传感器与变送器
压力变送器的原理和分类
压力变送器的原理和分类压力变送器是一种常用于工业自动化控制系统中的传感器设备,它能够将压力信号转换为标准的电信号输出,以实现对压力参数的测量、监测和控制。
本文将介绍压力变送器的基本原理和常见的分类。
一、压力变送器的原理1. 压力传感器原理压力传感器是压力变送器的核心部件,它通过感受被测介质的压力信号,将压力转换为电信号输出。
常见的压力传感器原理有压阻式、电容式和电感式等。
2. 传感器与变送器的结合传感器检测到的压力信号需要经过处理后才能输出为标准的电信号,以便与控制系统进行通信。
变送器的作用就是将传感器采集到的压力信号进行放大、线性化和隔离等处理,最终输出为标准的电信号。
二、压力变送器的分类根据测量原理和结构特点,压力变送器可分为以下几类:1. 压阻式压力变送器压阻式压力变送器采用特殊的压阻元件,当被测介质的压力作用于压阻元件时,其电阻值发生变化,通过对电阻值进行测量和处理,转换为相应的电信号。
它具有简单、可靠、价格较低等特点,广泛应用于工业控制和仪表领域中。
2. 容式压力变送器容式压力变送器采用能够随压力变化而发生形变的柔性膜片或隔膜作为感应元件,通过测量膜片或隔膜的形变程度来间接测量压力。
它具有高精度、高稳定性、抗冲击性好等特点,广泛应用于流量、液位等精密测量领域。
3. 振动式压力变送器振动式压力变送器利用悬挂在晶体上的微小质量块,并通过质量块在介质压力作用下发生的微小振动来检测压力变化。
它具有响应速度快、可测低压、不易受介质性质和温度影响等特点,广泛应用于石油、化工等工业领域。
4. 电容式压力变送器电容式压力变送器利用被测介质的压力改变感应电容器之间的电容值发生变化,通过测量电容值来间接测量压力。
它具有高精度、高稳定性、抗干扰能力强等特点,广泛应用于医疗、航空航天等领域。
5. 压电式压力变送器压电式压力变送器利用压电材料的压力感应特性,将被测介质的压力转换为相应的电荷输出或电压输出。
它具有体积小、抗振、可靠性高等特点,广泛应用于汽车、航空等领域。
压力传感器-变送器接线问题
压力传感器/变送器接线问题对于新买的压力传感器/变送器,很多初用者在传感器/变送器的接线问题上都很纠结,担心接错以后,会导致传感器/变送器损坏,影响测量的准确性。
本篇文章就压力传感器/变送器接线问题跟大家探讨下,教大家如何处理二线制、三线制和四线制传感器/变送器的接线问题。
现如今常用的压力变送器都是两线的,加带电源隔离器,输出为4~20mA信号,变送器有二个输入端一个接给定信号,另一个接压力反馈信号。
那么正确的安装方法是:压力变送器一般输出的信号是电流4-20MA,0-20MA,或电压0-5V,1-5V,0-10V等,通常电流型的是二线或四线制,电压的三线制输出。
目前市的变送器很多是没有24VDC供电电源的,大部份是10V,有些功耗较大的变送器,10VDC的电源无法带动,那么只能外接供电源24VDC。
这样变送器就出现了四个接线端子:供电+,供电-,反馈+和反馈-。
电流型四线制接线方式:电源+==供电+;电源-==供电-;信号+==反馈+,信号-==反馈-。
电流型二线制接比方式:电源+==供电+;信号+==反馈+,供电-==反馈-,如果不远传只需接24V电压+,-,如果需要远传需要组成回路,比如24V+接压力表+,压力表-接4~20mA+,4~20mA-接24V-就可以,可能中间有端子,要看一下回路图。
电压型三线制接线方式:电源+==供电+;电源-(信号-)==供电-;信号+==反馈+,电源-(信号-)。
以上为通用的压力传感器/变送器的接线方法,如果大家仍然还有疑问,可以与提供产品的厂家联系或与传感器之家技术人员联系,一步步教你怎么解决传感器/变送器接线问题。
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
压力传感器和压力变送器有什么区别
压力传感器是能感受压力信号,并能按照一定的规律将压力信号转换成可用的输出的电信号的器件或装置。
