化工原理课程设计-填料吸收塔的设计
化工原理课程设计甲醇填料吸收塔设计
投资估算及经济效益分析
投资估算
根据甲醇填料吸收塔的设计方案,对设备、材料、安装、调试等各方面的费用进行详细估算,以确保投资预算的 准确性。
经济效益分析
通过对比不同设计方案的经济效益,包括投资回报率、净现值、内部收益率等指标,评估甲醇填料吸收塔的经济 效益,为决策提供依据。
环保法规遵守情况说明
在甲醇吸收塔周围设置防火墙或 防火带,防止火灾蔓延。同时, 塔体上应设置明显的安全警示标 志和灭火器材。
防爆措施
对于可能存在爆炸危险的区域, 应采取相应的防爆措施,如设置 防爆门、防爆窗等。此外,还应 对塔体进行定期检查和维修,确 保设备完好无损。
防毒措施
甲醇具有一定的毒性,因此在设 计过程中应采取相应的防毒措施 。例如,在塔体上设置排风口和 通风设备,确保空气流通;工作 人员在操作时应佩戴防毒面具和 防护服等个人防护用品。
化工原理课程设计甲 醇填料吸收塔设计
目录
• 课程设计背景与目的 • 甲醇填料吸收塔基本原理 • 设计方案制定与参数选择
目录
• 工艺流程设计与优化 • 设备布置与管道设计 • 控制系统设计与实现 • 经济评价与环保考虑
01
课程设计背景与目的
化工原理课程设计意义
01 02
理论与实践结合
化工原理课程设计是连接化工理论学习与工程实践的重要桥梁,通过课 程设计,学生可以将所学的化工原理知识应用于实际工程问题中,加深 对理论知识的理解和掌握。
塔内件设计与优化
通过对塔内件(如分布器、收集器、再分布器等)的设计和优化,实现气液均匀分布、减少返混和降低压降等目标, 从而提高吸收效率和降低能耗。
操作条件优化
通过对操作条件(如温度、压力、流量等)的优化,使吸收塔在最佳工况下运行,提高吸收效率和产品 质量,降低能耗和废弃物排放。
填料吸收塔的设计
化工原理课程设计任务书
一、设计题目:填料吸收塔的设计
二、设计内容(含技术指标)
1. 工艺条件与数据
煤气中含量2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时处理含苯煤气2000m³;冷却水进口温度<25℃,出口温度≤50℃。
2. 操作条件
吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充新鲜吸收剂;过程中热效应忽略不计。
3. 设计内容
① 吸收塔、解吸塔填料层的高度计算和设计;
② 塔径的计算;
③ 其他工艺尺寸的计算。
三、基本要求
1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。
设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。
应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。
设计说明书应附有带控制点的工艺流程图。
设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。
2. 图纸1套:包括工艺流程图(3号图纸)。
填料吸收塔的设计化工原理课程设计
一、设计任务书1、设计题目:填料吸收塔的设计2、设计任务:试设计一填料吸收塔,用于脱除合成氨尾气中的氨气,要求塔顶排放气体中含氨低于200ppm,采用清水进行吸收3、工艺参数与操作条件(1)工艺参数表1—1(2)操作条件①常压吸收:P=②混合气体进塔温度:30℃③吸收水进塔温度:20℃。
4、设计项目:(1)流程的确定及其塔型选择;(2)吸收剂用量的确定;(3)填料的类型及规格的选定;(4)吸收塔的结构尺寸计算及其流体力学验算,包括:塔径、填料层高度及塔高的计算;喷淋密度的校核、压力降的计算等;(5)吸收塔附属装置选型:喷淋器、支承板、液体再分布器等;(6)附属设备选型:泵、风机附:1、NH3~H2O系统填料塔吸收系数经验公式:k G a=cG m WLnk L a=bWLP式中ka——气膜体积吸收系数,kmol/——液膜何种吸收系数,l/h GG——气相空塔质量流速,kg/——液相空塔流速,kg/WL2、(氨气—水)二成分气液平衡数据表1—3二、工艺流程示意图(带控制点)三、流程方案的确定及其填料选择的论证1、塔型的选择:塔设备是能够实现蒸馏的吸收两种分离操作的气液传质设备,广泛地应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。
在工业生产中,一般当处理量较大时采用板式塔,而当处理量小时多采用填料塔。
填料塔不仅结构简单,而且阻力小,便于用耐腐蚀材料制造,对于直径较小的塔,处理有腐蚀性的物料或要求压降较小的真空蒸馏系统,填料塔都具有明显的优越性。
根据本设计任务,是用水吸收法除去合成氨生产尾气的氨气,氨气溶于水生成了具有腐蚀性的氨水;本设计中选取直径为600mm,该值较小,且Φ800mm以下的填料塔对比板式塔,其造价便宜。
基于上述优点,因此本设计中选取填料塔。
2、填料塔的结构填料塔的主要构件为:填料、液体分布器、填料支承板、液体再分器、气体和液体进出口管等。
3、操作方式的选择对于单塔,气体和液体接触的吸收流程有逆流和并流两种方式。
化工原理课程设计-水吸收氨填料吸收塔设计
化工原理课程设计-水吸收氨填料吸收塔设计一、背景介绍氨是一种重要的化学制品,用于制造各种类型的化学产品,也可用作氨加热系统的燃料,但它作为强氧化剂挥发到大气中,有害环境,因此必须采取对策进行处理,以保护我们的环境。
水吸收氨填料吸收塔是一种典型的操作过程,通过在塔内部放入一定量的吸收填料,使得氨气更有效地与液体相混合,从而降低氨的挥发率,防止它的溢出。
二、设计目的本设计的目的是设计一种能够有效降低氨气挥发率的水吸收氨填料吸收塔系统。
三、塔结构设计1.水吸收塔的形式:此水吸收塔采用真空反应塔的形式,包括加热装置、塔体及其重要部件。
2.水吸收塔的尺寸:该水吸收塔直径为3m,高度为12m,采用真空式反应塔设计。
3.吸收填料:此设计采用纤维吸收填料,其密度为180 kg/m3,吸附能力0.5%,并选择优质的、耐磨的材料,保证耐久性。
4.液相:选择介质为硝酸钠溶液,介质比重1.1,温度在25℃以下,以确保氨吸收剂的低温稳定性。
5.混合器:采用有效搅拌,减少氨气挥发,氨气完全溶于液体,增加氨气的反应机会,增加吸6.塔内设备:除了加热器,还设有安全阀等设备,以防出现意外。
四、设计步骤1.根据氨吸收水填料吸收塔的工艺特点,研究氨挥发的特性,确定反应条件,估算反应速率和塔的大小及包装密度。
2.确定吸收填料的类型,以保证其对氨气的特性挥发特性。
3.细化设计,考虑塔内混合器及其优势,同时留意水塔设计具体内容,计算安全阀等设备的大小,以及确定塔内设备的位置。
4.确认成本,包括:原材料、安装和实际操作。
五、最终结论本文研究了一套水吸收氨填料吸收塔,设计了其安全阀及其它设备,以及填料的特性,确定了反应条件,估算反应速率,详细设计了塔的形式,尺寸,位置等,通过认真的工作,可以提出设计方案,完成水吸收氨填料吸收塔的设计任务。
化工原理课程设计(氨气填料吸收塔设计)
化工原理课程设计(氨气填料吸收塔设计)1000字氨气填料吸收塔是一种常见的化工工艺设备,用于从氨气等气体中去除二氧化碳等有害成分。
在这篇课程设计中,我们将重点讨论氨气填料吸收塔的设计原理和实现方法。
一、设计原理氨气填料吸收塔的设计原理基于物理吸收法,它通过填充物(如泡沫塑料、陶瓷、金属等)将气相物质传递到液相解吸剂中,以达到去除气体中有害成分的目的。
其中,填充物的种类、形状和大小会影响到吸收效率和压力损失。
塔顶设置进口气流分布器,塔底设置液体分布器,使操作稳定,保证吸收效果。
