实验1-单级放大电路
实验一实验报告单级放大电路的设计与仿真
EDA设计(一) 实验报告——实验一单级放大电路的设计与仿真一.实验内容1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载电阻Ω,电压增益大于50。
2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。
在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和 、r be 、r ce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和f L、f H值。
二.单级放大电路原理图单级放大电路原理图三.饱和失真、截止失真和不失真1、不失真不失真波形图不失真直流工作点静态工作点:i BQ=, i CQ=, v CEQ=2、饱和失真饱和失真电路图饱和失真波形图饱和失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=3、截止失真截止失真电路图截止失真波形图截止失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=四.三极管输入、输出特性曲线和 、r be 、r ce值1、β值静态工作点:i BQ=,i CQ=,v CEQ=V BEQ=β=i C/i B=2、输入特性曲线及r be值:由图:dx=,dy=r be=dx/dy=输入特性曲线3、输出特性曲线及r ce值:由图dx=, 1/dy=r ce=dx/dy=输出特性曲线五.输入电阻、输出电阻和电压增益1、输入电阻测输入电阻电路图由图:v= ,i=μAR i=v/i=μA=Ω2、输出电阻测输出电阻电路图1测输出电阻电路图2 由图:v o’= v o=R o=(v o’/v o-1)R L==Ω3、电压增益测电压增益电路图由图可得A V=六.幅频和相频特性曲线、f L、f H值由图可得f L= f H=Δf= f H - f L=七.实验结果分析1、R iR i理论=[r be+(1+β)R E]//R b1//R b2 =[2976+(1+220)x10]//127k//110k=ΩE1=、R oR o理论=R c=3 kΩE2=/3=1%3、AvI E理论=V B/R E=[ V cc R5/(R2+R5)]/( R6+R1)=[10x110/(127+110)]/2010=r be理论=200+26(1+β)/ I E =2976ΩAv理论=β(R C//R L)/[ r be+(1+β)R E]=220(3kΩ//Ω)/[2976+(220+1)x10]= E3=、V1=10mV时,会出现失真,但加一个小电阻即可减少偏差。
单级放大电路实验报告数据
单级放大电路实验报告数据哎呀,今天咱们聊聊单级放大电路实验。
想象一下,咱们在实验室里,眼前摆着一堆零零碎碎的电子元件,心里那个激动啊,简直比吃到爱吃的零食还开心。
得说这单级放大电路,听起来挺高大上的,实则就是把微弱信号变得响亮些,让我们听得更清楚。
像是把一个小蚊子叫声放大成牛叫,哈哈,听着就有趣。
好啦,先来看看咱们的实验设备。
电源、放大器、输入信号源,还有个示波器,真是一应俱全。
那电源就像是我们的“生命之水”,没有它,啥也别谈。
信号源嘛,嘿,那可真是一个小小的“发声器”,负责把微弱的声音传递给放大器。
你想啊,这放大器就像个热情的主持人,把小声的说话者推上舞台,让大家都听见他的声音。
咱们开始连线。
老实说,这个过程就像拼图,有些地方得小心翼翼,不然就会出错。
一连好,心里那个踏实啊,就像终于把一块缺失的拼图找到了。
开电源的时候,那声音“咔嚓”一声,瞬间就能感觉到电流在流动,仿佛整个实验室都在嗡嗡作响。
此时此刻,所有的紧张感瞬间烟消云散,只有期待。
然后,咱们把输入信号接入放大器。
哇,简直就是给放大器施了个魔法,瞬间小声变大声。
用示波器一看,哇塞,波形都在跳动,活灵活现的。
那一刻,我的心情就像是吃到了一口最美味的蛋糕,甜到心里。
每当看到波形变化,我就像在看一场精彩的表演,恨不得给它加掌声。
不过,实验过程中也不是一帆风顺。
调节增益的时候,难免会遇到些麻烦。
增益太高,信号就会失真,像个“跑调歌手”;增益太低,又显得弱不禁风。
每次调节都得小心翼翼,真是让我捏了一把汗。
就像做饭,盐多了不好,盐少了也不行,得把握好分寸。
经过几轮试验,终于找到那个“恰到好处”的增益,心里别提多美了。
咱们不得不提这个“失真”问题。
失真就像是朋友聚会时,那个总爱抢风头的人,听着听着让人有点烦。
每次出现失真,我心里都暗自着急,感觉就像手机信号不好,听个电话都得凑近点。
这时候就得认真调整电路,想办法让它回归正常。
搞定之后,看着示波器上的波形,简直心里乐开了花,像中了彩票一样。
单级交流放大电路实验报告数据
单级交流放大电路实验报告数据
引言:
单级交流放大电路是一种常见的电子电路,它可以将输入的微弱交流信号放大成为较大的输出信号。
在本次实验中,我们将学习如何设计和制作一个单级交流放大电路,并测试其性能。
实验原理:
单级交流放大电路由放大器管、直流偏置电路和耦合电容组成。
其中,放大器管是核心部件,它能够放大输入信号的电压或电流。
直流偏置电路可以提供稳定的工作电压,确保输出信号的稳定性。
耦合电容则用于将输入和输出信号隔离,防止直流信号干扰。
实验步骤:
1. 准备工作:准备所需元器件,包括晶体管、电阻、电容等,并根据电路图连接电路。
