2017年中考数学总复习第一轮基础知识复习第二章方程组与不等式组第2讲一元二次方程(练册本)课件
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.
中考数学复习第二章方程组与不等式组讲义
第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
2017中考数学总复习考点归纳:方程与方程组
2017中考数学总复习考点归纳:方程与方程组2017中考数学总复习考点归纳:方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。
那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。
也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。
在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。
中考数学一轮复习 第二章 方程与不等式 第二节 一元二次方程课件
得-2+a=-5,解得a=-3.故选B.
2021/12/8
第二十一页,共三十三页。
讲:
应用根与系数关系的前提
研究一元二次方程根与系数的关系的前提:(1)二次项
系数a≠0;(2)判别式Δ≥0.因此利用一元二次方程根与系数
的关系求方程中所含字母的值或范围时,必须要考虑(kǎolǜ)这两个
条件.
练:链接变式训练5
2021/12/8
第二十页,共三十三页。
考点三 一元二次方程根与系数的关系 (5年1考)
例3 (2017·济南)关于x的方程x2+5x+m=0的一个(yī ɡè)根为
-2,则另一个根为( )
A.-6
B.-3
C.3 D.6
【分析】 设方程的另一个根为a,由根与系数的关系求解
即可.
【自主解答】 设方程的另一个根为a,由根与系数的关系
b2-4ac>0⇔方程有两个 _____不相__相等的等实数根; (xiāngděng)
b2-4ac=0⇔方程有两个 ___(x_i_āngd的ěn实g 数根;
)
b2-4ac<0⇔方程 _____实数根.
没有
2021/12/8
第五页,共三十三页。
应用根的判别式时,当一元二次方程不是一般形式(xíngshì)时, 要先化成一般形式.
B 商场全场九折,所需费用为162×0.9×100=14 580(元). ∵14 742>14 580, ∴去B 商场购买更优惠.
2021/12/8
第三十二页,共三十三页。
内容(nèiróng)总结
第二节 一元二次方程。b2-4ac≥0是应用根与系数(xìshù)的公式的前提.。(5)验,即检验结果
人教版初三数学上册2017年中考数学第一轮复习 “方程与不等式”之“一元二次方
2017年中考数学第一轮复习“方程与不等式”之“一元二次方程”复习目标:1.理解一元二次方程的概念,并掌握一元二次方程的一般形式;2.掌握一元二次方程的解法及解的意义;3.掌握一元二次方程的解的情况及判别式的作用; 重点:1.掌握一元二次方程的解法中的通性通法——求根公式法及其一般步骤;2.掌握一元二次方程的解的意义;3.掌握一元二次方程的解的情况及判别式的作用; 难点:一元二次方程的判别式的作用; 复习过程环节一:一元二次方程的概念和一般形式题组A1.对于下列方程中,一元二次方程的有( )A . 1 个B . 2个C .3个D .4个2.若032)1(2=-+-x x m 是关于x 的一元二次方程,则m 满足的条件是( )A .1=mB .1<mC .1>mD .1≠m概括:知识1:一元二次方程的概念——只含一个未知数,且未知数的最高次数是二次的方程。
知识2: 一元二次方程的一般形式——一02=++c bx ax (0≠a ) 题组B3.若032)2(=-++x x m m是关于x 的一元二次方程,则m = ;4.若2232x x kx +=-是关于x 的一元二次方程,则k 满足的条件是 ; 环节二:一元二次方程的解法题组A1.一元二次方程22=-x x 的解是( )A .2=xB .1-=xC .1,221-==x xD .1,221=-=x x2.已知 -1 是x 的方程0322=+-ax x 的解,则a 的值是 .3.解下列方程(1) 2)1(2=-x (2)(2013广州)09102=+-x x(3) 0962=++x x (4) 0122=++x x概括:知识2—— 一元二次方程解的意义及解法(1)一元二次方程的解的意义:若m 是x 的方程02=++c bx ax 的解,则把m代入方程,必有02=++c bm am ; (2)一元二次方程的解法:方法1——直接开平方法; 方法2——配方法方法3——求根公式法; 方法4——因式分解法 题组B4.