u型管换热器课程设计说明书2

合集下载

U型管换热器设计说明书2

U型管换热器设计说明书2

目录U型管换热器的特点 (1)结构设计 (2)1 管箱设计 (2)2 封头设计 (4)3 管板设计 (4)4 拉杆和定距管的确定 (6)5旁路挡板设计 (8)6 容器法兰的设计 (8)7 选取支座 (8)强度校核 (9)8 管箱筒体计算 (9)1计算条件: (9)2厚度及重量计算 (9)3压力试验时应力校核 (10)4压力及应力计算 (10)9壳程圆筒计算 (10)1计算条件 (10)2厚度及重量计算 (11)3压力实验时应力校核 (11)4压力及应力计算 (11)10开孔补强计算 (12)1计算条件 (12)2开孔补强计算 (13)3设计条件 (13)4开孔补强计算 (1414)5固定管板计算 (14)结束语 (15)参考文献 (16)U型管换热器的特点U型管换热器仅有一个管板,管子两端均固定在同一管板上,这一换热器的优点是:管束可以自由伸缩,不会因为管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。

缺点:管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分部管不紧凑,所以管字数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。

此外,为了弥补弯管后管壁的减薄,直管部分必须用壁较厚的管子。

这就影响了其适用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质不易结垢,高温、高压、腐蚀性强的场合。

本次课程设计的内容是U型管换热器,属管壳式(列管式)换热器,其设计分析包括热力设计、流动设计、结构设计以及强度设计。

其中以结构设计最为重要,U型管式换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。

其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。

对于列管式换热器,一般要根据换热流体的腐蚀性及其它特性来选择结构与材料,根据材料的加工性能,流体的压力和温度。

U型管换热器毕业设计说明书

U型管换热器毕业设计说明书

机械制造工艺学学号:毕业设计说明书U型管换热器设计U tube heat exchanger design学院机电工程学院专业化工设备与机械班级学生指导教师(职称)完成时间年月日至年月日广东石油化工学院专科毕业设计诚信承诺保证书本人郑重承诺:《U型管换热器设计》毕业设计的内容真实、可靠,是本人在指导教师的指导下,独立进行研究所完成。

毕业设计中引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处,如果存在弄虚作假、抄袭、剽窃的情况,本人愿承担全部责任。

学生签名:年月日毕业设计任务书院(系):专业班级:学生:学号:一、毕业论文课题 U形管换热器设计二、毕业论文工作自年月日起至年月日止三、毕业论文进行地点本校、实习地四、毕业论文的内容要求 1.毕业设计说明书 2.零号图纸1.5张基础数据:序号项目名称壳程管程单位1设计压力1817MPa2工作压力17.115.6MPa3设计温度400454℃4工作温度373415℃5操作介质混氢油反应产物—6焊接街头系数11—7腐蚀裕量33mm8水压试验压力24.6424.31MPa9入口温度134370℃10出口温度316210℃主要内容:1.结构设计参照相关手册、标准等确定换热器的结构。

包括总体结构尺寸的确定、折流板、接管、法兰、支座及拉杆的选择。

2.强度计算通过此部分计算,确定换热器的强度尺寸。

包括筒体、封头、管板的强度计算。

要求:1.毕业设计说明书2.零号图纸1.5张设计进度计划:第1~5周——查阅资料、现场调研、确定设计方案、工艺计算、确定工艺尺寸;第6~13周——结构设计、强度计算、绘图;第14~15周——撰写论文、打印论文、准备答辩。

主要参考资料:[1]毛希谰. 换热器设计[M]. 上海:上海科学技术出版社,1998[2]姚玉英. 化工原理[M].天津:天津大学出版社,1999[3]夏青德. 化工设备设计[M].北京:化学工业出版社,2000[4]GB150-1998,钢制压力容器[S].中国标准出版社出版.2000[5]GB151-1999,管壳式换热器[S].中国标准出版社.1998.指导教师接受论文任务开始执行日期 2014 年 3 月17 日学生签名摘要换热器是许多工业部门广泛应用的工艺设备。

U形管换热器设计说明书

U形管换热器设计说明书

目录引言 (8)一文献综述................................. 错误!未定义书签。

1.1换热器在化工生产中的应用............... 错误!未定义书签。

1.2换热器的分类及其特点................... 错误!未定义书签。

1.3U形管式换热器......................... 错误!未定义书签。

1.4管壳式换热器的研究现状................. 错误!未定义书签。

1.5本文设计的主要内容..................... 错误!未定义书签。

二计算说明书............................... 错误!未定义书签。

1.1原始数据.............................. 错误!未定义书签。

1.2定性温度及物性参数.................... 错误!未定义书签。

1.3传热量与冷水流量...................... 错误!未定义书签。

1.4有效平均温差 ......................... 错误!未定义书签。

1.5管程换热系数计算...................... 错误!未定义书签。

1.6壳程换热系数计算...................... 错误!未定义书签。

1.7传热系数计算 .......................... 错误!未定义书签。

1.8管壁温度计算 .......................... 错误!未定义书签。

1.9管程压降计算 .......................... 错误!未定义书签。

1.1壳程压降计算.......................... 错误!未定义书签。

2.1换热管材料、规格的选择及功能的确定..... 错误!未定义书签。

2.2管子的排列方式........................ 错误!未定义书签。

化工原理课程设计——列管式换热器的设计

化工原理课程设计——列管式换热器的设计

XX大学XX学院化工原理课程设计班级姓名学号指导教师 ____二零一X年X月X日化工原理课程设计任务书皖西学院生物与制药工程学院课程设计说明书题目:水冷却煤油列管式换热器的设计课程:化工原理系(部):专业:班级:学生姓名:学号:指导教师:完成日期:课程设计说明书目录第一章设计资料一、设计简介 (5)二、设计任务、参数和质量标准 (7)第二章工艺设计与说明一、工艺流程图 (8)二、工艺说明 (8)第三章物料衡算、能量衡算与设备选型一、物料衡算 (9)二、能量衡算 (11)三、主要设备选型 (13)第四章结论与分析结论与分析 (15)第五章设计总结设计总结 (17)参考文献 (17)第一章设计资料一、设计简介换热器是许多工业生产部门的通用工艺设备,尤其是石油、化工生产应用更为广泛。