2. 调试电路:将电路连接好后,通过万用表检测电路中各个元器件的参数是否符合设计要求,如电阻值、电容值等。
3. 测试电路:将信号源的输出端连接到电路的输入端,测量电路的输出信号的电压值,并将其与输入信号的电压值比较,计算放大倍数。
4. 优化电路:根据测试结果对电路进行优化,如更换元器件、调整电阻、电容等。
实验结果:
经过多次调试和优化,我们成功地制作出了一台单级交流放大电路。
在测试中,我们发现该电路放大倍数为150,输出信号的失真率小于5%。
这说明该电路能够有效地放大输入信号,输出信号质量较高。
结论:
单级交流放大电路是一种基本的电子电路,它在各种电子设备中都有广泛的应用。
通过本次实验,我们深入地了解了单级交流放大电路的原理和制作方法,并获得了实践经验。
我们相信这将为今后的电子工程师之路奠定坚实的基础。
项目1: 单级共射放大电路
实验一 单极共射放大电路一、实验目的1.掌握三极管(BJT )单极共射放大电路静态工作点的测量和调整方法。
2.了解电路参数变化对静态工作点的影响。
3.掌握BJT 单极共射放大电路主要性能(A v 、R i 、R o )的测量方法。
4.学习通频带的测量方法。
二、实验仪器1.示波器2.函数信号发生器3.数字万用表4.数字毫伏表5.模拟电路实验平台三、实验原理与参考电路1. 参考电路实验参考电路如图4.2.1所示。
该电路采用自动稳定静态工作点的分压式射极偏置电路,其温度稳定性好。
三极管选用国产高频小功率三极管3DG6,或国外型号9013,电位器R P 为调整静态工作点而设。
LR 1c R 1b R 2b R 1e R '1e R eC 1T 1C CCV +2S +-+-PR 2c iV ∙oV ∙图4.2.1 单级共射放大电路2. 静态工作点的估算与调整静态工作点是指输入交流信号为零时三极管的基级电流I BQ 、集电极电流I CQ 和管压降V CEQ 。
在三极管放大电路的图解分析中已经介绍,为了获得最大不失真的输出电压,静态工作点应选在输出特性曲线上,交流负载线的中点。
若工作点选择的太高,易引起饱和失真,而选得太低,又引起截止失真,对于线性放大电路,这两种工作点都不合适的,必须对其进行调整。
图4.2.1所示电路的直流通路如图4.2.2所示。
其开路电压V BB 和内阻R B 分别为11b B R R =∥12b R CC b b b BB V R R R V 121112+=则 )R )(R 1(2e 1e +++-=βB BEQBB BQ R V V IBQ CQ I I β=CQ c CC CEQ I R V V )R R (2e 1e ++-≈BQI CQI CCV BR 1e R 2e R CR BBV图4.2.2 图4.5.1所示电路的直流通路由以上表达式可见,静态工作点与电路参数V CC 、R C 、R e1、R e2、R b11、R b12三极管的β都有关。
实验一 单级交流放大电路 实验报告
实验一单级交流放大电路实验报告一.实验目的本实验的目的是通过模拟电路的组装,进一步学习单级交流放大电路的构成、工作原理和性能指标性质。
同时,通过实验验证理论计算和模拟仿真,提高实验操作技能。
二.实验原理电路的目的是输入的交流信号进行放大。
单级交流放大电路是一个只含有一个三极管的放大器,其结构简单,性能较好,并且在各种电子设备中都被广泛地应用。
单级交流放大电路将交流信号分为两个部分:直流部分和交流部分。
其中,直流部分只负责将输入信号的直流分量放大,而且是每一级交流放大电路中的共同部分,它不仅决定了放大器直流的工作点,而且主宰了整个电路灵敏度的大小。
交流部分仅放大输入信号的交流成分,直流部分不参与放大工作,不影响交流信号的放大过程。
三.实验内容与步骤1.准备工作:将所需电子元器件和工具放齐,无噪声的直流电源、数字万用表等。
2.按照电路图中的元器件连接方式将电路图所示的电子元器件组装成电路体系。
3.电源接通,开关正常,调节调节旋钮从小到大,使VCE < VCC,调整VCE上升到预设值,然后再根据调节旋钮上下调整交流信号,以使输出电压的原则尽可能小,且输出信号达到最大值,同时使输入的直流电压保持0.6V。
4.记录实验所得数据,并照片记录实验现象。
5.电路断电,拆卸电子元器件。
四.实验仪器1.7603B数字多用表2.单通道正弦信号发生器3.2SB561 transistor4.100Ω, 10KΩ, 1μF等电子元器件5.电源6.万用表等。
五.实验结果及分析1.量取输入、输出交流信号的幅度和相位,并计算其增益和相位差。
2.电路实验结果:图中的输入信号频率为1KHz,如图,当输入信号的幅值较小时,输出偏离了零点,因为它的漂移的结果。
随着输入信号的增强,输出波形向心移动,直到输入信号的峰值约为600mV时,在不失真、条件稳定和能力的范围内输出约为3.3 V。
当增益为27.71,相位差约为90度,这样的结果符合实际预期。
实验一、晶体管单级放大电路
三. 实验电路参考图
21
Rb3
200k
RC1
1.5k
+6V
17-18
EC
RP2
470K 9-14
+
5mV 1KHz
3
+
C1
6-7 b
c V1 e
+ C2 10uf RL1 3k
20
+ uo -
信号发生器
u i 10uf
-
4
10-13
图1
四、实验原理
在电子技术中,被传递、加工和处理的信号可以分为两大类:模 拟信号和数字信号。 模拟信号:在时间上和幅度上都是连续变化的信号,称为模拟信号。 数字信号定义:在时间和幅度上均不连续的信号,称为数字信号。 晶体管放大电路,我们在输入端加入模拟小信号ui,放大器的输出端 可得到一个与ui相位相反,幅值被放大了的输出信号uo,这样实现了模 拟电压信号被放大的作用,可用图1表示。我们在实验中要测这个试放 大器的放大倍数等参数。
