DWDM技术解析
DWDM原理介绍解析
DWDM原理介绍解析DWDM(密集波分复用技术)是一种用于光纤通信系统中的传输技术,可以将多个不同波长的光信号同时传输在一条光纤中,实现信号的高密度传输。
DWDM技术是实现光纤通信系统大容量传输的一项重要技术,使得光网络可以支持更多的用户和更大的带宽需求。
DWDM系统中的光纤通道可以通过增加波长或者改变波长来增加传输容量。
光纤通道中的波长间隔较小,通常为0.8nm或者0.4nm,最多可达到40个波长。
每个波长可以传输不同的数据流,因此能够实现高密度的信号传输。
通过DWDM技术,可以在一条光纤中传输Tbps级别的数据流,满足大容量传输的需求。
DWDM系统中的波长可以分为通道波长和增加波长两种。
通道波长是指用来传输用户数据的波长,增加波长是指用来增加传输容量的波长。
通常情况下,增加波长的数目要大于通道波长的数目,以提供足够的增加容量。
DWDM系统中的波长选择主要依赖于光通信系统的需求和光纤的传输特性。
带宽密集的光纤可以支持更多的波长,提供更大的传输容量。
而波长选择对应的光放大器和光滤波器也需要进行匹配,以保证传输质量和传输距离。
DWDM系统还涉及到光信号的调制和解调。
波长分复用之前,光信号需要经过调制器进行调制,将电信号转换成光信号。
调制器可以使用直接调制器或者外调制器。
波长分解复用之后,光信号需要经过解调器进行解调,将光信号转换成电信号。
解调器可以使用光电探测器进行解调。
此外,DWDM系统还包括光放大器、波分复用器、解复用器、光滤波器等组件。
光放大器用于放大光信号,增加传输距离和传输质量。
波分复用器和解复用器用于将多个波长的光信号分别复用和解复用到不同的通道。
光滤波器用于滤除不相关的波长,提高传输质量。
总结起来,DWDM原理是通过波分复用和波分解复用技术将多个不同波长的光信号同时传输在一条光纤中,实现信号的高密度传输。
通过增加波长和改变波长来增加传输容量。
DWDM技术可以实现大容量的光纤通信系统,满足日益增长的带宽需求。
光纤通信-DWDM技术
D
U
n
OSC
OS
C
OBA
OWU
EMU
1
2 O
M
U
n
15
开放式系统的关键技术------
波长转换(Wavelength Convertion)
开放式系统 集成式系统
各种设备供应厂家 各种速率接入 任意波长接入 各种数据格式 任意时刻接入 成本较高
没有互操作性 成本较低
16
DWDM系统的五大组成部分
34
光接收机
入射光
短程传输接收:PIN 长程传输接收:APD
电信号
接收机必须承受的影响: 信号畸变 噪声 串扰
35
光转发器(Transponder)
O/E/O波长转换器
* 以目前工艺水平的组件比特率可达40Gbit/s
* 消光比得到改善,并可用外调制对信号进行整形
* 高SNR
* 与偏振无关
光转发器(OTU)
波分复用
WDM(Wavelength Division Multiplexer)
TDM和WDM技术合用
5
DWDM技术特点
高容量:可以充分利用光纤的巨大带宽资源,使传
输容量比单波长传输增加几倍至几十倍
低成本:在大容量长途传输时可以节约大量光纤和
再生器,大大降低传输成本
透明性:与信号速率、格式无关, 是引入宽带新业务
Pin=-28dBm 增益G=25、30/33dB
OLA
Pout=+17dBm
OBA
增益G=30~35dB
Pout=+17dBm
25
光放大器技术的发展
DWDM原理及关键技术
1.5 波长 (mm)
1.6
1.7
色散 (ps/nm-km)
EDFA 带宽
光纤损耗
OSNR:光信噪比,是描述系统低误码运行能力的主要参数 OSNR = Pout / Pase OSNR = Pout(li) + 58.03 - NF - 10log( M) –10log(G1+Σloss)
*系统总长度一定时,低增益、多级数比高增益、
对系统的影响: 大于一定值时,引起强烈背向散射, 叠加强度噪声。
SPM和XPM
(3)自相位调制(SPM)
相位随光强而变化,转化为波形畸变
SPM的影响随该通道注入光纤的光功率增大而增大,随光纤
及传输段而积累。
(4)交叉相位调制(XPM)
相位受到其它其它信道的调制,经光纤色散转化 引起强度噪声
(5)四波混频(FWM)
光纤传输特性
• 1、衰减 • 2、色散 • 3、非线性
(色度色散、偏振膜色散)
光纤类型和损耗谱
G.652 SMF
1.0 0.8
损耗 (dB/km)
损耗 (各类光纤)
G.653 DSF
20 10 0
0.4
NZDF+ G.655+ NZDFG.655-
0.2 0.1 1.2 1.3
-10 -20
1.4
DWDM技术发展趋势
IP ATM SDH SDH ATM IP 其它
Open Optical Interface
DWDM
光纤物理层
DWDM技术发展趋势
点对点DWDM传输
l1 l2 lN l1 l2 lN
可配置 OADM
li li lk lk
可重构OXC
DWDM技术原理
