-x +14=14,即y <14<2,则y -2<0,∴y 2-4y +4-(x -2+2)2=(y -2)2-(2-2+2)2=|y -2|-(2)2=2-y -2=-y22.(10分)先化简,再求值:(1)[x +2x (x -1)-1x -1]·xx -1,其中x =2+1; 解:原式=2(x -1)2,将x =2+1代入得,原式=1(2)a 2-1a -1-a 2+2a +1a 2+a-1a ,其中a =-1- 3.解:∵a +1=-3<0,∴原式=a +1+a +1a (a +1)-1a =a +1=-323.(7分)先化简,再求值:2a -a 2-4a +4,其中a = 3.小刚的解法如下:2a -a 2-4a +4=2a -(a -2)2=2a -(a -2)=2a -a +2=a +2,当a =3时,2a -a 2-4a +4=3+2.小刚的解法对吗?若不对,请改正.解:不对.2a -a 2-4a +4=2a -(a -2)2=2a -|a -2|.当a =3时,a -2=3-2<0,∴原式=2a +a -2=3a -2=33-224.(10分)已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系. 解:(1)2(a +b )=2×(1232+1318)=62,∴长方形周长为62 (2)4×ab =4×1232×1318=4×22×2=8,∵62>8,∴长方形周长大25.(12分)观察下列各式及其验证过程: 223=2+23,验证:223=233=23-2+222-1=2(22-1)+222-1=2+23; 338=3+38,验证:338=338=33-3+332-1=3(32-1)+332-1=3+38. (1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果,并进行验证; (2)针对上述各式反映的规律,写出用n(n 为任意自然数,且n ≥2)表示的等式,并给出证明. 解:(1)猜想:4415=4+415,验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+415(2)n n n 2-1=n +nn 2-1,证明:nn n 2-1=n 3n 2-1=n 3-n +nn 2-1=n (n 2-1)+nn 2-1=n +n n 2-1第十七章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知Rt △ABC 的三边长分别为a ,b ,c ,且∠C =90°,c =37,a =12,则b 的值为( B ) A .50 B .35 C .34 D .262.由下列线段a ,b ,c 不能组成直角三角形的是( D ) A .a =1,b =2,c = 3 B .a =1,b =2,c = 5 C .a =3,b =4,c =5 D .a =2,b =23,c =33.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( A ) A.365 B.1225 C.94 D.3344.已知三角形三边长为a ,b ,c ,如果a -6+|b -8|+(c -10)2=0,则△ABC 是( C ) A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形 C .以c 为斜边的直角三角形 D .不是直角三角形5.(2016·株洲)如图,以直角三角形a ,b ,c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( D )A .1B .2C .3D .46.设a ,b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( D ) A .1.5 B .2 C .2.5 D .37.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分斜边AC 交AB 于点D ,E 是垂足,连接CD ,若BD =1,则AC 的长是( A )A .2 3B .2C .4 3D .4,第7题图) ,第9题图) ,第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是( C )A .13,12,12B .12,12,8C .13,10,12D .5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度为(滑轮上方的部分忽略不计)( D )A .12 mB .13 mC .16 mD .17 m10.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( B ) A.132 B.312 C.3+192D .27 二、填空题(每小题3分,共24分)11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__如果两个角相等,那么它们是对顶角__. 12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为__5__. 13.三角形的三边a ,b ,c 满足(a -b)2=c 2-2ab ,则这个三角形是__直角三角形__.14.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 为半径画弧交x 轴正半轴于点C ,则点C 的坐标为__(4,0)__.,第14题图) ,第15题图) ,第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__64__.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种__21__棵树.17.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=__2018__.18.在△ABC中,AB=22,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为__13或5__.三、解答题(共66分)19.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.解:(1)可求得AB=20,AC=13,所以△ABC的周长为20+13+21=54(2)∵AB2+AC2=202+132=569,BC2=212=441,∴AB2+AC2≠BC2,∴△ABC不是直角三角形20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.