二、实现方法1. 确定设计参数氨气填料吸收塔的设计需要涉及到多项因素,包括:(1)吸收剂的化学性质:吸收剂的化学性质会影响到塔内化学反应的速率和吸收效率。
因此,需要选择合适的吸收剂,并对其进行物性参数测定。
(2)气体流量:气体流量会影响到塔内的混合程度和扩散速率。
因此,需要确定气体流量范围和变化规律。
(3)操作温度和压力:操作温度和压力会直接影响到化学反应的速率和吸收效率。
因此,需要选择合适的操作温度和压力,并对其进行测定。
(4)塔体高度和直径:塔体高度和直径会影响到填充物的分布、气液流动情况和压降。
因此,需要按照实际需要确定塔的高度和直径。
(5)填充物种类和数量:填充物的种类和数量对吸收效率和压力损失有较大影响。
因此,需要选择合适的填充物,并确定填充层数和填充物粒径。
2. 填充物选型填充物的种类是影响氨气填料吸收塔吸收效率和压力损失的一个关键因素。
选用填充物时需要考虑以下方面:(1)物理性能:填充物的物理性能直接影响其在吸收塔内的分布、气液流动情况和压降。
因此,需要选择合适的物理性能(如比表面积、孔隙率、容重等)的填充物。
(2)化学特性:填充物的化学特性对气液反应速率和吸收效率有较大影响。
因此,需要选择符合需要的化学特性的填充物。
(3)成本和耐久性:填充物的成本和耐久性也是选型时需要考虑的因素,以确保经济可行和长期稳定运行。
化工原理填料吸收塔课程设计
化工原理填料吸收塔课程设计引言:填料吸收塔是化工工艺中常用的一种设备,用于将气体中的有害物质通过吸收剂吸附或反应的方式去除。
本次课程设计旨在通过对填料吸收塔的设计和工艺参数的优化,实现高效的气体净化效果。
一、填料吸收塔的基本原理及结构填料吸收塔是利用填料表面积大、内部通道多、与气体充分接触的特点,通过物理吸附或化学吸收的方式将气体中的有害成分去除。
其基本结构包括进气口、出气口、填料层和液体循环系统等。
二、填料的选择及特性填料是填料吸收塔中起到关键作用的部分,其选择应根据气体的性质和处理效果的要求来确定。
常用的填料包括球状填料、骨架填料和网状填料等,它们具有不同的表面积、孔隙率和液体分布性能,对吸收效果和塔内气液分布起到重要影响。
三、填料吸收塔的设计步骤及要点1. 确定气体的物理和化学性质,包括流量、温度、压力、组成等;2. 选择合适的填料类型和尺寸,考虑填料的表面积、孔隙率和液体分布性能;3. 确定填料层数和塔径高比,以及液体循环系统的设计参数;4. 进行塔内气液分布的模拟和优化,保证填料与气体充分接触;5. 进行设备的结构设计和材料选择,考虑耐腐蚀性和操作安全性;6. 进行设备的动态模拟和优化,确定最佳操作条件和效果。
四、填料吸收塔的性能评价及优化填料吸收塔的性能评价主要包括吸收效率、压降和能耗等指标。
通过调整填料层数、液体循环系统和操作条件等参数,可以实现吸收效率的提高和能耗的降低。
同时,还应考虑填料的寿命和维护等方面的因素,以保证设备的稳定运行和经济性。
五、填料吸收塔的应用及发展趋势填料吸收塔广泛应用于化工、环保和能源等行业,用于废气处理、脱硫和脱硝等工艺。
随着环保要求的提高和技术的进步,填料吸收塔的设计和优化将更加注重能耗和运行成本的降低,同时也将更加重视对废气中微量有害物质的去除效果。
结论:填料吸收塔作为一种重要的气体净化设备,在化工工艺中发挥着重要作用。
通过合理的设计和优化,可以实现高效的气体净化效果和能耗降低。
化工原理课程设计(水吸收氨填料吸收塔设计)
化工原理课程设计(水吸收氨填料吸收塔设计)目录第1节前言31.1填料塔的主体结构与特点31.2填料塔的设计任务及步骤31.3填料塔设计条件及操作条件4第2节精馏塔主体设计方案的确定42.1装置流程的确定42.2吸收剂的选择52.3填料的类型与选择52.3.1填料种类的选择52.3.2填料规格的选择52.3.3填料材质的选择62.4基础物性数据62.4.1液相物性数据62.4.2气相物性数据72.4.3气液相平衡数据72.4.4物料横算8第3节填料塔工艺尺寸的计算93.1塔径的计算93.2填料层高度的计算及分段113.2.1传质单元数的计算113.2.2传质单元高度的计算113.2.3填料层的分段143.3填料层压降的计算14第4节填料塔内件的类型及设计154.1塔内件类型154.2塔内件的设计164.2.1液体分布器设计的基本要求:164.2.2液体分布器布液能力的计算16注:171.填料塔设计结果一览表 (17)2.填料塔设计数据一览 (18)3.参考文献 (19)4.后记及其他 (19)附件一:塔设备流程图20附件二:塔设备设计图20表索引表 21工业常用吸收剂 (5)表 22 常用填料的塔径与填料公称直径比值D/d的推荐值 (6)图索引图 11 填料塔结构图 (3)图 31 Eckert图 (15)第1节前言1.1填料塔的主体结构与特点结构图错误!文档中没有指定样式的文字。
1所示:图错误!文档中没有指定样式的文字。
1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
1.2填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。
化工原理课程设计SO2填料吸收塔课程设计说明书
化工原理课程设计任务书专业班级:姓名:学号:指导老师:目录一·目的和要求二·设计任务三·设计方案1.吸收剂的选择2.塔内气液流向的选择3.吸收系统工艺流程(工艺流程图及说明)4.填料的选择四·工艺计算1.物料衡算,吸收剂用量,塔底吸收液浓度2.塔径计算3.填料层高度计算4.填料层压降计算5.填料吸收塔的主要附属构件简要设计6.动力消耗的计算与运输机械的选择(对吸收剂)五·设备零部件管口的设计计算及选型六·填料塔工艺数据表填料塔结构数据表物性数据表七·对本设计的讨论八·主要符号说明九·参考文献一·目的和要求1.进行查阅专业资料、筛选整理数据及化工设计的基本训练;2.进行过程计算及主要设备的工艺设计计算,独立完成吸收单元的设计;用简洁的文字和图表清晰地表达自己的设计思想和计算结果;3.建立和培养工程技术观点;4.初步具备从事化工工程设计的能力,掌握化工设计的基本程序和方法。
5.独立完成课程设计任务。
二·设计任务1.题目:SO2填料吸收塔2 生产能力:SO2炉气的处理能力为1500 m³/h(1atm,30℃时的体积)3 炉气组成:原料气中含SO2为9%(v),其余为空气4 操作条件:P=1atm(绝压)t=30 ℃5 操作方式:连续操作6 炉气中SO2的回收率为95%三·设计方案1.吸收剂的选择用水做吸收剂。
水对SO2有较大的溶解度,有较好的化学稳定性,有较低的粘度,廉价、易得、无毒、不易燃烧2.塔内气液流向的选择在填料塔中,SO2从填料塔塔底进入,清水从塔顶由液体喷淋装置均匀淋下。
3.吸收系统工艺流程(工艺流程图及说明)二氧化硫炉气经由风机从塔底鼓入填料塔中,与由离心泵送至塔顶的清水逆流接触,在填料的作用下进行吸收。
经吸收后的尾气由塔顶排除,吸收了SO2的废水由填料塔的下端流出。
化工原理课程设计水吸收氨填料吸收塔设计(1)
化工原理课程设计水吸收氨填料吸收塔设计
(1)
化工原理课程设计——水吸收氨填料吸收塔设计
一、选择填料
本设计所选用的填料为塔形环状填料,其主要优点在于能够提高氨气
与水接触的时间和接触面积,从而提高吸收效率。
其次,填料的表面
积大,对氨气的吸附强度较高。
二、计算填料高度
根据质量平衡公式,吸收塔中氨气的质量=进入氨气的质量-出口氨气
的质量-吸收氨气的质量。
结合我们所设计的填料种类和工艺流程,可
以得到计算填料高度的公式:
θ=(W/N) ln [(C0-C)/(Co-Ct)]
