架空输电线路课程设计

合集下载

架空输电线路课程设计报告

架空输电线路课程设计报告

架空输电线路课程设计班级****指导老师年月日目录一、设计条件1二、设计要求2三、整理已知条件2四、比载计算3五、计算临界档距,判断控制条件4六、判定最大弧垂6七、计算各气象条件下的应力和弧垂7八、安装曲线计算8九、画应力弧垂曲线与安装曲线11十、感想11330Kv架空输电线路设计一、设计条件1.典型气象区V区2.导线型号LGJ-400/503.电压等级330Kv二、设计要求列出各气象条件,计算出比载,判断临界档距,最大弧垂气象,画出应力弧垂曲线及安装曲线。

三、整理已知条件1. 气象条件及其作用2.风速换算由于此处的风速是高度为10米处的基准风速,而110~330Kv 输电线路应取离地面15米处的风速,所以应当进行风速高度换算。

采用公式 式中h v —线路设计高度h 处的风速,m/s ;0v —标准高度10m 处的风速,m/s ;α—风速高度变化系数;z 为粗糙度指数;β为修正系数在此设计中采用《架空输电线路设计》孟遂民版中表2—6规定,取粗糙度等级为B ;zh ⎪⎭⎫ ⎝⎛=10βα则相应的z=0.16;β=1.0 则最大风速时风速换算值为v=1.067×30=32.01m/s覆冰有风,外过有风,安装气象时风速换算值为v=1.067×10=10.67m/s内过电压时风速换算值为v=1.067×15=16.01m/s3.导线参数则抗拉强度 许用应力年均运行应力上限四、比载计算1.自重比载2.冰重比载3.垂直总比载4.无冰风压比载 (1) 外过电压,安装有风此时风速v=10.67m/s 0.1=c β0.1=f α1.1=sc μ(2)内过电压此时风速v=16.01m/s 0.1=c β75.0=f α1.1=sc μ(3)最大风速此时风速v=32.01m/s 0.1=c β1.1=sc μ 计算强度时75.0=f α 校验电气间距时61.0=f α 067.110151016.0=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=z h βα7)/(1093.553213m MPa -⨯=+=γγγ)/(10sin 324m MPa AW dvsc f c -⨯=θμαβγ)/(1079.41055.45167.10625.063.271.110sin 332324m MPa A W d v sc f c ---⨯=⨯⨯⨯⨯=⨯=θμαβγ)/(1009.81055.45101.16625.063.271.175.010sin 332324m MPa AWd v sc f c ---⨯=⨯⨯⨯⨯⨯=⨯=θμαβγ)/(1033.321055.45101.32625.063.271.175.010sin 332324m MPa A W d v sc f c ---⨯=⨯⨯⨯⨯⨯=⨯=θμαβγ)/(1029.261055.45101.32625.063.271.161.010sin 332324m MPa A Wd vsc f c ---⨯=⨯⨯⨯⨯⨯=⨯=θμαβγ5.覆冰风压比载此时风速v=10.67m/s 0.1=c β2.1=sc μ 计算强度和检验风偏时均可取0.1=f α6.无冰综合比载(1)外过电压,安装有风 (2)内过电压 (3)最大风速 计算强度时)/(1007.461033.3282.3233226m MPa --⨯=⨯+=γ 校验风偏时)/(1005.421029.2682.3233226m MPa --⨯=⨯+=γ7.覆冰综合比载计算强度和校验风偏时)/(1065.561001.993.5533227m MPa --⨯=⨯+=γ五、计算临界档距,判断控制条件1.当气象条件变化时,应力随之变化,在应力达到最大时的气象条件即为控制条件,在输电线路设计时,应考虑的四种气象条件分别为最低气温,最大风速,最厚覆冰,年均气温。

架空输电线路设计课程设计(图表记录)

架空输电线路设计课程设计(图表记录)

目录情况说明书一、问题重述 (1)二、模型假设与符号说明 (1)三、问题分析 (2)四、数据预处理与分析 (3)五、判定控制条件 (5)六、判定最大弧垂气象 (6)七、计算各气象条件下应力和弧垂 (7)八、计算安装曲线 (9)九、应力弧垂曲线与安装曲线 ·····················································错误!未定义书签。

十、感言·················································································错误!未定义书签。

课程设计输配电线路

课程设计输配电线路
编码:SGTC-RC-7.5-08编号:
《输配电线路》课程单元教学设计
一、目标及内容
课程名称:输配电线路
编写教师
彭玉金、王旭、宁琦、李岩、王峰、
2012年8月15日
审核批准
(签名)
年月日
培训对象
国家电网公司2012年度新入职员工,第一期集中培训班
课时数
6
上课时间
上课地点
泰山校区教学
培训目标
能力(技能)目标
任务一:熟悉输配电线路基本构成及部件;
任务二:熟悉系统设备及功能;
任务三:输配电线路主要的检修维护设备;
参考资料
二、教学设计
步骤
教学内容
教学方法
教学手段
学员活动
时间分配
引入、告知
(教学内容、目的)
以输配电线路视频引入教学内容,阐明教学目的。
启发式
交互式
教具
多媒体
提问
10分钟
讲授或实训
(掌握初步基本能力,加深对基本能力的体会,巩固、拓展、检验)
输配电线路的作用。
输配电线路基本知识。
输配电线路的运维知识。
输配线路的反事故措施
交互式
30分钟
作业
完成学员手册的问题