解:如图:21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD=DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22222.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC223.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A爬到点B所走的路程为AD+BD=42+32+22+32=(5+13)cm(2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB=(4+6)2+22=104=226(cm);②将前面与右面展到一个平面内,AB=(4+2)2+62=72=62(cm);③将前面与上面展到一个平面内,AB=(6+2)2+42=80=45(cm),∵62<45<226,∴蜘蛛从A点爬到B点所走的最短路程为6 2 cm25.(12分)如图,已知正方形OABC的边长为2,顶点A,C分别在x轴的负半轴和y轴的正半轴上,M是BC 的中点,P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是以AP为腰的等腰三角形时,求m的值;解:(1)先证△DBM≌△PCM,从中可得BD=PC=2-m,则AD=2-m+2=4-m,∴点D的坐标为(-2,4-m)(2)分两种情况:①当AP=AD时,AP2=AD2,∴22+m2=(4-m)2,解得m=32;②当AP=PD时,过点P作PH⊥AD 于点H ,∴AH =12AD ,∵AH =OP ,∴OP =12AD ,∴m =12(4-m ),∴m =43,综上可得,m 的值为32或43第十八章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( B ) A .30° B .45° C .60° D .75°2.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是( D )A .OE =12DC B .OA =OC C .∠BOE =∠OBA D .∠OBE =∠OCE,第2题图) ,第3题图) ,第6题图)3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为( D ) A. 3 cm B .2 cm C .2 3 cm D .4 cm4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( D ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( C ) A .矩形 B .一组对边相等,另一组对边平行的四边形 C .对角线相等的四边形 D .对角线互相垂直的四边形6.如图,已知点E 是菱形ABCD 的边BC 上一点,且∠DAE =∠B =80°,那么∠CDE 的度数为( C ) A .20° B .25° C .30° D .35°7.(2016·菏泽)在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下结论正确的有( B ) ①AC =5;②∠A +∠C =180°;③AC ⊥BD ;④AC =BD . A .①②③ B .①②④ C .②③④ D .①③④8.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是( D )A .12B .24C .12 3D .16 3,第8题图) ,第9题图) ,第10题图)9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( C )A .1 B. 2 C .4-2 2 D .32-410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是( B )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,AB =5,AC =6,当BD =__8__时,四边形ABCD 是菱形.,第11题图) ,第12题图) ,第14题图)12.(2016·江西)如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__50°__.13.在四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;②AB =CD ;③∠A =∠C ;④∠B =∠C.能使四边形ABCD 为平行四边形的条件的序号是__①或③__.14.如图,∠ACB =90°,D 为AB 中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为__8__.15.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是__22.5__度.,第15题图) ,第16题图) ,第17题图) ,第18题图)16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O ,E ,F ,G ,H 分别为边AD ,AB ,BC ,CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为__12__.17.已知菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是__5__.18.(2016·天津)如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQ S 正方形AEFG的值等于__89__.三、解答题(共66分)19.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF,若AE=8 cm,∠A=60°,求线段EF的长.解:(1)菱形,理由:根据题意得AE=AF=ED=DF,∴四边形AEDF是菱形(2)∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8 cm20.(8分)(2016·宿迁)如图,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED∥BC,EF∥AC.求证:BE=CF.解:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF21.