压力变送器是一种将压力转换成气动信号或电动信号进行控制和远传的设备。
下面笔者来跟大家讲一下压力传感器和压力变送器有什么区别一、原理不同1、压力传感器电阻应变片是压阻式应变传感器的主要组成部分之一。
金属电阻应变片的bai工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。
2、陶瓷压力传感器基于压阻效应,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥,由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号。
3、扩散硅压力传感器工作原理也是基于压阻效应,利用压阻效应原理,被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,利用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。
4、压力变送器感受压力的电器元件一般为电阻应变片,电阻应变片是一种将被测件上的压力转换成为一种电信号的敏感器件。
电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。
金属电阻应变片又有丝状应变片和金属箔状应变片两种。
5、通常是将应变片通过特殊的黏合剂紧密地粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。
二、相关应用不同1、压力传感器主要应用于:增压缸、增压器、气液增压缸、气液增压器、压力机,压缩机,空调制冷设备等领域。
2、压力变送器:(1)、智能化:由于集成化的出现,在集成电路中可添加一些微处理器,使得变送器具有自动补偿、通讯、自诊断、逻辑判断等功能。
(2)、集成化:压力变送器已经越来越多的与其它测量用变送器集成以形成测量和控制系统。
集成系统在过程控制和工厂自动化中可提高操作速度和效率。
霍尔电流电压传感器、变送器的基本原理与使用方法
霍尔电流电压传感器、变送器的基本原理与使用方法一、霍尔电流电压传感器、变送器的基本原理与使用方法1( 霍尔器件霍尔器件是一种采用半导体材料制成的磁电转换器件。
如果在输入端通入控制电流I,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V。
CH如图1,1所示。
IBsin霍尔电势V的大小与控制电流I和磁通密度B的乘积成正比,即:V,KHCHHCΘ霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。
因此,使电流的非接触测量成为可能。
通过测量霍尔电势的大小间接测量载流导体电流的大小。
因此,电流传感器经过了电,磁,电的绝缘隔离转换。
2( 霍尔直流检测原理如图1,2所示。
由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔器件输出的电压讯号U可以间接反映出被测电流I的大小,即:I?B?U 01110我们把U定标为当被测电流I为额定值时,U等于50mV或100mV。
这就制成010霍尔直接检测(无放大)电流传感器。
3( 霍尔磁补偿原理原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。
所以称为霍尔磁补偿电流传感器。
这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。
霍尔磁补偿原理如图1,3所示。
从图1,3知道:Φ,Φ 12IN,IN 1122I,N/N?I 2I21当补偿电流I流过测量电阻R时,在R两端转换成电压。
做为传感器测量电2MM压U即:U,IR 02M0按照霍尔磁补偿原理制成了额定输入从0.01A,500A系列规格的电流传感器。
由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。
