人教版九年级数学上册一二单元测试题
人教版九年级数学上册一元二次方程单元测试卷
人教版九年级数学上册一元二次方程单元测试卷初中数学试卷-一元二次方程单元测试卷考试时间:100分钟满分:120分)姓名成绩一、选择题:(每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A。
(x+1)=2(x+1)B。
2x+11=222ax+bx+cC。
D=-22.使得代数式3x-6的值等于21的x的值是( )A。
3B。
-3C。
±3D。
±33.关于x的一元二次方程x-k=有实数根,则()A。
k<0B。
k>0C。
k≥0D。
k≤04.用配方法解关于x的方程x+ px + q = 0时,此方程可变形为( )A。
(x+2)=2pB。
(x-2)=2pC。
(x+2)=2pD。
(x-2)=2p5.使分式的值等于零的x是( )A。
2B。
-2C。
±2D。
±46.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )A。
x(x+1)=1035B。
x(x-1)=1035C。
x(x+1)=1035D。
x(x-1)=10357.若方程(a-b)x+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A。
a=b=cB。
一根为1C。
一根为-1D。
以上都不对奋斗没有终点,任何时候都是一个起点。
2.剔除格式错误。
3.改写每段话。
奋斗没有终点,任何时候都是一个起点。
8.若分式 $\frac{x^2-x-6}{x-3x+2}$ 的值为1,则 $x$ 的值为().A。
3或-2B。
3C。
-2D。
-3或2改写为:已知分式 $\frac{x^2-x-6}{x-3x+2}$ 的值为1,求 $x$ 的值。
A。
3或-2B。
3C。
-2D。
-3或29.已知方程 $x+p x+q=0$ 的两个根分别是2和-3,则 $x-p x+q$ 可分解为().A。
(x+2)(x+3)B。
(x-2)(x-3)C。
(x-2)(x+3)D。
人教版九年级上册数学各单元测试卷及答案(全套)
第二十一章综合测试一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是( ) A .2550x x -+= B .2550x x +-= C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是( ) A.12x x ==B .10x =,2x =-C.1x =2x =-D.1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为( ) A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为( ) A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为( )A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为( ) A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=( ) A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为( )A .1(1)282x x += B .1(1)282x x -= C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根 二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -=的两根为1x ,2x ,则1211x x +=__________. 15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________. 16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________. 17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分) 19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=. (1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。
人教版数学九年级上册第二单元测试试卷(含答案)
人教版数学9年级上册第2单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)已知二次函数y=ax2+bx+c,且a<0,4a﹣2b+c>0,则一定有( )A.b2﹣4ac<0B.b2﹣4ac≤0C.b2﹣4ac=0D.b2﹣4ac>0 2.(3分)抛物线y=3(x﹣2)2+1的对称轴是( )A.直线x=﹣2B.直线x=﹣1C.直线x=1D.直线x=2 3.(3分)将抛物线y=2x2+2向左平移3个单位长度,再向上平移2个单位长度,得到抛物线的解析式是( )A.y=2(x+3)2+4B.y=2(x+3)2C.y=2(x﹣3)2+4D.y=2(x﹣3)24.(3分)二次函数y=ax2+bx+c的部分图象如图,其对称轴是直线x=1.下列结论:①abc>0;②b2>4ac;③4a+2b+c>0;④3b﹣2c>0;⑤关于x的一元二次方程ax2+bx+c=a(a≠0)有两个不相等的实数根.其中正确结论的个数是( )A.2B.3C.4D.55.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A.y=(x﹣2)2﹣1B.y=(x﹣2)2+3C.y=x2+1D.y=x2﹣1 6.(3分)已知二次函数y=x2+ax+b=(x﹣x1)(x﹣x2)(a,b,x1,x2为常数),若1<x1<x2<2,记t=a+b,则( )A.―2<t<―34B.﹣2<t<0C.―1<t<―34D.﹣1<t<07.(3分)已知二次函数y=x2+2(k﹣1)x+k2的图象与x轴无交点,则k的取值范围是( )A.k>12B.k<12C.k>2D.k<28.(3分)将抛物线y =2x 2向右平移1个单位,再向上平移2个单位后,所得新抛物线和原抛物线相比,不变的是( )A .对称轴B .开口方向C .和y 轴的交点D .顶点9.(3分)如图,二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (3,0),与y 轴交于点C .下列结论:①ac >0;②当x >0时,y 随x 的增大而增大;③3a +c =0;④b =2a .其中正确的是( )A .④B .③C .②D .①10.(3分)用配方法将二次函数y =12x 2﹣2x ﹣4化为y =a (x ﹣h )2+k 的形式为( )A .y =12(x ﹣2)2﹣4B .y =12(x ﹣1)2﹣3C .y =12(x ﹣2)2﹣5D .y =12(x ﹣2)2﹣6二、填空题(共5小题,满分15分,每小题3分)11.(3分)二次函数y =﹣(x ﹣2)2+3的最大值是 .12.(3分)函数y =x 2m ﹣1+x ﹣3是二次函数,则m = .13.(3分)如图,抛物线y =ax 2+bx +c 的对称轴为x =1,点P 是抛物线与x 轴的一个交点,若点P 的坐标为(4,0),则关于x 的一元二次方程ax 2+bx +c =0的解为 .14.(3分)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式y =﹣0.3x 2+1.5x ﹣1,则最佳加工时间为 min .15.(3分)已知二次函数y =x 2﹣4x ﹣5的图象与x 轴交于A 、B 两点,顶点为C ,则△ABC的面积为 .三、解答题(共8小题,满分75分)16.(9分)已知y与x2成正比例,并且x=1时y=2.(1)求y与x之间的函数关系式.(2)当x=﹣1时y的值.17.(9分)先确定抛物线y=﹣2x2+8x﹣8的开口方向、对称轴和顶点坐标,再描点画图.18.(9分)一个二次函数的图象经过(﹣1,0),(0,6),(3,0)三点.求:这个二次函数的解析式.19.(9分)某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数)时,月销售利润为y元.(1)求y与x之间的函数解析式,并直接写出自变量x的取值范围.(2)当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?20.(9分)已知二次函数y=ax2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x…01234…y…﹣3﹣4﹣305…(1)求该二次函数的表达式;(2)直接写出该二次函数图象与x轴的交点坐标.21.(10分)已知y=(k﹣1)x k2+k―4是二次函数.(1)若其图象开口向下,求k的值;(2)若当x<0时,y随x的增大而减小,求函数关系式.22.(10分)已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,求:(1)点A、B、C的坐标;(2)△ABC的面积.23.(10分)已知二次函数y=ax2+4x+2的图象经过点A(3,﹣4).(1)求a的值;(2)求此抛物线的对称轴;(3)直接写出函数y随自变量的增大而减小的x的取值范围.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D;2.D;3.A;4.B;5.D;6.D;7.A;8.B;9.B;10.D;二、填空题(共5小题,满分15分,每小题3分)11.312.3 213.x1=4,x2=﹣214.2.515.27三、解答题(共8小题,满分75分)16.解:(1)∵y与x2成正比例,∴设y=kx2(k≠0),∵当x=1时,y=2,∴2=k•12,解得,k=2,∴y与x之间的函数关系式为y=2x2.(2)∵函数关系式为y=2x2,∴当x=﹣1时,y=2×1=2.17.解:y=﹣2x2+8x﹣8=﹣2(x﹣2)2,∵a=﹣2<0,∴开口向下,对称轴为:直线x=2,顶点坐标为:(2,0),图象如下:18.解:设抛物线的解析式为y=ax2+bx+c,根据题意得:a―b+c=09a+3b+c=0 c=6,解得:a=―2 b=4c=6,所以抛物线的解析式为y=﹣2x2+4x+6.19.解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x=802×(10)=4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;20.解:(1)∵抛物线经过点(0,﹣3),(2,﹣3),(1,﹣4),∴抛物线的对称轴为直线x=1,顶点坐标为(1,﹣4),设抛物线解析式为y=a(x﹣1)2﹣4,把(0,﹣3)代入得a(0﹣1)2﹣4=﹣3,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4;(2)∵抛物线与x轴的一个交点坐标为(3,0),而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标为(﹣1,0),即该二次函数图象与x轴的交点坐标为(﹣1,0),(3,0).21.解:(1)根据题意得k 2+k―4=2k―1≠0,解得k=﹣3或2;(2)∵当x<0时,y随x的增大而减小,∴图象开口向上,∴k﹣1>0,即k>1,∴k=2.22.解:(1)令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵A(﹣1,0),B(3,0),C(0,﹣3),∴AB=4,OC=3,∴S△ABC =12AB•OC=12×4×3=6.23.解:(1)∵二次函数y=ax2+4x+2的图象经过点A(3,﹣4),∴﹣4=9a+12+2,解得:a=﹣2,∴a的值为﹣2;(2)由(1)可知抛物线解析式为y=﹣2x2+4x+2=﹣2(x﹣1)2+4,∴抛物线对称轴为直线x=1;(3)∵抛物线开口向下,对称轴为x=1,∴当x≥1时,y随x的增大而减小.。
