离散试题练习
离散数学练习题(含答案)
离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∃x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。
离散数学题目大汇总
离散数学试题一(A 卷答案)一、(10分)证明⌝(A ∨B )→⌝(P ∨Q ),P ,(B →A )∨⌝P A 。
二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。
关于谁参加竞赛,下列4种判断都是正确的:(1)甲和乙只有一人参加;(2)丙参加,丁必参加;(3)乙或丁至多参加一人;(4)丁不参加,甲也不会参加。
请推出哪两个人参加了围棋比赛。
三、(10分)指出下列推理中,在哪些步骤上有错误?为什么?给出正确的推理形式。
(1)∀x (P (x )→Q (x )) P(2)P (y )→Q (y ) T (1),US(3)∃xP (x ) P(4)P (y ) T (3),ES(5)Q (y ) T (2)(4),I(6)∃xQ (x ) T (5),EG四、(10分)设A ={a ,b ,c},试给出A 上的一个二元关系R ,使其同时不满足自反性、反自反性、五、(15分)设函数g :A →B ,f :B →C ,(1)若f g 是满射,则f 是满射。
(2)若f g 是单射,则g 是单射。
六、(15分)设R 是集合A 上的一个具有传递和自反性质的关系,T 是A 上的关系,使得<a ,b >∈T ⇔<a ,b >∈R 且<b ,a >∈R ,证明T 是一个等价关系。
七、(15分)若<G ,*>是群,H 是G 的非空子集,则<H ,*>是<G ,*>的子群⇔对任意的a 、b ∈H 有a *b -1∈H 。
八、(15分)(1)若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的。
(2)若有向图G 中只有两个奇数度结点,它们一个可达另一个结点或互相可达吗?离散数学试题一(B 卷答案)一、(15分)设计一盏电灯的开关电路,要求受3个开关A 、B 、C 的控制:当且仅当A 和C 同时关闭或B 和C 同时关闭时灯亮。
设F 表示灯亮。
离散数学试题及答案
离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学试题
离散数学试题离散数学试题⼀、单项选择题(本⼤题共15⼩题,每⼩题1分,共15分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.数理逻辑是采⽤()研究抽象思维规律的⼀门科学。
A.数学⽅法B.逻辑⽅法C.实践⽅法D.抽象⽅法2.下列式⼦正确的是()3.下列含有命题p,q,r的公式中,是主析取范式的是()4.设R(x):x是实数;S(x,y):x⼩于y。
⽤谓词表达下述命题:不存在最⼩的实数。
其中错误的表达式是:()5.在论域D={a,b}中与公式(x?)A(x)等价的不含存在量词的公式是()A.)b(A)a(A∨A∧ B. )b(A)a(C. )b()b(A→AA→ D. )a(A)a(6.对公式)y,x(P)x(?x的说法正确的是())(∧∧)z,y((yQ)y,x(P)(A.x是约束出现,y是约束出现,z是⾃由出现B.x是约束出现,y既是约束出现⼜是⾃由出现,z是⾃由出现C.x是约束出现,y既是约束出现⼜是⾃由出现,z是约束出现D.x是约束出现,y是约束出现,z是约束出现7.偏序关系具有性质()A.⾃反、对称、传递B.⾃反、反对称C.反⾃反、对称、传递D.⾃反、反对称、传递8.下列命题正确的是()9.以下系统是代数系统的是()A.,其中Z+是正整数集,-是数的减法运算B.,其中A={a,b},*运算定义为C. ,其中Z为整数集,÷是数的除法运算D. ,其中R为实数集,÷是数的除法运算{})(G,)1ix(x,i,i,1,1G.10的⼦群的是下列代数系统为是⼀个群是数的乘法运算其中 -=--=A.{}x,1 - B. {}x,i C. {}x,i,i - D. {}x,1,1 -11.若*+,,R是环,且R中乘法适合消去律,则R是()A.⽆零因⼦环B.除环C.整环D.域12.在简单⽆向图G=E,V中,如果V中的每个结点都与其余的所有结点邻接,则该图称为()A.正则图B.完全图C.连通图D.强连通图13.设G是n个结点m条边的连通平⾯图,则当n≥3时必有()成⽴。
离散数学试题及解答
离散数学2^m*n一、选择题(2*10)1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。
(A)P→⌝Q (B)P∨⌝Q(C)P∧Q (D)P∧⌝Q2.下列命题公式为永真蕴含式的是()。
(A)Q→(P∧Q)(B)P→(P∧Q)(C)(P∧Q)→P (D)(P∨Q)→Q3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定是()。