(2015年广州市)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )(A )10 (B )14 (C )10或14 (D )8或10环节三 一元二次方程的根的判别式 题组A1.方程02422=+-x x 的解的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定 2.方程0132=--x x 的解的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定3.(2016海珠区模拟)已知一元二次方程2530x x -+=,则该方程根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 4.下列没有实数解的方程是( )A .012=-xB .x x =2C .722=-x xD .01002=+x概括知识3:一元二次方程:02=++c bx ax 的解情况: (1)042>-=∆ac b ⇔方程有两个不相等的实数根; (2)042=-=∆ac b ⇔方程有两个相等的实数根; (3)042<-=∆ac b ⇔方程无实数根;题组B5.(2013年广州市)若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( )A 没有实数根B 有两个相等的实数根C 有两个不相等的实数根D 无法判断 6.一元二次方程12=-mx x 解的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定7.已知x 的一元二次方程032=+-m x x ,则方程的解的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .由m 具体值来确定 8.(2012•广州)已知关于x 的一元二次方程x 2﹣2x+k=0有两个相等的实数根,则k 值为 .9.已知x 的一元二次方程02122=++m x x 有两个不相等的实数根,则m 的取值范围是( )A .2>mB .2->mC .2<mD .2-<m 10.已知x 的一元二次方程01212=-++m x x 无实数根,则m 的取值范围是( ) A .23<m B .23-<m C .23>m D .23->m概括:知识4:一元二次方程:02=++c bx ax 的根的判别(ac b 42-=∆)的常考题型:题型1——不解方程,判别方程的根的情况;题型2——知一个一元二次方程的解的情况,求方程中待定字母的取值或取值范 围。
中考数学总复习第一部分基础知识复习第2章方程组与不等式组第2讲一元二次方程课件
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
பைடு நூலகம்
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
2017年中考数学《第2章方程与不等式》第2节 二元一次方程组总复习课件
中的一个未知数(例如y)用含另一个未知数(例如x)的代数
式表示出来,即写成y=ax+b的形式,即“变”. (2)将y=ax+b代入到另一个方程中,消去y,得到一个关于x 的一元一次方程,即“代”. (3)解出这个一元一次方程,求出x的值,即“解”.
(4)把求得的x值代入y=ax+b中求出y的值,即“回代”.
5. 解方程组:
考点点拨: 本考点的题型一般为填空题或解答题,难度中等.
解答本考点的有关题目,关键在于熟练掌握用代入消元法和
加减消元解二元一次方程组的一般步骤,并正确进行求解 (相关要点详见“知识梳理”部分).
考点2
二元一次方程组的应用 考点精讲
【例2】(2015佛山)某景点的门票价格如下表:
某校七年级(1)(2)两班计划去游览该景点,其中(1)
班人数少于50人,(2)班人数多于50人且少于100人,如果两
班都以班为单位单独购票,则一共支付1 118元;如果两班联
合起来作为一个团体购票,则只需花费816元.
(1)两个班各有多少名学生? (2)团体购票与单独购票相比较,两个班各节约了多少钱?
考点精讲
【例1】用指定的方法解下列方程组:
思路点拨:分别根据代入法和加减法解二元一次方程组的一 般步骤求出方程组的解即可.
把③代入①,得3(4+y)+4y=19.解得y=1. 将y=1代入③,得x=5.