最新人教版初中数学九年级数学上册第二单元《二次函数》检测题(含答案解析)
一、选择题1.()11,y -()20,y ()34,y 是抛物线22y xx c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<2.二次函数(2)(3)y x x =--与x 轴交点的个数为( ) A .1个B .2个C .3个D .4个3.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A .B .C .D .4.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+--D .21y x =-5.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .6.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =-B .直线3x =C .直线1x =D .直线2x =7.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( ) A .(1,5)- B .(2,8)- C .(3,18)-D .(4,20)-8.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)9.表格对应值:x 1 2 3 4 2ax bx c ++0.5-512.522判断关于x 的方程2ax bx c ++=的一个解x 的范围是( )A .01x <<B .12x <<C .23x <<D .34x <<10.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .11.抛物线2288y x x =-+-的对称轴是( ) A .2x =B .2x =-C .4x =D .4x =-12.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+二、填空题13.如图,直线y =x +4与x 、y 轴分别交于A 、B 两点,点O 为坐标原点,点C 是点A 关于y 轴的对称点,动点D 在线段AC 上,连接BD ,作以BD 为直角边的等腰Rt △BDE ,则线段OE 的最小值为_________.14.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()332,C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)15.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)16.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:x2- 1- 0 1 23 y831-3则在实数范围内能使得成立的取值范围是.17.二次函数2y x bx c =++的图象如图所示,则一元二次方程28x bx c ++=-的根是____________.18.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.19.将抛物线223y x x =---向右平移三个单位,再绕原点O 旋转180°,则所得抛物线的解析式____.20.抛物线y =x²-x 的顶点坐标是________三、解答题21.如图,点O 是矩形ABCD 对角线的交点,过点O 的两条互相垂直的直线分别交矩形与动点E 、F 、G 、H ,点E 在线段AB 上运动,4=AD ,2AB =,设AE x =,AH y =(1)四边形EFGH 是什么特殊四边形?请说明理由; (2)写出y 关于x 的关系式,并写出y 的取值范围; (3)求四边形EFGH 的面积及其最值.22.愤怒的小鸟——为了打击偷走鸟蛋的捣蛋猪,鸟儿以自己的身体为武器,在空中画出完美的抛物线,像炮弹一样去攻击捣蛋猪的堡垒.而捣蛋猪为了躲避打击,将自己藏在各种障碍物后面,自此,双方展开了一番斗智斗勇的较量.(1)如图1,愤怒的小鸟调整好位置后,恰好可以越过2m 高的箱子(箱子宽度不计),射中6m 外的捣蛋猪,最高点距离地面3m ,问出发时小鸟与箱子的距离?(2)如图2,箱子的长宽不断发生变化,愤怒的小鸟按照原弹射轨迹(射中6m 外的捣蛋猪,最高点距离地面3m),当轨迹恰好经过B 、C 两点时,则AB+BC+CD 的最大值是多少? 23.已知二次函数y =(x ﹣1)(x ﹣m )(m 为常数) (1)求证:不论m 为何值,该函数的图象与x 轴总有公共点;(2)当m 的值变化时,该函数图象的顶点在下列哪个函数的图象上? . A .y =x ﹣1 B .y =﹣x ﹣1 C .y =﹣(x+1)2 D .y =﹣(x ﹣1)2 24.已知抛物线的顶点为()1,4-,且过点()2,5-. (1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果). 25.如图,直线:33l y x =-+与x 轴,y 轴分别相交于A,B 两点,抛物线224(0)y ax ax a a =-++<经过点B .(1)求该抛物线的解析式及顶点坐标;(2)连结BD,以AB,BD 为一组邻边的平行四边形ABDE,顶点E 是否在抛物线上?(3)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 横坐标为m,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.26.若二次函数y =x 2-x-2的图象与x 轴交于A ,B 两点(点A 在点B 的左侧). (1)求A ,B 两点的坐标;(2)若P(m ,-2)为二次函数y =x 2-x-2图象上一点,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断函数的开口向下,对称轴为x=1,从而得出距离对称轴越远,函数值越小,再结合三点坐标即可判断1y ,2y ,3y 之间的大小关系. 【详解】 解:∵在22y xx c =-++中,21,122b a a =--=-=-, ∴该函数开口向下,对称轴为x=1,且距离对称轴越远,函数值越小, ∵()11,y -、()20,y 、()34,y 三点距离对称轴的距离为:2,1,3, ∴312y y y <<, 故选:C . 【点睛】本题考查比较二次函数值的大小.理解二次函数当a<0时距离对称轴越远的点,函数值越小是解题关键.2.B解析:B 【分析】根据△=24b ac -与零的关系即可判断出二次函数的图象与x 轴的交点问题; 【详解】∵ ()()22356y x x x x =--=-+,∴ △=24b ac -=25-24=1>0∴二次函数()()23y x x =--与x 轴有两个交点; 故选:B . 【点睛】本题考查了二次函数与x 轴的交点问题,熟练掌握判别式△=24b ac -是解题的关键;3.B解析:B 【分析】根据两个函数图象与y 轴交于同一点可排除选项A ,再根据抛物线的开口方向和对应一次函数的增减性即可做出选择. 【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ), ∴两个函数图象交于y 轴上的同一点,故A 不符合题意;当a >0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而增大,故D 不符合题意;当a <0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而减小,故C 不符合题意. 故选:B . 【点睛】本题考查二次函数及一次函数的图象与性质,熟练掌握两个函数图象与系数的关系是解答的关键.4.D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.5.D解析:D 【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴bx 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立. 故选:D . 【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.6.D解析:D 【分析】直接利用二次函数对称轴求法得出答案. 【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.7.C解析:C 【分析】先利用配方法求得点M 的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可. 【详解】解:∵22229()9y x mx x m m =--=---,∴点M 为(m ,29m --), ∴点M′的坐标为(m -,29m +), ∴222299m m m -=++, 解得:3m =±; ∵0m >, ∴3m =;∴点M 的坐标为:(3,18-). 故选:C . 【点睛】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.8.A解析:A 【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y =x +2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2020的坐标.【详解】∵A 点坐标为(1,1), ∴直线OA 为y =x ,A 1(−1,1), ∵A 1A 2∥OA , 设直线A 1A 2为y =x +b 把A 1(−1,1)代入得1=-1+b 解得b=2∴直线A 1A 2为y =x +2,解22y x y x =+⎧⎨=⎩ 得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩,∴A 2(2,4), ∴A 3(−2,4), ∵A 3A 4∥OA ,设直线A 3A 4为y =x +n ,把A 3(−2,4)代入得4=-2+n ,解得n=6 ∴直线A 3A 4为y =x +6,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴A 4(3,9), ∴A 5(−3,9)同理求出A 6(4,16),A 7(-4,16)A 8(5,25),A 9(-5,25)A 10(6,36),A 11(-6,36) …,∴A 2n 为22222,22n n ⎡⎤++⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∴A 2020(1011,10112), 故选A . 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.9.B解析:B 【分析】利用x =1和x =2所对应的函数值可判断抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,则根据抛物线于x 轴的交点问题可判断关于x 的方程ax 2+bx +c =0(a≠0)的一个解x 的范围. 【详解】解:∵x =2时,y =5,即ax 2+bx +c >0; x =1时,y =-0.5,即ax 2+bx +c <0,∴抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间, ∴关于x 的方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是1<x <2. 故选:B . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.10.C解析:C 【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象. 