DWDM技术原理DWDM,全称密集波分复用技术(Dense Wavelength Division Multiplexing),是一种宽带传输技术,用于实现光纤通信系统中多个光信号的同时传输。
DWDM系统由多个组成部分组成,包括光发射器、光接收器、波导分光器(分离器)和波导合波器(合并器),以及一些光纤和光波长选择器等。
在DWDM系统中,光信号通过波导分光器将不同波长的光信号分离,并通过光波长选择器选择要传输的波长。
然后,经过一系列光纤和光放大器的放大,信号通过光波长选择器选择后,通过波导合波器合并成一个光信号,并通过光接收器接收。
DWDM技术的关键在于波导分光器和波导合波器。
波导分光器和波导合波器是一种光学元件,能够将光信号按照不同的波长进行有效的分离和合并。
在传输中,光信号经过波导分光器分离后,通过不同的光纤传输,然后再通过波导合波器合并成一个光信号。
波导分光器和波导合波器之间的光纤可以传输不同波长的光信号,从而实现传输多个信号。
通过使用DWDM技术,光纤传输容量可以大大提高。
由于不同波长的光信号可以同时传输,因此可以在同一条光纤上传输多个信号,从而提高了光纤的利用效率。
此外,DWDM技术还可以扩展光纤传输距离,减少光信号的衰减和失真。
虽然DWDM技术有很多优点,但是也存在一些挑战。
其中一个挑战是光纤之间的串扰。
由于不同波长的光信号在光纤中传播时会相互干扰,需要采取一些方法来减少串扰效应,例如使用光纤中继站来放大和重新定向光信号。
另外,DWDM系统的设计和调试也是一个复杂的任务,需要精确的光学设计和光纤连接。
总之,DWDM技术是一种重要的光纤通信技术,通过波长分离复用和解复用实现多波长光信号的同时传输。
它可以提高光纤传输容量和距离,提高光纤利用效率,但也面临一些挑战,需要解决串扰和系统调试等问题。
随着技术的不断进步,DWDM技术在光纤通信领域的应用前景将会更加广阔。
(完整)DWDM技术详解
DWDM技术DWDM —- Dense Wavelength Division Multiplexing,即密集波分复用。
DWDM是一种光纤数据传输技术,这一技术利用激光的波长按照比特位并行传输或者字符串行传输方式在光纤内传送数据。
●概述本文将引领读者了解可伸缩的DWDM系统在促使服务供应商满足消费者日益增长的带宽需求这一领域所具有的重要性。
DWDM是光纤网络的重要组成部分,它可以让IP协议、ATM和同步光纤网络/同步数字序列(SONET/SDH)协议下承载的电子邮件、视频、多媒体、数据和语音等数据都通过统一的光纤层传输。
● 1. 当前通信网络所面临的问题为了理解DWDM和光网互联的重要性,我们就必须在通信产业、特别是服务供应商当前面临何种问题这一大前提下来讨论DWDM技术所带来的强大功能。
我们知道,在网络的设计和建设时期,工程设计人员必须对网络未来的带宽需求作出合理的估计。
目前,美国等地区铺设的大多数网络对带宽的需求估计都是来源于古典的工程公式概算,比如泊松(Poisson)概率分布模型等。
结果呢,网络所需带宽量的估测值通常按照某种统计假设条件给出,比如,一般认为个人在通常的情况下,在一个小时之内只会使用6分钟的网络带宽.然而,这一数学模型并没有考虑到由于Internet接入(这一业务的数据流量的年增长率是300%)、传真、多条电话线路、调制解调器、电话会议、数据和视频传输等业务而产生的数据流量.如果考虑到这些因素,网络带宽的用户使用模型就和现有的设计初期估计大大不同了.实际上,在今天的日常生活中,许多人平均使用网络带宽的时间是180分钟甚至超过1个小时!显而易见,运营商们迫切地需要大量的网络容量来满足顾客日益增长的服务需求。
据估计,仅在1997年,通过一对光缆传输的长途电话的带宽容量就增加到了1。
2 Gbps(百万比特每秒)。
当数据传输速度以Gbps单位计算的时候,每秒钟可以通过网络传输1000本图书的信息。
DWDM基本原理详解
DWDM基本原理详解DWDM(Dense Wavelength Division Multiplexing)是一种光通信技术,利用不同波长的光信号在同一光纤上进行传输,从而实现大带宽、高速率的光通信传输。
DWDM通过将多个信号以不同的波长分在一根光纤上,从而实现了在同一光纤中传输多个信道的通信,极大地提高了光纤的利用率和传输容量。
DWDM系统由多个部分组成,包括发射端(Transmitter)、光纤传输链路(Fiber Link)、接收端(Receiver)和信号处理器(Signal Processor)。
下面将从基本原理、组件、工作过程和优点等方面详细介绍DWDM技术。
1.DWDM的基本原理:DWDM的基本原理是利用不同波长的激光器将多个信道的信号分别调制到不同波长的光子上,然后将这些不同波长的光子通过同一根光纤传输到接收端,再通过接收端的信号处理进行解调和分离。
这样就实现了多个信道共享一根光纤传输,大大提高了光纤的利用率和传输容量。
2.DWDM系统的组件:(1)激光器(Laser):用于发射不同波长的激光光子。
(2)调制器(Modulator):用于将信号调制到激光器发出的光子上。