IC,)填入表格1中。并与理论计算进行比较。用万用表直流电压档测试并调节 R 使 U
b1
C
=3V;
2. 1 测量静态参数与计算公式 这些内容是对应图1的参数测量
VCC U B IB Rb3 RP 2
2.2 表格 1
VCC U C IC RC1
电子技术实验一单级放大电路
一、 实验内容 • 1. 熟悉电子元件及实验箱 • 2. 掌握放大器静态工作点模拟电路调试 方法及对放大器性能的影响 • 3. 学习放大器电压放大倍数 Av 的测试 方法 • 4.复习正确使用毫伏表、万用表、示波器 和信号源。
电子技术实验课件
二、实验仪器
• • • • • 1.示波器 2.信号源 3.数字万用表 4. 交流毫伏表 5.电子技术实验箱
ቤተ መጻሕፍቲ ባይዱ
3、放大电路的动态研究:改变静 态工作点,观察输出波形 (1)由信号源输入一个 f 1KHz 的 正弦波,逐渐加大幅度 u s ,观察 为不失真时,测出其大小,并计 算出放大倍数并观察波形。 (2)将上述交流信号逐渐加大 us 幅度,观察 0 为不失真时,测 0 大小,并计算出Av,填表 出 i 、 1-2
三、实验原理电路及内容
• 1.按图1-1连接电路(单级放大电路) (1)、用万用表检查实验箱中的三极管是 否好用、极性。 (2)、给出电源:直流稳压电源输出 12V 后关闭电源。 (3)、经检查确定线路无误后,接通电源 开始实测。
单级共发射极放大电路
2 .测静态工作点,调试静态工作点,调 节Rp使Vc=6V,数据记在表1-1中。
i =5mV时,调节Rp • 3)在Vcc、Rc不变, 使Vc=1V左右,观察 0 波形变化;重新 调节Rp使Vc=10V左右,观察 0波形变 化,绘制两种刚好失真的波形图。填表 1-3,指出 0波形性质。
i0
实验1-单级放大电路
实验1 单级放大电路1.实验目的1)学习使用电子仪器测量电路参数的方法。
2)学习共射放大电路静态工作点的调整方法。
3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。
2.实验仪器示波器、信号发生器、交流毫伏表、数字万用表。
3.预习内容1)三极管及共射放大器的工作原理。
2)阅读实验内容。
4.实验内容实验电路为共射极放大器,常用于放大电压。
由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。
1)联接电路(1)用万用表判断实验箱上的三极管的极性和好坏。
由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。
改用万用表测量二极管档测量。
对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。
这说明该三极管是好的。
用万用表判断实验箱上电解电容的极性和好坏。
对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。
这说明该电解电容是好的。
⑵按图1.1联接电路。
⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。
若正常,则将12V 电源接至图1.1的Vcc。
图1.1 共射极放大电路⑷ 测量电阻R C 的阻值。
将V i 端接地。
改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。
建议使用以下方法。
bB cc2b B B R V V R V I -=+p 1b b R R R += B C I I=β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。
单级放大电路实验心得(通用4篇)
单级放大电路实验心得(通用4篇)单级放大电路实验心得篇1单级放大电路实验心得1.实验目的通过本次实验,我们旨在探究单级放大电路的基本原理,了解其各个参数的测量方法,并能够分析电路的性能指标,如增益、输入电阻、输出电阻等。
此外,我们还将学习如何使用示波器、电压表和电流表测量电路的输出波形,从而更好地理解放大电路的工作过程。
2.实验原理单级放大电路是一种基本的电子放大器,其原理基于电信号的放大。
通过将输入信号与一个晶体管相连,我们可以实现信号的放大。
晶体管具有放大电流的能力,其输出电流的大小取决于输入信号的大小和晶体管的特性。
3.实验过程实验开始时,我们先搭建了一个单级放大电路。
在测量电路参数时,我们使用电压表和电流表测量电路的输入电阻和输出电阻,使用示波器观察输出波形。
在调整电路时,我们不断尝试不同的电路参数,直到找到最佳的电路配置。
4.实验结果在实验过程中,我们记录了不同输入信号下的输出波形,并使用示波器测量了输出信号的幅值和频率。
通过测量,我们发现输出信号的幅值比输入信号增加了许多,从而证实了放大电路的放大效果。
此外,我们还测量了输入电阻和输出电阻,并记录了它们的大小。
5.实验分析在实验过程中,我们发现输入电阻和输出电阻的大小与理论值非常接近。
同时,我们观察到输出波形具有良好的对称性,说明电路具有良好的稳定性。
此外,我们还发现当输入信号较大时,输出波形会出现失真现象。
这可能是由于晶体管的非线性特性所导致的。
6.实验结论通过本次实验,我们验证了单级放大电路的基本原理和放大效果。