后记
1、架空线路的作用
2、架空线路的组成
3、架空线路中的专业术语
4、电缆线路的组成及作用
5、电缆线路的运维知识
6、配电配电线路的运维知识
7、架空线路的反事故措施
8、泰山校区输配电基地学习、参观
启发式
交互式
多媒体
提问
探讨
20分钟
20分钟
20分钟
20分钟
20分钟

架空输电线路设计课程设计

架空输电线路设计课程设计

目录情况说明书一、问题重述 (1)二、模型假设与符号说明 (1)三、问题分析 (2)四、数据预处理与分析 (3)五、判定控制条件 (5)六、判定最大弧垂气象 (6)七、计算各气象条件下应力和弧垂 (7)八、计算安装曲线 (9)九、应力弧垂曲线与安装曲线·················错误!未定义书签。

十、感言··························错误!未定义书签。

十一、参考文献·······················错误!未定义书签。

十二、附录·························错误!未定义书签。

一、问题重述问题背景《架空输电线路设计》这门课程是输电专业大三的第一门专业课,其内容繁复,需要通过输电线路课程设计这门课来巩固相关知识。

应力弧垂曲线表示了各种气象条件下架空线应力和有关弧垂随档距的变化,而安装曲线表示了各种可能施工温度下架空线在无冰、无风气象下的弧垂随档距变化情况,此两类曲线极大方便了工程上的使用。

架空输电线路设计

架空输电线路设计

课程设计(论文)题目名称制作导线的应力弧垂曲线和安装曲线课程名称架空输电线路设计(LGJ-185/45,VIII区) 学生姓名刘光辉学号**********系、专业电气工程系电气工程及其自动化指导教师尹伟华2013年1月6日邵阳学院课程设计(论文)任务书2.此表1式3份,学生、指导教师、教研室各1份。

指导教师(签字):学生(签字):邵阳学院课程设计(论文)评阅表学生姓名宁文豪学号1041201185系电气工程系专业班级电气工程及其自动化10输电线路班题目名称制作导线的应力弧垂曲线和安装曲线课程名称架空输电线路设计一、学生自我总结二、指导教师评定2、表中的“评分项目”及“权重”根据各系的考核细则和评分标准确定。

摘要本课程设计是绘制导线的应力弧垂曲线和安装曲线。

先查有关《规程》得到譬如气象、导线的有关参数,再用列表法求得临界档距,并判断有效临界档距和控制气象条件,以控制条件为已知状态,利用状态方程式计算不同档距、各种气象条件下架空线的应力和弧垂值,按一定的比例绘制出应力弧垂曲线和安装曲线。

本课程设计的重点和难点内容是关于状态方程式的求解,要利用有关计算机方面的知识,这对于非计算机专业的我是一个很大的挑战,对我以后的学习与工作都有很好的指导意义。

关键词:临界档距;状态方程式;应力弧垂曲线目录摘要 (I)1有关参数 (1)1.1 气象条件 (1)1.2导线相关参数 (1)1.3各气象条件下导线比载的计算值 (1)2计算临界档距、判断控制气象条件 (4)3绘制应力弧垂曲线 (6)4绘制导线安装曲线 (9)5总结 (10)参考文献 (11)1有关参数1.1气象参数查《规程》得典型气象区ⅤIII的计算用气象条件,如表1-1所示。

1.2导线相关参数查《规程》LGJ-185/45导线的有关参数,如表1-2所示。

表1-2 LGJ-185/45导线有关参数1.3各气象条件下导线比载的计算值1)自重比载γ1(0,0)=(gq/A)⨯10-3=36.51⨯10-3 MPa/m2)冰重比载γ2(15,0)=27.728b(b+d)/A⨯10-3=63.17⨯10-3 MPa/m3)垂直总比载γ3(15,0)=γ1(0,0)+γ2(15,0)=99.68⨯10-3 MPa/m4)无冰风压比载。

送电线路施工课程设计

送电线路施工课程设计

2504507008003000500070006000600021002400300054008065432140003300110KV 架空输电线路铁塔施工一、工程概况某110KV 架空输电线路铁塔基础及铁塔组立施工,该工程在平原地区施工,施工基面与地面重合,该地区土质为粘土、黄土,三类土;该工程基础施工采用地脚螺栓式混凝土基础施工,阶梯式基础,铁塔塔形采用猫头直线型铁塔, 材料主要为角钢;该工程铁塔为110KV 单回铁塔;铁塔根开为4.6mx3.5m , 基础开挖深度为2.5m ,坑口尺寸为1.6mx1.6m ;坑口呼程高为24m ;施工工期为150日历天。

二、铁塔司令图AEB C Da/2 d b /2K CE A D Bd2d1d4d3L 1L 0L 2内心控制分坑法Kd三、复测分坑 1、复测分坑的方法直接法----重转法:经纬仪架子E 点正镜后视A 点,固定上下盘,倒转望远镜定出C 点,然后放松上盘并转180度,再后视A 点,倒镜定出一点D ,若视准轴与水平轴垂直,C 、D 两点应重合,如C 、D 两点不重合,则取C 、 D 两点之中点B ,作为AE 延长线上的一点。