在化工厂中换热器可用作加热器、冷却器、冷凝器、蒸发器和再沸器等。

进行换热器的设计,首先是根据工艺要求选用适当的类型,同时计算完成给定生产任务所需的传热面积,并确定换热器的工艺尺寸。

根据操作条件设计出符合条件的换热器,设计方案的确定包括换热器形式的选择,加热剂或冷却剂的选择,流体流入换热器的空间以及流体速度的选择。

本课程设计是根据任务给出的操作目的及条件、任务,合理设计适当的换热器类型,以满足生产要求。

1、固定板式换热器(代号G)设备型号内容有:壳体公称直径(mm),管程数,公称压力(×9.81×104 Pa),公称换热面积(m2),如G800I-6-100型换热器,G表示固定板式列管换热器,壳体公称直径为800mm,管程数为1,公称压力为6×9.81×104 Pa,换热面积为100m22、浮头式列管换热器(代号F)设备型号内容有:壳体公称直径(mm),传热面积(m2),承受压力(×9.81×104 Pa),管程数,如F A600-13-16-2型换热器,F代表浮头是列管换热器,B表示换热器为管径错误!未找到引用源。

U型管换热器设计说明书

U型管换热器设计说明书

流体流量进口温度出口温度压力煤油10tℎ⁄180℃40℃1MPa 水?tℎ⁄20℃40℃0.5MPa 一.热力计算1.换热量计算Q=m1∙C p1∙(T1−T2)=100003600∙2100∙(180−40)=817.32KJ/s 2.冷却剂用量计算m2=QC P2∙(t1−t2)=817.32∙1000 4183∙(40−20)=9.77KJ/s由于水的压力较之煤油较大,黏度较之煤油也较大,所以选择水为壳程,煤油为管程。

3.换热面积估算∆t1=|T1−t2|=140℃∆t2=|T2−t1|=20℃∆t m′=∆t1−∆t2ln∆t1∆t2=140−20ln14020=61.67∆t m′——按纯逆流时计算的对数平均温差∆t m=ε∆t∙∆t m′ε∆t——温差矫正系数ε∆t=φ(R.P)R=热流体的温降冷流体的温升=T1−T2t1−t2=180−4040−20=7P=冷流体温升两流体的初始温差=t2−t1T1−t1=40−2080−20=0.16查图d o−−换热管外径,mL=38.1320∙4∙π∙0.019=7.98m考虑到常用管为9m管,为生产加工方便,选用单程管长8m又考虑到单程管长8m会使得换热器较长,在选取换热器壳体内径时,尽量选取较大的,以保证安全,因此换热器内部空间较大,故选用较为宽松的正方形排布。

换热管材料由于管程压力大于0.6MPa,不允许使用焊接钢管,故选择无缝冷拔钢管。

按照GB—151管壳式换热器1999选取常用管心距p i= 25mm;分程隔板两侧管心距p s=38mm按下图作正方形排列选择布管限定圆直径D L=D i−0.5d o=400−10=390mm由布管限定圆从《GB151—1999》管壳式换热器中选定工程直径DN=400mm的卷制圆筒,查得碳素钢,低合金钢圆筒最小厚度不得小于8mm,高合金钢圆筒最小厚度不得小于3.5mm圆筒厚度计算:选用壳体材料为现在工业生产中压力容器的常用材料Q345R,为一种低合金钢。

u型管换热器设计说明书(1)

u型管换热器设计说明书(1)
由于垫片宽度为 3mm,则开槽取 4mm。壳程侧隔板槽深 4mm,管程隔板 槽深 4mm。
圆整为 24mm
(4).管板直径
根据容器法兰相关参数需要,取管板直径 D=473mm
考虑到金属的热膨胀尺寸,可由微小负偏差,但不允许有正偏
差。
(5).管板连接设计
由之前热力计算部分以确定布管方式选用正方形排布,布管限定
t 189 MPa
焊接接头系数取 0.85
8
0.5 400
0.623mm
2 189 0.85 0.5 0.5
又封头厚度因与筒体厚度相同以减少焊接所产生的应力,最终取封
头厚度为 8mm
2. 管箱短节设计:
管箱深
(1)管箱短节厚度设计:
度 300mm
管箱短节厚度与筒体厚度相同, 8mm
11
由 NB/T47020—47027-2012 查得长颈对焊法兰如下图所示: 其中:
D=565m m
L=26mm 螺栓 M24 C=26mm
(2)由上述数据可得 (3)预紧状态下的法兰力矩按下式计算:
12
(4)由机械设计手册查得 M20 的小径为 由此可得实际使用的螺栓总面积
(5)操作状态的法兰力矩计算: 作用于法兰内径截面上内压引起的轴向力 由下式计算:
,允许正偏差为,负偏差为 0,
即管孔为
(4) 折流板的固定
拉杆直
折流板的固定一般采用拉杆与定距管等原件与管板固定,其固 径
定形式由一下几种:
12mm
a. 采用全焊接法,拉杆一段插入管板并与管板固定,
拉杆长
每块折流板与拉杆焊接固定。