(9分)(2016·南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF ,∠EBF =∠DCF ,∴△BEF ≌△CDF (ASA ) (2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠A =∠DCB ,∵AB =BE ,∴CD =EB ,∴四边形BECD 是平行四边形,∴BF =CF ,EF =DF ,∵∠BFD =2∠A ,∴∠BFD =2∠DCF ,∴∠DCF =∠FDC ,∴DF =CF ,∴DE =BC ,∴四边形BECD 是矩形22.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF.(1)求证:AE =CF ;(2)当四边形AECF 为矩形时,请求出BD -ACBE的值.解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC.∵四边形AECF 是矩形,∴AC =EF ,∴BD -ACBE =BD -EF BE =BE +DF BE =2BE BE=223.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点. (1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =__1∶2__时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形24.(10分)(2016·遵义)如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F.(1)求证:△AEF ≌△DEB ; (2)求证:四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.解:(1)由AAS 易证△AFE ≌△DBE (2)由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC ,∴四边形ADCF 是菱形 (3)连接DF ,由(2)知AF 綊BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC·DF =12×4×5=1025.(12分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q.(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ.证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP (SAS ),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ.证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ第十九章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·扬州)函数y =x -1中,自变量x 的取值范围是( B ) A .x >1 B .x ≥1 C .x <1 D .x ≤12.若函数y =kx 的图象经过点(1,-2),那么它一定经过点( B ) A .(2,-1) B .(-12,1) C .(-2,1) D .(-1,12)3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车的速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( D )4.已知一次函数y =kx +b 的图象如图所示,当x <0时,y 的取值范围是( C ) A .y >0 B .y <0 C .y >-2 D .-2<y <0,第4题图),第9题图) ,第10题图)5.当kb <0时,一次函数y =kx +b 的图象一定经过( B )A .第一、三象限B .第一、四象限C .第二、三象限D .第二、四象限6.已知一次函数y =(2m -1)x +1的图象上两点A(x 1,y 1),B(x 2,y 2),当x 1<x 2时,有y 1<y 2,那么m 的取值范围是( B )A .m <12B .m >12C .m <2D .m >07.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为( A ) A .(0,-1) B .(-1,0) C .(0,2) D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是( A ) A .1<m <7 B .3<m <4 C .m >1 D .m <49.(2016·天门)在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km /h ,b km /h 匀速骑行,他们骑行的时间t(h )与骑行的路程s(km )之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a =26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km .其中正确的说法有( C )A .1个B .2个C .3个D .4个10.(2016·苏州)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .(3,43)C .(3,53) D .(3,2)二、填空题(每小题3分,共24分)11.(2015·上海)同一温度的华氏度数y()与摄氏度数x(℃)之间的函数关系是y =95x +32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是__77__.12.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是__0.2__千米/分钟.,第12题图) ,第14题图) ,第16题图)13.一次函数y =(m -1)x +m 2 的图象过点(0,4),且y 随x 的增大而增大,则m =__2__. 14.如图,利用函数图象回答下列问题:(1)方程组⎩⎪⎨⎪⎧x +y =3,y =2x 的解为__⎩⎨⎧x =1,y =2__;(2)不等式2x >-x +3的解集为__x >1__.15.已知一次函数y =-2x -3的图象上有三点(x 1,y 1),(x 2,y 2),(3,y 0),并且x 1>3>x 2,则y 0,y 1,y 2这三个数的大小关系是__y 1<y 0<y 2__.16.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O ′A ′B ′,点A 的对应点A ′落在直线y =-34x 上,则点B 与其对应点B ′间的距离为__8__.17.