(A)所有人都不是大学生,有些人不会死(B)所有人不都是大学生,所有人都不会死(C)存在一些人不是大学生,有些人不会死(D)所有人都不是大学生,所有人都不会死4、永真式的否定是()。
(A)永真式(B)永假式(C)可满足式(D)以上均有可能5、以下选项中正确的是()。
(A)0= Ø(B)0 ⊆Ø(C)0∈Ø(D)0∉Ø6、以下哪个不是集合A上的等价关系的性质?()(A)自反性(B)有限性(C)对称性(D)传递性7、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y∈A},则R的性质为()。
(A)自反的(B)对称的(C)传递的,对称的(D)传递的8.设D=<V, E>为有向图,V={a, b, c, d, e, f}, E={<a, b>, <b, c>, <a, d>, <d, e>, <f, e>}是()。
(A)强连通图(B)单向连通图(C)弱连通图(D)不连通图9、具有6个顶点,12条边的连通简单平面图中,每个面都是由()条边围成?(A)2(B)4 (C)3(D)510.连通图G是一棵树,当且仅当G中()。
(A)有些边不是割边(B)每条边都是割边(C)无割边集(D)每条边都不是割边二、填空题(2*10)1、命题“2是偶数或-3是负数”的否定是________。
离散数学考试题及详细参考答案
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
离散数学考试题及答案
离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
自考离散数学试题及答案
自考离散数学试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 命题逻辑中,下列哪个表达式表示“非”操作?A. ∧B. ∨C. ¬D. →答案:C3. 在下列哪个图论的术语中,表示图中任意两个顶点都相连?A. 无向图B. 有向图C. 完全图D. 二分图答案:C4. 布尔代数中,下列哪个操作是“或”?A. ∧C. ¬D. →答案:B5. 以下哪个是等价关系的属性?A. 自反性B. 对称性C. 反对称性D. 传递性答案:A6. 有限自动机中,状态可以被分为哪两种类型?A. 初始状态和终止状态B. 接受状态和拒绝状态C. 确定状态和非确定状态D. 静态状态和动态状态答案:B7. 在关系数据库中,下列哪个操作用于删除表中的行?A. INSERTB. DELETEC. UPDATED. SELECT答案:B8. 以下哪个是谓词逻辑中的量词?B. ∃C. ∧D. ∨答案:A9. 在命题逻辑中,德摩根定律描述了哪些逻辑运算的对偶性?A. ∧ 和∨B. ¬和→C. ¬和↔D. → 和↔答案:A10. 树的深度优先搜索(DFS)算法通常使用哪种数据结构来实现?A. 队列B. 栈C. 链表D. 哈希表答案:B二、填空题(每题3分,共30分)11. 在集合{1, 2, 3, 4, 5}中,子集的总数是_________。
答案:3212. 如果命题P为真,则命题P → Q的真值表中,Q的值必须为_________。
答案:真13. 在有向图中,一个顶点的入度是指_________。
答案:指向该顶点的边的数量14. 一个关系R(A, B, C)中,如果对于任意两个元组,当它们在属性A上的值相等时,它们在属性B和C上的值也相等,则称R具有_________。
答案:候选键15. 在布尔代数中,表达式(A ∧ B) ∨ (A ∧ ¬B)的结果是_________。
离散数学试题总汇及答案
离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。
A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。
B. 有些狗不会游泳。
C. 所有的狗都不会游泳。
D. 以上都不是真命题。
4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。
A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。
B. 有些鸟不会飞。
C. 所有的哺乳动物都是温血动物。
D. 以上都不是假命题。
9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。
A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。
A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。
2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。
离散数学试题及答案解析