示意图2、铁塔基础分坑 内心控制分坑法(1)仪器架于杆位中心桩P 以线路方向桩C ,校核横担方向控制桩K ;(2)以C 、K 为基准,以杆位中心桩向前、后、左、右分别量K 定出A 、B 、E 、D 四个控制桩;(3)仪器分别架于A 、B 桩,以E 、D 前视,量L 0定出坑中心桩,量L 1和L 2定出坑口对角点d 1和d 3,以d 1和d 3定出坑口尺其中d=1.6m, a=4.6m, b=3.5m, AB=ED=a-b=1.1,L0=0.707a=3.25, L1=0.707(a-d) =2.12, L2=0.707(a+d)=4.38。

p四、基础施工1、施工准备1.1工具准备1.1.1架空送电线路工程测量及检查用的仪器、仪表、量具等,必须经过检定,并在有效期内使用。

三峡大学架空输电线路施工课程设计

三峡大学架空输电线路施工课程设计

(拷的学长的,给大家共享下,错的地自己改改)《架空输电线路施工》课程设计专业:输电线路工程班级学号:2009148205姓名:。

指导老师:江老师三峡大学电气与新能源学院2013年1月目录1 任务书―――――――――――――――――――12 组织施工案―――――――――――――――― 2 2.1课题来源――――――――――――――――― 2 2.2施工案选择――――――――――――――――3 2.3现场布置――――――――――――――――――3 2.4组立程序――――――――――――――――――6 2. 5注意事项―――――――――――――――――10 2.6力学计算――――――――――――――――――10 3施工设备工器具需求―――――――――――――154 施工人员需求――――――――――――――――185 参考书目――――――――――――――――――20第二部分组织施工案2.1课题来源:此次课程设计的杆塔是220KV—Z1型塔,送变电工程公司曾经采用单抱杆分解组立,杆塔呼称高度为27m,重量5745Kg,最大段重量1048Kg,其他尺寸见杆塔示意图1如下:2.2组立案选择:此杆塔是输电线路中比较常见的杆塔,组立的法比较多,参考书目一后,先拟定以下案:1)座腿式抱杆整体组立杆塔,其特点式进行杆塔整体施工布置时使抱杆固定座落在位于上部的两个塔腿,其抱杆根部能够随着铁塔的起立而转动。

抱杆的制造、运输、布置、拆移都比较便;施工设计计算简单。

2)倒落式抱杆整立杆塔,首先在地面把组装好,然后使用倒塔式“人字形”抱杆进行起吊。

3)普通大型吊车组立杆塔。

图14)可以采用冲天抱杆、“士字形”型抱杆进行组立。

5)外拉线抱杆分解组立杆塔,5)拉线分解组塔,采用双吊起立,效率高。

以上案都可以进行组立此塔,此次设计采用外拉线单抱杆组立铁塔,其大致思路如下:在抱杆头部挂有滑轮,通过穿入滑轮的钢绳可以起吊塔材,使其能够固定在铁塔主材之上,随着塔的组装增高,抱杆也随着增高,根部有以尾绳,直至整个铁塔组立完毕,再将抱杆落回地面。

架空输电线路设计讲座

架空输电线路设计讲座
架空输电线路设计
第九章 架空线旳断线张力 和不平衡张力
第一节 概 述
1、定义 断线张力:因架空线断线,断线档旳相邻档架空线所具 有旳残余水平张力,称为架空线旳断线张力。 不平衡张力:因气象条件变化,在直线杆塔上产生旳水 平张力差,称为架空线旳不平衡张力。 2、目旳 (1)计算杆塔强度; (2)验算架空线与杆塔旳电气间隙; (3)校验被跨越物间距; (4)检验转动横担或释放线夹是否能动作。
4、拟定措施
(1)设计杆塔时:要求断线张力取最大使用张力 旳百分数作为杆塔校验荷载。(详细杆塔设计课程 中讲述)
(2)计算电气间距时:根据实际档距、高差、 杆塔构造和气象条件,采用公式详细计算。(要点研 究)
第二节 固定横担固定线夹下 单导线旳断线张力
一、断线张力旳特点
1、断线张力是断线冲击过程稳定后旳已经衰减了旳 “残余张力”。
【例9−1】 某35kV架空输电线路,无地线。一耐张段内
共有10档,档距基本相等,代表档距为lr=273m,如图所示。 导线截面积为A=146.73mm2。在档距l8 内跨越Ⅰ级通讯线, 通讯线高7m,位于距 8号杆30m 处。直线杆塔悬点高13m,
挠度系数B=0.0003 m/N。悬垂串长=0.886m,重233.4 N。设
假如Tk>△Tk,或者说δk线末端P点未到达曲线Ⅱ中相应 曲线k,表白T1设大了。假如Tk<△Tk,或者说δk线末端P点 超出曲线Ⅱ中相应曲线 k,表白T1设小了。
三、断线档旳选择原则 为确保交叉跨越在断线事故情形下,满足规程要求旳跨 越限距要求,断线档应选在跨越档旳相邻档,不同档距分布 下旳断线档选定原则见下表。
,重GJ,第 k 档相导线断线后尚剩 n’ 根次导线。
当一相内有次导线断裂时,一般以为断线档内旳间隔棒 被拉脱或损坏,故不承受张力差,即张力差全部作用在悬挂 点上。