过点(-1,7)的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线y =-32x +1平行,则在线段AB 上,横、纵坐标都是整数的点坐标是__(3,1),(1,4)__.18.设直线y =kx +k -1和直线y =(k +1)x +k(k 为正整数)与x 轴所围成的图形的面积为S k (k =1,2,3,…,8),那么S 1+S 2+…+S 8的值为__49__.三、解答题(共66分)19.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5. (1)求x 与y 之间的函数关系,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a 的值. 解:(1)y =32x +2,是一次函数 (2)a =020.(8分)已知一次函数y =(a +8)x +(6-b). (1)a ,b 为何值时,y 随x 的增大而增大? (2)a ,b 为何值时,图象过第一、二、四象限? (3)a ,b 为何值时,图象与y 轴的交点在x 轴上方? (4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =621.(9分)画出函数y =2x +6的图象,利用图象:(1)求方程2x +6=0的解; (2)求不等式2x +6>0的解; (3)若-1≤y ≤3,求x 的取值范围.解:图略,(1)x =-3 (2)x >-3 (3)当-1≤y ≤3,即-1≤2x +6≤3,解得-72≤x ≤-3222.(9分)电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图),根据图象解答下列问题.(1)分别写出当0≤x ≤100和x >100时,y 与x 间的函数关系式;(2)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?解:(1)y =⎩⎨⎧0.65x (0≤x ≤100)0.8x -15(x >100) (2)40.3元;150度23.(10分)如图,在平面直角坐标系xOy 中,矩形ABCD 的边AD =3,A(12,0),B(2,0),直线l 经过B ,D 两点.(1)求直线l 的解析式;(2)将直线l 平移得到直线y =kx +b ,若它与矩形有公共点,直接写出b 的取值范围.解:(1)y =-2x +4 (2)1≤b ≤724.(10分)今年我市水果大丰收,A ,B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两个销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围; (2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.解:(1)W =35x +11200(80≤x ≤380) (2)∵⎩⎨⎧W ≤18300,x ≥200,∴⎩⎨⎧35x +11200≤18300,x ≥200,解得200≤x ≤20267,∵35>0,∴W 随x 的增大而增大,∴当x =200时,W最小=18200,∴运费最低的运输方案为:A →甲:200件,A →乙:180件,B →甲:200件,B →乙:120件,最低运费为18200元25.(12分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车,设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__千米; (2)求快车与慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.解:(2)设快车速度为m 千米/时,慢车速度为n 千米/时,则有⎩⎨⎧4(m +n )=560,3m =4n ,解得⎩⎨⎧m =80,n =60,∴快车速度为80千米/时,慢车速度为60千米/时 (3)D (8,60),E (9,0),线段DE 的解析式为y =-60x +540(8≤x ≤9)期中检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是( A ) A. 5 B.8 C.12D.0.3 2.(2016·泸州)如图,▱ABCD 的对角线AC ,BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( B ) A .10 B .14 C .20 D .22,第2题图) ,第5题图) ,第8题图),第9题图)3.在下列以线段a ,b ,c 的长为三边的三角形中,不能构成直角三角形的是( D ) A .a =9,b =41,c =40 B .a =5,b =5,c =5 2 C .a ∶b ∶c =3∶4∶5 D .a =11,b =12,c =15 4.(2016·南充)下列计算正确的是( A ) A.12=2 3 B.32=32C.-x 3=x -xD.x 2=x 5.如图,在△ABC 中,点D ,E 分别是边AB ,BC 的中点,若△DBE 的周长是6,则△ABC 的周长是( C )A .8B .10C .12D .146.(2016·益阳)下列判断错误的是( D )A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .四条边都相等的四边形是菱形D .两条对角线垂直且平分的四边形是正方形 7.若x -1-1-x =(x +y)2,则x -y 的值为( C ) A .-1 B .1 C .2 D .38.如图,在△ABC 中,AC 的垂直平分线分别交AC ,AB 于点D ,F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( A )A .2 3B .3 3C .4D .4 39.如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 的中点,且CD =52,如果Rt △ABC 的面积为1,则它的周长为( D )A.5+12B.5+1C.5+2D.5+310.(2016·眉山)如图,在矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE =EF ;④S △AOE ∶S △BCM =2∶3.其中正确结论的个数是( B )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.若代数式xx -1有意义,则x 的取值范围为__x ≥0且x ≠1__.12.