【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势. 对称轴再y 轴左边,故02ba-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项 故本题选择C . 【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.11.A解析:A 【分析】利用抛物线对称轴公式求解即可. 【详解】解:∵2288y x x =-+-,∴对称轴为直线x=-822(2)=⨯-,故选:A . 【点睛】本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键.12.C解析:C 【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可. 【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x-2)2+2.故选:C .【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.二、填空题13.【分析】作交x 轴于点F 证明△DBO ≌△EDF 得设设D (t0)则根据勾股定理得进一步可得结论【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形∴作交x 轴于点F 如图∴∠EFO=∠DOB=90°又∠∴ 解析:22【分析】作EF AC ⊥交x 轴于点F ,证明△DBO ≌△EDF 得FE OD FD BO ==,,设设D (t ,0),则(4,)E t t +,根据勾股定理得222(2)8OE t =++,进一步可得结论.【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形,∴BD DE =作EF AC ⊥交x 轴于点F ,如图,∴∠EFO=∠DOB=90°又∠90OBD BDO BDO FDE +∠=∠+∠=︒∴∠DBD FDE =∠在△DBO 和△EDF 中DBO EDF DOB EFD DB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBO ≌△EDF∴FE OD FD BO ==,对于y=x+4,当x=0,则y=4,当y=0,则x=-4,∴()40A -,,4(0)B ,, ∵点C 是点A 关于y 轴的对称点,∴0(4)C ,设D (t ,0),则(4,)E t t +∴22224)2((2)8OE t t t =++=++∴当t=-2时,取最小值,即OE ==,故OE 的最小值为故答案为:【点睛】此题主要考查了全等三角形的判定与性质以及勾股定理等知识,运用勾股定理得出22224)2((2)8OE t t t =++=++是解答此题的关键.14.【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】根据二次函数图象的对称性可知,33()C y 中,|33||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.15.【分析】抛物线开口向下且对称轴为直线x=-1根据二次函数的图象性质:在对称轴的左侧y 随x 的增大而增大判断即可【详解】解:∵二次函数的解析式为y=-x2-2x+c=-(x+1)2+1+c ∴该抛物线开口解析:>【分析】抛物线开口向下,且对称轴为直线x=-1,根据二次函数的图象性质:在对称轴的左侧,y 随x 的增大而增大判断即可.解:∵二次函数的解析式为y=-x 2-2x+c=-(x+1)2+1+c ,∴该抛物线开口向下,且对称轴为直线:x=-1.∵点A (-2,y 1),B (-3,y 2)在二次函数y=-x 2-2x+c 的图象上,且-3<-2<-1, ∴y 1>y 2.故答案为>.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.16.或【分析】根据表格中的数据和二次函数的性质可以得到对称轴函数图象的开口方向再根据表格中的数据即可得到y-3>0成立的x 取值范围【详解】解:由表格可知该二次函数的对称轴是直线函数图象开口向上故y-3> 解析:1x <-或3x >【分析】根据表格中的数据和二次函数的性质,可以得到对称轴、函数图象的开口方向,再根据表格中的数据,即可得到y-3>0成立的x 取值范围.【详解】解:由表格可知, 该二次函数的对称轴是直线1312x -+==,函数图象开口向上, 故y-3>0成立的x 的取值范围是x <-1或x >3,故答案为:x <-1或x >3.【点睛】 本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,利用二次函数的性质解答.17.【分析】根据题目中的函数解析式可知当时从而可得到一元二次方程的根本题得以解决【详解】由图象可知当时即时∴一元二次方程的根是故答案为:【点睛】本题考查了二次函数与一元二次方程的关系解答本题的关键是明确 解析:122x x ==-【分析】根据题目中的函数解析式可知,当8y =-时,2x =-,从而可得到一元二次方程28x bx c ++=-的根,本题得以解决.【详解】由图象可知,当8y =-时,2x =-,即2x =-时,28x bx c ++=-,∴一元二次方程28x bx c ++=-的根是122x x ==-,故答案为:122x x ==-.本题考查了二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用数形结合的思想解答.18.①③⑤【分析】根据二次函数的图象及性质即可判断【详解】解:由图象可知:该抛物线的对称轴为x=1∴抛物线与x 轴的另外一个交点为:(30)∵对称轴为x=−=1从而可知:2a+b=0故①正确;∵抛物线与x解析:①③⑤【分析】根据二次函数的图象及性质即可判断.【详解】解:由图象可知:该抛物线的对称轴为x=1,∴抛物线与x 轴的另外一个交点为:(3,0)∵对称轴为x=−2b a=1, 从而可知:2a+b=0,故①正确;∵抛物线与x 轴有两个交点(-1,0),(3,0)∴△=b 2-4ac >0,而②b 2-4ac <0,故②错误;由图象可知:当y >0时,x 的取值范围是-1<x <3,故③正确;由图象可知:当x <1时,y 随x 增大而增大,故④错误;若t 为任意实数,x=1时,函数取得最大值,故a+b+c≥at 2+bt+c ,∴a+b≥at 2+bt ,故⑤正确,所以,结论正确的是①③⑤.故答案为:①③⑤.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.19.【分析】先求出抛物线的顶点坐标再根据向右平移横坐标加求出平移后的抛物线的顶点坐标再根据旋转的性质求出旋转后的顶点坐标然后根据平移旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可【详 解析:2(2)2y x =++【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,再根据旋转的性质求出旋转后的顶点坐标,然后根据平移、旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可.【详解】223y x x =---()22113x x =-+++-2(1)2x =-+-,所以,抛物线的顶点坐标为(-1,-2).∵向右平移三个单位,∴平移后的抛物线的顶点坐标为(2,-2).∵再绕原点O 旋转180°,∴旋转后的抛物线的顶点坐标为(-2,2),且开口向上∴所得抛物线解析式为2(2)2y x =++.故答案为:2(2)2y x =++.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便. 20.【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.(1)菱形;(2)522x y =-35()22y ≤≤;(3)2 (1)4EFGH S x =-+菱,最大值为5,最小值为4.【分析】(1)由矩形的性质可得AO =CO ,BO =DO ,AB ∥CD ,AD ∥BC ,由“AAS ”可证△AEO ≌△CGO ,△DHO ≌△BFO ,可得EO =GO , HO =FO ,可证四边形EHGF 是平行四边形,且EG ⊥HF ,可得四边形EHGF 是菱形;(2)由菱形的性质可得EH GH =,由勾股定理可得2222AE AH DH DG +=+,即可求解;(3)由面积的和差关系可得四边形EFGH 的面积=x 2﹣2x +5=(x ﹣1)2+4,由二次函数的性质可求解.【详解】解:(1)在矩形ABCD 中,OD OB =,AD BC ∥∴ADB DBC ∠=∠在ODH 和OBF 中,ADB DBC OD OB HOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ODH OBF ASA ≌∴OH OF =在OAE △和OCG 中,同理可得OE OG =∴四边形EFGH 为平行四边形又∵EG FH ⊥∴平行四边形EFGH 为菱形(2)∵AE x =,AH y =,4=AD ,2AB =∴4DH y =-,2DG BE x ==-由(1)可知EH GH =∴2222AE AH DH DG +=+即2222(4)(2)x y y x +=-+- 25x y +=522x y =- 又52x y =-,0x ≥,20x -≥,即02x ≤≤,∴0522y ≤-≤3522y ≤≤ ∴522x y =-,3522y ≤≤ (3) EFGH 112422(4)(2)22S x y y x =⋅-⋅⋅⋅-⋅⋅--菱 422x y xy =+-5542222x x x x --=+⋅-⋅ 225x x =-+2(1)4x =-+∵02x ≤≤,∴当0x =或2x =时, 5S =最大;当1x =时, 4S =最小.【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理,一次函数的性质,二次函数的性质,利用勾股定理列出方程是解本题的22.(1)出发时小鸟与箱子的距离为(3;(2)AB BC CD ++的最大值为152m . 【分析】(1)根据题意知顶点坐标为(3,3),且经过原点,利用待定系数法可求得抛物线的解析式,再求得当2y =时,x 的值,结合题意可得答案;(2)设B 点坐标为(x ,2123x x -+),则C 点坐标为(6x -,2123x x -+),根据题意得到AB+BC+CD 的二次函数,根据二次函数的性质即可求解.【详解】(1)根据题意知顶点坐标为(3,3),且经过原点, 设抛物线的解析式为:()233y a x =-+,把(0,0)代入得:()20330a -+=, 解得:13a =-, ∴抛物线的解析式为()221133233y x x x =--+=-+, 令2y =,则()213323x --+=,即()233x -=,解得:1233x x ==不合题意,舍去),答:出发时小鸟与箱子的距离为(3) m ;(2)设B 点坐标为(x ,2123x x -+),则C 点坐标为(6x -,2123x x -+), ∵B 点、C 点都在第一象限, ∴21AB CD 23x x ==-+,BC 662x x x =--=-, ∴21AB BC CD 22623x x x ⎛⎫++=-++- ⎪⎝⎭22263x x =-++ 22315322x ⎛⎫=--+ ⎪⎝⎭, ∴当32x =时,AB BC CD ++的最大值为152m . 【点睛】 本题考查了二次函数的实际应用,解此类题的关键是通过题意,确定出二次函数的解析式,实际问题中自变量x 的取值要使实际问题有意义.23.