【2018最新】输电线路施工课程设计-范文模板 (9页)

【2018最新】输电线路施工课程设计-范文模板 (9页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==输电线路施工课程设计篇一:输电线路施工课程设计山西大学课程设计任务书设计题目:招弧角基本原理与设计所属课程:输配电线路运行系别:电力工程系专业:电气工程及其自动化班级:电本1144班姓名:杨标指导老师:李美芳设计任务下达日期:201X年1月5日设计时间:201X年1月5日至201X年1月10日招弧角基本原理与设计一、摘要招弧角,又称并联间隙或角隙,是架空线路上保护绝缘子闪络的保护金具,在国际电工委员会IEC的出版刊物中,招弧角被列为绝缘子串附件即金具。

在我国,招弧角发展晚,应用较为少,相对来说,国外德国、日本、土耳其等国家一直在输电线路上绝缘子串上安装招弧角,尤其日本,几乎各个电压等级下的绝缘子串都安装了招弧角,采用招弧角已有近70年的历史及运行经验;21 世纪初,中国电力科学研究院及多家网省公司开始全面开展绝缘子并联间隙的研究,研制了相关产品,并已在多个省市挂网运行。

二、历史发展日本、德国等发达国家,在架空送电线路并联间隙防雷保护方面开展了大量研究工作,从 20 世纪60 年代开始就在线路绝缘子串上安装保护间隙,从早期使用羊角引弧装置发展到现在,几乎所有新建压线路的绝缘子串上都安装有形状各异的保护间隙。

日本称架空线路并联间隙为招弧角,根据日本电气学会 1979 年发表的标准所列,记有 32 种型式,280 余个规格,可适用于 66~154 kV 各级电压架空送电线路的导线悬垂绝缘组合串和耐张绝缘组合串。

国内开展相关研究较晚,由于国外输电线路绝缘水平高于我国输电线路的绝缘水平,不宜照搬其绝缘子并联间隙的设计。

国内于 20 世纪 90 年代末开始开展绝缘子并联间隙的全面研究,经过十来年的努力,取得了一定成果,主要研究 35 kV、110 kV 和220 kV 高压输电线路的并联间隙应用。

电力工程设计手册20 架空输电线路设计

电力工程设计手册20 架空输电线路设计

电力工程设计手册20 架空输电线路设计随着社会的不断发展,电力工程在各个领域中起着至关重要的作用。

在电力系统中,架空输电线路是一种常见的输电方式,具有输电量大、建设周期短、运行成本低等优点。

架空输电线路的设计尤为重要。

本文将从架空输电线路设计的相关原理、要点和注意事项等方面展开讨论。

一、架空输电线路设计的原理1. 架空输电线路的作用架空输电线路是传送电能的重要工具,通过架设在电力塔上的导线来传输电能。

它起着将发电厂产生的电能传送至各个用电单位的作用,是电力系统中不可或缺的一部分。

2. 架空输电线路的基本原理架空输电线路的设计原理是利用电场的作用,通过导线上的电荷流动来传输电能。

在输电线路中,电流是通过导线上的电荷流动来传输的,而电压是通过电场来传输的。

在架空输电线路的设计中,需要考虑导线的材质、截面积等因素,以及电压的平衡和稳定等问题。

二、架空输电线路设计的要点1. 导线的选择在架空输电线路设计中,导线的选择至关重要。

首先需要考虑的是导线的材质,常见的有铝合金、钢芯铝、铜等,不同材质的导线在输电能力、价格等方面有差异,需要根据具体情况进行选择。

其次是导线的截面积,截面积越大,导线的输电能力越大,但成本也更高,需要综合考虑。

2. 支持结构的设计架空输电线路需要固定在电力塔上,因此支持结构的设计也是极为重要的。

支持结构需要考虑承载能力、稳定性等因素,以确保输电线路的安全和稳定运行。

3. 绝缘设计由于架空输电线路需要跨越大片区域,因此在设计中需要考虑绝缘问题,以防止因树木、建筑物等外界因素导致的短路、断电等问题。

因此绝缘设计也是架空输电线路设计中不可缺少的一环。

三、架空输电线路设计的注意事项1. 环境因素的考虑在架空输电线路的设计中,需要充分考虑当地的环境因素,如气候、地形、自然灾害等,以确保输电线路能够在各种复杂条件下稳定运行。