如图,在平行四边形ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于点F ,则CF =__2__.,第12题图) ,第13题图) ,第14题图),第15题图)13.如图,以△ABC 的三边为边向外作正方形,其面积分别为S 1,S 2,S 3,且S 1=9,S 3=25,当S 2=__16__时,∠ACB =90°.14.如图,它是一个数值转换机,若输入的a 值为2,则输出的结果应为__-233__.15.如图,四边形ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件__答案不唯一,如:OA =OC __,使ABCD 成为菱形.(只需添加一个即可)16.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,则线段DH 的长为__1__.,第16题图),第17题图) ,第18题图)17.(2016·南京)如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为__13__ cm. 18.如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A ,C 的坐标分别为A(10,0),C(0,4),点D 是OA 的中点,点P 为线段BC 上的点.小明同学写出了一个以OD 为腰的等腰三角形ODP 的顶点P 的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标__(2,4)或(8,4)__.三、解答题(共66分) 19.(8分)计算:(1)8+23-(27-2); (2)(43-613)÷3-(5+3)(5-3). 解:(1)32- 3 (2)020.(8分)已知a =7-5,b =7+5,求值: (1)b a +ab; (2)3a 2-ab +3b 2. 解:a +b =27,ab =2,(1)b a +a b =(a +b )2-2abab=12 (2)3a 2-ab +3b 2=3(a +b )2-7ab =7021.(8分)如图,四边形ABCD 是平行四边形,E ,F 为对角线AC 上两点,连接ED ,EB ,FD ,FB.给出以下结论:①BE ∥DF ;②BE =DF ;③AE =CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.解:答案不唯一,如:补充条件①BE ∥DF.证明:∵BE ∥DF ,∴∠BEC =∠DFA ,∴∠BEA =∠DFC ,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∴△ABE ≌△CDF (AAS ),∴BE =DF ,∴四边形BFDE 是平行四边形,∴ED ∥BF ,∴∠1=∠222.(7分)如图,在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某方向以每小时15海里的速度前进,2小时后甲船到M 岛,乙船到P 岛,两岛相距34海里,你能知道乙船沿哪个方向航行吗?解:(1)由题意得BM =2×8=16(海里),BP =2×15=30(海里),∵BM 2+BP 2=162+302=1156,MP 2=342=1156,∴BM 2+BP 2=MP 2,∴∠MBP =90°,∴乙船沿南偏东30°的方向航行23.(8分)如图,四边形ABCD 是菱形,BE ⊥AD ,BF ⊥CD ,垂足分别为点E ,F.(1)求证:BE =BF ;(2)当菱形ABCD 的对角线AC =8,BD =6时,求BE 的长.解:(1)由AAS 证△ABE ≌△CBF 可得 (2)∵四边形ABCD 是菱形,∴OA =12AC =4,OB =12BD =3,∠AOB =90°,∴AB =OA 2+OB 2=5,∵S 菱形ABCD =AD ·BE =12AC ·BD ,∴5BE =12×8×6,∴BE =24524.(8分)如图,在四边形ABCD 中,AB =AD =2,∠A =60°,BC =25,CD =4.(1)求∠ADC 的度数; (2)求四边形ABCD 的面积.解:(1)连接BD ,∵AB =AD =2,∠A =60°,∴△ABD 是等边三角形,∴BD =2,∠ADB =60°,在△BDC 中,BD =2,DC =4,BC =25,∴BD 2+DC 2=BC 2,∴△BDC 是直角三角形,∴∠BDC =90°,∴∠ADC =∠ADB +∠BDC =150° (2)S 四边形ABCD =S △ABD +S △BDC =12×2×3+12×2×4=3+425.(9分)如图,在▱ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E. (1)求证:△AOD ≌△EOC ;(2)连接AC ,DE ,当∠B =∠AEB =____°时,四边形ACED 是正方形,请说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D =∠OCE ,∠DAO =∠E ,∵O 是CD 的中点,∴OD =OC ,∴△AOD ≌△EOC (AAS ) (2)当∠B =∠AEB =45°时,四边形ACED 是正方形,理由:∵△AOD ≌△EOC ,∴OA =OE ,又∵OC =OD ,∴四边形ACED 是平行四边形,∵∠B =∠AEB =45°,∴AB =AE ,∠BAE =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠COE =∠BAE =90°,∴▱ACED 是菱形,∵AB =AE ,AB =CD ,∴AE =CD ,∴菱形ACED 是正方形26.(10分)已知正方形ABCD 和正方形EBGF 共顶点B ,连接AF ,H 为AF 的中点,连接EH ,正方形EBGF 绕点B 旋转.(1)如图①,当F 点落在BC 上时,求证:EH =12CF ;(2)如图②,当点E 落在BC 上时,连接BH ,若AB =5,BG =2,求BH 的长.解:(1)延长FE 交AB 于点Q ,∵四边形EBGF 是正方形,∴EF =EB ,∠EFB =∠EBF =45°,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴∠BQF =∠QBE =45°,∴QE =EB ,∴QE =EF ,又∵AH =FH ,∴EH =12AQ ,∵∠BQF =∠BFQ =45°,∴BQ =BF ,∵AB =BC ,∴AQ =CF ,∴EH =12CF (2)延长EH 交AB 于点N ,∵四边形EBGF 是正方形,∴EF ∥BG ,EF =EB =BG =2,∵EF ∥AG ,∴∠FEH =∠ANH ,∠EFH =∠NAH.