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。
答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。
答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。
答案:满射4. 在图论中,一个没有环的连通图被称为_________。
答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。
答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。
《离散数学》期末练习题考试卷和答案
a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5
D. x x是有理数, x 5
。
6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
离散数学试题及答案
离散数学试题及答案一、选择题(每题2分,共20分)1. 集合A={x|x<5},集合B={x|x>2},则A∩B为:A. {x|x>2}B. {x|x<2}C. {x|2<x<5}D. {x|x≥5}2. 命题p:"x>0"是命题q:"x^2>0"的:A. 必要条件B. 充分条件C. 充分必要条件D. 无关条件3. 函数f(x)=x^2+3x-2的值域是:A. (-∞, -1]B. [1, +∞)C. (-∞, 4]D. (-∞, 2]4. 逻辑表达式((P∨Q)∧(¬P))的真值表中,当P为真时,表达式的值为:A. 真B. 假C. 不确定D. 无法判断5. 已知二元关系R定义在集合A上,若对于任意a,b,c∈A,若aRb且bRc,则aRc,那么R是:A. 自反的B. 对称的C. 传递的D. 完全的6. 有限状态自动机(DFA)与确定有限状态自动机(DFA)的区别在于:A. DFA可以识别非正则语言B. DFA可以有多个起始状态C. DFA可以有多个接受状态D. DFA可以有多个状态7. 命题逻辑中,若命题P的否定为P',则P和P'的关系是:A. 互为对立B. 互为矛盾C. 互为等价D. 互为同一律8. 集合{1,2,3}的子集个数是:A. 3B. 4C. 7D. 89. 一个命题逻辑公式的真值表中,若存在一行结果为假,则该公式:A. 总是假B. 有时真,有时假C. 总是真D. 无法判断10. 布尔代数中,逻辑与(AND)操作的特点是:A. 有0则0B. 有1则1C. 非0即1D. 非1即0二、简答题(每题5分,共10分)1. 简述集合论中的幂集概念。
2. 描述图的邻接矩阵表示方法。
三、计算题(每题10分,共30分)1. 证明函数f(x)=x^3-3x^2+2x-1在R上是单调递增的。
离散数学试题带答案大全
离散数学试题带答案一、选择题1、G 是一棵根树,则( )。
A 、G 一定是连通的B 、G 一定是强连通的C 、G 只有一个顶点的出度为0D 、G 只有一个顶点的入度为12、下面哪个语句不是命题( )。
A 、中国将成功举办2008年奥运会B 、一亿年前地球发生了大灾难C 、我说的不是真话D 、哈密顿图是连通的3、设R 是实数集合,在上定义二元运算*:a ,b ∈R ,a*b=a+b-ab ,则下面的论断中正确的是( )。
A 、0是*的零元B 、1是*的幺元C 、0是*的幺元D 、*没有等幂元4、下面说法中正确的是( )。
A 、所有可数集合都是等势的B 、任何集合都有与其等势的真子集C 、有些无限集合没有可数子集D 、有理数集合是不可数集合5、无向完全图K 3的不同构的生成子图有( )个。
A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A 、无回路的连通图B 、有n 个顶点n-1条边的连通图C 、每对顶点间都有通路的图D 、连通但删去一条边则不连通的图7、设集合A ={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。
A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。
A 、必惟一B 、不惟一C 、不一定惟一D 、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A 是不封闭的?( )A 、 x*y=max{x,y}B 、 x*y=min{x,y}C 、 x*y=GCD(x,y),即x,y 的最大公约数D 、 x*y=LCM(x,y),即x,y 的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。
A 、R 是对称的B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。
离散数学试题及答案解析