同时,我们还学会了如何使用示波器、电压表和电流表测量电路参数和输出波形。
在实验过程中,我们发现了一些问题,如晶体管的非线性特性可能导致输出波形的失真。
为了改善放大电路的性能,我们可以在实验的基础上进一步研究其他类型的放大器,如差分放大器和集成电路。
这些电路具有更好的线性特性和稳定性,可以提供更高的放大倍数。
此外,我们还可以将放大电路应用到实际的电子设备中,如音频放大器、无线电接收器等,从而更好地理解放大电路在实际应用中的作用。
单级交流放大电路实验报告
单级交流放大电路实验报告一、实验目的1、掌握单级交流放大电路的工作原理和基本结构。
2、学习使用电子仪器测量电路的性能参数,如电压放大倍数、输入电阻、输出电阻等。
3、熟悉放大器静态工作点的调试方法,了解静态工作点对放大器性能的影响。
4、观察放大器输出信号的失真情况,分析产生失真的原因及解决方法。
二、实验原理单级交流放大电路是由一个晶体管(如三极管)组成的基本放大电路。
它的主要作用是将输入的小信号进行放大,输出一个较大的信号。
在三极管放大器中,要使三极管能够正常放大信号,必须给三极管设置合适的静态工作点。
静态工作点是指在没有输入信号时,三极管的基极电流、集电极电流和集电极发射极电压的值。
通过调节基极电阻和集电极电阻的大小,可以改变静态工作点的位置。
放大器的电压放大倍数是衡量其放大能力的重要指标,它等于输出电压与输入电压的比值。
输入电阻是从放大器输入端看进去的等效电阻,输出电阻是从放大器输出端看进去的等效电阻。
三、实验仪器1、示波器2、函数信号发生器3、直流稳压电源4、数字万用表四、实验电路本次实验采用的单级交流放大电路如下图所示:在此处插入实验电路图五、实验内容及步骤(一)静态工作点的调试1、按照实验电路图连接好电路,将直流稳压电源的输出电压调整到合适的值(如 12V),接入电路。
2、调节电位器 Rb,使三极管的基极电压 Vb 达到预定的值(例如2V)。
3、用万用表测量三极管的集电极电流 Ic 和集电极发射极电压 Vce,计算静态工作点的参数。
(二)测量电压放大倍数1、将函数信号发生器的输出端连接到放大器的输入端,设置输入信号的频率为 1kHz,峰峰值为 10mV。
2、用示波器同时观察输入信号和输出信号的波形,测量输出信号的峰峰值 Vopp。
3、计算电压放大倍数 Av = Vopp / 10mV。
(三)测量输入电阻1、在放大器的输入端串联一个已知电阻 Rs(例如1kΩ)。
2、测量输入信号的电压 Vi 和电阻 Rs 两端的电压 Vs。
实验一单级放大电路的设计及仿真
实验一单级放大电路的设计与仿真一、实验目的一、把握放大电路的静态工作点的调整和测试方式。
二、把握放大电路的动态参数的测试方式。
3 、观看静态工作点的选择对输出波形及电压放大倍数的阻碍。
二、实验内容和步骤1.设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV) ,负载电阻Ω,电压增益大于50。
2.调剂电路静态工作点(调剂电位计),观看电路显现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调剂电路静态工作点(调剂电位计),使电路输出信号不失真,而且幅度尽可能大。
在此状态下测试:1电路静态工作点值;2三极管的输入、输出特性曲线和 、rbe 、rce值;3电路的输入电阻、输出电阻和电压增益;4电路的频率响应曲线和fL、fH值。
三、实验步骤(电路图入图1所示)图12.测定饱和失真和截止失真1)饱和失真调剂滑动变阻器,当滑动变阻器的值为15kΩ时,示波器中输出电压的波形底部被削平,显现了饱和失真。
如图2所示图2对电路进行直流分析,取得如下静态工作点的值:Ib=,Ic=11uA,Vce=2) 截止失真由于输入的信号过小,因此很难观看到截止失真的现象,因此将小信号的峰值调至50mV,调剂滑动变阻器,当滑动变阻器的值为50kΩ时,示波器中输出电压的波形顶部被削平,显现截止失真。
如图3所示。
图3对电路进行直流分析,取得如下静态工作点的值:Ib=,Ic=观看不失真并测定参数调剂滑动变阻器,当滑动变阻器的值为30kΩ时,波形大体对称且幅度最大,如图5所示图5再通过对电路图进行直流分析,取得如下静态工作点的值:Ib=,Ic=测试三极管的输入、输出特性曲线和 、r be 、r ce值1)当电路不失真时,可依照Ib与Ic的值测得 =Ic/Ib=2122) 三极管的输入特性曲线:图6为测试三极管输入的实验图,利用直流扫描,可得输入特性曲线如图7所示:图6图7静态时Ib=,在图7中找到静态工作点Q, 在Q点周围取两个点,斜率的倒数即为=dx/dy=Ωrbe,r be3)三极管的输出特性曲线:图8为测试三极管输出的实验图,利用直流扫描,可得输出特性曲线如图9所示:图8图9Ib=通过静态时的Ic找到Q点,在Q点周围取两个点,斜率的倒数即为r ce=dx/dy=68k4.测量电路的输入电阻、输出电阻和电压增益1)测量输入电阻输入电阻的测试电路如图10所示。
单级交流放大电路实验报告
单级交流放大电路实验报告实验目的,通过实验,了解单级交流放大电路的工作原理和特性,掌握其基本参数的测量方法。
实验仪器和设备,示波器、信号发生器、直流稳压电源、万用表、电阻、电容、二极管等。
实验原理,单级交流放大电路是由一个晶体管和少量的外围元件构成的,它可以将输入信号的幅度放大到一定的程度。
在交流放大电路中,输入信号是交流信号,而输出信号也是交流信号。
实验步骤:1. 将示波器、信号发生器、直流稳压电源等设备连接好,并接通电源。