4( 磁补偿式电压传感器为了测量mA级的小电流,根据Φ,IN,增加N的匝数,同样可以获得高磁1111通Φ。
温湿度变送器与温湿度传感器有什么区别
温湿度变送器与温湿度传感器有什么区别一、温湿度变送器的作用就是把温湿感应头传诵过来的电信号变成0~5V的电压或4~20ma的工控电流信号二、湿度传感器的分类及特点1、湿度传感器的分类湿度传感器分为电阻式和电容式两种,产品的基本形式都是在基片涂覆感湿材料形成感湿膜。
空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。
2、湿度传感器的特性:国内外各厂家的湿度传感器产品水平不一,质量价格都相差较大,用户如何选择性能价格比最优的理想产品确有一定难度,需要在这方面作深入的了解。
湿度传感器具有如下特点:(1) 精度和长期稳定性湿度传感器的精度应达到±2%~±5%RH,达不到这个水平很难作为计量器具使用,湿度传感器要达到±2%~±3%RH的精度是比较困难的,通常产品资料中给出的特性是在常温(20℃±10℃)和洁净的气体中测量的。
在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,会产生老化,精度下降,湿度传感器的精度水平要结合其长期稳定性去判断,一般说来,长期稳定性和使用寿命是影响湿度传感器质量的头等问题,年漂移量控制在1%RH水平的产品很少,一般都在±2%左右,甚至更高。
(2) 湿度传感器的温度系数湿敏元件除对环境湿度敏感外,对温度亦十分敏感,其温度系数一般在0.2~0.8%RH/℃范围内,而且有的湿敏元件在不同的相对湿度下,其温度系数又有差别。
温漂非线性,这需要在电路上加温度补偿式。
采用单片机软件补偿,或无温度补偿的湿度传感器是保证不了全温范围的精度的,湿度传感器温漂曲线的线性化直接影响到补偿的效果,非线性的温漂往往补偿不出较好的效果,只有采用硬件温度跟随性补偿才会获得真实的补偿效果。
湿度传感器工作的温度范围也是重要参数。
多数湿敏元件难以在40℃以上正常工作。
(3) 湿度传感器的供电金属氧化物陶瓷,高分子聚合物和氯化锂等湿敏材料施加直流电压时,会导致性能变化,甚至失效,所以这类湿度传感器不能用直流电压或有直流成份的交流电压。
变送器的工作原理
变送器的工作原理
变送器是一种电子设备,用于测量和转换各种物理量,并将其转化为电信号传输,以便在远距离进行监测和控制。
变送器的工作原理主要包括以下几个步骤:
1. 传感器检测物理量:变送器的第一步是通过内置的传感器检测待测物理量,如温度、压力、流量等。
传感器通常是根据被测量的物理量发生的变化来进行操作的。
例如,温度变送器可能使用热敏电阻来测量温度变化。
2. 信号转换:测量到的物理量被传感器转换成相应的电信号。
这些信号可以是电阻、电压、电流等形式。
3. 信号放大:为了提高信号的灵敏度和稳定性,变送器通常会使用放大器来增加电信号的幅度。
放大过程可以通过运放电路来实现。
4. 线性化处理:某些物理量的输出信号与输入量之间的关系可能不是线性的,因此变送器需要进行线性化处理,以确保输出信号与输入量之间的线性关系。
5. 输出标准化:为了便于远距离传输和处理,变送器通常会将输出信号标准化为特定的电信号,如4-20mA电流信号或0-10V电压信号。
6. 电隔离:为了防止被测量物理量的干扰影响其他电子设备,变送器通常会使用电隔离技术,将输入和输出电路隔离开来。
7. 电源供应:变送器通常需要外部电源供应,以保证其正常工作。
8. 远距离传输:标准化的输出信号可以通过电缆或其他通信介质进行远距离传输,以便进行远程监测和控制。
总之,变送器通过传感器检测物理量,将其转换为电信号,并经过信号转换、放大、线性化处理、标准化等步骤,最终将信号传输到远距离用于监测和控制。
变送器的工作原理
变送器的工作原理变送器是一种常用的工业自动化设备,用于将各种物理量转换为标准信号输出,以实现监测、控制和调节等功能。
它的工作原理主要包括传感器、信号处理、信号转换和输出四个方面。