(1)见解析;(2)D【分析】(1)根据已知函数解析式得到抛物线与x 轴的两点交点横坐标:x 1=1,x 2=m ,据此证得结论;(2)根据顶点式先得到抛物线的顶点坐标为(-m ,m ),然后分别代入四个解析式中看是否满足解析式,再进行判断.【详解】(1)证明:当y =0时,(x ﹣1)(x ﹣m )=0.解得x 1=1,x 2=m .当m =1时,方程有两个相等的实数根;当m≠1时,方程有两个不相等的实数根.所以,不论m 为何值,该函数的图象与x 轴总有公共点. (2)由二次函数y =(x ﹣1)(x ﹣m )=(x ﹣12m +)2+m ﹣2(1)4m +得到该抛物线的顶点坐标是(12m +,m ﹣2(1)4m +), 而点(12m +,m ﹣2(1)4m +)满足y =﹣(x ﹣1)2,不满足y =x ﹣1,y =﹣x ﹣1,y =﹣(x+1)2,∴点(12m +,m ﹣2(1)4m +)在函数y =﹣(x ﹣1)2上. 故答案是:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点,二次函数的性质等知识点,需要掌握二次函数与一元二次方程间的关系,二次函数三种形式.24.(1)()214y x =--或223y x x =--; (2)1x <-或3x >【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得 ()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x−1)2−4,解得:1x =3,2x =−1,故抛物线与x 轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y >0时,自变量x 的取值范围为:x <−1或x >3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x 轴的交点,正确画出函数图象是解题关键.25.(1) 2y x 2x 3=-++,顶点坐标为(1,4);(2)不在,理由见解析;(3)S=21522m m +,S 的最大值为:258. 【分析】(1)求出A 、B 两点坐标,把B 点坐标代入抛物线的解析式即可解决问题.(2)首先求出BD 和BD 所在直线解析式,再过A 作//AE BD 交抛物线于点F ,联立方程组2123y x y x x =-⎧⎨=-++⎩求出点F 的坐标,进而得出AF 的长,从而可判断出AF 和BD 的关系,故可得结;(3)如图2中,连接OM ,设M (m ,-m 2+2m+3),根据S=S △BOM +S △AOM -S △AOB 计算即可.再利用二次函数的性质求出最大值.【详解】解:(1)∵直线l :y=-3x+3与x 轴、y 轴分别相交于A 、B 两点,∴A (1,0),B (0,3),把点B (0,3)代入y=ax 2-2ax+a+4得a=-1,∴抛物线的解析式为y=-x 2+2x+3.顶点D 的坐标为(1,4)(2)不在,如图1,∵(0,3),(1,4)B D∴BD 的解析式为3y x , 22(01)(34)2,BD =-+-=过A 作//AE BD 交抛物线于点F设AE 的解析式为y x b =+将(1,0)A 代入得1b =-,∴AE 的解析式为1y x =-,∵直线AE 与抛物线相交,联立方程组得,2123y x y x x =-⎧⎨=-++⎩ ∴在第一象限的交点坐标为F 117117(,)+-+ ∴34222AF -=≠ ∴点E 不在抛物线上; (3)如图2中,连接OM ,设M (m ,-m 2+2m+3),∴BOM AOM AOB S S S S ∆∆∆=+-211331(23)222m m m =⨯⨯+⨯⨯-++- 215,(03)22m m m =-+<<.∵22151525()22228S m m m =-+=--+, ∵-12<0, ∴m=52时,S 有最大值为258. 【点睛】 本题考查二次函数的综合题,三角形的面积、二元二次方程组、平行四边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.26.(1)A (-1,0),B(2,0);(2)0或1【分析】(1)解方程x 2-x-2=0可得A ,B 两点的坐标;(2)把P (m ,-2)代入y=x 2-x-2得m 2-m-2=-2,然后解关于m 的方程即可.【详解】解:(1)当y =0时,x 2-x-2=0,解得x 1=-1,x 2=2,∴A (-1,0),B (2,0);(2)把P (m ,-2)代入y =x 2-x-2得m 2-m-2=-2,解得m 1=0,m 2=1,∴m 的值为0或1.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.。
人教版九年级数学上册单元测试题全套(含答案)
人教版九年级数学上册单元测试题全套(含答案)第21章 一元二次方程 测试题 (时间: 90分钟,满分:120分) (班级:_____ 姓名:_____ 得分:_____)一、选择题(每小题3分,共30分)1. 一元二次方程2x 2-3x -4=0的二次项系数是 ( ) A. 2 B. -3 C. 4 D. -42.把方程(x 55+(2x -1)2=0化为一元二次方程的一般形式是 ( )A .5x 2-4x -4=0B .x 2-5=0C .5x 2-2x +1=0D .5x 2-4x +6=03.方程x 2-2x-3=0经过配方法化为(x +a)2=b 的形式,正确的是 ( )A .()412=-xB .()412=+xC .()1612=-x D .()1612=+x4.方程()()121+=-+x x x 的解是 ( ) A .2B .3C .-1,2D .-1,35.下列方程中,没有实数根的方程是 ( ) A .212270x x -+=B .22320x x -+=C .223410x x +-=D .2230x x k --=(k 为任意实数)6.一个矩形的长比宽多2 cm ,其面积为2cm 8,则矩形的周长为 ( ) A .12 cm B .16 cm C .20 cm D .24 cm7.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得 ( ) A.168(1+x )2=128 B.168(1﹣x )2=128 C.168(1﹣2x )=128 D.168(1﹣x 2)=1288.一个两位数等于它的个位数的平方,且个位数比十位数大3,则这个两位数为 ( ) A .25B .36C .25或36D .-25或-369.从一块正方形的木板上锯掉2 m 宽的长方形木条,剩下的面积是48㎡,则原来这块木板的面积是 ( ) A .100㎡B .64㎡C .121㎡D .144㎡10.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是 ( ) A .24 B .24或85 C .48 D .85 二、填空题(每小题4分,共32分)11.当k 时,方程2223kx x x -=-是关于x 的一元二次方程.12.若0a b c ++=且0a ≠,则关于x 的一元二次方程20ax bx c ++=必有一定根,它是 . 13.一元二次方程x(x-6)=0的两个实数根中较大的为 .14.某市某企业为节约用水,自建污水净化站.7月份净化污水3000吨,9月份增加到3630吨,则这两个月净化的污水量平均每月增长的百分率为 .15.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是-2,则另一个根是______. 16.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程____________________.17.方程x 2+px +q =0,甲同学因为看错了常数项,解得的根是6,-1;乙同学看错了一次项,解得的根是-2,-3,则原方程为 .18.如图,矩形ABCD 的周长是20 cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为68 cm 2,那么矩形ABCD 的面积是_______cm 2.三、解答题(共58分)19.(每小题5分,共20分)选择适当的方法解下列方程: (1)28)32(72=-x ;(2);0982=-+x x (3)x x 52122=+;(4)()x x x -=-12)1(2.20.(8分)当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?21.(8分)已知a ,b 是方程0122=-+x x 的两个根,求代数式))(11(22b a ab ba --的值.22.(10分)如图,△ABC 中,∠B=90°,点P 从点A 开始沿AB 边向B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.如果点P ,Q 分别从点A ,B 同时出发,经几秒钟,使△PBQ 的面积等于8cm 2?23.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元? 参考答案一、1.A 2.A 3.A 4.D 5.B 6.A 7.B 8.C 9.B 10.B 二、11.3k ≠- 12.1 13.6 14.10% 15.116.2200200(1)200(1)1400x x ++++= 17.x 2-5x +6=0 18.16三、19.(1)1x =25,2x =21;(2)1x =1,2x =-9; (3)1x =235+,2x =235-;(4)1x =1,2x =31.20. 解:由题意,得∆=(-4)2-4(m -21)=0,即16-4m +2=0,解得m =29.当m =29时,方程有两个相等的实数根x 1=x 2=2.21. 解:由题意,得.1,2-=-=+ab b a 所以原式=()()()ab b a a b a b ab aba b 422-+=-=-∙-=().8422=+- 22.解:解:设x 秒时,点P 在AB 上,点Q 在BC 上,且使△PBD 的面积为8 cm 2,由题意,得82)6(21=⋅-x x . 解得x 1=2, x 2=4.经检验均是原方程的解,且符合题意. 所以经过2秒或4秒时△PBQ 的面积为8 cm 2.解:(1)2x 50-x(2)由题意,得(50-x )(30+2x )=2100. 化简,得x2-35x+300=0. 解得x1=15,x2=20.因为该商场为了尽快减少库存,所以降的越多,越吸引顾客,故选x=20. 答:每件商品降价20元,商场日盈利可达2100元.第22章 二次函数 测试题 时间:100分钟 满分:120分钟一、选择题(每小题3分,共24分)1.抛物线y=2(x ﹣3)2+1的顶点坐标是( ) A .(3,1) B .(3,﹣1)C .(﹣3,1)D .(﹣3,﹣1)2.关于抛物线y=x 2﹣2x+1,下列说法错误的是( ) A .开口向上 B .与x 轴有两个重合的交点 C .对称轴是直线x=1 D .当x >1时,y 随x 的增大而减小 3.二次函数y=ax 2+bx+c ,自变量x 与函数y 的对应值如表:A .抛物线的开口向下B .当x >﹣3时,y 随x 的增大而增大C .二次函数的最小值是﹣2D .抛物线的对称轴是x=﹣ 4.抛物线y=2x 2,y=﹣2x 2,共有的性质是( )A .开口向下B .对称轴是y 轴C .都有最高点D .y 随x 的增大而增大5.已知点(x 1,y 1),(x 2,y 2)均在抛物线y=x 2﹣1上,下列说法中正确的是( ) A .若y 1=y 2,则x 1=x 2 B .若x 1=﹣x 2,则y 1=﹣y 2 C .若0<x 1<x 2,则y 1>y 2 D .若x 1<x 2<0,则y 1>y 26.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .7.