离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 有些天鹅不是白色的。
C. 所有天鹅都不是白色的。
D. 没有天鹅是白色的。
答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。
答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。
答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。
答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。
答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。
答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。
证明:假设p成立,由于p是q的充分条件,所以q成立。
又因为q是r的充分条件,所以r成立。
因此,p成立可以推出r成立,即p是r的充分条件。
2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。
离散数学经典测试题及答案
离散数学经典测试题及答案第一题: 命题逻辑与真值表根据下列命题符号表示的逻辑表达式,填写真值表。
1. \(p \land q\)2. \((\lnot p \lor q) \land (p \implies q)\)答案1. \(p \land q\)2. \((\lnot p \lor q) \land (p \implies q)\)第二题: 数学归纳法证明使用数学归纳法证明下列等式对于所有\(n \geq 1\)成立。
\(\sum_{i=1}^{n}(2i-1) = n^2\)证明1. 基础步骤:当\(n=1\)时,左边等式为\(1\), 右边等式为\(1^2 = 1\), 成立。
2. 归纳假设:假设当\(n=k\)时等式成立,即\(\sum_{i=1}^{k}(2i-1) = k^2\)。
3. 归纳步骤:考虑\(n=k+1\)的情况,- 左边等式为\(\sum_{i=1}^{k+1}(2i-1) = \sum_{i=1}^{k}(2i-1) + (2(k+1)-1)\)- 右边等式为\((k+1)^2 = k^2 + 2k + 1\)现在我们可以利用归纳假设,将左边等式展开:\(\sum_{i=1}^{k}(2i-1) + (2(k+1)-1) = k^2 + 2k + 1\)然后,化简左边的部分可以得到:\(k^2 + (2k - 1) + (2(k+1) - 1) = k^2 + 2k + 1\)这个等式成立,证明完毕。
第三题: 集合论给定两个集合A和B,证明下列恒等式成立:\(A \cup (B - A) = A \cup B\)证明我们可以使用集合论的定义来证明这个恒等式。
1. 证明\(A \cup (B - A) \subseteq A \cup B\)- 对于任意\(x \in A \cup (B - A)\),有两种情况:- 如果\(x \in A\),则\(x \in A \cup B\),因为\(A \subseteq A \cupB\)。
离散数学考试试题及答案
离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散试题练习
————————————————————————————————作者:————————————————————————————————日期:
1.求下列各公式的主析取范式和主合取范式:
(P→Q)∧R
(P∧R)∨(Q∧R)∨⌝P
2.证明:
P→Q,⌝Q∨R,⌝R,⌝S∨P=>⌝S
A→(B→C),C→(⌝D∨E),⌝F→(D∧⌝E),A=>B→F
P∨Q, P→R, Q→S => R∨S
3.设A={1,2,…,10}。
下列哪个是A的划分?若是划分,则它们诱导的等价关系是什么?
(1)B={{1,3,6},{2,8,10},{4,5,7}};
(2)C={{1,5,7},{2,4,8,9},{3,5,6,10}};
(3)D={{1,2,7},{3,5,10},{4,6,8},{9}}
4.R是A={1,2,3,4,5,6}上的等价关系,
R=I
⋃{<1,5>,<5,1>,<2,4>,<4,2>,<3,6>,<6,3>} A
求R 诱导的划分。
5.设<G,·>是群,a ,b ∈G,a≠e ,且a 4·b=b ·a 5。
试证a ·b ≠b·a
6. I 上的二元运算*在I 上;封闭定义为:∀a,b ∈I,a*b =a+b-2。
试证:<I ,*>为群。
7.证明在有n 个结点的树中,其结点度数之和是2n-2
8.设T=<V,E>是一棵树,若|V|>1,则T 中至少存在两片树叶。
9. 已知一棵无向树中有2个2度顶点、1个3度顶点、3个4度顶点,其余顶点度数都为1。
问它有多少个1度顶点?