考题再现
1. (2015广州)已知a,b满足方程组 为 则a+b的值 ( B )
A. -4
B. 4
第一部分 教材梳理
第二章 方程与不等式
第2节 二元一次方程组
知识梳理
概念定理
1. 二元一次方程:含有两个未知数,并且含有未知数项的次 数都是1,这样的方程叫做二元一次方程. 2. 二元一次方程组:把具有相同未知数的两个二元一次方程
中考数学一轮总复习讲解 第二章 方程与不等式
中考数学一轮总复习讲解第二章方程与不等式第6讲一元一次方程与分式方程及其应用第7讲二元一次方程组及其应用第8讲一元二次方程及其应用第9讲方程(组)的应用第10讲不等式与不等式组第11讲一元一次不等式的应用第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法2.分式方程及解法3.列方程解应用题的一般步骤1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )2.(2017·宁波)分式方程2x +13-x =32的解是____________________. 3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x +1=1x -1.【问题】给出以下五个代数式:2x -4,x -2,x ,12,3. (1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程;(2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一 等式性质和方程的解的含义例1 (1)(2017·杭州)设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y 3c,则2x =3y (2)已知关于x 的方程2x +a -9=0的解是x =2,则a =________.(3)已知关于x 的方程3x +n 2x +1=2的解是负数,则n 的取值范围为______________.1.(1)已知等式3a =2b +5,则下列等式中不一定成立的是( )A .3a -5=2bB .3a +1=2b +6C .3ac =2bc +5D .a =23b +53(2)如果方程x +2=0与方程2x -a =0的解相同,那么a =____________________.(3)(2017·成都)已知x =3是分式方程kx x -1-2k -1x =2的解,那么实数k 的值为( ) A .-1 B .0 C .1 D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.2.解方程:(1)(2016·贺州)解方程:x 6-30-x 4=5;(2)7x -12⎣⎡⎦⎤x -12(x -1)=23(x -1).类型三 分式方程的解法例3 (2015·营口)若关于x 的分式方程2x -3+x +m3-x =2有增根,则m 的值是() A .m =-1 B .m =0 C .m =3 D .m =0或m =3例4 (1)(2017·湖州)解方程:2x -1=1x -1+1;(2)(2017·陕西模拟)解方程:2-x x -3=13-x -2.3.解分式方程:(1)x x -3=x -63-x+3;(2)x x +1-4x 2-1=1.类型四 一元一次方程和分式方程的应用例5 (2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】解分式方程:x 2-4x x 2-1+1=2x x +1.第7讲二元一次方程组及其应用二元一次方程组及解法1.(2017·舟山)若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( ) A .1 B .3 C .-14D .742.(2016·温州)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =7x =2yB .⎩⎪⎨⎪⎧x +y =7y =2xC .⎩⎪⎨⎪⎧x +2y =7x =2yD .⎩⎪⎨⎪⎧2x +y =7y =2x3.(2016·金华)解方程组⎩⎪⎨⎪⎧x +2y =5,x +y =2.【问题】对于二元一次方程2x +y =10.(1)求其正整数解;(2)若x +y =7,求x ,y 的值;(3)对于(1)、(2)中的x ,y 值的求法,你有何体会?.类型一 二元一次方程(组)的有关概念例1 (1)(2016·永康模拟)已知⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程x -ay =3的一个解,则a 的值为( )A .1B .-1C .2D .-2(2)(2017·南宁)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =________;(3)已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,则m =________,n =________.1.(1)(2016·毕节)已知关于x ,y 的方程x 2m-n -2+4y m+n +1=6是二元一次方程,则m ,n的值为( )A .m =1,n =-1B .m =-1,n =1C .m =13,n =-43D .m =-13,n =43(2)已知x 、y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____________________.类型二 二元一次方程(组)的解法例2 解方程(组):(1)方程x +3y =9的正整数解是________;(2)(2015·成都)⎩⎪⎨⎪⎧x +2y =5,3x -2y =-1,(2)⎩⎪⎨⎪⎧2(x -y )3-x +y 4=-112,3(x +y )-2(2x -y )=3.2.解方程组:(1)(2015·聊城)⎩⎪⎨⎪⎧x -y =5,2x +y =4;(2)1-6x =3y -x 2=x +2y3.类型三 二元一次方程组的综合问题例3 已知方程组⎩⎪⎨⎪⎧2x -3y =3,ax +by =-1与⎩⎪⎨⎪⎧3x +2y =11,2ax +3by =3的解相同,求a ,b 的值.例4 (2016·枣庄)P n 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n 与n 的关系式是:P n =n (n -1)24·(n 2-an +b)(其中,a ,b 是常数,n ≥4)(1) 通过画图,可得四边形时,P 4= (填数字);五边形时,P 5= (填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.3.已知方程组⎩⎪⎨⎪⎧2x +3y =n ,3x +5y =n +2的解x ,y 的和为12,求n 的值.4.当m 取什么值时,方程x +2y =2,2x +y =7,mx -y =0有公共解.类型四 二元一次方程组的应用例5 (2015·佛山)某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?5.