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a﹣3b+c <0;④b﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0, x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤8.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( ) A .B .C .D .二、填空题(每小题3分,共21分)9.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 . 10.如果将抛物线y=x 2+2x ﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是 . 11.已知点A (4,y 1),B (,y 2),C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1、y 2、y 3的大小关系是 .12.二次函数y=x 2﹣2x ﹣3的图象如图所示,若线段AB 在x 轴上,且AB 为2个单位长度,以AB 为边作等边△ABC ,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为 .13.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为 .第7题 第8题14.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为 .15.如图,一段抛物线:y=﹣x (x ﹣2)(0≤x ≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 6,若点P (11,m )在第6段抛物线C 6上,则m= .三、解答题(本大题8个小题,共75分)16.(8分)如图,已知抛物线y=x 2+bx+c 经过A (﹣1,0)、B (3,0)两点. (1)求抛物线的解析式和顶点坐标; (2)当0<x <3时,求y 的取值范围;(3)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.17.(9分)如图,已知抛物线y=ax 2+bx+c 与x 轴的一个交点为A (3,0),与y 轴的交点为B (0,3),其顶点为C ,对称轴为x=1. (1)求抛物线的解析式;(2)已知点M 为y 轴上的一个动点,当△ABM 为等腰三角形时,求点M 的坐标.第14题 第15题18.(9分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.19.(9分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.20.(9分)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.21.(10分)如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?22.(10分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y 与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?23.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.24.(10分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.25.(10分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.答案一、选择题(每小题3分,共18分)1-8: A D D B D C B C二、填空题(每小题3分,共27分)9.(1,4) 10. y=x2+2x+3 11. y3>y1>y2 12.(1+,3)或(2,﹣3)13.15 14.(1+,2)或(1﹣,2) 15.﹣1三.解答题16.解:(1)把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4).(2)由图可得当0<x<3时,﹣4≤y<0.(3)∵A(﹣1,0)、B(3,0),∴AB=4.设P(x,y),则S△PAB=AB•|y|=2|y|=10,∴|y|=5,∴y=±5.①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5).17.解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).18.解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,解之得:a=﹣1,b=3,∴y=﹣x2+3x+4;(2)∵点D(m,m+1)在第一象限的抛物线上,∴把D的坐标代入(1)中的解析式得 m+1=﹣m2+3m+4,∴m=3或m=﹣1,∴m=3,∴D(3,4),∵y=﹣x2+3x+4=0,x=﹣1或x=4,∴B(4,0)∴OB=OC,∴△OBC是等腰直角三角形,∴∠CBA=45°设点D关于直线BC的对称点为点E∵C(0,4)∴CD∥AB,且CD=3∴∠ECB=∠DCB=45°∴E点在y轴上,且CE=CD=3∴OE=1 ∴E(0,1)即点D关于直线BC对称的点的坐标为(0,1);19.解:(1)∵二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.20.解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.21.解:(1)抛物线的顶点坐标是(4,3),设抛物线的解析式是:y=a(x﹣4)2+3,把(10,0)代入得36a+3=0,解得a=﹣,则抛物线是y=﹣(x﹣4)2+3,当x=0时,y=﹣×16+3=3﹣=<2.44米,故能射中球门;(2)当x=2时,y=﹣(2﹣4)2+3=>2.52,∴守门员乙不能阻止球员甲的此次射门,当y=2.52时,y=﹣(x﹣4)2+3=2.52,解得:x1=1.6,x2=6.4(舍去),∴2﹣1.6=0.4(m),答:他至少后退0.4m,才能阻止球员甲的射门.22.解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=741(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a≥0.1.答:第13天每只粽子至少应提价0.1元.23.解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).24.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).25.解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT △CM 1N 中,CN==,∴点M 1坐标(﹣1,2+),点M 2坐标(﹣1,2﹣).②当M 3为等腰三角形的顶角的顶点时,∵直线AC 解析式为y=﹣x+2, 线段AC 的垂直平分线为y=x , ∴点M 3坐标为(﹣1,﹣1). ③当点A 为等腰三角形的顶角的顶点的三角形不存在. 综上所述点M 坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).第23章 旋转一、选择题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )2.将左图所示的图案按顺时针方向旋转o90后可以得到的图案是( )3.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在的平面内可作旋转中心的点共有 ( )A.1 个 B.2 个 C.3 个 D.4个4.如图,将△ABC 绕着点C 按顺时针方向旋转o20,B 点落在B '位置,A 点落在A '位置,若AC ⊥B A '',则∠BAC 的度数是( )A.o50 B.o60 C.o70 D.o805.如图,△OAB 绕点O 逆时针旋转o80到△OCD 的位置,已知∠AOB =o45,则∠AOD 等于( )A.o55 B.o45 C.o40 D.o356.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形,又是关于坐标原点O 成中心对称的图形.若点A 的坐标是 (1, 3),则点M 和点N 的坐标分别为( ) A.)3,1(),3,1(---N M B.)3,1(),3,1(---N M C.)3,1(),3,1(--N MD.)3,1(),3,1(---N M7.直线3+=x y 上有一点P (3,2m ),则P 点关于原点的对称点P '为 ( ) A.P '(3,6) B.P '(-3,6) C.P '(-3,-6) D.P '(3,-6)8. 如图是一个中心对称图形,A 为对称中心,若∠C =o90, ∠B =o30,AC =1,则B B '的长为( )A.4 B.33 C.332 D.3349.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上一点,且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是( )A.4 B.3.5 C.3 D.2.510.如图,图案由三个叶片组成,绕点O 旋转o120后可以和自身重合,若每个叶片的面积为24cm ,∠AOB 为o120,则图中阴影部分的面积之和为. ( ) A.23cm B.24cm C.25cm D.26cm二、填空题(每小题4分,共32分)11.点P (2,3)绕着原点逆时针方向旋转o90与点P '重合,则P '的坐标为 . 12.已知a <0,则点P (2a -, a -+1)关于原点的对称点1P 在 象限.13.如图,将矩形ABCD 绕点A 顺时针旋转o90后,得到矩形D C B A ''',如果CD =2DA =2,那么C C '=_________.14.如图,△COD 是△AOB 绕点O 顺时针方向旋转o40后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠D 的度数是 度.15.如图,四边形ABCD 中,∠BAD =∠C =o90,AB =AD ,AE ⊥BC 于E ,若线段AE =5,则ABCD S 四边形= .16.将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD =o110,则∠BOC = 度.17.如图,小亮从A 点出发,沿直线前进10米后向左转o30,再沿直线前进10米,又向左转o30,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.18.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转o15后得到△C B A '',则图中阴影部分的面积是 2cm .三、解答题(共58分)19.(10分)如图,把△ABC 向右平移5个方格,再绕点B 顺时针方向旋转90°.(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.20. (12分)画出△ABC 关于原点O 对称的△111C B A ,并求出点1A ,1B ,1C 的坐标.C BA21.(12分)如图所示,△ABP 是由△ACE 绕A 点旋转得到的,若∠BAP =o40,∠B =o30,∠PAC =o20,求旋转角及∠CAE 、∠E 、∠BAE 的度数.22.(12分)如图,P 是正三角形ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△AB P '. ⑴求点P 与点P '之间的距离; ⑵∠APB 的度数.23.