变送器的工作原理涉及传感器。
传感器是变送器的核心部件,负责将被测量的物理量转换为电信号。
不同的物理量需要采用不同的传感器,常见的传感器有温度传感器、压力传感器、流量传感器等。
传感器的选择要考虑被测量物理量的特性和工作环境的要求,确保测量的准确性和稳定性。
变送器的工作原理还需要信号处理。
传感器输出的信号通常是微弱的模拟信号,需要经过信号处理电路进行放大、滤波和线性化等处理。
放大可以增加信号的幅度,提高测量的精度;滤波可以去除噪声干扰,提高信号的可靠性;线性化可以将非线性信号转换为线性信号,方便后续的处理和分析。
然后,变送器的工作原理还包括信号转换。
信号转换是将处理后的模拟信号转换为标准信号输出的过程。
常见的标准信号有电流信号和电压信号,它们在工业自动化控制系统中得到广泛应用。
信号转换可以通过电阻、电容、电感等元件和电路实现,根据被测量物理量的不同,选择合适的转换方式和电路设计。
变送器的工作原理还涉及信号输出。
经过信号转换后,变送器将标准信号输出给上位设备或控制系统,以实现监测、控制和调节等功能。
标准信号的输出可以通过模拟信号输出接口或数字信号输出接口实现,根据具体的应用需求进行选择。
在工业自动化系统中,变送器的输出信号通常经过模拟量输入模块或数字量输入模块进行采集和处理。
变送器的工作原理主要包括传感器、信号处理、信号转换和输出四个方面。
传感器负责将物理量转换为电信号,信号处理对信号进行放大、滤波和线性化处理,信号转换将模拟信号转换为标准信号输出,信号输出将标准信号输出给上位设备或控制系统。
变送器的工作原理的理解和应用对于工业自动化系统的设计和运行具有重要意义。
质量流量计传感器与变送器接线
质量流量计传感器与变送器接线传感器和变送器之间应采用专用信号电缆进行连接,电缆长度一般不得超过300m。
各式传感器都有统一的接线盒,接线盒内结构及端子如下图:使用专用信号电缆,按芯线颜色接线,要压接或焊接接线片。
L组:白接L1,黄接L2,屏蔽剪掉。
R组:灰接R1,紫接R2,屏蔽剪掉。
D组:红接D1,兰接D2,屏蔽剪掉。
T组:绿色,橘色接T1,2,黑色,屏蔽线接T3,4T组的屏蔽线要穿绝缘管,所有接线包括屏蔽线不能接触外壳。
进线应进行密封处理,接线盒不能漏气、漏水。
传感器外壳应就近接地,导线截面积不应小于1 平方毫米这里http://www.yhllj.com/.进行帮助如图所示,图为变送器后端的接线端子。
JP6和JP8为信号输入输出端子,JP1为传感器连接端子,P0为电源端子。
JP1按电缆中芯线的颜色对号连接,见图2.6从红往兰方向,第一个屏蔽线为屏1,第二个屏蔽线为屏2,第三个屏蔽线为屏3。
红兰组的屏蔽线接屏1,白黄和灰紫两组屏蔽线绞合后接屏2,绿桔黑组屏蔽线接屏3。
屏蔽线应套绝缘管。
P0接220V 50Hz交流电源,火线接L,零线接N,地线接⊥。
地线要求接地良好,接地电阻不大于4Ω。
JP6和JP8是变送器输入输出端子,电流环、频率量、离散量输入输出、485接口都在此端子上。
如果要求4~20mA电流环输出,则按极性接4~20mA的正负极,并进入菜单对电流环组态并激活。
如果要求频率量(脉冲)输出,则频率线的正极接FREQ,负极接GND,进入菜单对频率量进行组态并激活。
如果需要连接网络,可用双绞屏蔽网线,内芯线连接485A、485B,屏蔽层接485GND。
通讯协议为Modbus。
另外LB112还提供了两路输入离散量和两路输出离散量,可进行组态。
离散量输入可组态:清总量、零校准、总量停止。
离散量输出可组态:流量、温度、密度以及总量的上下限报警。
温度变送器(带传感器)的现场校准方法
温度变送器(带传感器)的现场校准方法
温度变送器(带传感器)是一种将温度变量转换为可传送的标准化输出信号的仪表,温度变送器分为带传感器和不带传感器两种。
现在各试验测试中的采集系统、控制系统均以电流、电压信号为主。
在实际测试工作中,为了采集更加方便、准确,需配置与之前端传感器相应分度号和量程的变送器来进行信号的变送输出。