八(1)班五位同学参加学校举办的数学竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知:A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).【实际应用题】1.(2017·自贡)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组__________________.2.(2017·济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是____________.【二元一次方程的解,二元一次方程组的解理解不清】方程组⎩⎪⎨⎪⎧3x -7y =0,x -2y +1=0的解对方程2x -3y =-5而言( )A .是这个方程的唯一解B .是这个方程的一个解C .不是这个方程的解D .以上结论都不对第8讲一元二次方程及其应用1.一元二次方程的概念及解法2.一元二次方程根的判别式1.(2015·温州)若关于x的一元二次方程4x2-4x+c=0有两个相等实数根,则c的值是()A.-1 B.1 C.-4 D.42.(2017·舟山)用配方法解方程x2+2x-1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2C.(x+2)2=3 D.(x+1)2=33.(2017·丽水)解方程:(x-3)(x-1)=3.【问题】给出以下方程①3x+1=0;②x2-2x=8;③1x-3-2x3-x=1.(1)是一元二次方程的是__________;(2)求出(1)中的一元二次方程的解,并联想还有其他的解法吗?(3)通过(1)(2)问题解决,你能想到一元二次方程的哪些知识?类型一 一元二次方程的有关概念例1 (1)关于x 的方程(a -6)x 2-8x +6=0有实数根,则整数a 的最大值是________. (2)若x =1是一元二次方程ax 2+bx -40=0的一个解,且a ≠b ,则a 2-b 22a -2b的值为________.(3)关于x 的方程a(x +m)2+b =0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a ≠0),则方程a(x +m +2)2+b =0的解是________.1.(1)(2016·南京模拟)关于x 的一元二次方程(a 2-1)x 2+x -2=0是一元二次方程,则a 满足( )A .a ≠1B .a ≠-1C .a ≠±1D .为任意实数(2)已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为____________________.类型二 一元二次方程的解法例2 解下列方程: (1)(3x -1)2=(x +1)2; (2)2x 2+x -12=0.2.解方程:(1)(2x-1)2=x(3x+2)-7;(2)x(x-2)+x-2=0.类型三一元二次方程根的判别式例3(1)(2017·潍坊)若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.(2)(2015·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是________(填序号).【解后感悟】在一元二次方程ax2+bx+c=0中,需要把握根的三种存在情况:b2-4ac≥0,方程有实数根(两个相等或两个不相等);b2-4ac<0,无实数根.3.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例是()A.b=-1 B.b=2 C.b=-2 D.b=04.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是____________________.5.已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根,求ab2的值.(a-2)2+b2-4类型四 与几何相关的综合问题例4在宽为20m ,长为32m 的矩形田地中央修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小田地,作为良种试验田,要使每小块试验田的面积为135m 2,则道路的宽为________m .(2)(2016·张家口模拟)如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a =1,则b =________.(3)(2015·广安)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是________.6.(1)(2016·台湾)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A .12B .35C .2-3D .4-2 3(2)一个直角三角形的两条边长是方程x 2-7x +12=0的两个根,则此直角三角形的面积等于 .(3)有一块长32cm ,宽24cm 的长方形纸片,如图,在每个角上截去相同的正方形,再折起来做成一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是____________________cm .类型五一元二次方程在生活中的应用例5(1)(2017·济宁市任城区模拟)某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为________.(2)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场)计划安排15场比赛,则参加比赛的球队应有________队.(3)商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是________.(4)将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货________个.7.(1)(2016·宁波市镇海区模拟)毕业典礼后,九年级(1)班有若干人,若每人给全班的其他成员赠送一张毕业纪念卡,全班共送贺卡1190张,则九年级(1)班人数为____________________人.(2)(2017·山西模拟)将一些半径相同的小圆按如图的规律摆放,请仔细观察,第____________________个图形有94个小圆.【探索研究题】1.(1)(2017·温州)我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=3 D.x1=-1,x2=-3(2)(2017·宁波市北仑区模拟)已知m是方程x2-2017x+1=0的一个根,则代数式m2-2018m+m2+12017+3的值是________.【忽视一元二次方程ax2+bx+c=0(a≠0)中“a≠0”】已知关于x的一元二次方程(m-1)x2+x+1=0有实数根,则m的取值范围是________.第9讲方程(组)的应用1.(2017·杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1-x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.82.