其中,W是空气中氨气的质量流量,单位为kg/h;N是塔形环状填料每立方米的比表面积,单位为m²/m³;C0是氨气从入口口进入吸收器的
浓度,单位为mg/Nm³;Ct是出口处氨气的平均浓度,单位为mg/Nm³;
C是入口处水的浓度,单位为mg/L。
三、塔的直径
根据经验公式可得:填料在瞬间液晶表面液流速等于液降的经验公式。
v=1.2/(μ)½ (ΔP/ρ) ¼
其中,v是液体在塔体内部的平均流速,单位为m/s;μ是液体的粘度,单位为Pa*s;ΔP是液体在塔体内产生的液降,单位为Pa;ρ是液体
的密度,单位为kg/m³。
四、结论
经过以上各个方面的计算和分析,我们得到了适合本工艺流程,并且
具有高效的填料塔高度及塔直径,使本工艺流程吸收效率达到最优化
程度。
我们所选用的填料塔设计方案具有成本低、效率高及运行稳定
等特点,非常符合实际工序的需要。
化工原理课程设计--填料吸收塔的设计
化工原理课程设计--填料吸收塔的设计《化工原理》课程设计填料吸收塔的设计学院南华大学船山学院专业制药工程班级 10级姓名龙浩学号 20109570111指导教师王延飞2012年11月25日1.水吸收氨气填料塔工艺设计方案简介任务及操作条件①混合气(空气、NH3 )处理量:10003/m h;②进塔混合气含NH3 7% (体积分数);温度:20℃;③进塔吸收剂(清水)的温度:20℃;④NH3回收率:96%;⑤操作压力为常压101.3k Pa。
1设计方案的确定用水吸收氨气属于等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。
因用水做座位吸收剂,且氨气不作为产品,股采用纯溶剂。
该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。
经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。
2填料的选择对于水吸收氨气的过程,操作温度计操作压力较低。
工业上通常是选用塑料散装填料。
在塑料散装中,塑料阶梯环填料的综合性能较好,见下图:根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。
设计选用填料塔,填料为散装聚丙烯DN50阶梯环填料。
国内阶梯环特性数据52. 工艺计算2.1基础物性数据 2.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
由手册查的,20℃水的有关物性数据如下: 密度为 ρ1 =998.2Kg /m 3粘度为 μL =1.005mPa ·S =0.001Pa ·S=3.6Kg /(m ·h ) 表面张力为 σL =72.6dyn /cm=940 896Kg /h 2氨气在水中的扩散系数:D L =1.80×10-9 m 2/s=1.80×10-9×3600 m 2/h=6.480 ×10-6m 2/h2.1.2气相物性的数据 混合气体平均摩尔质量为M VM =Σy i M i =0.101×17+0.899×28=26.889混合气体的平均密度为ρvm =RTPM VN=101.3×26.889/(8.314×293)=1.116Kg /m 3 混合气体的粘度可近似取为空气的粘度,查手册的20℃空气的粘度为μV =1.81×10—5Pa ·s=0.065Kg /(m ·h )查手册得氨气在20℃空气中扩散系数为D v = 0.189 cm 2/s=0.068 m 2/s2.1.3气液相平衡数据20C 下氨在水中的溶解度系数:)/(725.03kpa m kmol H ⋅=,常压下20℃时亨利系数:SLHM E ρ==998.2/(0.725×18.02)=76.40Kpa相平衡常数为755.01.10140.76===P E m溶解度系数为717.02.184.762.98=⨯==SLEM H ρ998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯ 2.1.4 物料衡算 进塔气相摩尔比为Y 1=11y 1y —=0.101/(1—0.101)=0.11235 出塔气相摩尔比为Y 2=Y 1(1—φ)=0.11235×(1—0.9996)=0.000045进塔惰性气相流量为V=1000/22.4×273/(273+20)×(1—0.101)=34.29Kmol /h该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即;(V L )min =2121m X Y Y Y —/— 对纯溶剂吸收过程,进塔液相组成为 X 2=0(VL)min =(0.11235—0.000045)/[0.11235/(0.754—0)]=0.753 取操作液气比为最小液气比1.8VL=1.8×0.753=1.355 L=1.355×34.29=46.516Kmol /hV (Y 1—Y 2)=L (X 1—X 2)X 1=34.29×(0.11235—0.000045) /46.516=0.08278 5填料塔的工艺尺寸的计算 1) 塔径的计算采用Eckert 通用关联图计算泛点气速 塔径气相质量流量为V ω=1000×1.103=1103Kg /h液相质量流量可近似按纯水的流量计算,即:L ω=46.516×18.02=838.218㎏/hEckert 通过关联图的横坐标为025.0)2.998116.1(1103218.838)(5.05.0=⨯=L V V L w w ρρ 21.02.02=ψΦL LV F F g u μρρ1170-=Φm F95.01116.111702.99881.921.021.02.02.0=⨯⨯⨯⨯⨯=ψΦ=L V F L F g u μρρ729.0665.014.33600/100044=⨯⨯==uV D Sπ圆整塔经,取D=0.8ms m u u F /665.095.07.07.0=⨯==泛点率校核:)%(69%1008.0785.03600/10002在允许范围内=⨯⨯=u填料规格校核:805.2138800>==d D112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛点率为0.8 取u =0.8u F =0.8×3.017m/s =2.41m/sD =u4πSV = [(4×1000/3600)/(3.14×2.41)] 0.5=0.38m 圆整后取 ()()0.4400D m mm ==2.泛点率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85范围之间) 3.填料规格校核:40016825D d ==> 4.液体喷淋密度校核:取最小润湿速率为:U min =(L W )min · a t =0.101×114.2=11.534m 3/m 2·h 查常用散装填料的特性参数表,得at=114.2m 2/m 3 U=46.516×18.02/998.2/(0.785×0.42)=6.717>U min经以上校核可知,填料塔直径选用D= 400mm 是合理的。
化工原理课程设计
化工原理课程设计--填料吸收塔设计(水吸收氨气)一、精馏塔主体设计方案的确定1.1装置流程的确定本次设计采用逆流操作:气相自塔低进入由塔顶排出,液相自塔顶进入由塔底排出,即逆流操作。
逆流操作的特点是:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。
工业生产中多采用逆流操作。
1.2 吸收剂的选择因为用水做吸收剂,故采用纯溶剂。