目前由传感器与变送器配套组合而成使用的相对较多,现阶段校准均对其传感器和变送器进行整体校准。
目前温度变送器校准方式以实验室校准为主,此种量值溯源方式已不能完全满足现场需求。
因此,温度变送器校准就需要采取在使用现场校准的方式进行。
依据JJF 1183-2007《温度变送器校准规范》和Q/SH1025 1122—2021《温度变送器现场校准方法》对温度变送器(带传感器)进行校准,前者主要适用于实验室校准,后者主要适用于现场校准。
按温度变送器温度(带传感器)范围均匀分布选择校准点,一般包括上限值、下限值和量程50%附近在内不少于5个点,也可以根据温度变送器(带传感器)现场实际测量温度来选择校准点。
带传感器的温度变送器(带传感器)在校准时,将温度变送器(带传感器)的感温端和标准铂电阻温度计一同插入恒温设备温场中,在每个校准点上轮流对标准铂电阻温度计的示值和温度变送器(带传感器)的输出进行反复6次读数,分别计算算术平均值,得到标准铂电阻温
度计和被校温度变送器的示值。
压力变送器跟压力传感器的异同
压力变送器跟压力传感器的异同压力变送器跟压力传感器的异同压力传感器和压力变送器包括:水压力传感器,气体压力传感器,风压传感器,差压传感器,油压变送器,差压变送器,真空压力传感器,真空压力变送器等各种形式、各种结构的产品。
在两种计量器具的实际检测过程中,压力变送器与压力传感器分别有着不同的计量检定规程。
分别是JJ882-2004《压力变送器》、JJG860-1994《压力传感器(静态)》、JJG624-2005《动态压力传感器》。
可以看出压力传感器主要要分为两种,分别是静态压力传感器与动态压力传感器。
动态压力传感器一般用于军工领域,通常用于测量炮膛或枪膛的瞬间动态压力;因此动态压力传感器很少用于民用,本文讨论的压力传感器均为静态压力传感器。
两种仪表的功能都是把压力信号转化为另一种信号。
所不同的是压力变送器所输出的信号与压力变量之间有一给定的连续函数关系(通常为线性函数),而压力传感器所输出的信号只要与压力变量之间存在一定的规律即可。
这个可能是任意的规律,并不一定是函数关系的规律。
也就是说压力传感器输出有规律的信号即可,而压力变送器则需要把信号放大修正后,输出一组标准的信号。
可以说压力变送器可以说是一种特殊的压力传感器,输出的信号比一般压力传感器标准。
也可以说压力传感器是压力变送器的一部分,压力信号经过传感器变换后,再有电路放大转换为标准信号后,进行输出。
以常见的仪器举例说明:以量程(0~1)MPa;输出(4~20)mA的压力变送器和压力传感器为例。
变送器所测量的压力值与变送器输出成固定的对应关系。
零位时,输出电流4mA;满量程时,输出电流20mA。
如果该仪器按压力变送器检测,零位输出4.03mA,4.03-4.00=0.03(mA)。
0.03mA就是该压力变送器的误差。
如果该仪器按压力传感器检测,那么0.03mA并不能算为该仪器的误差。
因为传感器没有固定的线性函数关系,4.00mA也不能算作该测量点的理论真值。
第4节 传感器与变送器
所谓调零点,就是当测量信号 ∆p=0 时,确保差压变送器 的输出p出=0.02Mpa。若当p出≠0.02Mpa时,则应该进行调 整。调整方法是通过调整调零弹簧的预紧力,强制改变挡 板与喷嘴之间的初始开度,使得 ∆p=0 时, p 出 =0.02Mpa 。所谓调量程,是指当测量信号 ∆p 达到最大值时,调整 量程支点的上下位置,使得p出=0.10Mpa 。
• 为了检测主机的转向,需安装两个磁头,且它们之间错位1/4 齿距,使两个磁头所产生的脉冲信号在相位上相差1/4周期。 • 正车时,CP端上升沿时,D端为1,Q输出1; • 倒车时,CP端上升沿时,D端为0,Q输出0。
• 二、变送器 • 1.变送器的构成原理
y K ( Dx z0 ) 1 KF
起点从零迁到某一数值。迁移后,量程的起点和终
点都改变,但量程保持不变。
变送器零点迁移前后的输入输出特性
• 2.气动差压变送器 • 工作原理?