(3)分波器(Multiplexer):用于将多个信道的信号分别调制到不同波长的光子上。
(4)解复用器(Demultiplexer):用于将接收到的多个波长的光信号分离并进行解调。
3.DWDM的工作过程:(1)发射端:激光器将不同波长的激光光子经过调制器调制成带有信号的光信号,然后经过分波器将多个不同波长的光信号合并成一个信号流,经过光纤传输到接收端。
(2)光纤传输链路:多个不同波长的光信号在同一根光纤中传输到接收端,信号之间通过不同波长进行区分。
(3)接收端:接收端通过解复用器将多个波长的光信号分离并解调,将各个信道的信号传递给信号处理器进行进一步处理。
4.DWDM的优点:(1)大带宽:DWDM技术能够同时传输多个信道,大大提高了光纤的传输容量,满足了高速率通信的需求。
DWDM原理与技术
DWDM原理与技术DWDM(Dense Wavelength Division Multiplexing,密集波长分割多路复用)是一种用于光纤通信的技术,它能够同时传输多个不同波长的光信号,从而实现光纤的高速传输。
DWDM技术的出现,大大提高了光纤通信的容量和效率。
DWDM的基本原理是利用光的不同波长来实现多波长信号的复用。
在DWDM系统中,光信号通过光纤传输,通过多路复用器将不同波长的光信号合并到一根光纤上,并通过解复用器将这些光信号分开。
DWDM技术实现了光纤传输中多个波长信号的同时传输,从而提高了光纤的容量。
DWDM技术的核心是光纤传输中光信号的复用和解复用。
多路复用器是DWDM系统中的关键设备,它能够将多个同步的不同波长信号合并到一根光纤上。
多路复用器内部由多个窄带滤波器组成,每个滤波器可以选择特定的波长信号传输。
解复用器是将合并在一起的波长信号分离出来的设备,它利用窄带滤波器的原理,将特定的波长信号分离出来。
在DWDM系统中,光信号的增强和调整也是很重要的一部分。
由于光纤传输中信号会有衰减和色散的问题,所以需要放大器和波长转换器来解决。
光放大器是DWDM系统中用于增加光信号功率的装置,它可以补偿光纤传输中的衰减。
波长转换器是将光信号从一个波长转换到另一个波长的装置,它可以解决DWDM系统中波长不匹配的问题。
DWDM技术的优点主要表现在以下几个方面:高容量、灵活性和可靠性。
首先,DWDM技术能够将多个波长信号传输到一根光纤上,大大提高了光纤的利用率,实现了高容量的传输。
其次,DWDM系统中可以根据需要选择不同的波长信号传输,实现了灵活性。
最后,DWDM系统中可以采用冗余设计和备份路由,提高了传输的可靠性。
总结起来,DWDM技术是一种应用于光纤通信的技术,它利用波长分割多路复用的原理,使得多个波长信号能够同时传输,从而提高了光纤的容量和效率。
DWDM技术在现代的光纤网络中起到了非常重要的作用,为人们的通信提供了更快速、更可靠的方式。
DWDM技术
目录第1章 DWDM概述2第1.1节DWDM技术产生背景 (2)第1.2节DWDM原理概述 (2)第1.3节DWDM设备工作方式 (3)第1.4节DWDM的应用形式 (5)第1.5节DWDM的优越性 (5)第2章 DWDM传输媒质7第2.1节光纤的结构 (7)第2.2节光纤的种类 (8)第2.3节光纤的基本特性 (8)第2.4节光缆的种类及性能 (10)第3章 DWDM关键技术11第3.1节光源 (11)第3.2节掺铒光纤光放大器(EDFA) (14)第3.3节DWDM器件 (20)第4章 DWDM组网设计24第4.1节DWDM的几种网络单元类型 (24)第4.2节DWDM网络的一般组成 (27)第4.3节DWDM组网考虑的要素 (30)第4.4节DWDM网络的保护 (38)第4.5节实例分析 (42)第1章 DWDM概述目标:1.掌握DWDM的概念。
2.了解DWDM的产生背景、技术特点。
第1.1节 DWDM技术产生背景随着话音业务的飞速增长和各种新业务的不断涌现,特别是IP技术的日新月异,网络容量必将会受到严重的挑战。
传统的传输网络扩容方法采用空分复用(SDM)或时分复用(TDM)两种方式。
1. 空分复用SDM(Space Division Multiplexer)空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。
在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。
而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。
作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。
因此,空分复用的扩容方式是十分受限。
DWDM光传输技术简介
DWDM光传输技术一、DWDM概述DWDM(Dense Wavelength Division Multiplexing:密集型光波复用),是在WDM(波分复用)的基础上发展出来的一项传输技术,在光纤传输领域有非常广泛的应用。