(2017·台州)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟【问题】小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.(1)按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?(2)通过(1)解答,请你谈谈方程应用性问题,应注意哪些方面?解题的一般步骤怎样?类型一一元一次方程的应用例1(1)七年级(2)班有46人报名参加文学社或书画社.已知参加文学社的人数比参加书画社的人数多10人,两社都参加的有20人,则参加书画社的有________人.(2)有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是________小时.(3)一件商品成本为x元,商店按成本价提高40%后作为标价出售,节日期间促销,按标价打8折后售价为1232元,则成本价x=________元.(4)自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按0.8元收费,超过10吨的部分按每吨1.5元收费,王老师三月份平均水费为每吨1.0元,则王老师家三月份用水________吨.1.(1)(2016·聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51C.69 D.72(2)(2015·丽水模拟)诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答:____________________.(3)如图是由若干个粗细均匀的铁环最大限度地拉伸组成的链条.已知铁环粗0.8厘米,每个铁环长5厘米.设铁环间处于最大限度的拉伸状态.若要组成1.75米长的链条,则需要____________________个铁环.类型二二元一次方程组的应用例2(1)若买3支圆珠笔、1本日记本共需10元;买1支圆珠笔、3本日记本共需18元,则日记本的单价比圆珠笔的单价多________元.(2)如图,将图1的正方形剪掉一个小正方形,再沿虚线剪开,拼成如图2的长方形.已知长方形的宽为6,长为12,则图1正方形的边长为________.(3)商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是________cm.2.(1)(2017·安徽模拟)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,买5束鲜花和5个礼盒的总价为____________________元.(2)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组是____________________.(3)为了合理使用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(如图表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据题意可列方程组____________________.类型三一元二次方程的应用例3(1)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.(2)某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低________元.(3)美化环境,改善居住环境已成为城乡建设的一项重要内容,某区计划用两年时间使全区绿化面积增加21%,则这两年全区绿化面积的年平均增长率应是________.3.(1)(2017·宁海模拟)某次商品交易会上,所有参加会议的商家每两家之间都签订了一份合同,共签订合同36份.共有____________________家商家参加了交易会.(2)平行四边形ABCD的边长如图所示,四边形ABCD的周长为____________________.(3)(2017·杭州模拟)两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第2年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第一年的年下降率,假设第一年的年下降率为x,则可列方程____________________.类型四分式方程的应用例4(1)(2017·慈溪模拟)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作________件.(2)(2017·瑞安模拟)在“校园文化”建设中,某校用8000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿色植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为________元.(3)(2017·宁波模拟)某感冒药用来计算儿童服药量y的公式为y=axx+12,其中a为成人服药量,x为儿童的年龄(x≤13).如果一个儿童服药量恰好占成人服药量的一半,那么他的年龄是________.4.(1)(2016·淄博)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是____________________.(2)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为____________________.(3)(2017·绍兴模拟)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的能量相同,若每消耗1千卡能量小琼行走的步数比小刚多15步,求小刚每消耗1千卡能量需要行走____________________步.【实际应用题】(2017·衢州)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求2016年第一产业生产总值;(精确到1亿元)(2)2016年比2015年的国民生产总值增加了百分之几?(精确到1%)(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的年平均增长率.(精确到1%)【寻找等量关系欠仔细】要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .12x(x +1)=28B .12x(x -1)=28C .x(x +1)=28 D .x(x -1)=28第10讲不等式与不等式组1.不等式的概念及性质2.一元一次不等式(组)的解法及应用1.(2015·嘉兴)一元一次不等式2(x +1)≥4的解在数轴上表示为( )2.(2015·丽水)如图,数轴上所表示关于x 的不等式组的解集是( )A .x ≥2B .x>2C .x>-1D .-1<x ≤23.(2017·湖州)一元一次不等式组⎩⎪⎨⎪⎧2x>x -1,12x ≤1的解集是( )A .x >-1B .x ≤2C .-1<x ≤2D .x >-1或x ≤24.(2016·金华)不等式3x +1<-2的解集是____________________.5.