2. 调节信号发生器,输入交流信号,并观察示波器上的波形。
3. 调节直流稳压电源,改变电路中的直流工作点,观察示波器上的波形变化。
4. 测量电路中的电压、电流等参数,并记录下实验数据。
5. 根据实验数据,分析单级交流放大电路的工作特性。
实验结果与分析:通过实验,我们得到了单级交流放大电路的输入输出特性曲线。
当输入信号幅度较小时,输出信号的幅度也较小,但随着输入信号的增大,输出信号的幅度也随之增大,直到达到一定的饱和值。
这说明单级交流放大电路具有放大输入信号的功能,但是当输入信号幅度过大时,输出信号会出现失真。
同时,我们还测量了电路中的直流工作点、交流增益、输入阻抗、输出阻抗等参数。
这些参数的测量结果对于了解单级交流放大电路的工作特性和性能有着重要的意义。
实验总结:通过本次实验,我们对单级交流放大电路的工作原理和特性有了更深入的了解。
我们掌握了单级交流放大电路的基本参数测量方法,同时也发现了单级交流放大电路存在的一些问题和局限性。
在今后的学习和实践中,我们将进一步深入研究电子电路的相关知识,提高自己的实验技能,为今后的科研和工程实践打下坚实的基础。
结语:单级交流放大电路是电子技术中的重要组成部分,它在通信、音响、电视等领域有着广泛的应用。
通过本次实验,我们对单级交流放大电路有了更加深入的了解,这对我们今后的学习和工作都具有重要的意义。
希望我们能够不断学习,不断进步,为电子技术的发展做出自己的贡献。
实验一-单级交流放大电路-实验报告
实验一单级交流放大电路一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q点,AV ,ri,ro的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
二、实验仪器1.示波器2.信号发生器3.数字万用表三、实验原理1.三极管及单管放大电路工作原理。
以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理:三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。
如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
2.放大电路静态和动态测量方法。
放大电路良好工作的基础是设置正确的静态工作点。
因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。
放大电路的动态特性指对交流小信号的放大能力。
因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。
四、实验内容及步骤1.装接电路与简单测量图1.1 工作点稳定的放大电路(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。
测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。
三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。
(2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。
2.静态测量与调整接线完毕仔细检查,确定无误后接通电源。
改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。
实验一单级交流放大电路实验报告
实验一单级交流放大电路实验报告一、实验目的:1.学习单级交流放大电路的基本原理;2.了解交流放大电路的放大特性;3.熟悉实验仪器的使用。
二、实验仪器和材料:1.函数发生器;2.直流电压源;3.双踪示波器;4.两只电压表;5.电阻、电容等被测元件。
三、实验原理:1.交流放大电路交流放大电路是指对输入信号的交流成分进行放大处理的电路,常用的有单级放大电路、共射放大电路等。
2.单级交流放大电路单级交流放大电路是对输入信号的交流成分进行放大处理的电路,由输入电容、输出电容、输入电阻、输出电阻以及放大元件(如三极管)等组成。
四、实验步骤:1.搭建单级交流放大电路,连接电阻、电容元件,使用函数发生器输入信号;2.调整函数发生器的频率和幅度,观察输出信号的变化;3.使用示波器观察输入信号和输出信号的波形,测量输入信号和输出信号的幅度;4.更改电阻、电容元件的数值,观察输出信号的变化。
五、实验结果和数据处理:在实验中我们尝试了不同的频率和幅度的输入信号,并观察了输出信号的变化。
通过测量输入信号和输出信号的幅度,我们得到了如下数据:输入信号频率:1kHz输入信号幅度:2V输出信号幅度:4V输入信号频率:10kHz输入信号幅度:1V输出信号幅度:3V输入信号频率:100kHz输入信号幅度:0.5V输出信号幅度:2V从数据可以看出,随着输入信号频率的增加,输出信号的幅度逐渐减小。
这是因为交流放大电路具有一定的截止频率,超过该频率时放大效果逐渐减弱。
六、实验讨论:1.交流放大电路的截止频率是通过电路元件的数值进行调节的,可通过改变电容和电阻的数值来改变截止频率;2.在实验中我们没有考虑到放大器的失真问题,实际应用中要考虑到放大器的失真程度,例如非线性失真、相位失真等。
七、实验总结:通过本次实验,我们学习了单级交流放大电路的基本原理,了解了交流放大电路的放大特性。
实验中我们使用了函数发生器、示波器等仪器,熟悉了这些仪器的使用方法。
单级放大电路实验.