DWDM的特点是在同一根光纤中,传输分布更密集波长相差更少的较多路的光信号,从而实现单根光纤传输速率大幅度的提高。
DWDM多是使用在主干光网上,实现的是超远距离、超大容量的传输。
以目前成熟的技术而言,在1550nm波长附近,使用DWDM技术,复用的波长数量可以达到80甚至160个,传输的速率高达3.2Tb/s。
使用DWDM技术可以实现少则几百公里,多则数千公里,甚至上万公里无电传输。
二、DWDM工作原理与组网方式工作原理如下:发送端的光发射机发出波长不同而精度和稳定度满足一定要求的光信号,经过光波长复用器复用在一起送入掺铒光纤功率放大器(掺铒光纤放大器主要用来弥补合波器引起的功率损失和提高光信号的发送功率),再将放大后的多路光信号送入光纤传输,中间可以根据情况有或没有光线路放大器,到达接收端经光前置放大器(主要用于提高接收灵敏度,以便延长传输距离)放大以后,送入光波长分波器分解出原来的各路光信号。
DWDM系统的构成及光谱示意图如下:DWDM系统环网示意图如下:组网形式:1、单纤单向DWDM原理示意图2、单纤双向DWDM原理示意图3、二纤单向通道倒换环4、二纤双向共享环三、DWDM 技术优势1. 超大容量目前使用的普通光纤可传输的带宽是很宽的,但其利用率还很低。
使用DWDM技术可以使一根光纤的传输容量比单波长传输容量增加几倍、几十倍乃至几百倍,因此也节省了光纤资源。
2. 数据透明传输由于DWDM 系统按不同的光波长进行复用和解复用,而与信号的速率和电调制方式无关,即对数据是“透明”的。
因此可以传输特性完全不同的信号,完成各种电信号的综合和分离,包括数字信号和模拟信号的综合和分离。
DWDM技术
還可以總容量、地理域或網路功能等分類
開放式和集成式系統結構
開放式4波、8波、16波、32波WDM系統
OMT
1 OTU1
2 OTU2
O
•
M
• •
U
n OTUn
OBA
OS
C
EMU
1 2
• • •
n
OWU
O D U
OSC OS
C
OPA
ILA
OLA
OS
OS
C
C
OSC
OS
OS
C C
OWU
OLA EMU
通信波段劃分及相應傳輸媒介
頻率,Hz
101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015
ELF VF VLF LF MF HF VHF UHF SHF EHF
頻段 電力、電話 劃分
傳 輸 介 質
無線電、電視
微波
AM無線電 FM無線電 衛星/微波 同軸電纜 雙鉸線
OPA
ATT
OBA
增益G=30~35dB Pout=+17dBm
DWDM系統對光放大的基本要求
光放大器應滿足ITU-T建議G.663、G.691及其他相關建議。
EDFA的主要技術參數:
工作波長範圍、輸入功率範圍、輸出功率範圍、飽和輸 出功率、雜訊係數、偏振相關增益、小信號增益、增益平坦 度、增益變化、增益斜度、輸入光回損、輸出光回損等。
1
2
指定波長符合ITU-T規定 波長漂移 /5(ITUT), /10(國家)
光源的色散容限 光譜寬度@-20dB< 0.2nm
DWDM
DWDM是Dense Wavelength Division Multiplexing(密集波分复用)的缩写,这是一项用来在现有的光纤骨干网上提高带宽的激光技术。
更确切地说,该技术是在一根指定的光纤中,多路复用单个光纤载波的紧密光谱间距,以便利用可以达到的传输性能(例如,达到最小程度的色散或者衰减),这样,在给定的信息传输容量下,就可以减少所需要的光纤的总数量。
DWDM能够在同一根光纤中,把不同的波长同时进行组合和传输。
为了保证有效,一根光纤转换为多个虚拟光纤。
所以,如果你打算复用8个光纤载波(OC),即一根光纤中传输8路信号,这样传输容量就将从2.5 Gb/s提高到20 Gb/s。
目前,由于采用了DWDM技术,单根光纤可以传输的数据流量最大达到400Gb/s。
随着厂商在每根光纤中加入更多信道,每秒兆兆位的传输速度指日可待。
WDM本质上是光域上的频分复用FDM技术。
每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。
WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为"白色光口"或"白光口"。
按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。
CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。
DWDM可以支持150多束不同波长的光波同时传输,每束光波最高达到10Gb/s的数据传输率。
这种系统能在一条比头发丝还细的光缆上提供超过1Tb/s的数据传输率基于DWDM的网络可以采用IP协议、ATM、SONET /SDH、以太网协议来传输数据,处理的数据流量在100 Mb/s 和2.5 Gb/s之间,这样,基于DWDM的网络可以在一个激光信道上以不同的速度传输不同类型的数据流量。
dwdm技术工作原理