(2017·衢州)解下列一元一次不等式组:⎩⎪⎨⎪⎧12x ≤2,3x +2>x.【问题】给出以下不等式:①2x +5<4(x +2),②x -1<23x ,③1x -1>0,④x -1≤8-4x.(1)上述不等式是一元一次不等式的是________;(2)上述不等式中,选取其中二个一元一次不等式,并求其公共解. (3)选取其中一个一元一次不等式,使其只有一个正整数解.(4)通过以上问题解答的体会,解一元一次不等式(组)要注意哪些问题?类型一 不等式的基本性质例1 (1)若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x 3>y3C .x +3>y +3D .-3x >-3y(2)若实数a ,b ,c 在数轴上对应位置如图所示,则下列不等式成立的是( )A .ac >bcB .ab >cbC .a +c >b +cD .a +b >c +b(3)设a 、b 、c 表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )A .c <b <aB .b <c <aC .c <a <bD .b <a <c1.(2016·大庆)当0<x<1时,x 2、x 、1x 的大小顺序是( )A .x 2<x<1xB .1x <x<x 2C .1x <x 2<xD .x<x 2<1x类型二 一元一次不等式的解法例2 解不等式:x +12+x -13≤1.2.(1)(2016·绍兴)不等式3x +134>x3+2的解是____________________.(2)(2015·南京)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.类型三 一元一次不等式组的解法例3 解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.3.解不等式组:(1)(2015·泰州)⎩⎪⎨⎪⎧x -1>2x ,12x +3<-1;(2)⎩⎪⎨⎪⎧3(x +2)>x +8,x 4≥x -13,并把它的解集在数轴上表示出来.类型四 不等式的解的应用例4 (1)(2017·丽水)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤2(2)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( )A .m >-23B .m ≤23C .m >23D .m ≤-234.(1)(2016·通州模拟)如果不等式(a -3)x>a -3的解集是x>1,那么a 的取值范围是( ) A .a<3 B .a>3 C .a<0 D .a>0(2)(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( )A .m ≥5B .m >5C .m ≤5D .m <5【阅读理解题】(2017·湖州)对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b.例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.【求不等式组中字母系数范围出错】如果一元一次不等式组⎩⎪⎨⎪⎧x>3,x<a 关于x 的整数解为4,5,6,7,则a 的取值范围是( )A .7<a ≤8B .7≤a<8C .a ≤7D .a ≤8第11讲 一元一次不等式的应用1.(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为____________________元/千克.2.(2016·衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其他费用,结果取整数).【问题】铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm ,长与宽的比为3∶2.(1)请你根据以上信息,求出该行李箱的长的最大值;(2)通过问题(1)的解决,请你从分析问题和解决问题角度谈谈看法.【归纳】通过开放式问题,归纳、疏理利用不等式(组)解决实际问题的分析方法和一般步骤,以及要注意的问题.类型一列不等式求字母的取值范围的应用例1 (1)(2017·江西)函数y =x -2中,自变量x 的取值范围是________. (2)(2015·临海模拟)点(a ,a +2)在第二象限,则a 的取值范围是________.(3)(2017·上海市杨浦区模拟)若一次函数y =(1-2k)x +k 的图象经过第一、二、三象限,则k 的取值范围是________.(4)对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若⎣⎡⎦⎤x +410=5,则x 的取值是________.1.(1)(2016·兰州)双曲线y =m -1x在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是 .(2)(2017·济宁模拟)已知二次函数y =kx 2-7x -7的图象与x 轴没有交点,则k 的取值范围为____________________.(3)(2015·武威)定义新运算:对于任意实数a ,b 都有:a ⊕b =a(a -b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x<13的解集为____________________.类型二不等式的应用例2(1)(2017·南京模拟)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3∶2,则该行李箱的长的最大值为________cm;(2)(2017·杭州模拟)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打________折;(3)(2017·株洲模拟)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,则孔明买球拍________个.2.(1)如图是某机器零件的设计图纸,在数轴上表示该零件长度(L)合格尺寸,正确的是()(2)(2017·绍兴模拟)小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x-100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元(3)(2017·杭州市江干区模拟)某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对____________________道题,成绩才能在80分以上.类型三不等式与方程(组)结合的应用例3(2017·宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举。
2017届中考数学总复习第一编教材知识梳理篇第二章方程组与不等式组第一节一次方程与方程组及应用课件
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年专版)
Jie
Shu
Yu
要体验人生,就要把握现实,相信现实。 ——拉蒂特