最大集电极耗散功率 PCM=iCuCE
安全工作区
晶体管主要参数
极间反向电流
(1) 集电极基极间反向饱和电流 ICBO O —— (发射极)开路 (2) 集电极发射极间的
-
ICBO
uA +
b
c e
VCC
Ie=0
反向饱和电流 ICEO
I CEO (1 ) I CBO
b
c e
B ib + ube -
ic
C + uce -
B + ube - ib rbe
β ib
ic
C + uce -
E (a) 三极管
E (b) 三极管的微变等效电路
集电极和发射极之间可等效为一个受ib控制的电流源
晶体管特性的图形表示(极限参数)
ICM ---最大允许集电极电流 饱和区
PCM
iC ICM
安全区
晶体管特性的图形表示(极限参数)
ICM ---最大允许集电极电流 饱和区
PCM
---最大允许集电极耗散功率
iC ICM
安全区
PCM
放大区 V BR CEO ---集电极反向击穿电压
晶体管安全工作区域
0
V(BR)CEO vCE
vCE VBRCEO且iC ICM 且P C P CM
晶体管主要参数 •直流参数: 、 、ICBO、 ICEO I C I E iC iE 1 •交流参数:β、α、fT(使β=1的信号频率) c-e间击穿电压 • 极限参数:ICM、PCM、U(BR)CEO
1 2
画出放大电路的交流通路
C1 、C2对交流分量视为短路; 直流电源UCC的内阻很小,对交流视为短路;
实验一单机放大电路
实验一单级放大电路一.实验目的;1.熟悉电子元件器件和模拟电路实验箱的使用;2.学会测量和调整放大电路静态工作点的方法,观察放大电路的非线性失真;3.学会测定放大电路的电压放大倍数;二.实验仪器;1、示波器2、DVCC-DAZJH实验箱3、万用表三.实验内容及步骤;1、连接线路;按按图连好线路2、调整静态工作点将函数信号发生器的输出通过输出电缆线接至US两端,调整函数信号发生器输出的正弦波信号F=1KHZ,UI=10MVUI是放大电路输入信号UI的有效值,用毫伏表测量UI可得;将示波器Y轴输入电缆线连接至放大电路输出端;然后调整基极电阻RP1,在示波器上观察UP的波形,将UO调整到最大不失真输出;注意观察静态工作点的变化对输出波形的影响过程,观察何时出现饱和失真、截止失真,若出现双向失真应减小UI,直至不出现失真;调好工作点后RP1电位器不能在动;用万用表测量静态工作点记录数据于表1-1测量UCE和IC时,应使用万用表的直流电压档和直流电流档;表1-1 用万用表测量静态工作点表中:RB=RP1+1R33、测量放大电路的电压放大倍数调节函数信号发生器输出为F=1KHZ,UI=10MV 的正弦信号,用示波器观察放大器的输出波形;若波形不失真,用晶体管毫伏表测量放大器空载时的输出电压及负载时的输出电压U0的实测值;调UI=20MV,重复上述步骤,验证放大倍数的线性关系,填入数据记录表1-2中测量输入电压、输出电压时,用晶体管毫伏表测量;表1-2 数据记录表14、 三极管的电流放大系数β的测量在上述实验步骤中,需要对放大电路进行理论分析,而在分析中需要β的值,此时可以用万用表来测量;测量步骤如下;1 判定基极B 和管型判断根据是从基极B 到集电极C 以及基极B 到发射集E 分别是两个PN结;将万用表拨到欧姆档得R×100R×1K位置,用红表笔触碰某个电极,黑表笔分别去接触另两个电极,若两次测量到得电阻值很大或很小,则红表笔接的是基极;若两次测量到阻值相差很大,则说明红表笔接的不是基极,应更换电极重新测量;在已知基极时,用黑表笔接触另两极,若测量的阻值较大时,则三极管维NPN;反之,阻值较小时,三极管为PNP型;2 判断集电极C、发射极E在确定了基极后,用万用表两次测量其他两个电极之间的电阻值,然后交换表笔重新测量一次,两次测量到阻值应该不等;对于较小阻值的NPN红表笔接的是发射极E,黑表笔接的事集电极C,对PNP而言,红表笔接的是发射极C,黑表笔接的是集电极E;3测量三极管放大系数β在知道了三极管的信号及管脚的情况下,将三极管的三个管脚对应地插入万用表的HFE的B、C、E插孔中进行测量,读到的数值即为三极管放大系数β;。
实验一单级放大电路
实验一单级放大电路一、实验目的1、掌握单管电压放大电路的调试和测试方法。
2、掌握放大器静态工作点和负载电阻对放大器性能的影响。
3、学习测量放大器的方法,了解共射极电路的特性。
4、学习放大器的动态性能。
二、实验仪器1、模拟电路实验箱及附件板2、示波器3、万用表4、直流毫伏表5、交流毫伏表6、函数发生器7、+12V 电源三、实验原理实验采用分压式工作点稳定电路,如图1。
1所示.1、静态工作点的估算当流过基极分压电阻的电流远远大于三极管的基极电流时,可以忽略BQ I , 则有:CC 2b 1b 1b BQ V R R R V +=,eBEQ BQ EQ CQ R U V I I -=≈)(e c CQ CC e EQ c CQ CC CEQ R R I V R I R I V U +-≈--=βCQBQ I I =2、动态指标的估算与测试放大电路的动态指标主要有电压放大倍数,输入电阻,输出电阻及通频带等。
理论上,电压放大倍数be L ur R A '-=β ,输入电阻be be 2b 1b i ////r r R R R ≈=,输出电阻c o R R ≈测量电压放大倍数时,首先将电路调整到的合适静态工作点,给定输入电压i u ,在输出电压不失真的情况下,用毫伏表测出输出电压o u 与输入电压i u 的有效值,则i o u U U A = 四、实验内容及步骤1、在模拟电路实验箱上插上附件板,按图1。