2-1 工业常用吸收剂1.3填料的类型与选择填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。
1.3.1 填料种类的选择本次采用散装填料。
散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。
鲍尔环是目前应用较广的填料之一,本次选用鲍尔环。
1.3.2 填料规格的选择工业塔常用的散装填料主要有Dn16\Dn25\Dn38\ Dn76等几种规格。
同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多。
而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低。
因此,对塔径与填料尺寸的比值要有一规定。
常用填料的塔径与填料公称直径比值D/d的推荐值列于。
表3-1填料种类 D/d 的推荐值 拉西环 D/d ≥20~30 鞍环 D/d ≥15 鲍尔环 D/d ≥10~15 阶梯环 D/d>8 环矩鞍D/d>81.3.3 填料材质的选择工业上,填料的材质分为陶瓷、金属和塑料三大类聚丙烯填料在低温(低于0度)时具有冷脆性,在低于0度的条件下使用要慎重,可选耐低温性能良好的聚氯乙烯填料。
综合以上:选择塑料鲍尔环散装填料 Dn501.4 基础物性数据1.4.1 液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
由手册查得 20 ℃水的有关物性数据如下:1. 3998.2/l kg m ρ=2. 0.001.3.6/.l pa s kg m h μ==黏度:3. 表面张力为:272.6/940896/z dyn cm kg h σ==4. 3320:0.725/CNH H kmol m kpa ︒=⋅5. 62320:7.3410/l CNH D m h -︒=⨯6. 22320:0.225//v CNH D cm s m h ︒==1.4.2 气相物性数据1. 混合气体的平均摩尔质量为0.0617.03040.942928.2818vm i i M y m =∑=⨯+⨯= (2-1)2. 混合气体的平均密度由3101.328.2818 1.17618.314293VM vm PM kg m RT ρ⨯===⨯(2-2) R=8.314 3/m KPa kmol K ⋅⋅3. 混合气体黏度可近似取为空气黏度。
化工原理课程设计水吸收氨填料吸收塔设计-V1
化工原理课程设计水吸收氨填料吸收塔设计-V1化工原理课程设计——水吸收氨填料吸收塔设计化工生产中,氨气是一种常见的化学气体,亦是一种毒性气体。
为了保证生产安全,常常需要使用填料吸收塔对氨气进行处理。
本次化工原理课程设计的主题是水吸收氨填料吸收塔设计,下面将从设计的流程、填料选择、设备选型及操作控制方面进行详细阐述。
一、设计流程1.确定设计要求:包括氨气的进入浓度、出口浓度、进入流量、处理效率要求等。
2.确定填料种类:选择适合水吸收氨的填料种类。
3.塔体设计:根据进入流量和处理效率要求计算出塔体高度,以及塔体的内径和壁厚。
4.设备选型:根据填料种类和塔体设计的要求选型。
5.操作控制:确定运行参数和控制策略等。
二、填料选择1.氨气水解和物理吸收的填料:骨炭、石英、聚丙烯、陶瓷、活性炭等。
2.氨气化学吸收的填料:硫酸铵、硝酸铵、硫酸钙、硝酸钙、硫酸钠等。
综合考虑吸附容积、吸附速度、吸附效率、化学稳定性等因素,本设计选择硝酸铵作为填料。
三、设备选型1.填料吸收塔:根据设计要求和填料种类选择适合的填料吸收塔。
2.进气风机:根据进气流量和风阻要求选型。
3.冷却器:为了防止氨气过热,常常需要在进入填料吸收塔前,在氨气进风口处安装冷却器。
四、操作控制1.进气速度:进气速度过快会导致氨气不能充分吸收,进气速度过慢则会影响处理效率。
一般控制在0.5-1.5m/s。
2.水位控制:为了保证填料的湿润度,需要控制水的流量和水位。
3.塔体温度控制:为了保证填料吸收效率,需要控制塔体温度,一般保持在20-35℃。
4.出口浓度控制:通过调节水的流量和塔体内填料的密度,控制出口浓度。
结语:本次化工原理课程设计通过设计流程、填料选择、设备选型及操作控制方面的详细阐述,较为全面地介绍了水吸收氨填料吸收塔的设计过程。
对于化工领域的实践和专业知识积累具有一定的参考价值。
化工原理课程设计吸收塔
化工原理课程设计吸收塔一、课程目标知识目标:1. 让学生掌握吸收塔的基本结构和工作原理,理解吸收过程中的质量传递和动力学原理;2. 使学生了解吸收塔在化工行业中的应用,掌握常见吸收塔的设计参数和操作方法;3. 引导学生运用所学知识,分析吸收塔的优缺点,探讨提高吸收效率的途径。
技能目标:1. 培养学生运用化工原理解决实际问题的能力,学会设计简单的吸收塔流程;2. 提高学生运用专业软件进行吸收塔模拟和参数优化的技能;3. 培养学生团队协作、沟通表达和工程实践能力。
情感态度价值观目标:1. 培养学生对化工行业的热爱和责任感,激发学生为我国化工事业贡献力量;2. 增强学生的环保意识,引导学生关注吸收塔在环保方面的应用;3. 培养学生严谨、求实的科学态度,树立良好的工程伦理观念。
课程性质:本课程为化工原理实践教学课程,以吸收塔为研究对象,结合理论知识,培养学生的工程实践能力。
学生特点:学生具备一定的化工原理基础知识,具有较强的求知欲和动手能力。
教学要求:结合学生特点,注重理论与实践相结合,突出实用性,提高学生的综合运用能力。
在教学过程中,将课程目标分解为具体的学习成果,以便进行教学设计和评估。
二、教学内容1. 吸收塔的基本概念与分类:介绍吸收塔的定义、功能、分类及其在化工生产中的应用。
参考教材章节:第三章第二节“吸收塔的基本概念与分类”2. 吸收塔的工作原理与结构:讲解吸收塔内部流体流动、传质过程和动力学原理,分析吸收塔的结构特点。
参考教材章节:第三章第三节“吸收塔的工作原理与结构”3. 吸收塔设计参数与操作方法:阐述吸收塔设计过程中涉及的主要参数,介绍吸收塔的操作方法及注意事项。
参考教材章节:第三章第四节“吸收塔的设计参数与操作方法”4. 吸收塔的模拟与优化:介绍吸收塔模拟软件的使用方法,分析吸收塔的模拟结果,探讨参数优化方法。
参考教材章节:第三章第五节“吸收塔的模拟与优化”5. 吸收塔在环保领域的应用:讲解吸收塔在废气处理、脱硫等方面的应用,提高学生的环保意识。
填料吸收塔课程设计
设计任务书(一)设计题目水吸收SO过程填料吸收塔的设计:试设计一座填料吸收塔,用于脱除焙烧炉送出的混合气体(先冷却)中的SO2其余为惰性组分,采用清水进行吸收。
(二)操作条件(1)操作压力常压(2)操作温度25C(三)设计内容(1)吸收塔的物料衡算;(2)吸收塔的工艺尺寸计算;(3)填料层压降的计算;(4)液体分布器简要设计;(5)吸收塔接管尺寸计算;(6)绘制吸收塔设计条件图;(7)对设计过程的评述和有关问题的讨论。
二设计方案简介2.1方案的确定用水吸收SO属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。
因用水作为吸收剂,且SQ不作为产品,故采用纯溶剂。
2.2填料的类型与选择对于水吸收SO的过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。
在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。
(依Wilke-Cha ng D 1.859 10 18 ( MJ。
",0.6阶梯环是对鲍尔环的改进。