又∵AH =FH ,∴△ANH ≌△FEH (AAS ),∴NH =EH ,AN =EF.∵AB =5,AN =EF =2,∴BN =AB -AN =3,∵∠NBE =90°,BE =2,BN =3,∴EN =22+32=13.∵∠NBE =90°,EH =NH ,∴BH =12EN =132期末检测题(一)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列根式有意义的范围为x ≥5的是( D )A.x +5B.1x -5 C.1x +5D.x -5 2.(2016·来宾)下列计算正确的是( B ) A.5-3= 2 B .35×23=615 C .(22)2=16 D.33=1 3.由线段a ,b ,c 组成的三角形不是直角三角形的是( D ) A .a =7,b =24,c =25 B .a =41,b =4,c =5 C .a =54,b =1,c =34 D .a =13,b =14,c =154.若一次函数y =x +4的图象上有两点A(-12,y 1),B(1,y 2),则下列说法正确的是( C )A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 25.已知A 样本的数据如下:72,73,76,76,77,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( B )A .平均数B .方差C .中位数D .众数6.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,下列结论正确的是( A ) A .S ▱ABCD =4S △AOB B .AC =BD C .AC ⊥BD D .▱ABCD 是轴对称图形,第6题图) ,第9题图) ,第10题图)7.李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6 产量172119182019这组数据的中位数为m A .18,2000 B .19,1900 C .18.5,1900 D .19,1850 8.下列说法中,错误的是( B )A .两条对角线互相平分的四边形是平行四边形B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的平行四边形是菱形D .两条对角线相等的菱形是正方形9.如图,在矩形ABCD 中,AD =2AB ,点M ,N 分别在边AD ,BC 上,连接BM ,DN ,若四边形MBND 是菱形,则AM MD等于( C )A.38B.23C.35D.4510.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( A )A.①②③B.仅有①②C.仅有①③D.仅有②③二、填空题(每小题3分,共24分)11.已知x,y为实数,且x-1+3(y-2)2=0,则x-y的值为__-1__.12.(2016·天津)若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是__-1(答案不唯一,b<0即可)__.(写出一个即可)13.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是__13__元.,第13题图),第14题图),第16题图),第18题图)14.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是__x<2__.15.(2016·邵阳)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环) 9.5 9.5方差0.035 0.01516.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连接DE和BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为__26__.17.在平面直角坐标系中,直线y=kx+x+1过一定点A,坐标系中有点B(2,0)和点C,要使以A,O,B,C 为顶点的四边形为平行四边形,则点C的坐标为__(2,1)或(2,-1)或(-2,1)__.18.如图,长方形纸片ABCD中,AB=6 cm,BC=8 cm,点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为__3或6__cm.三、解答题(共66分)19.(8分)计算:(1)27-12+45;(2)27×13-(5+3)(5-3).解:(1)原式=3+3 5 (2)原式=120.(8分)如图,四边形ABCD 是平行四边形,E ,F 是对角线BD 上的点,∠1=∠2. 求证:(1)BE =DF ;(2)AF ∥CE.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF ,∵∠1=∠2,∴∠AEB =∠CFD ,∴△ABE ≌△CDF (AAS ),∴BE =DF (2)由(1)得△ABE ≌△CDF ,∴AE =CF ,∵∠1=∠2,∴AE ∥CF ,∴四边形AECF 是平行四边形,∴AF ∥CE21.(8分)在直角坐标系中,一条直线经过A(-1,5),P(-2,a),B(3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.解:(1)直线解析式为y =-2x +3,把P (-2,a )代入y =-2x +3中,得a =7 (2)由(1)得点P (-2,7),当x =0时,y =3,∴D (0,3),∴S △OPD =12×3×2=322.(7分)如图,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4 m 的半圆,其边缘AB =CD =20 m ,点E 在CD 上,CE =4 m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,π取3)解:展开图如图,作EF ⊥AB ,由于平铺,∴四边形ABCD 是矩形,∴∠C =∠B =90°,∵EF ⊥AB ,∴∠EFA =∠EFB =90°,∴四边形CBFE 是矩形,∴EF =BC =4×2×3×12=12(m ),FB =CE =4 m ,∴AF =20-4=16(m ),∴AE =122+162=20(m ),即他滑行的最短距离为20 m23.(8分)(2016·乐山)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是__8__,乙的中位数是__7.5__;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?。