dwdm技术工作原理今天咱们来唠唠那个听起来就很厉害的DWDM技术。
DWDM是密集波分复用技术,这名字听起来是不是有点拗口呢?其实它干的事儿可有意思啦。
想象一下,你有好多条信息的小河流,它们都想要在同一条大的“信息高速公路”上跑。
在没有DWDM之前呢,这些小河流就只能排着队一个一个地走,就像小朋友们排队上滑梯一样,这样效率可就有点低啦。
那DWDM是怎么解决这个问题的呢?它就像是一个超级厉害的交通指挥员。
它把这条“信息高速公路”划分成了好多不同颜色的车道,不过这里的颜色可不是咱们肉眼看到的那种颜色哦,而是不同频率的光。
每一个频率的光就像是一个独特的车道,可以承载一路信息。
比如说,有一个频率的光负责传输视频信息,另一个频率的光就负责传输语音通话信息,就这么各走各的道,互不干扰。
这就好比在一个超级大的公寓里,每个房间都有自己的功能。
有的房间是用来放音乐的,有的房间是用来放电影的,虽然都在同一个公寓里,但是各干各的事儿。
DWDM就是这么聪明,它能让不同的信息在同一根光纤里欢快地奔跑,而且不会乱套。
那这些不同频率的光又是怎么被区分开的呢?这就涉及到一些很神奇的光学原理啦。
光有不同的波长,就像每个人有不同的身高一样。
DWDM技术能够精确地识别这些不同波长的光,然后把它们安排到各自对应的“车道”上。
就像一个超级细心的管理员,把高个子安排到高个子的区域,矮个子安排到矮个子的区域,井井有条。
而且哦,DWDM技术还特别能“包容”。
它可以容纳好多好多不同的波长,就像一个超级大的百宝袋,能装下各种各样的东西。
这样一来,光纤的传输能力就被大大地提高了。
以前只能传输一路信息的光纤,现在能同时传输好多路,就像一个小水管变成了一个超级大的输水管道,可以同时输送很多水一样。
在实际的通信网络里,DWDM技术可是大功臣呢。
比如说,我们现在能流畅地看高清视频、进行视频通话,这里面就有DWDM的功劳。
它就像一个默默在背后付出的小天使,把各种信息准确无误地送到我们的设备上。
DWDM技术原理及发展趋势
DWDM技术原理及发展趋势一、DWDM技术的产生背景1、光网络复用技术的发展通信网络中,包括多种传输媒介,如双绞线、同轴线、光纤、无线传输。
其中,光纤传输的特点是传输容量大、质量好、损耗小、保密性好、中继距离长等。
随着信息时代宽带高速业务的不断发展,不但要求光传输系统向更大容量、更长距离发展,而且,要求其交互便捷。
因此,在光传输系统中引入了复用技术。
所谓复用技术是指利用光纤宽频带、大容量的特点,用一根光纤或光缆同时传输多路信号。
在多路信号传输系统中,信号的复用方式对系统的性能和造价起着重要作用。
光纤传输网的复用技术经历了空分复用(SDM)、时分复用(TDM)到波分复用(WDM)三个阶段的发展。
SDM技术设计简单、实用,但必须按信号复用的路数配置所需要的光纤传输芯数,投资效益较差;TDM技术的应用很广泛,如PDH、SDH、ATM、IP都是基于TDM的传输技术,缺点是线路利用率较低;WDM技术在1根光纤上承载多个波长(信道),使之成为当前光纤通信网络扩容的主要手段。
在过去20年里,光纤通信的发展超乎了人们的想象,光通信网络也成为现代通信网的基础平台。
光纤通信系统经历了几个发展阶段,从70年代末的PDH系统,90年代中期的SDH系统,以及近来风起云涌的DWDM系统,乃至将来的智能光网络技术,光纤通信系统自身正在快速地更新换代。
波分复用技术从光纤通信出现伊始就出现了,80年代末、90年代初,AT&T贝尔实验室的厉鼎毅(T.Y.Lee)博士大力倡导波分复用(DWDM)技术,两波长WDM(1310/1550nm)系统80年代就在美国AT&T网中使用,速率为2×1.7Gb/s。
但是到90年代中期,WDM系统发展速度并不快,主要原因在于:(1)TDM(时分复用)技术的发展,155Mb/s-622Mb/s-2.5Gb/s TDM技术相对简单。
据统计,在2.5Gb/s系统以下(含2.5Gb/s系统),系统每升级一次,每比特的传输成本下降30%左右。
DWDM原理及关键技术
WDM技术的发展历史
WDM技术在90年代初出现,但在95年以前没有 很快发展,原因有三个:
TDM技术的发展:155Mb/s-622 Mb/s-2.5 Gb/s TDM技术相对简单。因此,在2.5Gb/s系统以 下,在系统升级时,人们会首先选用TDM技术;
WDM关键器件还没有完全成熟,如波分复用 器/解复用器和光放大器;
光解复用器
• WDM—将携带不同信息的多个光载波复合到一根光纤中进行 传输(早期使用1510/1310两波长系统)
• DWDM(Dense Wavelength Division Multiplexing)
在1550nm窗口,采用更多波长进行波分复用(8,16…)
DWDM的基本概念
DWDM技术是在波长 1550nm窗口附近,在EDFA 能提供增益的波长范围内, 选用密集的但相互又有一定 波长间隔的多路光载波,这 些光载波各自受不同数字信 号的调制,复合在一根光纤 上传输,提高了每根光纤的 传输容量。