b. 拉杆一段用螺纹拧入管板,每块折流板之间用定距
8000mm

U型管式换热器

U型管式换热器
Key words: U type heat exchanger, structure, design and calculation
绪论
能源是当前人类面临的重要问题之一,能源开发及转换利用已成为各国的重要课题,而换热器是能源利用过程中不可缺少的设备,几乎一切工业领域都要使用,化工、冶金、动力、交通、航空与航天等部门应用尤为广泛。近几年由于新技术发展和新能源开发利用,各种类型的换热器越来越受到工业界的重视,而换热器又是节能措施中较为关键的设备,因此,无论是从工业的发展,还是从能源的有效利用,换热器的合理设计、制造、选型和运行都具有非常重要的意义。
The design for the two types of pressure vessels, design temperature and pressure are very high, so high design requirements. The heat exchanger adopts a pipe shell, stainless steel tube manufacturing. In the design of the structure design of the heat exchanger, intensity and components selection and process design.
对同一种型式的换热器,由于各种条件不同,往往采用的结垢亦不相同。在工程设计中,出尽量选用定型系列产品外,也常按其特定的条件进行设计,以满足工艺上的需要。
U型管式换热器仅有一块管板,且无浮头,所以结构简单,造价比其它换热器便宜,管束可以从壳体内抽出,管外便于清洗,但管内清洗困难,所以管内介质必须清洁及不易结垢的物料。U型管的弯管部分曲率不通,管子长度不一。管子因渗漏而堵死后,将造成传热面积的损失。

U型管换热器设计说明书68459

U型管换热器设计说明书68459
管外流体给热系数 :
精品
.
查得定性温度下流体的粘度为 壁温下流体的粘度 1004
查得壳程流体的普朗克数 查得水的导热系数
管内流体给热系数 :
查得煤油的导热系数 查得煤油的密度 管内流体的流速 煤油的粘度 煤油的比热 换热管的内径
在总传热系数计算公式中, 可看作 管外流体的污垢热阻 管内流体的污垢热阻 用外表面表示的管壁热阻
,允许正偏差为
0.3,负偏差为 0,即管孔为
(4) 折流板的固定 折流板的固定一般采用拉杆与定距管等原件与管 板固定,其固定形式由一下几种: a. 采用全焊接法,拉杆一段插入管板并与管板固 定,每块折流板与拉杆焊接固定。 b. 拉杆一段用螺纹拧入管板,每块折流板之间用 定距管固定,每一拉杆上最后一块折流板与拉 杆焊接 c. 螺纹与焊接相结合,拉杆一端用螺纹拧入管板, 然后将折流板焊接在拉杆上 d. 拉杆的一端用螺纹拧入管板,中间用定距管将 折流板固定,最后一快折流板用两螺母锁紧并 点焊固定。 这里选择 d.作为折流板固定的方法。
箱法兰连接。管板形式如下图:
折流板厚度 5mm
(2)管板计算 按照 GB151——1999 管壳式换热器中 a 型连接方式管板
的计算步骤进行下列计算。 a)根据布管尺寸计算
精品
. 在布管区范围内,因设置隔板槽和拉杆结 构的需要,而未能被换热管支撑的面积,
精品
. 对于正方形排布
拉杆直径 12mm 拉杆长度 8000mm
从 GB150.2 查得 40Cr 在 40 下的许用应力:
取其中面积较大者 (3)螺栓设计载荷 螺栓设计载荷按下列规定确定: a. 预紧状态螺栓设计载荷按下式计算:
b. 操作状态螺栓设计载荷按下式计算:
精品

U型管式换热器的设计

U型管式换热器的设计
本次设计的换热器在编制说明书分了六部分:第一部分前言,主要是对U型管换热器的应用、优缺点作了论述。。第二部分简单了工艺计算,通过计算传热量,流体阻力来选型。第三部分就所选型式换热器作结构及强度计算。第四部分简要介绍了U型管式换热器的制造工艺。第五部分是关于U型管式换热器的检验、安装、维修和使用。第六部分是材料的的经济性讨论;第七部分个人小结以及致谢,是针对本次设计的总结和设计后的感想。最后是附录, 参考文献。
筒体材料为16MnR 查GB 150-1998 ???
?

2.3.2 管箱封头设计
材料:16MnR
封头材料为16MnR 查GB 150-1998
?
厚度附加量C=C1+C2=2.0+0=2.0mm
取封头名义厚度与壳体名义厚度相等取
选择标准椭圆形封头,根据JB/T4736-2002,选以内径为基准,类型代号为EHA,型式参数关系为:Di/2(H-h)=2。标准椭圆形封头是由半个椭球面和短圆筒组 成。直边段的作用是避免封头和圆筒的连接焊缝处出现经向曲率半径突变,以改善焊缝的受力状况。
??逆流的另一优点是可以节约冷却或加热剂的用量,因为并流时t总是低于T,而逆流是,t却可以高于T,所以逆流冷却时,冷却剂的升温(T1-T2)可比并流的大一些,单位时间内传过的热量相同时,冷却剂用量就可以少些.同理,逆流加热时,加热剂本身温降(T1-T2)可比并流时大一些,也就是说,加热剂的用量少些.
℃ 焊接
系数 腐蚀裕量
mm 换热面积
m2 容器
类型 管程 1.7 300 0.85 2 110 Ⅱ 壳程 2.0 400 0.85 2 型号说明
2.1.2 换热管的选型
换热面积A=110m2 ?参照JB/T4714—92 选择换热器基本参数

U型管换热器设计说明书

U型管换热器设计说明书
(1)管板形式选择: 管板形式选择 a 型:管板通过垫片与壳体法兰和管箱法兰连接。管板
形式如下图:
(2)管板计算 按照 GB151——1999 管壳式换热器中 a 型连接方式管板的计算步骤进行下
列计算。 a)根据布管尺寸计算
在布管区围,因设置隔板槽和拉杆结构的需要,而未能被换 热管支撑的面积, 对于正方形排布
煤油在管中的流速为 0.8~1,取管程流体流速
常用换热管为