1电路,用插接线连接实验电路,接线完毕,检查无误后,接上+12V 直流电源. 2、调试静态工作点接通直流电源前,先将R W 调至最大, 函数信号发生器输出旋钮旋至零。
接通+12V 电源、调节R W ,使I C =2.0mA (即U E =2.0V ), 用直流电压表测量U B 、U E 、U C 及用万用电表测量R B2值.记入表1-1.表1—1 I C =2mA3、测量电压放大倍数在放大器输入端加入频率为1KHz 的正弦信号u S ,调节函数信号发生器的输出旋钮使放大器输入电压U i ≈10mV ,同时用示波器观察放大器输出电压u O 波形,在波形不失真的条件下用交流毫伏表测量下述两种情况下的U O 值,并用双踪示波器观察uO 和ui的相位关系,记入表1-2.表1—1 IC=2mA表2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 单级放大电路1.实验目的1)学习使用电子仪器测量电路参数的方法。
2)学习共射放大电路静态工作点的调整方法。
3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。
2.实验仪器示波器、信号发生器、交流毫伏表、数字万用表。
3.预习内容1)三极管及共射放大器的工作原理。
2)阅读实验内容。
4.实验内容实验电路为共射极放大器,常用于放大电压。
由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。
1)联接电路(1)用万用表判断实验箱上的三极管的极性和好坏。
由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。
改用万用表测量二极管档测量。
对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。
这说明该三极管是好的。
用万用表判断实验箱上电解电容的极性和好坏。
对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。
这说明该电解电容是好的。
⑵按图1.1联接电路。
⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。
若正常,则将12V 电源接至图1.1的Vcc。
图1.1 共射极放大电路⑷ 测量电阻R C 的阻值。
将V i 端接地。
改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。
建议使用以下方法。
bB cc2b B B R V V R V I -=+p 1b b R R R += B C I I=β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。
本实验用测电阻值、电压值来计算电流值,而不是直接测量电流,是因为本实验电路的电流较小,测量电流的测量误差较测量电压、电阻的误差大。
同时还因为测量电流时万用表的内阻趋于零,使用不当很可能损坏万用表。
Vcc=11.992 V图1.2是示意图。
它示意i C 并不严格等于βi B , 只是近似等于βi B ;或者说β并不是一个常数。
通常,β随i B 增大而增大。
对于一个三极管,β随i B 的变化越小越好。
用图解法表示共发射极放大器放大小信号的原理可知,β随i B 变化而变化是正弦波小信号经共发射极放大器放大后产生非线性谐波失真的原因。
若表1.1中β的数 值较接近,则表1.6中的非线性谐波失真应较小。
使 用不同实验箱的同学之间可验证上述分析。
由此可见,在制作小信号放大器时,若要求其非线性谐波失真尽可能小,则应挑选β值随i B 变化而变化尽可能小的三极管。
2) 调整静态电压放大器的主要任务是使失真尽可能小地放大电压信号。
为了使输出电压失真尽可能小,一般地说,静态工作点Q 应选择在输出特性曲线上交流负载线的中点。
若工作点选得太高,放大器在加入交流信号后容易引起饱和失真;若选得太低,容易引起截止失真。
对于小信号放大器而言,若输出交流信号幅度较小,电压放大器的非线性失真将不是主要问题,因此Q 点不一定要选在交流负载线的中点,而可根据其他要求来选择。
例如,希望放大器耗电省、噪声低,或输入阻抗高,Q 点可选得低一些。
将V i 端接地。
调整R P ,使V C =6V ,测量计算并填写表1.2,绘制直流负载线,估算静态工作点和放大电路的动态范围;分析发射极直流偏置对放大器动态范围的影响。
3) 动态特性分析保持上述静态不变,做以下动态测量。
在本实验电路中,在交流信号输入端有一个由R1、R2组成的1/101的分压器。
这是因为,信号源是有源仪器,当其输出电压较小时,其输出的信噪比随输出信号的减小而降低,所以输出信号电压幅值有下限。
例如,目前使用的Agilent33210A数字式信号源输出正弦电压的最小幅值为50mV。
若直接将其作为输入,本实验用的放大器将严重限幅。
电阻是无源元件,而且阻值较小,由分压器增加的噪声甚少。
所以用电阻分压器得到信噪比较高的小信号。
若要对放大倍数做精确测量,也常用电阻做输入分压器。
具体的做法和原因可试述如下。
若要求放大器的放大倍数为A V,用电阻做1/A V的分压器,信号源输出电压可为几百mV,调整放大器的参数,使输出电压等于输入电压,这样对输入、输出测量的仪器在测量过程中就不用换挡。
放大倍数本来就是输出/输入的相对关系。
虽然仪器测量示数往往有绝对误差,用同一挡测量两个量,使其相等,这就避免了仪器测量示数具有的绝对误差。
这种测量的误差仅仅包含对两个分压电阻测量的误差,通常可很小。
若直接用小信号做输入,则测量输入、输出将使用不同的挡位,即使用了仪器中的不同电路,而仪器中不同电路的测量精度是有差别的,由此而来的误差通常比上述用电阻分压器的要大。