• 现在波分复用技术(WDM)通常专指密集波分复用技术 DWDM和粗波分复用技术CWDM。
DWDM与TDM的区别
发射端
电再生
l1
T
接收端
R
TDM:单纤单波长 电再生
电复用
电解复用
l1 l2 lN
DWDM:单纤多波长 全光放大
l1
l1
l2
l2
lN
lN
光纤放大器
光复用器
光解复用器
DWDM与SDH的关系
• 理论上,WDM可以利用的单模光纤的带宽可以达到 200nm,约为25THz,在波长间隔为0.8nm时,理论上 可以开通200多个波长,为WDM的应用和发展提供了 广阔的前景
DWDM技术
DWDM技术的主要特点
• DWDM技术之所以在近几年能得到迅猛发展,其 主要原因是它具有以下特点: 1.超大容量传输 2.节约光纤资源 3.各通路透明传输、平滑升级扩容方便 4.充分利用成熟的TDM技术 5利用掺铒光纤放大器(EDFA)实现超长距离传输 6.对光纤的色散无过高要求 7.可组成全光网络
周银娣
波分复用(
•
DWDM )的定义
波分复用是光线通信中的一种传输技术,它是利用一根 光纤可以同时传输多个不同波长的光载波特点,把光纤可 能应用的波长范围划分为若干个波段,每个波段用做一个 独立的通道传输一种预定波长的信号技术。 • DWDM技术就是为了充分利用单模光纤损耗区 (1550nm)带来的巨大带宽资源,根据每一信道光波的 频率或波长不同,将光纤的低损耗窗口划分为若干个信道, 把光波作为信号的载波,在发送端采用波分复用器(合波 器)将不同规定波长的信弓光载波合并起来送人一根光纤 进行传输。在接收端,再由一个波分复用器(分波器)将这 此不同波长承载不同信弓的光载波分开。由于不同波长的 光载波信号可以看成是互相独立的,从而在一根光纤中可 以实现多路光信弓的复用传输
• 2.单纤双向传输
• 单纤双向传输的特点如下: (1)只需要一根光纤实现双向通信; (2)在同一根光纤上,光波同时向两个方向传输; (3)对于同一个终端设备,收、发需占用不同的 波长 (4)为了防止双向信道波长的干扰,一是收、发 波长应分别位于红波段区和蓝波断区,二是在设 备终端需要进行双向通路隔离,三是在光纤信道 中需采用双向放大器实现两个方向光信号放大。
基本原理是:利用掺铒光纤中掺杂离子在泵 浦光的作用下形成子数反转,从而对入射光 信号提供光增益。DWDM系统对光放大器的 基本要求是宽频带、低噪声和增益平坦等, 具体应用时可选用具有增益平坦、增益锁定、 增益可调和放大器瞬态抑制等功能的光放大 器,整个光通道具有良好的技术指标。
第9章DWDM技术概述
(3)调制方式不同。
同轴电缆系统采用相干调制,而 WDM系统采用IM/DD方式。
2.WDM与DWDM
随着1 550 nm窗口掺铒光纤放大器 (EDFA)的商用化,WDM系统的应用进 入了一个新时期。
人们不再利用1 310 nm窗口,而只在 1 550 nm窗口传送多路光载波信号。
由于这些WDM系统的相邻波长间隔 比较窄(一般小于1.6 nm),且工作在一 个窗口内共享EDFA,因此为了区别于传 统的WDM系统,称这种波长间隔更紧密 的WDM系统为密集波分复用系统,即 DWDM系统。
一般情况下,如果不特指 1 310 nm/1 550 nm的两波长WDM系统, 人们谈论的WDM系统就是DWDM系统。
通常DWDM系统多用于长途通信系 统,而现在越来越多的人把它应用到城域 网/接入网中。
由于复用的通道数一般为16或更少, 通道间隔为200 GHz或500 GHz,所以近年 来还流行一种粗波分复用技术(CWDM)。
(3)时分复用(TDM)技术存在的 缺陷
(4)光器件的迅速发展促进了 DWDM的商用化
9.1.2 什么是DWDM技术
1.波分复用(DWDM)的定义
波分复用是光纤通信中的一种传输技 术,它是利用一根光纤可以同时传输多个 不同波长的光载波特点,把光纤可能应用 的波长范围划分为若干个波段,每个波段 用做一个独立的通道传输一种预定波长的 光信号技术。
所谓密集是针对相邻波长间隔而言
的。
过去的WDM系统是几十纳米的通路 间隔,现在的通路间隔则只有0.8~2 nm, 甚至小于0.8 nm。DWDM技术其实是 WDM技术的一种具体表现形式。
现在,人们都喜欢用WDM来称呼 DWDM系统。
从本质上讲,DWDM只是WDM的一 种形式,WDM更具有普遍性,而且随着 技术的发展,原来认为所谓密集的波长间 隔,在技术实现上也越来越容易,已经变 得不那么“密集”了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DWDM技术解析DWDM —— Dense Wavelength Division Multiplexing,即密集波分复用。
DWDM是一种光纤数据传输技术,这一技术利用激光的波长按照比特位并行传输或者字符串行传输方式在光纤内传送数据。
概述本文将引领读者了解可伸缩的DWDM系统在促使服务供应商满足消费者日益增长的带宽需求这一领域所具有的重要性。