与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。
由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。
锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。
阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。
2.3设计步骤本课程设计从以下几个方面的内容来进行设计(一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。
三、工艺计算3.1基础物性数据3.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
由手册查得,25 C时水的有关物性数据如下:密度为p L=997.1 kg/m 3粘度为卩L=0.0008937 Pa - s=3.2173kg/(m • h)2表面张力为c L=71.97 dyn/cm=932731 kg/hSO在水中的扩散系数为D L=1.724为0-9m2/s=6.206 10-6m2/h3.1.2气相物性数据设进塔混合气体温度为25 C,混合气体的平均摩尔质量为M vm = ^y M i=0.1 64.06+0.9 29=32.506g/mol混合气体的平均密度为p vm=PM/RT=1O1.325X3 2.506/ (8.314 X 298.15) =1.3287kg/ m查《化学工程基础》混合气体的粘度可近似取为空气的粘度,查手册得25 r空气的粘度为卩V=1.83 X-5Pa?s=0.066kg/(m?h)查手册得SO2在空气中的扩散系数为-5 2 2D V =1.422 X 10 m/s=0.051 m / h(依D D0-P0(T)1.75计算,其中273K时,1.013 X 10-5Pa时SO在空气中的扩散系数为1.22 X10-5m/s,查《化学工程基础》)3.1.3气液相平衡数据由手册查得,常压下25T时SO在水中的亨利系数为3E=4.13 X10 kPa相平衡常数为m=E/P=4.13 X03/101.3=40.76溶解度系数为3H=p /EM=997.2/4.13 X03X18.02=0.0134kmol/kPa m3.1.4物料衡算(1).进塔混合气中各组分的量近似取塔平均操作压强为101.3kPa,故:混合气量= 2000(273.15)丄81.80 kmol/ h 273.15 25 22.4混合气SQ 中量=81.80X 0.1 = 8.18 kmol / h=8.18X 64.06=542.01k g/h设混合气中惰性气体为空气,则混合气中空气量=81.8-8.18 = 73.62kmol/h=73.62X 29= 2135kg/ h (2).混合气进出塔的摩尔组成丫0.1 1 0.10.11出塔气相摩尔比为匕 Y(1 A )0.11(10.97) 0.0033(4) 出塔混合气量出塔混合气量=73.62+8.18 x 0.03=73.7836kmol/h=2135+542.01 X 0.03=2151.26kg/h(5) 吸收剂(水)的用量L该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算 对于纯溶剂吸收过程,进塔液相组成为X 2=0 取操作液气比为LVL V1.3("L)min1.3 39.54 51.40 L 51.4 73.62 3784.07 kmol/h (6) 塔底吸收液组成X 1V(Y 1 丫2)L(X 1 X 2)X 1 九62⑴1°.0033)0.002083784.07(7) 操作线方程y i 0.18.18(1 0.97) cccccc y 2 0.0033273.62 8.18(1 0.97)(3)混合气进出塔摩尔比组成进塔气相摩尔比为m0.11 0.0033 0.11/40.76 0依操作线方程丫扣(V2 V L X2)霊X0.0033Y 51.4X 0.00333.2填料塔的工艺尺寸的计算3.2.1塔径的计算采用Eckert通用关联图计算泛点气速。
化工原理课程设计吸收塔
化工原理课程设计吸收塔(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《化工原理》课程设计课题: 设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔设计者:王涛学号: 02指导老师:曹丽淑目录第一章设计任务3设计题目3设计任务及操作条件3设计内容3第二章设计方案4设计流程的选择及流程图4第三章填料塔的工艺设计4气液平衡关系4吸收剂用量5计算热效应5定塔径6喷淋密度的校核6体积传质系数的计算7填料层高度的计算8附属设备的选择第四章设计结果概要第五章设计评价17第一章设计任务、设计题目设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔、设计任务及操作条件(一)气体混合物1.组成(如表1所示):2.气体量:4700Nm3∕h3.温度:30°C4.压力:1800KN∕m2(二)气体出口要求(V%):CO2≤%(三)吸收剂:水、设计内容设计说明书一份,其内容包括:1.目录2.题目及数据3.流程图4.流程和方案的选择说明与论证5.吸收塔的主要尺寸的计算,注明计算依据的公式、数据的来源6.附属设备的选型或计算7.设计评价8.设计结果9.参考文献第二章设计方案、吸收流程的选择及流程图本设计混合原料气溶质浓度不高,同时过程分离要求不高,选用一种吸收剂(水)一步流程即可完成吸收任务。
由于逆流操作传质推动力大,这样可减少设备尺寸,并且能提高吸收率和吸收剂使用效率,故选择逆流吸收。
由于本任务吸收后的CO2要用以合成尿素,则需对吸收后的溶液解吸以得到CO2,同时溶剂也可循环使用。
水吸收CO2工艺流程图(图1)1-吸收塔;2-富液泵;3-贫液泵;4-解吸塔第三章填料塔的工艺设计、气液平衡关系由于此操作在高压下进行,高压环境对理想气体定律有偏差,故需对压力进行校核:由《化工原理设计导论》查得CO2的临界温度Tc=304K,临界压力Pc=则其对比温度Tr== =对比压力Pr= = =查《化工原理设计导论》图2-4得在此温度压力下:逸度系数则逸度f=p=1800×=1656KPa查《化工原理》下册得CO2气体在30℃时溶于水的亨利系数E=188000KPa相平衡常数m= = =则可得在此条件下气液平衡关系为:Y= =、吸收剂用量进塔CO2摩尔分数:=%=进塔CO2摩尔比:Y1= =出塔CO2摩尔分数:=%=出塔CO2摩尔比:Y2==混合气体体积流量:=4700N/h混合气体中惰性气体流量:V=×()=∕h出塔液相浓度最大值: X1*=X1max= = =对于纯水吸收过程:X2=0则最小液气比:()min= = =由 = ~2)()min:取L11==××=∕hL21==××=∕hL31==××=∕h则由物料衡算公式V(Y1-Y2)=L(X1-X2):X= = =X21= = =X31= = =以下计算以第一组数据(L11,X11)为例、计算热效应水吸收CO2的量:G A=V(Y1-Y2)=×()=∕h查《化工原理设计导论》图4-5得CO2的溶解热q=97Kcal∕Kg查《化工原理》上册附录5,得水的Cp=∕(Kg·K)则由L×18×Cp×Δt=GA×44×q×得:Δ=同理可求得Δ=,Δ=由于Δ,Δ,Δ均小于1。
化工原理课程设计说明书---填料吸收塔设计