10. 求循环群C 12={e,a,a 2,…,a 11}中H ={e,a 4,a8}的所有右
陪集。
)()())()((x xQ x xP x Q x P x ∃∨∀⇒∨∀
11.设半群<S,·>中消去律成立,则<S,·>是可交换半群当且仅当∀a,b ∈S ,(a·b )2=a 2·b 2
12.设*是集合A 上可结合的二元运算,且∀a,b∈A,若a*b=b*a,则a=b;
证明: (1)∀a ∈A,a *a=a ,即a 是等幂元
(2)∀a,b ∈A,a *b*a =a;
13. 设集合A={ a ,b , c , d }上关系R ={< a, b > , < b , a > , < b , c > , < c , d >}
要求 1、写出R 的关系矩阵和关系图。
(4分)
2、用矩阵运算求出R的传递闭包。
(6分)
14、如下图所示的赋权图表示某七个城市及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。
(9分)
用真值表法证明P ↔Q ⇔ (P →Q)∧(Q →P)
721,,,v v v
用先求主范式的方法证明(P→Q)∧(P→R)⇔ (P→(Q∧R)
一次会议有20人参加,其中每个人都在其中有不下10个朋友。
这20人围成一圆桌入席。
有没有可能使任意相邻而坐的两个人都是朋友?为什么?
为庆祝九七香港回归祖国,四支足球队进行比赛,已知情况如下,问结论是否有效?
前提: (1) 若A队得第一,则B队或C队获亚军;
(2)若C队获亚军,则A队不能获冠军;
(3)若D队获亚军,则B队不能获亚军;
(4)A队获第一;
结论: (5) D队不是亚军。
1.当每个结点的度数大于等于3时,不存在有7条边的简单连通平面图
n-k+m=2
d(v)>=n/2
2.权数2,3,5,7,8构造一棵最优二叉树
3.集合A={a,b} B=Φ,计算A X P(B)
设A={a,{a}},下列命题错误的是( )。
(1){a}∈P(A) (2) {a}⊆P(A) (3){{a}}∈P(A) (4) {{a}}⊆P(A)
在0()Φ之间写上正确的符号。
(1) = (2) ⊆ (3) ∈(4) ∉
若集合S的基数|S|=5,则S的幂集的基数|P(S)|=( )。
下列各集合中,哪几个分别相等( )。
(1) A1={a,b} (2) A2={b,a} (3) A3={a,b,a} (4) A4={a,b,c}
(5)A5={x|(x-a)(x-b)(x-c)=0} (6) A6={x|x2-(a+b)x+ab=0}
设A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={〈x,y〉|x=y2},求(1)R (2) R-1
举出集合A上的既是等价关系又是偏序关系的一个例子。
() 集合A上的等价关系的三个性质是什么?( )
集合A上的偏序关系的三个性质是什么?( )
设S={1,2,3,4},A上的关系R={〈1,2〉,〈2,1〉,〈2,3〉,〈3,4〉}
求(1)R R (2) R-1
设A={2,4,6},A上的二元运算*定义为:a*b=max{a,b},则在独异点<A,*>中,单位元是( ),零元是( )。
设A={3,6,9},A上的二元运算*定义
设〈G,*〉是一个群,则
(1) 若a,b,x∈G,a*x=b,则x=( );(2) 若a,b,x∈G,a*x=a*b,则x=( )
设G是一个哈密尔顿图,则G一定是( )。
(1)欧拉图(2) 树(3)平面图 (4) 连通图
设G是一棵树,则G 的生成树有( )棵。
(1) 0 (2) 1 (3) 2 (4) 不能确定
n阶无向完全图Kn的边数是( ),每个结点的度数是( )。
一棵无向树的顶点数n与边数m关系是( )。
一个图的欧拉回路是一条通过图中( )的回路。
有n个结点的树,其结点度数之和是( )。