(12分)如图1,在△ABC 和△EDC 中,AC =CE =CB =CD ,∠A C B =∠ECD =90,AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H .(1)求证: CF =CH ;(2)如图2,△ABC 不动,将△EDC 绕点C 旋转到∠BCE =45时,试判断四边形ACDM 是什么四边形?并证明你的结论.参考答案一、15.25 16.70 17.120 18.6325 三、19.解:(1)如图(2)能,将△ABC 绕CB 、B C ''''延长线的交点顺时针旋转90度.20.解:△ABC 关于原点O 对称的△111C B A 如图, 点的坐标分别是)2,3(1-A ,)1,2(1B ,)3,2(1--C .21.解: 旋转角∠BAC =∠PAC +∠BAP =o20+o40=o60, ∵∠BAP =o40. ∴∠CAE =40°,∵∠B =o30. ∴∠C =o30 . ∴∠E=110°. ∴∠BAE=100°.22.解 :(1)连接P P ',由题意可知P B '=PC =10,P A '=AP =6, ∠PAC =∠AB P ',而∠PAC +∠BAP =60°, ∴∠P PA '=60°. ∴△P AP '为等边三角形, ∴P P '=P A '=AP =6;(2)利用勾股定理的逆定理可知:C"B"A''C'B'A'CBA∵222P B BP P P '=+',∴△P BP '为直角三角形.∵∠P BP '=90°∴∠APB =90°+60°=150°.23.(1)证明:在△ACB 和△ECD 中∵∠ACB=∠ECD= 90,∴∠1+∠ECB=∠2+∠ECB, ∴∠1=∠2.又∵AC=CE=CB=CD, ∴∠A=∠D= 45,∴△ACB ≌△ECD,∴CF=CH(2) 答: 四边形ACDM 是菱形证明: ∵∠ACB=∠ECD= 90, ∠BCE= 45∴∠1= 45, ∠2= 45又∵∠E=∠B= 45,∴∠1=∠E, ∠2=∠B∴AC ∥MD, CD ∥AM ,∴ACDM 是平行四边形又∵AC=CD, ∴ACDM 是菱形第24章 圆一、选择题(每小题4分,共24分)在每小题给出的四个选项中, 只有一项是符合题目要求的.1. 已知⊙O 的半径是6cm,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法判断2.如图,点A 、B 、C 在⊙O 上,∠ABC =50°,则∠AOC 的度数为( )A .120°B .100°C .50°D .25°3.如图在△ABC 中,∠B =90°, ∠A =30°,AC =4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A B C ''的位置,且A 、C 、B ′三点在同一条直线上,则点A 所经过的最短路线的长为( ) A.3cm B. 8cm C. 163cm π D. 83cm π4.如图,ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( )A.126°B. 54°C. 30°D. 36°5.如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,CD ⊥OA ,垂足为D ,则sin ∠AOB 的值等于( )A .CDB .OAC .OD D .AB6.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则该圆锥的底面半径为( )A. 2πcmB. 1cmC. πcmD. 1.5cm7. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是( )A. AG=BGB.AB//EFC.AD//BCD.∠ABC=∠ADC8. 若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A .6,32B .32 3C .6,3D .62,32二、填空题(每小题4分,共24分)请把答案填写在题中横线上.9.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为_________.(第7题图) (第5题图)B′A′C B A (第3题图) A OB C (第2题图)(第4题图)A B C D O (第13题图) (第14题图)10.已知圆锥母线长为5cm ,底面直径为4cm ,则侧面展开图的圆心角度数是_________.11.Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,以C 为圆心,r 为半径作圆,若圆C 与直线AB 相切,则r 的值为_________.12.钟表的轴心到分针针尖的长为5cm ,那么经过40分钟,分针针尖转过的弧长是_________________cm.13.如图,AB 是⊙O 的直径,C 、D 是圆上的两点(不与A 、B 重合),已知BC =2,tan ∠ADC =1,则AB =__________.14. 如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E . B ,E 是半圆弧的三等分点,弧BE 的长为32 ,则图中阴影部分的面积为 . 三、 解答题(本题共5小题,共44分)15.(7分)如图所示,某窗户由矩形和弓形组成.已知弓形的跨度AB =3m ,弓形的高EF =1m.现计划安装玻璃,请帮工程师求出⌒A B 所在圆O 的半径.16. (7分)如图△ABC 中,∠B = 60°,⊙O 是 △ABC 的外接圆,过点A 作⊙O 的切线,交CO 的延长线于点P ,OP 交⊙O 于点D .(1)求证:AP =AC (2) 若AC =3,求PC 的长.(第16题图)17.(10分)如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求BC的长.18.(10分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.19.(10分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.(第19题图)参考答案一、选择题:1.A.2.B.3.D4.D5.A6.B7.C8.B二、填空题:9.72°或108° 10. 144° 11.2.4 12.13.2214. 32233π-. 三、解答题:15. 解:设⊙O 的半径为r ,则OF =r -1. 由垂径定理,得BF =12AB =1.5,OF ⊥AB ,由OF 2 +BF 2= OB 2,得(r -1)2+1.52 = r 2,解得r =138.答:⌒A B 所在圆O 的半径为138.16.(1)连接OA, ∵60B ∠=︒,AP 为切线,∴ OA ⊥ AP, ∠AOC=120°,又∵OA=OC, ∴∠ ACP=30°∠ P= 30°, ∴ AP=AC(2)先求OC=3,再证明△ OAC∽△ APC , PC AC =APOC ,得PC=33. 17. (1)证明:∵四边形ABCD 内接于圆O ,∴∠DCB +∠BAD =180°,∵∠BAD =105°,∴∠DCB =180°-105°=75°.∵∠DBC =75°,∴∠DCB =∠DBC =75°.∴BD =CD .(2)解:∵∠DCB =∠DBC =75°,∴∠BDC =30°.由圆周角定理,得,的度数为:60°,故BC =180n R π=603180π⨯=π. 答:BC 的长为π.18.证明:(1)∵⊙O 与DE 相切于点B ,AB 为⊙O 直径,∴∠ABE =90°.∴∠BAE +∠E =90°.又∵∠DAE =90°, ∴∠BAD +∠BAE =90°.∴∠BAD =∠E .(2)解;连接BC .'∵AB 为⊙O 直径, ∴∠ACB =90°.∵AC =8,AB =2×5=10,∴BC 22AB AC -=6.又∵∠BCA =∠ABE =90°,∠BAD =∠E ,∴△ABC ∽△EAB .∴AC EB =BC AB . ∴8EB =610 ∴BE =403.203π19.(1)证明:连接AO ,AC .∵BC 是⊙O 的直径,∴∠BAC =90°∴∠CAD =90°∵点E 是CD 的中点,∴CE= CE= AE在等腰△EAC 中,∠ECA = ∠EAC∵OA =OC ∴∠OAC = ∠OCA∵CD 是⊙O 的切线,∴CD ⊥OC∴∠ECA + ∠OAC = 90°∴∠EAC + ∠OAC = 90°∴OA ⊥AP ,∴AP 是⊙O 的切线(2)解:由(1)知OA ⊥AP在Rt △OAP 中,∵∠OAP = 90°, OC = CP = OA 即OP = 2OA ,∴,∴,∴ ∴ 又∵在Rt △DAC 中,∠CAD = 90°, ∠ACD = 90°-∠ACO = 30°∴第25章 概率初步一、选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是( )A .B .C .D . 3.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为1sin 2OA P OP ∠==30P ∠=60AOP ∠=23tan 60AB AC ==234cos AC CD ACD ===∠C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?。
第二十一章 一元二次方程 单元测试(含答案) 2024-2025学年人教版九年级数学上册
第二十一章一元二次方程一、选择题(每题3分,共24分)1.在一元二次方程x2−2x−3=0中,一次项系数是( )A.1B.0C.−2D.−3 2.若x=−1是关于x的方程x2+ax=0的一个根,则a的值为( )A.1B.2C.3D.43.用配方法解方程x2-6x-1=0时,配方结果正确的是( )A.(x-3)2=10B.(x-3)2=8C.(x-6)2=10D.(x-3)2=1 4.一元二次方程x2−2x=0的解是( )A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=−2D.x1=−2,x2=−15.一元二次方程x(x−1)=2(x−1)的解完全正确的是( )A.x=2B.x1=2,x2=1C.x1=−2,x2=1D.x1=3,x2=−1 6.若关于x的一元二次方程(k−1)x2−4x−1=0有实数根,则k的取值范围( )A.k>−3B.k≥−3且k≠1C.k>−3且k≠0D.k≤−37.若一元二次方程2x2+3x﹣6=0的两个根分别为x1,x2,则x1•x2的值等于( )A.﹣6B.6C.﹣3D.38.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x人,经过两轮传染后共有256人感染了“甲流”.则关于x的方程为( )A.x+x(x+1)=256B.x2+x=256C.1+x+x(x+1)=256D.(x+1)+(x+1)2=256二、填空题(每题4分,共20分)9.若方程(m−1)x2+6x−1=0是关于x的一元二次方程,则m的取值范围是 .10.用配方法解一元二次方程x2+6x+3=0时,将它化为(x+m)2=n的形式,则m−n的值为 .11.已知关于x的一元二次方程2m x2−4x+1−5n=0有两个相等的实数根,则2m+5n的值为 .12.已知三角形两边的长分别是2和5,第三边的长是方程x2-7x+10=0的根,则这个三角形的周长是 .13.已知m,n是方程x2+4x−3=0的两个实数根,则m2+5m+n+2024的值是 .三、计算题(共10分)14.解方程:(1)x2−4x−12=0;(2)x(x−9)=8(9−x).四、解答题(共46分)15.关于x的一元二次方程2x2−4x+(2m−1)=0有两个不相等的实数根.(1)求m的取值范围;(2)若方程有一个根为x=3+1,求m的值和另一根.16.已知关于x的一元二次方程x2−(m+2)x+m−1=0.