选用外径
管程流体体积流量可由煤油的要求流量的出:
n=20 N=4
换热管。
L=8m
取管数 由换热面积确定管程数和管长: 由于是 U 型管换热器,由 GB151-1999 管壳式换热器查得有 2,4 两种管程可 选。 初选管程为 4
考虑到常用管为 9m 管,为生产加工方便,选用单程管长 8m 又考虑到单程管长 8m 会使得换热器较长,在选取换热器壳体径时,尽量选取 较大的,以保证安全,因此换热器部空间较大,故选用较为宽松的正方形排 布。 换热管材料 由于管程压力大于 0.6MPa,不允许使用焊接钢管,故选择无缝冷拔钢管。
折流板间 距 200mm
计算压力
圆筒径由选定的圆筒公称直径得 设计温度下的圆筒材料的许用应力由选定的材料 Q345R 从 GB150.2 中查得
焊接接头系数
由于壳程流体为水,不会产生较严重的腐蚀,选取腐蚀 yu 量 又由于 Q345R 在公称直径为 400mm 是可选取得最小厚度为 8mm,则选择圆 筒厚度为 8mm 折流板间距: 折流板间距一般不小于圆筒径的五分之一且不小于 50mm;因此取折流板间 距为 200mm 核算传热系数: 由 GB151—1999 管壳式换热器得到包括污垢在的,以换热管外表面积为基准 的总传热系数 K 的计算公式:

U型管式换热器设计资料讲解

U型管式换热器设计资料讲解

U型管式换热器设计资料讲解U型管式换热器的主要结构由一组管子组成,这些管子通过两个平行的管板连接起来。

流体通过U型管道进入换热器,在管内流动,从而完成热量的交换。

通常情况下,一个流体贯穿着所有的U型管,而另一个流体贯穿着所有的U型管的一半,从而实现热量的传递。

以下是U型管式换热器设计资料的几个关键方面。

首先,需要确定换热器的工作流体和换热方式。

在选择工作流体时,需要考虑其性质和工艺要求。

同时,还需要确定是采用直接换热还是间接换热的方式。

直接换热指的是两种流体直接接触并交换热量,而间接换热指的是两种流体通过壁面进行热传导。

其次,需要进行换热器的热力学计算。

这包括冷热流体的流量、温度、压力等参数的确定。

通过对流体的物性进行热力学分析,可以计算出所需的热负荷和换热面积。

然后,需要进行换热器的结构设计。

这包括换热管道、壳体、管板等部件的选择和尺寸的确定。

对于U型管式换热器来说,关键是确定U型管的曲线形状和管道的布置方式。

这涉及到流体的流动和阻力,需要通过试验和计算得到最佳的设计。

此外,还需要进行材料选择和防腐措施的设计。

换热器的材料应具有良好的耐腐蚀性能,能够适应工作流体的特性。

针对工作流体的酸碱性、含盐量等情况,可以选择合适的材料进行防腐。

同时,还需要考虑操作温度、压力等因素对材料的影响。

最后,进行换热器的热力学和流体力学计算。

这包括壳程和管程的压降计算、流体的速度分布和流动状态的分析等。

通过这些分析可以得到换热器的性能参数,例如传热系数、换热效率等。

综上所述,U型管式换热器的设计资料包括流体选择、热力学计算、结构设计、材料选择和防腐措施设计、热力学和流体力学计算等。

通过合理的设计,可以实现热量的高效传递和流体的有效控制,提高换热器的性能和使用寿命。

氢气冷却器设计(U型管换热器)辽宁工业大学毕业设计(课程设计)师兄宋超 提供最全面说明书

氢气冷却器设计(U型管换热器)辽宁工业大学毕业设计(课程设计)师兄宋超 提供最全面说明书

摘要换热器是目前许多工业部门广泛应用的通用工艺设备,广泛应用于化工,石油化工和石油行业。

本次设计的换热器采用U型管式换热器,管程介质为氢气,工作压力0.7MPa,进口温度为150℃,出口温度为42℃;壳程介质为水,工作压力为1.0MPa,进口温度为32℃,出口温度为42℃;主体材质:管束为不锈钢、筒体为0Cr18Ni12Mo2Ti;主要内容包括三部分:第一部分对换热器的选型进行了论述,第二部分则阐述了换热器的设计计算,第三部分对加工制造及要求和总体经济分析作了简单说明。

设计的主要有工艺设计、强度设计计算、零件结构形式的选择及换热器的检验和验收等。

其中工艺设计包括:估算传热面积、确定工艺结构尺寸、核算压降和传热系数等;强度设计计算包括:壁厚、壳体上开孔补强、管箱开孔补强面积、管板、壳体法兰的计算;零件结构形式的选择包括:折流版、拉杆、定距管、隔程挡板、接管、防冲板与导流筒、排气排液管和鞍座等。