(1)取输入信号Vi的频率为10KHz、有效值为3mV,观察V s和V o的波形,比较两者的相位。
相位差为180°(2)保持信号频率不变,不接负载R L,用交流毫伏表测量电压,填写表1.3,观察V o 不严重失真时的最大输入值V i,将其填入表1.3的最后一行。
表1.3 测量交流放大倍数(无载)(3)保持信号V i的频率f=10KHz、有效值3mV不变,接入负载R L,测量并填写表1.4。
在绘制直流负载线的同一张图上绘制交流负载线,分析负载对放大器动态范围的影响。
L R)mV (V i)V (V ov Av A5k1 3.042 -0.3018 99.21 -82.5 2k2 3.042-0.181959.80-49.7⑷ 不接负载,测量绘制放大器的空载幅频特性曲线。
请注意,幅频特性图的横坐标是常用对数刻度,建议幅频特性图的纵坐标使用20lg|A V /A V o |为刻度。
当然也可以使用其它为纵坐标刻度,例如,20lg|A V |(dB)。
但不应使用线性刻度坐标。
建议用以下方法绘制幅频特性图。
取幅值为几mV 的正弦波为输入V i ,输出接示波器、交流毫伏表,。
保持信号源输出信号幅值不变,改变输入信号频率,观察示波器,当输出信号幅值最大时,调整输入信号幅值,将交流毫伏表示数置为“dB ”,这时放大器的放大倍数为20lg|A V o |。
再将交流毫伏表示数置为“RE L”,这时交流毫伏表示数为“0dB ”。
记此时的频率为f 0。
然后减小频率,使交流毫伏表的示数为dB 3-,称此时的频率为放大器的下限频率,记为f L 。
再减小频率,在此过程中记录若干个“dB 数—频率”,以使幅频特性曲线能反映出每减小十倍频程,幅频特性下降多少dB 。
然后再增大频率,使交流毫伏表的示数为dB 3-,称此时的频率为放大器的上限频率,记为f H 。
再增大频率,在此过程中记录若干个“dB 数—频率”,以使幅频特性曲线能反映出每增加十倍频程,幅频特性下降多少dB 。
将测量到的数据记入表1.5,由表可绘制出所要求的幅频特性曲线。
接负载R L =5K1,测量绘制放大器的接载后的幅频特性。
建议幅频特性图的纵坐标使用20lg|A V /A V o |为刻度。
分析负载对放大器幅频特性的影响。
注:测量时要注意交流毫伏表的测量带宽限制,若频率超过其频宽,应采用示波器进行测量。
空 载 频率 630 690 1.21k 4.03k 38.00k54.51k 57.82k 20lg|A V /A V o | -20dB -10dB -3dB 0dB -3dB -10dB -20dB 有 载 频率 602108408.41k 704.41k 1.174M 1.434M20lg|A V /A V o |-20dB -10dB -3dB0dB-3dB-10dB-20dB无负载时的幅频特性曲线:接负载时的幅频特性曲线:⑸ 利用数字式示波器测量放大器的非线性谐波失真。
取输入信号f=10KHz ,V i =6mV ,R L =5K1。
对输入V i 做傅立叶变换,记%100d 2i ⨯=基波谱线幅值二次谐波谱线幅值(1-2)%100d 3i ⨯=基波谱线幅值三次谐波谱线幅值(1-3)以d i2为例说明具体的测量计算方法。
数字示波器给出的谱线幅值是对数幅值,其参考值为1V rms 。
示波器屏幕上显示的信号的谱线是其在示波器时域屏幕上波形的傅立叶变换,计及了示波器输入放大器的放大倍数。
输入信号的谱线的数值可由游标读出。
记基波谱线幅值为L 1(dB),二次谐波谱线幅值为L 2(dB),则%10010d 20L L 2i 12⨯=- (1-4)对输入o V 做傅立叶变换,记%100d 2o ⨯=基波谱线幅值二次谐波谱线幅值(1-5)%100d 3o ⨯=基波谱线幅值三次谐波谱线幅值(1-6)放大器的二次谐波失真2d 、三次谐波失真3d 为2i 2o 2d d d -= 3i 3o 3d d d -= (1-7)按表1.6测量并填表。
表1.6测量谐波失真)mV (V i2o d2i d2d3o d3i d3d3 6 9 12有兴趣的实验者可测量空载时放大器的非线性失真。
使空载时输出电压幅值与有载时输出电压幅值相同,比较接载对放大器非线性谐波失真的影响。
在输出幅值相同的情况下,接载将使放大器的非线性谐波失真增大。
(6)保持信号i V 的频率f=10KHz 、有效值3mV 不变,接入负载R L ,改变R p ,观测V o 的波形并填写表1.7。
分析直流偏置对放大器交流性能的影响。
表1.7直流偏置对放大性能影响p R)V (V B)V (V C)V (V E输出波形V o 情况最大 适当 最小4)测量放大器的输入、输出电阻 ⑴ 测量放大器的输入电阻将图1.1中的R 2开路后,放大电路输入端等效电路如图1.3,由图可计算出r i 。
应调整输入电压,使放大器输出失真尽可能小,因为希望测到的输入电阻是放大器微变等效电路的输入电阻,该电阻应是线性电阻。
建议将输出端接负载,以减小输出电压。
1)V /V (R r i S Si -=(1-8)⑵ 测量放大器的输出电阻放大电路输出端等效电路如图1.4,此时应将输入端的R 1、R 2恢复为分压电路,V i 为3mV ,由图可计算出o r 。
L 1K 5ORl ORL o R )1V V (r -==∞→ (1-9)将输入、输出电阻填入表1.8。
51欧姆的要去掉图1.3 输入等效电路图1.4 输出等效电路⒌思考题1) 若要求降低低频截止频率,可如何修改放大电路?2) 若要求减小电路的非线性谐波失真,有哪些途径?3) 此次实验有哪些体会。