化工原理课程设计目录摘要-----------------------------------------------------------3 前言-----------------------------------------------------------4 一填料吸收塔工艺尺寸的设计计算-------------------------------5 1.1 工艺流程及设计指标--------------------------------------5 1.1.1 工艺流程------------------------------------------51.1.2 设计参数,指标------------------------------------51.2 物性参数的计算-----------------------------------------5 1.2.1 原料气物性参数------------------------------------51.2.2 吸收液物性参数------------------------------------61.2.3 填料物性参数--------------------------------------71.3 吸收塔的物料衡算---------------------------------------7 1.4 塔体的计算---------------------------------------------8 1.4.1 塔径的计算----------------------------------------8(1)液泛气速----------------------------------------8(2)塔径--------------------------------------------9 1.4.2 填料层高度的计算----------------------------------9(1)传质单元数--------------------------------------9(2)传质单元高度-----------------------------------10 二吸收塔优化设计--------------------------------------------13 2.1 系统的年总费用----------------------------------------13 2.2 吸收塔塔体和平台扶梯年折旧及维修费用------------------13 2.3 填料年折旧费用----------------------------------------13 2.4 离心泵年折旧和维修费用及操作费用----------------------13 2.5 风机年折旧和维修费及操作费用--------------------------15 2.6 吸收剂费用--------------------------------------------15 三内部结构设计----------------------------------------------16 3.1 液体分布装置------------------------------------------16 3.2 填料支撑装置------------------------------------------16 3.3 液体分布装置------------------------------------------16 3.4 除沫器------------------------------------------------16 四设计校核--------------------------------------------------17 4.1 主要工艺参数校核--------------------------------------17 4.1.1 塔直径与塔中填料直径之比--------------------------174.1.2 液体喷淋密度--------------------------------------174.1.3 实际气速与液泛气速比------------------------------174.2 强度校核---------------------------------------------174.2.1 筒体材料的选用与计算-----------------------------174.2.2 封头厚度的计算-----------------------------------184.2.3 塔体的强度与稳定计算-----------------------------184.2.4 质量载荷计算-------------------------------------184.2.5 塔体的风载荷和风力矩-----------------------------19(1)、风力矩的计算公式-------------------------------19(2)、总弯矩的计算-----------------------------------19(3)、塔的自振周期计算-------------------------------20(4)、地震载荷计算-----------------------------------20 4.2.6 塔体的强度与稳定校核-----------------------------21(1)、塔体危险截面(1-1)的轴向应力计算----------------21(2)、塔体危险截面(1-1)抗压强度及轴向稳定性计算------214.2.7 裙座的强和稳定计算、校核-------------------------224.2.8 水压试验时塔的强度和稳定性验算-------------------22(1)、水压试验时塔体(1-1)截面的强度校核--------------22(2)、水压试验时裙座底部(0-0)截面强度和轴向稳定要求--234.2.9 基础环板的设计-----------------------------------23(1)、基础环板内外径的确定---------------------------23(2)、基础环板厚度的设计-----------------------------234.2.10 地脚螺栓的设计----------------------------------244.2.11 混凝土的强度校核--------------------------------24五主要符号说明---------------------------------------------25六优化程序及其运行结果-------------------------------------296.1 传质单元数的计算程序及运算结果-----------------------296.2 液气比优化程序及运算结果-----------------------------31小结---------------------------------------------------------35参考文献-----------------------------------------------------36摘要[中文摘要]PC作为工业化脱二氧化碳的吸收剂,有着很大的优势。
填料吸收塔的课程设计