关键词:换热器;工艺设计计算;强度设计计算;管程;壳程;AbstractThe heat exchanger is widely used in many industrial sectors common process equipment, widely used in chemical, petrochemical and oil industry. industry.U tube heat exchanger is designed in the topic. The hydrogen is flowed in the U tube. the pressure is 0.7MPa, the intake temperature is 150 ℃, the outlet temperature is 42 ℃; the shell regulation walks water, the pressure is 1.0MPa, the intake temperature is 32 ℃, the outlet temperature is 42 ℃. main material: tubes are used by stainless steel ,the body of cylinder are used by 0Cr18Ni12Mo2Ti . Main contents include three parts: The first part has carried on the elaboration to the heat interchanger shaping, the second part is in detail narrated and has analyzed the interchanger design calculation, the third part give the simple explanation to the request of manufacture and the economic analysis.The main design including process design, calculations of strength design , selection and structure in the form of heat exchanger parts inspection and acceptance . Which process design including: estimating the heat transfer area , determine the process structure, size, pressure drop and heat transfer coefficient calculation; strength design calculations include:wall thickness, opening reinforcement on the housing tube box opening reinforcement area , the management board , the housing law Portland calculations ; parts structure options include : baffle version , rod , fixed pitch pipe , baffle every way , receivership, anti-red plate with draft tube , exhaust pipes and drain saddle and so on.Key words:heat exchanger;the design calculation of technolog;strength design calculation;shell side;tube side.目录第1章绪论 (1)1.1 概述 (1)1.2 换热器的分类 (2)1.3 换热器的特点及其选择 (3)1.4 国内发展前景及技术进步 (5)第2章设计方案的选择 (7)2.1 工艺简介 (7)2.2 操作条件 (7)2.3 选择换热器的类型 (7)2.4 经济分析与评价 (8)2.5 物性的确定 (8)2.6 流程的安排 (9)第3章工艺设计计算 (10)3.1 估算传热面积 (10)3.1.1 计算热负荷 (10)3.1.2 计算冷却水的流量 (10)3.1.3 计算两流体的平均温度差 (11)3.1.4 初选传热面积 (12)3.2 工艺结构尺寸 (12)3.2.1 换热管及管内流速选择 (12)3.2.2 管程数与换热管数 (13)3.2.3 平均传热温差校正及壳程数 (14)3.2.4 换热管排列方式与管间距的确定 (14)3.2.5 换热器壳体内径的确定 (16)3.2.6 折流板 (16)3.2.7 接管 (17)3.3 换热器的核算 (18)3.3.1 壳程对流传热系数 (18)3.3.2 管程对流传热系数 (19)3.3.3 污垢热阻的选择 (20)3.3.4 传热系数的计算 (21)3.3.5 传热面积 (21)3.4 流动阻力及换热器内压降核算 (22)3.4.1 管程流动阻力 (22)3.4.2 壳程流动阻力 (23)3.4.3 总阻力 (24)第4章强度设计计算 (26)4.1 换热器的选材 (26)4.2 筒体的设计与校核 (28)4.2.1 操作条件 (28)4.2.2 筒体厚度的计算 (28)4.2.3 筒体最小壁厚校核 (30)4.2.4 筒体厚度的强度 (30)4.3 封头的设计与校核 (32)4.3.1 封头的形式及选择 (32)4.3.2 封头的壁厚 (33)4.3.3 封头水压试验及强度校核 (34)4.4 管箱结构设计 (36)4.4.1 管箱结构设计 (36)4.4.2 管箱壁厚设计 (37)4.4.3 隔板 (40)4.5 管板的设计及计算 (40)4.5.1 管板连接设计 (40)4.5.2 管板设计计算 (42)4.6 接管的设计 (46)4.6.1 接管的一般要求 (46)4.6.2 壳程流体进出口接管计算 (46)4.6.3 管程流体进出口接管计算 (47)4.6.4 接管高度确定 (47)4.6.5 接管位置尺寸 (47)4.7 开孔补强 (48)4.7.1 补强结构 (48)4.7.2 补强计算 (49)4.8 密封装置设计 (57)4.8.1 法兰的选取与校核 (57)4.8.2 垫片的设计与选取 (62)4.8.3 螺栓与螺母的选取 (64)4.9 鞍座的设计与校核 (67)4.9.1 标准鞍式支座选用要求及说明 (67)4.9.2 支反力计算及水压校核 (68)4.9.3 鞍座的型号及尺寸 (68)4.9.4 鞍座的位置 (70)第5章零部件结构尺寸设计 (71)5.1 折流板的设计 (71)5.1.1 折流板的类型 (71)5.1.2 折流板的结构尺寸 (71)5.2 拉杆与定距管 (72)5.3 防冲挡板 (73)5.4 换热管在壳体内的排布 (73)5.5 排气与排液管 (74)第6章加工制造要求 (75)6.1 钢材 (75)6.2 焊接结构 (75)6.2.1 焊接要求 (75)6.2.2 主要焊接区结构 (75)6.2.3 焊接方法的选择 (76)6.2.4 主要焊接缺陷分析 (76)6.2.5 无损探伤 (77)6.3 技术要求 (77)6.4 加工制造要求 (77)6.4.1 滚圆原理 (77)6.4.2 滚圆工艺 (78)6.4.3 边缘加工 (78)6.4.4 设备组队装配 (79)6.4.5 组队基本工序及工具 (80)第7章经济分析 (81)7.1 单元设备价格估算 (81)7.2 总投资估算 (81)参考文献 (83)致谢 (84)附录 (85)第1章绪论1.1概述化工生产中,绝大多数的工艺过程都有加热、冷却、汽化和冷凝的过程,这些过程总称为传热过程。

U形管式换热器课程设计

U形管式换热器课程设计

《过程设备课程设计》指导书1.课程设计任务书课程设计题目:U型管式换热器设计课程设计要求及原始数据(资料):一、课程设计要求:1.使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。

2.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。

3.设计计算采用电算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。

4.工程图纸要求手工绘图。

5.毕业设计全部工作由学生本人独立完成。

二、原始数据:1. 卧式换热器设计条件表序号项目壳程管程1 设备名称冷却器2 型式BEM3 工作压力MPa 见设计参数表见设计参数表4 工作温度℃(进/ 出)见设计参数表见设计参数表5 工作介质水、甲醇水6 介质特性易燃易爆、中度危害7 腐蚀裕量mm 2.02.卧式换热器条件图3.卧式U型管式换热器设计参数表三、课程设计主要内容:1.设备的结构设计包括:管箱、管板、折流板、拉杆等结构形式的确定以及标准件(支座、容器法兰、管法兰)的选取等。