图5-60单杠杆差压变送器原理示意图
7-档板
5-顶针架
单 杠 杆 差 压 变 送 器 结 构 原 理 图
6-喷嘴 8-调零迁移弹簧
9-杠杆
11-锁紧螺母 12-静压误差 调节螺母 14-支架 17-负压室 16-膜盒
p 0
E s 0 l3 p出 0.02 MPa F反 l2
• 双杠杆差压变送器 1)在单杠杆变送器中,量程增加→L2增加==>量程非 常大,必须增长主杠杆; 2)主杠杆增加,容易引起振荡。 为此设计出双杠杆变送器,减小主杠杆的长度。
• 双杠杆差压变送器
F膜 L1 L 4 p出 p F反 L 2 L 3 K 双 p
(2)热电偶式温度传感器
+
e
变送器和传感器的区别和联系
变送器和传感器的区别和联系传感器传感器是能够受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置的总称,通常由敏感组件和转换组件组成。
当传感器的输出为规定的标准信号时,则称为变送器。
变送器的概念是将非标准电信号转换为标准电信号的仪器,传感器则是将物理信号转换为电信号的器件,过去常讲物理信号,现在其它信号也有了。
一次仪表指现场测量仪表或基地控制表,二次仪表指利用一次表信号完成其它功能:诸如控制,显示等功能的仪表变送器和传感器有什么区别和联系?传感器是能够受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置的总称,通常由敏感组件和转换组件组成。
当传感器的输出为规定的标准信号时,则称为变送器。
变送器的概念是将非标准电信号转换为标准电信号的仪器,传感器则是将物理信号转换为电信号的器件,过去常讲物理信号,现在其它信号也有了。
一次仪表指现场测量仪表或基地控制表,二次仪表指利用一次表信号完成其它功能:诸如控制,显示等功能的仪表。
传感器和变送器本是热工仪表的概念。
传感器是把非电物理量如温度、压力、液位、物料、气体特性等转换成电信号或把物理量如压力、液位等直接送到变送器。
变送器则是把传感器采集到的微弱的电信号放大以便转送或启动控制组件。
或将传感器输入的非电量转换成电信号同时放大以便供远方测量和控制的信号源。
根据需要还可将模拟量变换为数字量。
传感器和变送器一同构成自动控制的监测信号源。
不同的物理量需要不同的传感器和相应的变送器。
还有一种变送器不是将物理量变换成电信号,如一种锅炉水位计的“差压变送器”,他是将液位传感器里的下部的水和上部蒸汽的冷凝水通过仪表管送到变送器的波纹管两侧,以波纹管两侧的差压带动机械放大装置用指针指示水位的一种远方仪表。
当然还有把电气模拟量变换成数字量的也可以叫变送器。
以上只是从概念上说明传感器和变送器的区别。
传感器各类传感器的特点一、传感器的定义国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感组件和转换组件组成”。
传感器与变送器的区别
传感器与变送器的区别1、传感器,是能够受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置的总称,通常由敏感元件和转换元件组成。
2、当传感器的输出为规定的标准信号时,则称为变送器。
3、变送器的概念是将非标准电信号转换为标准电信号的仪器,传感器则是将物理信号转换为电信号的器件。
4、传感器,和变送器本是热工仪表的概念。
传感器是把非电物理量如温度、压力、液位、物料、气体特性等转换成电信号或把物理量如压力、液位等直接送到变送器。
5、变送器,则是把传感器采集到的微弱的电信号放大以便转送或启动控制元件;或将传感器输入的非电量转换成电信号同时放大,以便供远方测量和控制的信号源。
以上给大家介绍的是关于传感器和变送器两者之间的不同之处。
至于相同之处,传感器和变送器都是一同构成自动控制的监测信号源。
而以上只是从概念上说明传感器和变送器的区别,还有具体的方法可以辨别传感器和变送器的区别。
人们为了从外界获取信息,必须借助于感觉器官。
而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。
为适应这种情况,就需要传感器。
因此可以说,传感器是人类五官的延长,又称之为电五官。
新技术革命的到来,世界开始进入信息时代。
在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。
在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。