DWDM是光纤网络的重要组成部分,它可以让IP协议、ATM和同步光纤网络/同步数字序列(SONET/SDH)协议下承载的电子邮件、视频、多媒体、数据和语音等数据都通过统一的光纤层传输。
1. 当前通信网络所面临的问题为了理解DWDM和光网互联的重要性,我们就必须在通信产业、特别是服务供应商当前面临何种问题这一大前提下来讨论DWDM技术所带来的强大功能。
我们知道,在网络的设计和建设时期,工程设计人员必须对网络未来的带宽需求作出合理的估计。
目前,美国等地区铺设的大多数网络对带宽的需求估计都是来源于古典的工程公式概算,比如泊松(Poisson)概率分布模型等。
结果呢,网络所需带宽量的估测值通常按照某种统计假设条件给出,比如,一般认为个人在通常的情况下,在一个小时之内只会使用6分钟的网络带宽。
然而,这一数学模型并没有考虑到由于Internet接入(这一业务的数据流量的年增长率是300%)、传真、多条电话线路、调制解调器、电话会议、数据和视频传输等业务而产生的数据流量。
如果考虑到这些因素,网络带宽的用户使用模型就和现有的设计初期估计大大不同了。
实际上,在今天的日常生活中,许多人平均使用网络带宽的时间是180分钟甚至超过1个小时!显而易见,运营商们迫切地需要大量的网络容量来满足顾客日益增长的服务需求。
据估计,仅在1997年,通过一对光缆传输的长途电话的带宽容量就增加到了1.2 Gbps(百万比特每秒)。
当数据传输速度以Gbps单位计算的时候,每秒钟可以通过网络传输1000本图书的信息。
可是,到了今天,假如有1百万个家庭希望观赏网站上推出的视频节目或者使用新出现的网络视频应用,那么,在这一需求场合下,网络传输速率就必须达到太比特级(万亿比特每秒:Tbps)。
当数据传输速度以Tbps单位计算的时候,在一秒钟的瞬间之内,网络就可以传输2000万个并发双工电话或者300年来出版的全部日报的数据量。
当然,谁也不可能准确地预见到网络带宽的需求增长的如此之快!比方说,有人通过研究预测:从1994年到1998年,美国长途交换网营运公司(IXC)的网络容量会增长7倍,而美国的本地交换网营运公司(LEC)的网络容量会增长4倍。
可事实上呢,现在已经有公司估计其网络容量会比往年增长32倍,而另一家公司单单在1997年的网络新增容量就达到了它在1991年的整个网络规模。
还有家公司声称,其网络的规模在未来4年内将达到每半年扩张一倍的增长速率。
除了消费者的带宽需求爆炸性地增加以外,众多服务供应商还面临着其光缆可用余量即将用尽的窘迫局面。
有一份产业报告指出:在1995年,埋设光缆中已经使用的部分平均在网络中占到了70%到80%之多。
现在,许多电信运营商的光缆使用率几乎达到了100%的有效利用率上限。
另外还有一个窘迫的难题:网络服务运营商怎么才能在一种物理网络之上部署和集成五花八门的多种通信技术。
消费者的需要和企业之间的竞争压力迫使运营商们一方面必须提供在建设和运营成本上比较经济的多种服务,而且另一方面他们还要尽可能地在已经埋设的现有网络基础之上来部署这些业务。
还好,辛苦出现了DWDM技术,正是DWDM 为这些运营商们提供了同时满足这些需求的可行解决方案。
使用DWDM技术可以让服务供应商提供传统的IP over ATM承载数据、SONET/SDH承载语音等传输方式所带来的电子邮件、视频和多媒体业务,与此同时,在无须考虑这些不同数据格式的情况之下——不管他们是IP、ATM还是SONET/SDH,DWDM 却能够同等地向这些不同的传输方式提供统一的带宽管理功能,所有以上三种通信协议都可以通过采用DWDM技术的光层得以传输。
这种统一管理功能可以让服务供应商灵活地仅通过单一网络就足以满足顾客的带宽需求。
运营商要想在商业运营上获得成功,其中的一个关键要旨就是需要一个统一的承载平台,这个平台能够统一承载各种通信技术并且同这些通信技术接口,而且,该平台还应该让运营商具备能把当前和新一代技术集成起来的能力。
2. 解决带宽危机面对以上三个问题:日益增长的服务需求、光缆余量用尽、统一的层次型带宽管理。
服务供应商必须找到一条在经济上可行的解决方案。
降低光缆耗用率的一个显而易见的措施就是铺设更多的光缆,对那些铺设新光缆的成本可以保持最低的网络来说,这一措施可以证明是最为经济的解决方案。
但是,铺设新光缆却并不能促使服务供应商一定能提供新型服务,或者也不能让运营商们获得光传输层带宽的统一管理能力。
第二项措施是使用时分复用技术TDM来增加数据传输速率,TDM把时间划分为更小的间隔以便更多的数据得以在同一时间内被传输(参看图2),结果就增加了光缆的有效容量。
其实,这也就是产业内目前已经采用的方案(DS–1、DS–2和DS–3等)。
不过,当服务供应商仅仅使用这一措施时,他们的每一次网络扩容都具有显著跳跃性,意味着网络容量的增长很不平滑,很有可能最终让他们获得比当初需求更大的多的带宽,从某种意义来说,这是很多运营商所不愿意见到的局面,其管理复杂性和投资都会增长得令人头痛不已。
以SONET技术为例,从10 Gbps TDM提升的下一个容量层次就到了40 Gbps(这一令许多人深信不疑的巨大跃进对TDM技术来说在近期内是不太可能的)。