2. 设备强度计算(1)管、壳程的筒体及封头壁厚计算以及水压试验应力校核。

(2)管板的厚度计算及应力校核。

3.技术条件编制4.绘制设备总装配图5.编制设计说明书四、学生应交出的设计文件(论文):1.设计说明书一份2.总装配图一张(折合A1图纸一张)五、主要参考资料:[1] GB150-1998《钢制压力容器》,学苑出版社,1999[2] GB151-1999《管壳式换热器》,中国标准出版社,2000[3] 秦叔经叶文邦等,《化工设备设计全书——换热器》,化学工业出版社,2002.12[4] 中国化工设备设计技术中心站,《化工设备图样技术要求》,2000,11[5] 郑津洋、董其伍、桑芝富,《过程设备设计》,化学工业出版社,2001[6] 国家质量技术监督局,《压力容器安全技术监察规程》,中国劳动社会保障出版社,1999[7] 中国石化集团上海工程有限公司,《化工工艺设计手册》,化学工业出版社,20092.过程设备课程设计、计算2.1结构设计换热器的结构设计包括:管箱、管板、折流板、拉杆等结构形式的确定以及标准件(支座、容器法兰、管法兰)的选取。

U型管换热器毕业设计说明书

U型管换热器毕业设计说明书

U型管式换热器设计摘要本文介绍了U型管换热器的整体结构设计计算。

U型管换热器仅有一个管板,管子两端均固定于同一管板上,管子可以自由伸缩,无热应力,热补偿性能好;管程采用双管程,流程较长,流速较高,传热性能较好,承压能力强,管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。

U型管式换热器的主要结构包括管箱、筒体、封头、换热管、接管、折流板、防冲板和导流筒、防短路结构、支座及管壳程的其他附件等。

本次设计为二类压力容器,设计温度和设计压力都较高,因而设计要求高。

换热器采用双管程,不锈钢换热管制造。

设计中主要进行了换热器的结构设计,强度设计以及零部件的选型和工艺设计。

关键词:U型管换热器,结构,强度,设计计算U-TUBE HEAT EXCHANGER DESIGNABSTRACTThis paper introduces the U-tube heat exchanger design and calculation. U-tube heat exchanger has only one tube sheet, tubes are fixed at both ends of boards in the same tube, and tubes could telescopic freely, non-thermal stress, thermal performance and compensation; use of double-tube process, the process is longer, higher speed, better heat transfer performance, pressure capacity, and control can be extracted from the shell with easy maintenance and cleaning, and simple structure cost less. The main structure of U-tube heat exchanger, includes Equipment control, shell, head, exchanger tubes, nozzles, baffled, impingement baffle, guide shell, anti-short-circuit structure, support and other shell-tube accessories.This time I designed a second category pressure vessel, which has high design temperature and high design pressure. Thus the design demands are strict. It has dual heat exchanger tube, stainless steel heat exchanger manufacturers. I mainly carried out the design of heat exchanger structural design, strength of design and parts selection and process design.KEYWOEDS: U-tube heat exchanger, frame, intensity, design and calculation目录摘要 (1)绪论 (5)第一部分、换热器简介及选择 (7)1、换热器简介 (7)2、换热器材料选择 (7)2.1 选材原则 (8)3、换热器结构设计 (8)第二部分、设计说明书 (9)1、传热工艺计算 (9)1. 原始数据 (9)2. 定性温度及物性参数 (9)3. 传热量与冷水流量 (10)4. 有效平均温差 (10)5. 管程换热系数计算 (11)6. 壳程换热系数计算 (12)7.传热系数计算 (13)8.管壁温度计算 (14)9.管程压降计算 (14)10. 壳程压降计算 (15)2、强度计算 (16)2.1换热管材料、规格的选择及功能的确定 (16)2.2 管子的排列方式 (16)2.3 确定壳体直径 (17)2.4 筒体壁厚确定 (17)2.5 液压试验 (18)2.6 壳程标准椭圆形封头厚度的计算 (18)2.7 管程标准椭圆形封头厚度的计算 (19)2.8 法兰的选择 (21)2.9 管板的设计 (22)2.10 管箱短节壁厚的确定 (24)2.11拉杆和定距管的确定 (25)2.12 折流板的选择 (25)2.13防冲板的选择 (26)2.14 接管及开孔补强 (26)2.15 分程隔板厚度选取 (28)2.16支座的选择及应力校核 (29)第三部分、换热器的制造、检验、安装与维修 (33)1、换热器的制造、检验与验收 (33)3.1.1筒体 (33)3.1.2 换热管 (33)3.1.3管板 (34)3.1.4 折流板、支持板 (34)3.1.5 管束的组装 (34)3.1.6换热器的组装 (34)3.1.7 压力试验 (35)2、换热器的安装与维护 (35)3.2.1安装 (35)3.2.2维护 (35)结束语 (36)参考文献 (37)绪论能源是当前人类面临的重要问题之一,能源开发及转换利用已成为各国的重要课题,而换热器是能源利用过程中必不可少的设备,几乎一切工业领域都要使用,化工、冶金、动力、交通、航空与航天等部门应用尤为广泛。