因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。
在基础学科研究中,传感器更具有突出的地位。
现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到cm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。
此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁砀等等。
变送器的工作原理及应用
变送器的工作原理及应用工作原理变送器是一种电子设备,用于将物理量(如压力、温度、流量等)转换为标准信号(如电流、电压等),以便传输、测量和控制。
其工作原理可以分为以下几个方面:1.传感器:变送器通常与传感器配合使用,传感器负责感知待测物理量并将其转换为电信号。
常用的传感器包括压力传感器、温度传感器、液位传感器等。
2.信号调理:变送器对传感器输出的信号进行放大、滤波和线性化等处理,以确保信号的准确性和稳定性。
3.信号转换:在信号调理的基础上,变送器将信号转换为符合标准的信号形式,如电流信号(4-20mA)、电压信号(0-10V)等。
4.信号传输:变送器将转换后的信号传输给后续的测量、控制设备,如远程显示仪表、控制系统等。
应用变送器在工业自动化控制领域有着广泛的应用。
下面列举几个常见的应用场景:1.压力变送器:压力变送器广泛应用于工业过程控制中,用于测量和监控管道、容器等介质的压力。
通过将压力转换为标准的电信号,可以实现对压力的远程监控和控制。
2.温度变送器:温度变送器常用于温度测量和控制系统中,常见于化工、冶金、电力等行业。
它可以将温度传感器感知到的温度转换为标准的电信号,在温度范围内实现测量、报警和控制。
3.液位变送器:液位变送器用于测量和控制液体介质的高度或接触点位置。
在化工、石油、造纸等行业中,液位变送器广泛应用于储罐、槽、管道等设备的液位监测和控制。
4.流量变送器:流量变送器在流体控制和测量领域中起着重要作用。
它可以通过测量液体或气体的流速、流量来实现对流体的控制和监测,广泛应用于化工、制药、电力等行业。
5.氧气变送器:氧气变送器用于测量和监控环境中的氧气含量。
在环境保护、生物工程、医疗设备等领域中,氧气变送器可以提供重要的数据支持,保障环境质量和人类健康。
除了以上几个常见的应用场景,变送器还可以用于其他物理量的测量和控制,如PH值、电导率、振动等。
通过将待测物理量转换为标准信号,变送器在工业自动化领域中发挥着重要的作用。
带传感器的温度变送器测量误差计算公式
带传感器的温度变送器测量误差计算公式
【最新版】
目录
一、引言
二、传感器的分类和温度变送器的作用
三、温度变送器测量误差的计算公式
四、影响温度变送器测量误差的因素
五、结论
正文
一、引言
随着工业自动化技术的不断发展,温度变送器被广泛应用于各种工业生产过程中,通过将温度传感器采集到的温度信号转换为标准信号,从而为运行人员提供可靠的温度数据。
然而,由于各种原因,温度变送器的测量误差会对温度数据的准确性产生影响。
因此,如何计算和减小温度变送器的测量误差,是工业生产中需要重点关注的问题。
二、传感器的分类和温度变送器的作用
温度传感器是温度测量仪表的核心部分,根据传感器材料及电子元件特性,温度传感器可分为热电阻和热电偶两类。
接触式和非接触式两大类。
温度变送器是将温度传感器采集到的温度信号转换为标准信号的设备,通过上传至后台自动化系统,为运行人员监控设备状态提供可靠依据。
三、温度变送器测量误差的计算公式
温度变送器测量误差的计算公式通常包括绝对误差、相对误差、系统误差和偶然误差。
其中,绝对误差是指测量值与真实值之间的差值;相对误差是指测量误差与真实值之比;系统误差是指在一定条件下,测量值偏离真实值的程度;偶然误差是指由于随机因素引起的测量误差。
四、影响温度变送器测量误差的因素
影响温度变送器测量误差的因素包括:传感器的性能、温度变送器的设计、生产和安装质量、环境温度、电源电压、信号干扰等。
为了减小测量误差,需要对这些因素进行充分的考虑和控制。
五、结论
温度变送器测量误差的计算公式可以帮助我们更好地了解和评价温度变送器的测量性能。
温湿度变送器与温湿度传感器的区别
温湿度变送器与温湿度传感器的区别
我们先从概念上区分,传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