课程设计报告题目填料吸收塔的设计课程名称化工原理课程设计专业班级学生姓名学号设计地点指导教师设计起止时间:2011 年8月 29日至 2011 年 9 月 9 日目录一、前言 (4)1.1设计方案简介 (4)1.2 吸收剂的选择 (4)1.3 填料的选择 (5)1.4 工艺流程说明 (6)二、平衡关系及物料衡算 (6)2.1 平衡关系的计算 (6)2.2 物料衡算 (7)三、填料塔工艺尺寸计算 (9)3.1 塔径的计算 (9)3.2 填料层高度的计算 (10)3.3 填料层压降的计算 (11)3.4 填料层喷林密度的核算 (11)四、填料塔内件的类型和计算 (12)4.1 支撑装置 (12)4.2 分布装置 (12)4.3 进出口管的计算 (13)4.4 附属空间 (13)五、附属设备的选型 (14)5.1 风机 (14)5.2 离心泵 (14)5.3 换热器 (15)六、附录 (16)6.1 设计结果一览表 (16)6.2 主要符号说明 (17)6.3 设计总结 (19)6.4 参考文献 (21)附图X-Y相图 (23)流程图 (24)设备图 (24)一、前言1.1 设计方案简介(1)填料塔简介:填料塔是提供气-液、液-液系统相接触的设备。
吸收塔设备一般可分为级式接触和微分接触两类。
一般级式接触采用气相分散,设计采用理论板数及板效率;而微分接触设备常采用液相分散,设计采用传质单元高度及传质单元数,填料塔的特性也正是体现在这几个方面。
①生产能力填料塔的生产能力大于同直径的筛板塔和浮阀塔。
②分离效率填料塔的分离效率可和相同高度的板式塔相比。
③操作弹性设计合理的填料塔,其操作弹性一般好于筛板塔,大致和浮阀塔相当。
④压降(阻力)除非在很高的液相流率下操作,填料塔中每一个理论板的压降通常小于板式塔。
⑤成本填料的制造成本较高,但填料塔比板式塔容易安装,因此可导致总体上较低的安装成本。
填料塔存在的两个主要缺点是容易堵塞设备及容易造成液体和气体分布的不良。
化工原理课程设计吸收塔
化工原理课程设计吸收塔一、教学目标本节课的教学目标是使学生掌握吸收塔的基本原理、结构及操作方法,能够运用化工原理分析吸收过程中存在的问题,并提出解决方法。
具体目标如下:1.知识目标:(1)了解吸收塔的定义、分类及应用;(2)掌握吸收塔的基本原理,包括质量传递、动量传递和热量传递;(3)熟悉吸收塔的操作方法,包括填料层高度、液气比、吸收剂选择等;(4)掌握吸收塔的优化设计方法,能够对实际吸收过程进行分析和评价。
2.技能目标:(1)能够运用化工原理分析吸收过程中存在的问题,并提出解决方法;(2)具备吸收塔的设计和操作能力,能够进行吸收塔的优化设计;(3)能够运用现代化教学手段,如计算机模拟、实验等,进行吸收塔的研究和分析。
3.情感态度价值观目标:(1)培养学生对化工行业的兴趣和热情,提高学生对化工原理知识的认同感;(2)培养学生团队合作精神,提高学生分析问题和解决问题的能力;(3)培养学生关注环保、安全生产的意识,提高学生的社会责任感和职业道德。
二、教学内容本节课的教学内容主要包括吸收塔的基本原理、结构及操作方法。
具体内容如下:1.吸收塔的定义、分类及应用;2.吸收塔的基本原理,包括质量传递、动量传递和热量传递;3.吸收塔的结构,包括填料层、液体分布器、气体分布器等;4.吸收塔的操作方法,包括填料层高度、液气比、吸收剂选择等;5.吸收塔的优化设计方法,能够对实际吸收过程进行分析和评价。
三、教学方法本节课的教学方法采用讲授法、案例分析法和实验法相结合的方式。
具体方法如下:1.讲授法:通过讲解吸收塔的基本原理、结构和操作方法,使学生掌握吸收塔的基本知识;2.案例分析法:分析实际吸收过程存在的问题,引导学生运用化工原理提出解决方法;3.实验法:学生进行吸收塔的实验操作,使学生能够亲身体验并巩固吸收塔的知识。
四、教学资源本节课的教学资源包括教材、实验设备和相关多媒体资料。
具体资源如下:1.教材:《化工原理》相关章节;2.实验设备:吸收塔模型或仿真实验设备;3.多媒体资料:吸收塔的结构和操作方法的图片、视频等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计-填料吸收塔的设计课程设计题目:填料吸收塔的设计教学院:化学与材料工程学院专业:化学工程与工艺(精细化工方向)学号:学生姓名:指导教师:2012 年 5 月31 日《化工原理课程设计》任务书2011~2012 学年第2学期学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室一、课程设计题目:填料吸收塔的设计二、课程设计内容(含技术指标)1. 工艺条件与数据煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时处理含苯煤气2000m³;冷却水进口温度<25℃,出口温度≤50℃。
2. 操作条件吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充新鲜吸收剂;过程中热效应忽略不计。
3. 设计内容①吸收塔、解吸塔填料层的高度计算和设计;②塔径的计算;③其他工艺尺寸的计算。
三、进度安排1.5月14日:分配任务;2.5月14日-5月20日:查询资料、初步设计;3.5月21日-5月27日:设计计算,完成报告。
四、基本要求1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。
设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。
应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。
设计说明书应附有带控制点的工艺流程图。
设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。
2. 图纸1套:包括工艺流程图(3号图纸)。
教研室主任签名:年月日1 绪论1.1吸收技术概况气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
实际生产中,吸收过程所用的吸收剂常需回收利用,故一般来说,完整的吸收过程应包括吸收和解吸两部分,因而在设计上应将两部分综合考虑,才能得到较为理想的设计结果。
作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作:(1)根据给定的分离任务,确定吸收方案;(2)根据流程进行过程的物料和热量衡算,确定工艺参数;(3)依据物料及热量衡算进行过程的设备选型或设备设计;(4)绘制工艺流程图及主要设备的工艺条件图;(5)编写工艺设计说明书。
1.2吸收过程对设备的要求及设备的发展概况近年来随着化工产业的发展,大规模的吸收设备已经广泛用于实际生产过程中。
对于吸收过程,能够完成分离任务的塔设备有多种,如何从众多的塔设备中选择合适类型是进行工艺设计的首要任务。
一般而言,吸收用塔设备与精馏过程所需要的塔设备具有相同的原则要求,用较小直径的塔设备完成规定的处理量,塔板或填料层阻力要小,具有良好的传质性能,具有合适的操作弹性,结构简单,造价低,便于安装、操作和维修等。
但是吸收过程,一般具有液气比大的特点,因而更适用填料塔。
此外,填料塔阻力小,效率高,有利于过程节能。
所以对于吸收过程来说,以采用填料塔居多。
近年来随着化工产业的发展,大规模的吸收设备已经广泛用于实际生产当中。
具有了很高的吸收效率,以及在节能方面也日趋完善。
填料塔的工艺设计内容是在明确了装置的处理量,操作温度及操作压力及相应的相平衡关系的条件下,完成填料塔的工艺尺寸及其他塔内件设计。
在今后的化学工业的生产中,对吸收设备的要求及效率将会有更高的要求,所以日益完善的吸收设备会逐渐应用于实际的工业生产中。