u型管式换热器毕业设计

u型管式换热器毕业设计

u型管式换热器毕业设计U型管式换热器毕业设计导言换热器是工业领域中常见的设备,用于将热能从一个介质传递到另一个介质。

U型管式换热器是一种常见的换热器类型,它具有结构简单、传热效率高等优点,因此在许多工业领域得到广泛应用。

本文将探讨U型管式换热器的毕业设计,包括设计原理、结构优化和性能评估等方面。

设计原理U型管式换热器的设计原理基于热传导和对流传热的基本原理。

换热器内部由一系列U型弯管组成,热源介质通过管道的一侧流过,而冷却介质则通过管道的另一侧流过。

热源介质在管道内释放热量,而冷却介质则吸收这些热量,实现热能的传递。

结构优化在U型管式换热器的毕业设计中,结构优化是一个重要的考虑因素。

优化设计可以提高换热器的传热效率、降低能耗和减小设备体积。

以下是一些常见的结构优化方法:1. 材料选择:选择具有良好导热性能和耐腐蚀性的材料,以确保换热器的长期稳定运行。

2. 管道布局:通过合理的管道布局,最大限度地增加管道的接触面积,提高传热效率。

3. 流体流动优化:通过优化流体的流动路径和速度分布,减小流体的阻力,提高传热效率。

4. 热交换面积增加:通过增加管道的长度或增加管道的数量,增加热交换面积,提高传热效率。

性能评估在U型管式换热器的毕业设计中,性能评估是必不可少的一步。

通过性能评估,可以验证设计的合理性,并对换热器的传热效率和能耗进行评估。

以下是一些常见的性能评估指标:1. 传热效率:传热效率是衡量换热器传热性能的重要指标。

传热效率越高,表示换热器能够更有效地传递热能。

2. 温度差:温度差是指热源介质和冷却介质之间的温度差异。

温度差越大,表示换热器能够更快速地传递热量。

3. 能耗:能耗是指在换热过程中消耗的能量。

通过降低能耗,可以提高换热器的能源利用效率。

结论U型管式换热器是一种常见且有效的换热器类型,在工业领域中得到广泛应用。

在毕业设计中,结构优化和性能评估是关键的考虑因素。

通过合理的结构优化和科学的性能评估,可以设计出高效、节能的U型管式换热器,满足工业生产中的换热需求。

u型管式换热器结构设计及温度控制

u型管式换热器结构设计及温度控制

u型管式换热器结构设计及温度控制下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!U型管式换热器是一种常见的换热设备,广泛应用于工业生产中的热交换过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

U型管换热器课程设计说明书2-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANU型管换热器课程设计说明书设计题目 U型管换热器设计专业班级建环1001学生姓名 xxxxx学号 xxxxxx指导教师 xxxxx日期一、化工原理课程设计任务书(换热器的设计)(一)设计题目:煤油冷却器的设计(二)设计任务及操作条件:1.处理能力:15万吨/年煤油2.设备型式:列管式换热器3.操作条件:(1)煤油入口温度125℃,出口温度40℃;(2)冷却介质循环水,入口温度25℃,出口温度45℃;(3)允许压强降不大于105Pa;(4)煤油定性温度下的物性数据:密度为825kg/m3;粘度为:×;比热容为:(kg. ℃);导热系数为:(m. ℃)(5)每年按330天计,每天24小时连续运行。

(三)设计项目1传热计算2管、壳程数的确定及管、壳程流体阻力计算3管板厚度计算4 U形膨胀节计算(浮头式换热器除外)5管壳式换热器零部件结构(四)绘制换热器装配图(A2图纸)二、换热器的选用换热器的选用(即选型) 的过程大体如下, 具体计算可参看列管式换热器设计中有关内容。

①根据设计任务要求计算换热器的热负荷Q。

②按所选定的流动方式, 计算出平均温度差( 推动力)Δtm 及查出温差校正系数ψ�。

若�ψ< 0 . 8 , 应考虑采用多壳程结构的换热器或用多台换热器串联。

③依所处理流体介质的性质, 凭经验初选一总传热系数K0 (, 并由总传热估)速率方程计算传热面积S'0 :S'0 =Q/K0 估Δtm———凭经验选取的总传热系数,W /(m2·K) ;式中Q———热负荷,W; K0 (估)Δtm ———平均温度差, ℃。

④根根据计算出的S’0 值, 查有关换热器系列标准, 确定型号规格并列出各结构主要基本参数。

⑤利用总传热系数关联式计算K0 ( 计) , 再由总传热速率方程式求出S0 ( 计) 。

考虑到所用传热计算式的准确程度及其他未可预料的因素, 应使得所选用换热器具有的传热面积S0留有的裕度10%~25% , 即[ ( S0 - S0 ( 计) ) /S0 ( 计) ] =( 10% ~25% )。

否则需重新估计一个K0 ( 估) , 重复以上计算。

也可依所选用换热器具有的传热面积S0 , 通过总传热速率方程式求出K0 ( 选) , 然后比较K0 ( 选) /K0 ( 计) 之值是否在1 . 15~1 . 25 范围。

⑥计算出管、壳程压力降, 验算是否满足要求。

三、工艺计算及主要设备设计1、确定设计方案 选择换热器的类型:两流体温度变化情况:煤油进口温度为125℃,出口温度40℃,冷流体进口温度25℃,出口温度45℃;设煤油压力为,冷却水压力为。

该换热器用循环冷却水冷却,固定管板式换热器具有结构简单和造价低廉等优点, 但它仅适用于壳程流体压强小于0 . 6MPa, 管、壳程壁温温度差小于70℃ , 且管间只能通过清洁流体的场合,因此初步确定选用固定管板式换热器。

流程安排:由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,煤油走壳程。

选用ф25×的碳钢管(换热管标准:GB8163)。

2、确定物性数据:定性温度:可取流体进口温度的平均值。

煤油的定性温度为:5.82240125=+=T (℃) 冷却水的定性温度为:3524525=+=T 根据定性温度,分别查取壳程和管程流体的有关物性数据。

3、估算传热面积 计算热负荷和冷却水用量 W h =4.189392433010001000015=⨯⨯⨯(kg/h )Q =W h C p h Δt 0=××(125-40)=h=(kW) 忽略换热器的热损失,冷却水用量)h /(4.42676)2545(10187.41036007.992c C Wc 33kg t p Q i =-⨯⨯⨯⨯=∆= 计算两流体的平均温度差先按理想逆流传热温度差进行计算,即 83.38254045125ln )2540()45125(ln '2121=-----=∆∆∆-∆=∆t t t t t m (℃)温度校正平均传热温差校正系数:R=(125-40)/(45-25)=; P=(45-25)/(125-25)=由R 和P 值,按单壳程查温度差校正系数图,得温度校正系数φ=>,可行。