变送器是一种转换器,它能够按命令将非标准电信号转换为标准电信号。
可以说变送器是在传感器的基础上,将传感器传送来的信息按照命令转换为一定规律的输出信号, 比如我们常听说的RS485型温湿度变送器、GPRS型温湿度变送器、模拟量型温湿度变送器等。
传感器和变送器一同构成自动控制的监测信号源,而不同的物理量需要不同的传感器和相应的变送器。
传感器被测参量种类不同,它的工作原理和使用条件也各不相同,因此传感器的种类和规格十分繁杂,下面给大家介绍传感器的集中分类方法:
从测量对象类别来区分,如测量温度、湿度、压力、液位、光照、紫外线、气体等非电量时,相应的传感器被称为温度传感器、湿度传感
器、压力传感器、液位传感器、光照传感器、气体传感器等,这种命名方法方便了用户快速查找需要的产品。
在众多类型的传感器中温湿度传感器是使用最多的一种,需要根据温湿度传感器使用的环境来选择测量范围。
测量精度是湿度传感器质量最重要的指标,精度越高的产品其售价也更高,大家在选择产品的时候,也要考虑这一点,一定要量体裁衣,选择适合的产品。
全面解读温度传感器与变送器
天润仪表T/TT2, 3, 4温度传感器/变送器
应用和特点
●用于风管(T/TT2)、水管(T/TT4)、室外(T/TT3)温度
检测
●高精度传感器,具有良好长期稳定性
●轻巧外壳设计,美观大方
●多种输出可选,电源和输出都有过压及反接保护功
能,高可靠性和抗干扰能力
●较宽的工作温度范围,响应速度快
●较高等级防护,可达IP65
技术指标
T2,3,4温度传感器
传感器:高精度热电阻,见选型表
输出:二线或三线连接(热电阻连接一般应用二线连接
即可,但三线连接可提高精度)
精度:典型0.2~0.4℃@25℃,见选型表
接线:2线或3线(RTD)(3线连接精度更佳)
TT2,3,4温度变送器
传感器:PT1000,A级
量程:见选型表
输出:4~20mA(二线)或0~10VDC
输出负载:≤500Ω(电流型),≥2KΩ(电压型)
精度:≤±0.5℃@0~50℃,详见精度曲线
电源:电流型18.5~35VDC(R负载=500Ω),
8.5~35V DC(R负载=0Ω)
电压型15~35VDC,15~28VAC
工作环境:-40~85℃,0~95%RH(非冷凝)
介质温度:-40~100℃
储运温度:-40~85℃
外壳材料:ABS外壳,不锈钢探头和套管
防护等级:IP65
认证:CE
精度曲线:
选型表
T2,3,4温度传感器
TT2,3,4温度变送器
T4/TT4安装套管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器是能够受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置的总称,通常由敏感元件和转换元件组成。
当传感器的输出为规定的标准信号时,则称为变送器。
变送器的概念是将非标准电信号转换为标准电信号的仪器,传感器则是将物理信号转换为电信号的器件,过去常讲物理信号,现在其他信号也有了。
一次仪表指现场测量仪表或基地控制表,二次仪表指利用一次表信号完成其他功能:诸如控制,显示等功能的仪表。
变送器(Transmitter): 是一种特殊的传感器,它使用统一的动力源,而输出也是一种标准信号。
所谓标准信号是指信号的形式和数值范围都符合国际统一的标准。
目前,变送器输出的标准信号有4-20mA直流电流,1-5V直流电压以及20-100kPa空气压力(气动仪表)
霍尔传感器是传感器件,而电流变送器是将传感器产生的信号直接转换为4~20mA的电流信号进行传输,因此它们两个一个是传感器,另一个是电流变送器
信号转换成标准信号的传感器叫变送器
传感器和变送器本是热工仪表的概念。
传感器是把非电物理量如温度、压力、液位、物料、气体特性等转换成电信号或把物理量如压力、液位等直接送到变送器。
变送器则是把传感器采集到的微弱的电信号放大以便转送或启动控制元件。
或将传感器输入的非电量转换成电信号同时放大以便供远方测量和控制的信号源。
根据需要还可将模拟量变换为数字量。
传感器和变送器一同构成自动控制的监测信号源。
不同的物理量需要不同的传感器和相应的变送器。
还有一种变送器不是将物理量变换成电信号,如一种锅炉水位计的“差压变送器”,他是将液位传感器里的下部的水和上部蒸汽的冷凝水通过仪表管送到变送器的波纹管两侧,以波纹管两侧的差压带动机械放大装置用指针指示水位的一种远方仪表。
当然还有把电气模拟量变换成数字量的也可以叫变送器。
以上只是从概念上说明传感器和变送器的区别。