(1)求证:无论m取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且x21+x22−x1x2=9,求m的值.17.为了提升居民生活质量,完善社区公共区域配套设施,今年夏天长春市在多个城区实施了旧城改造工程.已知某工程队在开始施工的7月份为某小区翻新道路12000m2,为了在入冬前完成道路翻新工程,之后加快了工程进度,结果9月份为该小区翻新道路14520 m2.(1)求这两个月该工程队工作效率的月平均增长率.(2)若10月份该工程队的工作效率按此增长率增长,估计到10月末该工程队能否完成该小区共55000m2的道路翻新任务?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.C2.A3.A4.B5.B6.B7.C8.C9.m≠110.−311.112.1213.202314.(1)解:x2−4x−12=0 x2−4x=12x2−4x+4=12+4(x−2)2=16x−2=±4即:x−2=4或x−2=−4∴x1=6,x2=−2(2)解:x(x−9)=8(9−x)解:x(x−9)−8(9−x)=0x(x−9)+8(x−9)=0(x−9)(x+8)=0即:x−9=0或x+8=0∴x1=9,x2=−815.(1)解:∵方程2x2−4x+(2m−1)=0有两个不相等的实数根,∴Δ=16−8(2m−1)=24−16m>0解得m<32;∵方程有一个根x=3+1,∴2×(3+1)2−4×(3+1)+(2m−1)=0解得m=−32,则2x2−4x−4=0,x2−2x−2=0∵x1+x2=2,∴x2=2−(1+3)=1−3,则x1=1+3,x2=1−3,即m的值是−32,另一根是1−3.16.(1)证明:Δ=[−(m+2)]2−4×1×(m−1)=m2+8,∵无论m取何值,m2+8>0,恒成立,∴无论m取何值,方程都有两个不相等的实数根;(2)解:∵x1,x2是方程x2−(m+2)x+m−1=0的两个实数根,∴x1+x2=m+2,x1⋅x2=m−1,∵x21+x22−x1x2=(x1+x2)2−3x1x2=9,∴(m+2)2−3(m−1)=9解得:m1=1或m2=−2.17.(1)解:设该工程队工作效率的月平均增长率为x,根据题意,得12000(1+x)2=14520.解这个方程,得x1=0.1,x2=−2.1(不合题意舍去).答:该工程队工作效率的月平均增长率为10%.(2)解:8月的工程量为:13200m2;10月的工程量为:15972m2;12000+13200+14520+15972=55692>55000.所以该工程队能完成该小区的道路翻新任务.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。
最新人教版初中数学九年级数学上册第二单元《二次函数》测试(含答案解析)(2)
一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.将抛物线2yx 先向上平移2个单位长度,再向左平移1个单位长度,则得到新抛物线的解析式为( ) A .()212y x =-+ B .()212y x =-- C .()212y x =++D .()=+-2y x 123.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…)A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩4.如图等边ABC 的边长为4cm ,点P ,点Q 同时从点A 出发点,Q 沿AC 以1cm/s的速度向点C 运动,点P 沿A B C --以2cm/s 的速度也向点C 运动,直到到达点C 时停止运动,若APQ 的面积为()2cm S ,点Q 的运动时间为()s t ,则下列最能反映S 与t 之间大致图象是( ).A .B .C .D .5.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .6.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t <<7.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .23C .6D .428.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 9.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .10.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-11.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++12.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( ) A .22(1)5y x =-++ B .22(1)5y x =--+ C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.如图,直线y =x +4与x 、y 轴分别交于A 、B 两点,点O 为坐标原点,点C 是点A 关于y 轴的对称点,动点D 在线段AC 上,连接BD ,作以BD 为直角边的等腰Rt △BDE ,则线段OE 的最小值为_________.14.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y >0,则m 的取值范围是________.15.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.16.如图,在喷水池的中心A 处竖直安装一个水管AB ,水管的顶端B 处有一个喷水孔,喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,则水管AB 的长为_____m .17.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________. x3- 1-0 1 3y55215272 72 31218.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.19.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接) 20.抛物线y =x²-x 的顶点坐标是________三、解答题21.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题: (1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元? (3)求到哪个月末时,该果园累积利润可达到30万元?22.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)要使每天获利不少于6000元,求涨价x 的范围.23.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B . (1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.24.如图,在平面直角坐标系中,边长为2的正方形ABCD 的顶点A 与原点重合,顶点B 在x 轴的正半轴上,点D 在y 轴的正半轴上.抛物线2y x bx c =-++经过点B 与点D .(1)求这个二次函数的表达式;(2)将正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,若点Q 纵坐标是点P 纵坐标的2倍,求m 的值.25.如图,Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 由A 出发向点C 移动,点Q 由C 出发向点B 移动,两点同时出发,速度均为1cm/s ,运动时间为t 秒.(1)几秒时PCQ △的面积为4?(2)是否存在t 的值,使PCQ △的面积为5?若存在,求这个t 值,若不存在,说明理由.(3)几秒时PCQ △的面积最大,最大面积是多少?26.如图,二次函数2y x bx c =-++与x 轴交于点B 和点()1,0A -,与y 轴交于点()0,4C ,与一次函数y x a =+交于点A 和点D .(1)求出a 、b 、c 的值;(2)若直线AD 上方的抛物线存在点E ,可使得EAD 面积最大,求点E 的坐标; (3)点F 为线段AD 上的一个动点,点F 到(2)中的点E 的距离与到y 轴的距离之和记为d ,求d 的最小值及此时点F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①由图示知,对称轴是直线x =3122ba-=-,则2a+b =0,故说法正确; ②由图示知,当﹣1<x <3时,y <0,故说法正确;③若(x 1,y 1)(x 2,y 2)在函数图象上,当1<x 1<x 2时,y 1<y 2,故说法错误;④由图示知,当x =3时,y =0,即9a+3b+c =0,故说法正确. 综上所述,正确的说法是①②④. 故选:A . 【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.2.C解析:C 【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可. 【详解】 解:将抛物线2yx 先向上平移2个单位长度,再向左平移1个单位长度,就得到抛物线:2(1)2y x =++. 故答案为:C . 【点睛】本题考查二次函数的图象与性质,图象平移规律“左加右减,上加下减”是解题关键.3.A解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.4.D解析:D 【分析】当点P 在AB 边运动时,S=12AQ×APsinA ,图象为开口向上的抛物线,当点P 在BC 边运动时,如下图,S=12×AQ×PCsinC ,即可求解. 【详解】解:当点P 在AB 边运动时,211sin 22222S AQ AP A t t =⨯=⨯⨯⨯=, 图象为开口向上的抛物线,当点P 在BC 边运动时,如下图,1133sin 2(6)(6)2222S AQ PC C t t t t =⨯⨯=⨯⨯-⨯=-,图象为开口向下的抛物线, 故选:D . 【点睛】本题是运动型综合题,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.5.C解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600), ∵s 从0开始到最大值时停止, ∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.6.C解析:C 【分析】根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答. 【详解】解:对称轴为直线x=-21b⨯=1,解得b=-2,所以二次函数解析式为y=x 2-2x , y=(x-1)2-1, x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标, ∴当-1≤t <8时,在-1<x <4的范围内有解. 故选:C . 【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键.7.A解析:A 【分析】结合已知条件先建立适当的坐标系,然后设出解析式,利用点的坐标求得解析式,再将3y =-代入解析式求得相应的x 的值,进而求得答案.【详解】解:以拱顶为坐标原点建立坐标系,如图:∴设抛物线解析式为:2y ax = ∵观察图形可知抛物线经过点()2,2B - ∴222a -=⋅ ∴12a =-∴抛物线解析式为:212y x =-∴当水位下降1米后,即当213y =--=-时,有2132x -=- ∴16x =26x =- ∴水面的宽度为:6m . 