2 课程设计任务2.1设计内容1. 工艺条件与数据煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时处理含苯煤气2000m³;冷却水进口温度<25℃,出口温度≤50℃。
2. 操作条件吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充新鲜吸收剂;过程中热效应忽略不计。
3. 设计内容①吸收塔、解吸塔填料层的高度计算和设计;②塔径的计算;③其他工艺尺寸的计算。
4. 进度安排5月14日:分配任务;5月14日-5月20日:查询资料、初步设计;5月21日-5月27日:设计计算,完成报告。
2.2设计要求1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。
设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。
应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。
设计说明书应附有带控制点的工艺流程图。
设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。
2. 图纸1套:包括工艺流程图(3号图纸)。
2.3设计方案介绍本设计为填料吸收塔,设计中说明吸收剂为洗油,被吸收的气体是含苯的煤气,且混合气中含苯的摩尔分数为0.02.除了吸收塔以外,还需其他的辅助设备构成完整的吸收-脱吸塔。
气液采用逆流流动,吸收剂循环再用,所设计的流程图如图所示。
图中左侧为吸收部分,混合气由塔底进入吸收塔,其中混合气中的苯被由塔顶淋下的洗油吸收后,由塔顶送出(风机在图中未画出来)。
富液从富油贮罐由离心泵送往右侧的脱吸部分。
脱吸常用的方法是溶液升温以减小气体溶质的溶解度。
故用换热器使送去的富油和脱吸的贫油相互换热。
换热而升温的富油进入脱吸塔的顶部,塔底通入过热蒸汽,将富油中的苯逐出,并带出塔顶,一道进入冷凝器,冷凝后的水和苯在贮罐中出现分层现象,然后将其分别引出。
回收后的苯进一步加工。
由塔顶到塔底的洗油的含苯量已脱的很低,从脱吸贮罐用离心泵打出,经过换热器、冷凝器再进入吸收塔的顶部做吸收用,完成一个循环。
3 吸收塔的工艺计算[1]3.1 基础物性数据计算基础数据的计算包括最小液气比的计算及吸收剂用量的计算。
3.1.1 物料衡算进口气相组成摩尔分数 y 1=0.02出口气相组成摩尔分数 y 2 =(1-0.95)y 1=0.001 进口气相组成 21111004.202.0102.01-⨯=-=-=y y Y kmol (苯)/kmol (煤气) 出口气相组成 322210001.1001.01001.01-⨯=-=-=y y Y kmol (苯)/kmol (煤气)塔底出口液体浓度最低要求 310984260150178150781501-⨯=-+=.%.%.%.x 吸收塔液相进口的组成应低于其平衡浓度,该系统的相平衡关系可以表示为x .y 1250=*于是可得吸收塔进口液相的平衡浓度为:332*21015.8125.010019.1--⨯=⨯==m y x吸收剂入口浓度应低于31015.8-⨯,其值的确定应同时考虑其吸收和解吸操作,兼顾两者,经优化计算后方能确定,这里取:3210005-⨯=.x333222100255100051100051---..-.-x x X ⨯=⨯⨯== kmol (苯)/kmol (煤气) 入口气体混合物的平均分子量为:182019021178020.).-(.M _=⨯+⨯=kg/kmolQ vG =2000m 3/h25.81272732734.222000=+⨯=nG q kmol/h 625163918202581...M q q _nG mG =⨯==kg/h3.1.2 液气比的计算求最小液气比,进而确定适宜的液气比:2*121minX X Y Y q q nG nL --=⎪⎪⎭⎫ ⎝⎛ mY X 1*1=1230100255125010042100111004232322*121min......X X Y Y q q nG nL =⨯-⨯⨯-⨯=--=⎪⎪⎭⎫ ⎝⎛----3.1.3 吸收剂的用量实际液气比通常取最小液气比的1.2~1.5倍[2],这里取1.4倍: 99.1325.814.1123.04.1min=⨯⨯=⨯⨯⎪⎪⎭⎫ ⎝⎛=nG nG nL nLq q q q kmol/h 73.363726099.13=⨯=⨯=洗油M q q nL mL kg/h 547.480073.3673===洗ρmLvL q q m 3/h 3.2 塔径的计算及校核工艺计算包括塔径的计算,填料层高度的计算,总高度的计算。
物性数据: 取P =101.325Kpa8198.0)27327(314.818.2010325.1013=+⨯⨯⨯==RT PM G ρkg/m 3液相密度可以近似取为: 800==洗油L ρρkg/m 3 液体黏度[3]为: 31021-⨯=.ηL mPa·s3.2.1 填料选择 根据优选原则:① 单位体积填料表面积大 ② 单位体积填料孔隙率大③ 有较好的液体分布性能,对吸收剂有较好的润湿④ 气体通过阻力小,并且填料层能均匀分布气体,压降均衡 ⑤ 制造容易,耐腐蚀⑥ 对气体和液体有较好的化学稳定性 选择聚丙烯阶梯环[4]d =38mm 堆积密度 =57.5 kg/m³ 个数=27200个/m³ 孔隙率ε=0.91 比表面积a =132.5m 2/m 3散填料A 值=0.204 临界表面张力σc =54 dyn/cm=0.0054 N/m3.2.2 泛点气速、塔径的计算利用 贝恩-霍根公式计算泛点气速可得:81412.032)()(75.1)lg(LG mG mL L L G fq q A a a g u ρρηρρ⨯-=⨯⨯(3-1)由公式(3-1)可得:5896.08008198.0625.163973.363775.1204.08141-=⨯-)()(其中 a =132.5 ε=0.9158960203210..L LG f ηρρa a gu -=⨯⨯代入计算得:6753218198051328009108192573025730203203.......ηρa ρεg .u ..LG L f =⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=m/s取操作气速是泛点气速的0.6倍[5] 205267536060...u .u f =⨯==m/s555603600819806251639...ρq q G mG vs =⨯==m 3/s 566502052143556044....πu q D vs =⨯⨯==m 圆整后取塔径 D =600mm.3.2.3 数据校核282604100060014344..πd S =⎪⎭⎫ ⎝⎛⨯==m 2 实际气速: 966.11000650414.35556.0422=⎪⎭⎫⎝⎛⨯==dq u vs πm/s泛点率校正:%53%100675.3966.1=⨯=f u u (在50%—80%的范围内)[6] 填料规格校核: D/d =600/38=15.79﹥15(满足径比条件)[7] 喷淋量的校核:吸收剂的喷淋密U =L/S (3-2) U =Sq vL(3-3) 由公式(3-3)可得:09.162826.0547.4===S q U vL m 3/m 2•h 润湿率: t W a U L /min = (3-4)由公式(3-4)可得: 112.05.13209.16min ===at U L W m 3/m 2•h对于直径小于75mm 的环形填料,必须满足润湿率的的最小值L min W >0.08满足最小喷淋密度要求。