2. 安全性的保障架空输电线路设计需要充分考虑安全性问题,包括设计的稳定性、可靠性等方面,以确保输电线路能够长期稳定运行,不会对周围环境和人员造成危害。

输电线路设计基础课程设计

输电线路设计基础课程设计
水平 1: 5000 垂直 1: 500
4
图1 线路平断面图
5
二、定位模板曲线
模板曲线:最大弧垂气象条件下按一定比例尺绘制的 导线的悬垂曲线,即:在最大弧垂的时候,导线悬挂 在空中相似形状。
导线悬垂曲线 悬链线方程:
最大垂直弧垂 时的导线比载
平抛物线方程:
最大垂直弧垂时 的导线水平应力
y 0 (ch x 1) 0
14
三、模板定位方法
定位高度E 的使用方法:
把导线地面安全线②的位置 摆正并使其对地面保留定位 裕度,
(1)根据已知杆塔呼称高H 的杆塔,求定位高度E,导线 地面安全线②与地面高差为E 的点,与地面上相应的点即 为杆位
(2)杆位确定后,由图确定 定位高度E,进一步确定杆塔 呼称高H
图6 用模板(地面安全线)定位
1) S2
H (0.012lQ )2 0.036lQ 2(S 2 1) 2 (0.012lQ 1)2 S 2
图11 避雷线控制档距与S、H的关系曲线
24
六、避雷线设计
lmax lQ
取lmax bm 作为地线的架线应力
lmin lQ
取lmin
作为地线的架线应力
bm
lmin lQ lmax
图7 水平档距和垂直档距
19
五、选择杆塔与直线杆塔头间隙校验
悬垂绝缘 子串摇摆

图8 悬垂串风偏受力图
( Pd
PJ
2
) cos
(Gd
GJ
2
) sin
arctg Pd PJ 2 arctg 4 Alh PJ 2
Gd GJ 2
1Alv GJ 2
20
五、选择杆塔与直线杆塔头间隙校验

架空输电线路设计课件

架空输电线路设计课件
自学了解
第二章架空输电线路基本知识 第一节 导线和避雷线 一、架空线的材料、种类和用途 1、常用架空线的材料
铜、铝、铝合金、钢 2、常用架空线的结构及型号、规格
LJ−120 LGJ−300/50 LGJF−150/25
LHAJ−400表示标称截面为400mm2的热处理 铝镁硅合金绞线, LHBGJ−400/50表示标称截面为铝合金400 mm2、钢50 mm2的钢芯热处理铝镁硅稀土 合金绞线。
Im
WR WF WS Rt
WR 单位长度导线的辐射散 热功率 WF 单位长度导线的对流散 热功率 WS 单位长度导线的日照吸 热功率
Rt 允许温度 t时单位长度导线的交流 电阻
4.按电晕条件校验
超高压输电线路的导线表面电场强度很高, 以至超过周围空气的放电强度,使空气电离 形成局部放电,这种现象称为电晕。
80
复合光纤地线现多采用OPGW型复合光纤电缆。复合光纤电缆的外层铝合 金绞线起防雷保护和屏蔽作用,芯部的光导纤维起通信作用。
绝缘地线 特点:利用一只带有放电间隙的绝缘子与杆 塔隔开,雷击时利用放电间隙击穿接地。 作用:⑴防雷;⑵降低线路的附加电能损失; ⑶载波通信的通道; 屏蔽地线
用以防止输电线路电磁感应对附近通信线路 的影响。屏蔽地线需要使用良导电线材,目前多 用LGJ-95/55钢芯铝绞线。因需耗用有色金属, 成本较高,所以只在对重要通信线路的影响超过 规定标准时才考虑架设屏蔽地线。
地线的短路热稳定计算
I
C ln 0 (t2 20) 1
0.240R0T 0 (t1 20) 1
地线的短路热稳 定允许电流,A
地线采用镀锌钢绞线时与导线的配合
导线型号
镀锌钢绞线最 小标称截面mm2

架空输电线路设计完整PPT课件

架空输电线路设计完整PPT课件
华中特高压交流跨区联网。 2010年,南网公司首条特高压直流±800kV云南-广东直流工程建
成。 2010年,±800kV复奉线建成,. 通过特高压直流线路实现川电东
二、发展趋势 1.特高压交流输电
输送容量大,线路损耗小,稳定性好,
经济指标高 2.特高压直流输电 线路造价低,线路损耗小,系统更稳定,可 靠性高,能限制系统的短路电流,换流站造 价高,污秽严重,多端输电技术复杂
.
1954年 1960年
1972年 1981年 1989年 2005年 2009年
220KV 长江大跨越
330KV
500KV ±500KV
750KV 10.00KV
我国电网发展历程 1952年,逐步建设形成京津唐110kV输电网。 1954年,逐步建设形成东北电网220kV骨干网架。 1972年,逐步建设形成西北电网330kV骨干网架。 1981年,逐步建设形成500kV超高压交流骨干网架。 1989年,逐步建设形成±500kV超高压直流骨干网架。 2005年,逐步建设形成西北电网750kV骨干网架。 2009年,首条特高压交流1000kV长南、南荆线建成,实现华北与
架空常规型 单回路 交流
.
.
舟山大跨越
大跨越钢管塔高度
370米、重量5999吨
均达到了输电线路铁
塔世界之最,档距
2756米达到亚洲第一,
特大跨越自主设计、
自主加工、自主施工
在国内也属首次。同
时,为保证铁塔的稳
定性和牢固性,两基
370米跨越塔所采用
的212米以下主管内
灌注混凝土创新技术,
抗风能力等级16级,
2015年核 准“三交”
1000kV蒙西-武汉 1000kV张北-南昌 1000kV济南-枣庄-临沂-潍坊

三峡大学高压架空输电线路施工课程设计..

三峡大学高压架空输电线路施工课程设计..