所以修正后的传热温度差为Δtm=φΔtm ’=初步选型 传热面积假设K=300W/(m 2·K),则估算面积为: A=Q/(K ×Δt m )=×103/(300×=(m 2) 管径和管内流速换热管选用碳钢管ф25×,取管内流速u= s 管程数和传热管数换热管选用普通无缝钢管ф25×,管内径d=,于是单程管根数n'为 36000.102.0785.0994/4.426764'22⨯⨯⨯==ii u d Vn π=取n'=38根按单程管计算,所需的传热管长度为: 38025.014.33.1030⨯⨯==n d A L π= 初选换热器类型与型号由于Tm-tm=(125+40)/2-(45+25)/2= (℃)<50(℃),两流体间的温差不大,不需要温度补偿;但是为了便于壳程污垢清洗,以采用固定管板式列管换热器为宜,且初步选定的具体型号为 的具体参数传热管排列和分程方法按单管程设计,传热管过长,宜采用多管程结构,根据本设计实际情况,采用标准设计,现取传热管长为l=6m ,则该换热器的管程数为:N P =L/l=6=6;传热管总根数: N T =38×6=228(根)采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。

取管心距t=,则t=×25=≈32(mm )横过管束中心线的管数 N c =N =228=17根 壳体内径采用多管程结构,取管板利用率η=,则壳体内径为 7.02283205.105.1⨯=ηTN t=圆整可取D=600mm 。

折流板采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为h =×600=150(mm )。

折流板间距B=,则B=×600=240mm 。

折流板数 N B =传热管长/折流板间距-1=6000/240-1=24(块) 折流板圆缺面水平装配 接管壳程流体进出口接管:取接管内煤油流速为u =s ,则接管内径为: D 1=090.00.114.3)8253600(4.18939441=⨯⨯⨯=u Vπ(m ),圆整后可取管内径为90mm 。

管程流体进出口接管:取接管内循环水流速 u = m/s ,则接管内径为101.05.114.3)9943600(4.4267642=⨯⨯⨯=D (m)=100mm 。

4.换热器的核算 热流量核算 壳程表面传热系数; 用克恩法计算:14.03155.00o 0o Pr Re 36.0⎪⎪⎭⎫ ⎝⎛=w d μμλα。

当量直径,由正三角排列得:de=020.0025.014.3)025.0785.0032.023(4)423(4220202=⨯⨯-⨯=-d d t ππm 壳程流通截面积:)032.0025.01(6.024.0)1(00-⨯=-=t d BD S =(m 2) 壳程中煤油流体流速及其雷诺数分别为:u 0=V0/A=202.00315.0)8253600(4.18939=⨯(m/s )Re 0=μρdeuo =000715.0825202.0020.0⨯⨯=普朗特数:Pr=34.11140.010*******.263=⨯⨯⨯-; 粘度校正:114.0≈⎪⎪⎭⎫⎝⎛w ηηα0=3155.034.115.466102.0140.036.0⨯⨯⨯=〔W/(m 2·K) 〕 管内表面传热系数: αi 4.08.0Re i 023.0Rr d iλ=管程流体流通截面积:S i =××216/6=(m 2) 管程流体流速及其雷诺数分别为: u i =0113.0)9943600/(4.42676⨯=(m/s )Re i =000727.0994055.102.0⨯⨯=普朗特数:Pr=85.4626.010*******.463=⨯⨯⨯- αi =×4.08.085.42.2884902.0626.0⨯⨯=〔W/ (m 2·K )〕 污垢热阻和管壁热阻查有关文献知可取: 管外侧污垢热阻 R 0= m 2·K/W 管内侧污垢热阻 R i = m 2·K/W 计算传热系数K (忽略管壁热阻):o 1K =o1α+R so +m d bd λo +i o i d d α+i i o d d R s Ko=00017.0020.01.50080250.0020.0025.000034.07.58911+⨯+⨯+=394计算传热面积A C :A C =Q/(K C ×△tm)=×103/(394×)=(m 2)该换热器的实际传热面积A :A=T N l d ⨯⨯⨯0π=××6×(228-17)=(m 2)该换热器的面积裕度为:H=CCA A A -×100%=11.8011.8038.99-×100%=%为了保证换热器的可靠性, 一般应使换热器的面积裕度大于15%~25%。

满足此要求, 所设计的换热器较为合适传热面积裕度合适,该换热器能够完成生产任务。

换热器内流体的流动阻力 管程流体阻力计算公式如下:△P t =(△P i +△P r )N S N p F S ; N S =1, N p =6,F S =;△P i =22u d l i i ρλ⨯。

由Re=,传热管相对粗糙度20=, 莫狄图(下图)得i λ=,流速u=s ,ρ=994kg/m 3,故△P i =i ii i u d l ρλ22=2055.199402.060338.02⨯⨯⨯=(P a ); △P r =2055.199432u 22⨯⨯=ρε=1573(P a ) △P t =(△Pi +△Pr )Fs Ns=(+1573)×6×=(P a )<105 P a管程流体阻力在允许范围内壳程阻力公式有:△P S =(△P 0+△P i )F S N S 其中 F S = ;N S =1 ; △P 0= Ff 0N TC (N B +1)220u ρ;又F=,f 0==5× Nc= =×=17 N B =24;u 0=s则流体流经管束的阻力: △P 0=Ff 0Nc(N B +1)220u ρ=××17×(24+1)×825×2≈(P a )流体流过折流板缺口的阻力 △P i =N B (D )220u ρ,其中 B=; D=;故△P i =24×(×)×825×2≈(P a ), 则总阻力:△ P S =△P 0+△P i =+=(P a )<105 P a 。

相关文档
最新文档