采用SONET的北美传输网络和采用SDH 的国际传输网络就都采用了TDM技术。
电信产业采纳了SONET或SDH标准以提供标准的同步光纤网络,通过它所具有的灵活性以匹配当前和未来的数字信号。
SONET或者SDH通过定义标准的传输速率和光纤接口来实现以上的目标。
比方说,终止SONET网络的终端会引入多种电子信号和光信号,这些信号在成为STS–1的数据负载(SONET 网络帧结构的有机组成部分)之前会以电信号的方式被复用,STS–1负载随后被复用并以单一速率在单根光纤中传输,这些标准速率是:OC–3 、OC–12、OC–48乃至最终高达OC–192。
SDH具有和STM–n类似的帧结构,其信号速率可以达到STS–1到STM–64范围之内。
SONET和SDH是两种密切相关的标准,就是这两种标准为今天的传输网络奠定了基础。
这两种标准决定了传输接口的参数、传输的速率、传输数据的格式和信号复用方式乃至实现高速传输所需要的运行、管理、维护和提供(OAM&P)特性。
同步传输模式意味着通过光缆系统流动的激光信号和外部时钟保持着同步。
这样做的优点是通过光缆系统传输语音、数据和图象的数据流可以很平稳、规则的方式流动,结果每一束激光都可以很容易地被对端识别出来。
3. 容量扩充和灵活性:DWDM服务供应商还可以选择的第三种方式就是密集波分复用——DWDM技术。
DWDM首先把引入的光信号分配给特定频带内的指定频率(波长,lambda),然后把信号复用到一根光纤中去,采用这种方式就可以大大增加已铺设光缆的带宽。
由于引入(incoming)信号并不在光层终止,接口的速率和格式就可以保持独立,这样就允许服务供应商把DWDM技术和网络中现有的设备集成起来,同时又获得了现有铺设光缆中没有得以利用的大量带宽。
DWDM可以把多个光信号搭配起来传输,结果这些光信号可以编成同一组同时被放大并且通过单一的光纤传输,网络的带宽也就大大增加(参看图3)了。
每个承载的信号都可以设置为不同的传输速率(OC–3/12/24等)和不同的格式(SONET、ATM、数据等)。
比方说,某个DWDM网络可以在DWDM 基础上混合OC–48 (2.5 Gbps)和OC–192 (10 Gbps)两种速率的SONET信号。
从而获得高达40 Gbps 的巨大带宽。
采用DWDM的系统在达到以上目标的同时仍然可以维持和现有传输系统同等程度的系统性能、可靠性和稳固性——甚至过之而无不及。
今后的DWDM终端更可以承载总计80个波长之多的OC–48以达到200 Gbps的传输速率或者高达40波长的OC–192以达到400 Gbps的传输速率,这个带宽已经足以在一秒钟之内传输9万卷的大百科全书!实现这种高速、高容量传输能力的关键技术就是光放大器。
光放大器运行在特定光谱频带之上并根据现有的光纤进行了优化,这样就可以使得光放大器有可能放大光波信号,从而在无须将其转换为电信号的情况下扩大其传输范围。
超宽频带光纤放大器在实践中运用证明承载100个通道(或者波长)的光波信号可以有效地被放大。
使用这种放大器的网络可以非常轻松地处理太比特级的信息。
以这个速率传输,这种网络甚至可能一次传输全世界所有的电视频道节目或者同时传送50万部电影。
以公路做比喻,一根光纤也可以看作一条多车道公路。
通常意义上的TDM系统使用该公路的一个车道,通过在这唯一车道上加快汽车的驾驶速率来增加带宽。
在光缆网络中,DWDM的采用好比为把后面的汽车放到了公路上没有使用的车道上(增加了铺设光纤的波长数目)得以获得难以置信的巨大带宽。
另外还有一个好处:这条公路并不关心跑在自己上面的车流都是些什么类型。
结果呢,跑在DWDM这条公路上的―车子―们可以装载ATM信元、SONET和IP包。
4. 容量扩充潜能采用DWDM,服务供应商可以建立一种―随心所欲增长带宽‖的网络,可以让他们增加当前和未来新一代TDM系统以实现事实上无休止的网络扩张。
DWDM还可以让服务供应商灵活地扩充其网络中的任意部分,这是任何其他技术所不能提供的绝对优势。
运营商还可以籍此解决因为高带宽需求而产生网络拥塞地区的带宽问题。
在两节点之间存在多环交叉而产生光纤冗余的地区,该技术大有用武之地。
服务供应商总是在不断地搜寻新兴的、富有创造性的通信方式为自己创造利润,同时他们还希望这些方式可以完全满足其顾客五花八门的需求。
而DWDM网络就可以很好地满足以上的要求。
比如,服务供应商可以针对不同的用户分割和维护不同的专有波长,向带宽使用率比较高的商务用户出租单独的波长而不是一整根光纤。
和使用中继器的网络应用相比,DWDM网络还增加了网络单元之间的相邻距离,这对寻求有效降低初始网络投资的长途通信服务供应商来说是个非常好的优点。
DWDM系统的光纤放大器可以让服务供应商通过接收和直接放大光信号而无须将其转换为电信号得以节约投资。
此外,DWDM还允许服务供应商在1.55µm光谱区的广大波长范围内运行DWDM。
比如,DWDM系统可以在一根光纤上复用最高16个波长,运营商可以在每个再生器放置地点按16的因数来降低放大器的数量。