三峡大学架空输电线路施工课程设计说明书学期: 秋季专业:输电线路工程课程名称:架空输电线路施工班级学号:姓名:指导老师:年月号目录1 任务书―――――――――――――――――――――――― 12 组织施工方案――――――――――――――――――――― 22.1课题来源――――――――――――――――――― 22.2施工方案选择――――――――――――――――― 22.3现场布置――――――――――――――――――― 32.4组立程序――――――――――――――――――― 52. 5注意事项―――――――――――――――――――92.6力学计算―――――――――――――――――――9 3施工设备工器具需求―――――――――――――――――――34 施工人员需求――――――――――――――――――――――45 参考书目――――――――――――――――――――――――5第二部分组织施工方案2.1课题来源:此次课程设计的杆塔是220KV—Z1型塔,黑龙江送变电工程公司曾经采用单抱杆分解组立,杆塔呼称高度为27m,重量5745Kg,最大段重量1048Kg,其他尺寸见杆塔示意图1如下:2.2组立方案选择:此杆塔是输电线路中比较常见的杆塔,组立的方法比较多,参考书目一后,先拟定以下方案:1)座腿式抱杆整体组立杆塔,其特点式进行杆塔整体施工布置时使抱杆固定座落在位于上部的两个塔腿,其抱杆根部能够随着铁塔的起立而转动。

抱杆的制造、运输、布置、拆移都比较方便;施工设计计算简单。

2)倒落式抱杆整立杆塔,首先在地面把组装好,然后使用倒塔式“人字形”抱杆进行起吊。

3)普通大型吊车组立杆塔。

图14)外拉线抱杆分解组立杆塔,可以采用冲天抱杆、“士字形”型抱杆进行组立。

5)内拉线分解组塔,采用双吊起立,效率高。

以上方案都可以进行组立此塔,此次设计采用外拉线单抱杆组立铁塔,其大致思路如下:在抱杆头部挂有滑轮,通过穿入滑轮的钢绳可以起吊塔材,根部有以尾绳,使其能够固定在铁塔主材之上,随着塔的组装增高,抱杆也随着增高,直至整个铁塔组立完毕,再将抱杆落回地面。

架空输电线路设计课程设计任务书

架空输电线路设计课程设计任务书

《架空输电线路设计》课程设计任务书一.设计任务制作某线路导线和地线的应力弧垂曲线和安装曲线二.已知条件1.气象条件全国典型气象3区(最低气温月的日平均气温可较最低气温偏高5’C取值)其中年均气温本次设计参考下表区值最低气温-40 -20 -10年均气温-5 +10 +152.导线规格LGJ-240/30 (GB1179-83)3.电压等级100KV4.导线悬垂绝缘子长度1747MM5.杆塔形式;参考文献【2】附录B图B-2(b)6.一般地线三.主要类容和要求1.按三要素将各种气象条件数据整理成表格。

计算应力弧垂曲线所需起先条件;最大风速,覆冰有风,覆冰无风,最低气温,年均气温,最高气温,内过电压,外过有风,外过无风,安装有风,事故气象等。

2.选配地线;查取导线和地线的有关参数,并整理成表格;选取安全系数,计算许应力和年均许用应力。

3.计算导线和地线在各种气象条件下的比载值。

要求给出所用公式,各量的单位,系数的出处,并要有带入数据的步骤,计算结果整理成表。

4.分别计算导线和地线的临界档距,判定各自的控制条件及其作用个档距范围。

5.判定导线的最大弧垂气象。

6.计算档距范围30-800mm,间隔50m,必须计算有效临界档距处的额值。

弧垂曲线只做最大弧垂和外过无风两条。

7.计算导线安装曲线(考虑初伸长),并按比例绘制在坐标纸上。

温度范围;最低气温至最高气温,间隔5摄氏度。

建议制成百米弧垂安装曲线图。

÷8.按控制档距选配地线的应力。

9.效验地线控制条件下的应力。

若超限,计算需要的地线支架高度(注意去除导线悬垂绝缘子长度)。

10.以选配的地线为已知状态,计算有关气象条件下的地线应力和弧垂,按比例在坐标纸上绘制地线应力弧垂曲线。

11.计算地线百米弧垂安装曲线(考虑初伸长),并按比例绘制在坐标纸上。

温度范围;最低气温至最高气温,间隔5摄氏度四设计时间2周五说明1.为简明起见,各计算结果应尽量采用表格表示。

架空输电线路设计教学设计

架空输电线路设计教学设计

架空输电线路设计教学设计一、引言架空输电线路设计是电力工程专业的重要课程之一。

随着现代社会对电力供应的要求越来越高,架空输电线路设计的重要性也随之增加。

因此,对于电力工程专业的学生来说,掌握架空输电线路设计的知识和技能,将会为以后从事电力工作打下坚实的基础。

那么,在这门课程的教学中,如何更加有效地教授和考核学生呢?本文将就此问题进行探讨。

二、教学目标本课程的教学目标如下:1.理解架空输电线路的结构、组成和工作原理;2.掌握架空输电线路的设计方法和计算原理;3.能够根据实际情况进行架空输电线路的设计,并进行合理的优化。

三、教学内容本课程的教学内容包括:1. 架空输电线路的结构和组成1.架空输电线路的基本结构;2.架空输电线路中的电缆、导线及其接头等组成部分。

2. 架空输电线路的工作原理1.架空输电线路的带电量大小和传输距离的关系;2.架空输电线路的电量传输损耗及售电损失;3.架空输电线路的电磁场分析。

3. 架空输电线路的设计方法和计算原理1.架空输电线路的设计指标;2.架空输电线路的设计计算方法;3.架空输电线路的设计参数确定。

4. 架空输电线路的设计案例分析1.实际建设中的常见问题;2.架空输电线路设计的优化方案。

四、教学方法本课程采用“理论+实践”相结合的教学方法,具体如下:1. 理论教学1.授课:以PPT为辅助,通过讲解、案例分析等形式进行教学;2.大班互动讨论:通过提供实例题目、思维角度等方式,让学生积极参与到课堂中;3.作业:通过练习题目和设计案例模拟等方式,帮助学生检验自身的理论掌握程度。

2. 实践教学1.实验:通过模拟电力工程中的实际情形,让学生亲身参与到实验环节,提高学生的实践操作能力;2.课程项目设计:让学生根据实际情况进行架空输电线路的设计,并进行相关优化。

五、教学考核本课程的考核方式如下:1.平时表现:包括课堂表现、作业完成情况等;2.实验考核:对学生进行实验操作和结果分析;3.课程设计:对学生进行设计方案的评估和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

架空输电线路课程设计班级姓名学号指导老师年月日目录一、设计条件 (3)二、设计要求 (3)三、整理已知条件 (4)四、比载计算 (5)五、计算临界档距,判断控制条件 (6)六、判定最大弧垂 (8)七、计算各气象条件下的应力和弧垂 (9)八、安装曲线计算 (11)九、画应力弧垂曲线与安装曲线 (14)十、感想 (14)330Kv架空输电线路设计一、设计条件1.典型气象区V区2.导线型号LGJ-400/503.电压等级330Kv二、设计要求列出各气象条件,计算出比载,判断临界档距,最大弧垂气象,画出应力弧垂曲线及安装曲线。

三、整理已知条件2.风速换算由于此处的风速是高度为10米处的基准风速,而110~330Kv 输电线路应取离地面15米处的风速,所以应当进行风速高度换算。

采用公式式中h v —线路设计高度h 处的风速,m/s ;0v —标准高度10m 处的风速,m/s ;α—风速高度变化系数;z 为粗糙度指数;β为修正系数在此设计中采用《架空输电线路设计》孟遂民版中表2—6规定,取粗糙度等级为B ;则相应的z=0.16;β=1.0 则 最大风速时风速换算值为v=1.067×30=32.01m/s覆冰有风,外过有风,安装气象时风速换算值为v=1.067×10=10.67m/s内过电压时风速换算值为v=1.067×15=16.01m/s3.导线参数此处采用LGJ-400/50导线,其相应参数如下表二所示v v h α=zh ⎪⎭⎫ ⎝⎛=10βα067.110151016.0=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=zh βα7导线的安全系数取2.5,控制微风震动的年均气象条件下的年均运行应力设计安全系数取4 则抗拉强度 许用应力年均运行应力上限 四、比载计算1.自重比载2.冰重比载3.垂直总比载4.无冰风压比载(1) 外过电压,安装有风此时风速v=10.67m/s 0.1=c β 0.1=f α 1.1=sc μ(2)内过电压此时风速v=16.01m/s 0.1=c β 75.0=f α 1.1=sc μ (3)最大风速此时风速v=32.01m/s 0.1=c β 1.1=sc μ 计算强度时75.0=f α 校验电气间距时61.0=f α ()MPa A T j p 62.25955.45112340095.095.0=⨯==σ[])(85.1035.262.2590MPa k p ===σσ[])(90.64462.2594MPa p cp===σσ)/(1082.321055.45180665.91511103331m MPa A qg ---⨯=⨯⨯=⨯=γ)/(1011.231055.451)63.2710(10728.2710)(728.273332m MPa A b d b ---⨯=⨯+=⨯+=γ)/(1093.553213m MPa -⨯=+=γγγ)/(10sin 324m MPa AW d v sc f c -⨯=θμαβγ)/(1079.41055.45167.10625.063.271.110sin 332324m MPa A W d v sc f c ---⨯=⨯⨯⨯⨯=⨯=θμαβγ)/(1009.81055.45101.16625.063.271.175.010sin 332324m MPa A W dv sc f c ---⨯=⨯⨯⨯⨯⨯=⨯=θμαβγ)/(1033.321055.45101.32625.063.271.175.010sin 332324m MPa A W d v sc f c ---⨯=⨯⨯⨯⨯⨯=⨯=θμαβγ)/(1029.261055.45101.32625.063.271.161.010sin 332324m MPa A Wd v sc f c ---⨯=⨯⨯⨯⨯⨯=⨯=θμαβγ5.覆冰风压比载此时风速v=10.67m/s 0.1=c β 2.1=sc μ 计算强度和检验风偏时均可取0.1=f α6.无冰综合比载()24216γγγ+=(1)外过电压,安装有风)/(1017.331079.482.3233226m MPa --⨯=⨯+=γ(2)内过电压)/(1080.331009.882.3233226m MPa --⨯=⨯+=γ(3)最大风速 计算强度时)/(1007.461033.3282.3233226m MPa --⨯=⨯+=γ 校验风偏时)/(1005.421029.2682.3233226m MPa --⨯=⨯+=γ7.覆冰综合比载()25237γγγ+=计算强度和校验风偏时)/(1065.561001.993.5533227m MPa --⨯=⨯+=γ各气象条件下的比载计算值列于下表三五、计算临界档距,判断控制条件1. 当气象条件变化时,应力随之变化,在应力达到最大时的气象条件即为控制条件,在输电线路设计时,应考虑的四种气象条件分别为最低气温,最大风速,最厚覆冰,年均气温。

这四种气象条件的有关参数如表四所示 )/(10sin )2(325m MPa AWb d v sc f c -⨯+=θμαβγ)/(1001.91055.45167.10625.063.472.110sin )2(332325m MPa A W b d v scf c ---⨯=⨯⨯⨯=⨯+=θμαβγ由状态方程式可得临界档距的计算公式为[][]()[][][]βσγσγβασσ3202000cos cos 24⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-+-=i ij ji j i j ij E t t E l所以各临界档距如下:[][]()[][][]()mE t t E l aa bba b a b ab 16.309103160.04436.0690002069000103.1924cos cos 2462263202000=⨯-⨯⨯⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛-+-=--βσγσγβασσ[][]()[][][]()虚数=⨯-⨯⨯⨯⨯+-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛-+-=--62263202000103160.05057.069000)2569000103.1985.10390.64(24cos cos 24βσγσγβασσaa cca c a c ac E t t E l [][]()[][][]()m E t t E l aa dda d a d a 23.108103160.05455.069000569000103.1924cos cos 2462263202000d =⨯-⨯⨯⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛-+-=--βσγσγβασσ[][]()[][][]()虚数=⨯-⨯⨯⨯⨯+-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛-+-=--62263202000104436.05057.069000)569000103.1985.10390.64(24cos cos 24βσγσγβασσbb ccb c b c bc E t t E l [][]()[][][]()虚数=⨯-⨯-⨯⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛-+-=--62263202000bd 104436.05455.069000)15(69000103.1924cos cos 24βσγσγβασσbb ddb d b d E t t E l [][][][]()i j i ij i i j ij j j t t E l E l E ---=-βασβγσσβγσcos 24cos 24cos 203220203220[][]()[][][]()m E t t E l cc ddc d c d 82.164103160.05057.069000)2069000103.1990.6485.103(24cos cos 2462263202000cd =⨯-⨯⨯⨯⨯--=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛-+-=--βσγσγβασσ将结论列于下面表五由上表五可得出如下结论:当代表档距l<164.82m 时年均气温是控制条件;当代表档距l>164.82m 时最厚覆冰是控制条件。

六、判定最大弧垂此处最大弧垂是指架空线在无风气象条件下垂直平面内档距中央弧垂的最大值。

出现最大弧垂的气象条件是最高气温或覆冰无风,在此设计中采用临界温度法判定最大弧垂。

1. 临界温度法在某一温度下,架空线在自重比载作用下产生的弧垂与覆冰无风时的弧垂相等,则此温度称为临界温度。

设覆冰无风为第一状态:气温为b t ,比载为3γ,架空线水平应力为b σ 临界温度为为第二状态:温度为j t ,比载1γ。

水平应力为j σ 则可根据状态方程式解得临界温度计算式为E t t bb j ασγγ⎪⎪⎭⎫ ⎝⎛-+=3112. 判定(1) 当代表档距l<164.82m 时,年均气温为控制条件第一状态:年均气温,温度C t151=,比载)(m MP /a 1082.323-1⨯=γ,水平应力MPa 90.641=σ第二状态:覆冰无风,温度C t52-=,比载)(m MP /a 1093.553-2⨯=γ,水平应力待求2σ 由状态方程式[][][][]()12210322110220322220cos 24cos 24cos t t E lE l E ---=-βασβγσσβγσ可求得覆冰无风条件下的应力2σ 取代表档距l=100m,将各数据代入上式得74.8993418.842232=-σσ采用试凑法可得MPa 3.942=σ临界温度C Et t b b j3.2469000103.193.941093.551082.3215163331=⨯⨯⎪⎪⎭⎫ ⎝⎛⨯⨯-+-=⎪⎪⎭⎫ ⎝⎛-+=---ασγγ 最高气温 3.24,40max C t C t j ==而临界温度 max t t j <所以最大弧垂发生在最高气温条件下。

(2) (2)当代表档距l>164.82m 时,最厚覆冰为控制条件第一状态:最厚覆冰,温度C t51-=,比载)(m MP /a 1065.563-1⨯=γ,水平应力MPa 85.1031=σ第二状态:覆冰无风,温度C t52-=,比载)(m MP /a 1093.553-2⨯=γ,水平应力待求2σ 由状态方程式1可求得覆冰无风条件下的应力2σ取代表档距l=200m,将各数据代入上式得96.35973863.692232=-σσ采用试凑法可得MPa 33.1032=σ临界温度C Et t b b j1.2769000103.1933.1031093.551082.3215163331=⨯⨯⎪⎪⎭⎫ ⎝⎛⨯⨯-+-=⎪⎪⎭⎫ ⎝⎛-+=---ασγγ 最高气温 1.27,40max C t C t j==而临界温度 max t t j <所以最大弧垂发生在最高气温条件下。

相关文档
最新文档