故选:A【点睛】本题考查了二次函数的应用,根据已知条件建立坐标系从而求得二次函数解析式是解决问题的关键.8.A解析:A【分析】根据题意结合函数的图象,得出图中A 、B 、C 的坐标,再利用待定系数法求出函数关系式即可.【详解】 解:50.26 2.24 2.52+==(米) 根据题意和所建立的坐标系可知,A (-5,12),B (0,52),C (52,0), 设排球运动路线的函数关系式为y=ax 2+bx+c ,将A 、B 、C 的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=, ∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A .【点睛】 本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.9.B解析:B【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案.【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴;当0a <时,开口向下,顶点在y 轴的负半轴,故选:B .【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.解析:D【分析】 解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可.【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0), ∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3,∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022, 当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3).故选:D .【点睛】 本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.11.C解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,抛物线y=2x 2的图象向右平移1个单位所得函数图象的关系式是:y=-2(x-1)2; 由“上加下减”的原则可知,抛物线y=-2(x-1)2的图象向上平移5个单位长度所得函数图象的关系式是:y=-2(x-1)2+5.故选:B .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题13.【分析】作交x 轴于点F 证明△DBO ≌△EDF 得设设D (t0)则根据勾股定理得进一步可得结论【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形∴作交x 轴于点F 如图∴∠EFO=∠DOB=90°又∠∴ 解析:22【分析】作EF AC ⊥交x 轴于点F ,证明△DBO ≌△EDF 得FE OD FD BO ==,,设设D (t ,0),则(4,)E t t +,根据勾股定理得222(2)8OE t =++,进一步可得结论.【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形,∴BD DE =作EF AC ⊥交x 轴于点F ,如图,∴∠EFO=∠DOB=90°又∠90OBD BDO BDO FDE +∠=∠+∠=︒∴∠DBD FDE =∠在△DBO 和△EDF 中DBO EDF DOB EFD DB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBO ≌△EDF∴FE OD FD BO ==,对于y=x+4,当x=0,则y=4,当y=0,则x=-4,∴()40A -,,4(0)B ,, ∵点C 是点A 关于y 轴的对称点,∴0(4)C ,设D (t ,0),则(4,)E t t +∴22224)2((2)8OE t t t =++=++∴当t=-2时,取最小值,即OE ==,故OE的最小值为故答案为:【点睛】此题主要考查了全等三角形的判定与性质以及勾股定理等知识,运用勾股定理得出22224)2((2)8OE t t t =++=++是解答此题的关键.14.>【分析】二次函数开口向上当x 取任意实数时都有y >0则−4ac <0据此即可列不等式求解【详解】解:−4ac =1−4m <0解得:m >故答案为:>【点睛】本题考查了抛物线与x 轴交点个数个数由−4ac 的符解析:m >14 【分析】二次函数开口向上,当x 取任意实数时,都有y >0,则2b −4ac <0,据此即可列不等式求解.【详解】解:2b −4ac =1−4m <0,解得:m >14. 故答案为:m >14. 【点睛】本题考查了抛物线与x 轴交点个数,个数由2b −4ac 的符号确定,当△=2b −4ac >0时,抛物线与x 轴有2个交点;△=2b −4ac =0时,抛物线与x 轴有1个交点;△=2b −4ac <0时,抛物线与x 轴没有交点.15.【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标再根据二次函数与一元二次方程的联系即可得【详解】抛物线的对称轴为此抛物线与x 轴的一个交点为它与x 轴的另一个交点为即则关于x 的一元二次方程 解析:121,5x x ==【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2(3)y a x m =-+的对称轴为3x =,此抛物线与x 轴的一个交点为(1,0), ∴它与x 轴的另一个交点为(231,0)⨯-,即(5,0),则关于x 的一元二次方程2(3)0a x m -+=的根为121,5x x ==,故答案为:121,5x x ==.【点睛】本题考查了二次函数与x 轴的交点问题、二次函数与一元二次方程的联系,熟练掌握二次函数的图象和性质是解题关键.16.【分析】以喷水池中心A 为原点竖直安装的水管AB 所在直线为y 轴与水管垂直的AD 所在直线为x 轴建立直角坐标系设抛物线的解析式为y =a (x ﹣1)2+3(0≤x≤3)将(30)代入求得a 值则x =0时得的y 值 解析:94【分析】以喷水池中心A 为原点,竖直安装的水管AB 所在直线为y 轴,与水管垂直的AD 所在直线为x 轴建立直角坐标系,设抛物线的解析式为y =a (x ﹣1)2+3(0≤x≤3),将(3,0)代入求得a 值,则x =0时得的y 值即为水管的长.【详解】以喷水池中心A 为原点,竖直安装的水管AB 所在直线为y 轴,与水管垂直的AD 所在直线为x 轴建立直角坐标系,由于喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m , 所以设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x≤3),代入(3,0),得:0=a (3-1)2+3,解得:a =34-. 将a 值代入得到抛物线的解析式为:y =34-(x ﹣1)2+3(0≤x≤3),令x =0,则y =94. 即水管AB 的长为94m , 故答案为:94.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.17.【分析】先根据和的函数值相同可得二次函数的对称轴为从而可得再根据时的函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二 解析:152【分析】先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c ,从而可得1522a c ,由此即可得. 【详解】 0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =, 122b a ∴-=,即=-b a , 当1x =-时,152ya b c , 1522a c , 则4242abc a a c ,2a c ,152=, 故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键.18.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶 解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键. 19.>【分析】根据二次函数的性质即可求解【详解】解:由y=x2可知∵a=1>0∴抛物线的开口向上∵抛物线的对称轴为y 轴∴当x >0时y 随x 的增大而增大∵-4<x1<-20<x2<2∴2<-x1<4∴y1>解析:>【分析】根据二次函数的性质即可求解.【详解】解:由y=x 2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y 轴,∴当x >0时,y 随x 的增大而增大,∵-4<x 1<-2,0<x 2<2,∴2<-x 1<4,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上的点的坐标特征及二次函数的性质.当a >0时,开口向上,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0,开口向下,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小; 20.【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】 (1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a ,解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-, 得1492710.52y =⨯-⨯=, 把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-, 化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.22.(1)每千克水果应涨价2元;(2)510x ≤≤【分析】(1)设每千克应涨价x 元,由题意列出方程,解方程即可求解;(2)根据题意表示出每天的利润,然后利用每天的获利等于6000元,解出两个x 的值,然后根据二次函数的性质即可得出答案.【详解】(1)设每千克应涨价x 元,由题意列方程得:(10+x )(500﹣20x )=5520,解得:x =2或x =13,为了使顾客得到实惠,那么每千克应涨价2元;答:每千克水果应涨价2元.(2)根据题意得,每天的获利为()()21050020203005000w x x x x =+-=-++ 令6000w =,即22030050006000x x -++=,解得125,10x x ==,20a =-<,∴要使每天获利不少于6000元,涨价x 的范围为510x ≤≤,答:每千克水果涨价x 的范围是510x ≤≤.【点睛】本题主要考查一元二次方程及二次函数的应用,根据题意列出方程及二次函数是解题的关键.23.(1)()4,2A --;()2,2B -;(2)①244y x x =---;②43m -≤≤-或0<5m ≤【分析】(1)根据已知直线和对称点的性质即可求出A 、B .(2)①根据抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-求解即可;②根据已知条件判断出二次函数顶点的位置,计算即可;【详解】(1)直线2l y x =+:与2y =-的交点为A ,则可得到:22x -=+,∴4x =-,∴点A 的坐标是()4,2--, 设(),2Bb -,点A 与点B 关于1x =-对称,则()()141b ---=--, ∴2b =,∴()2,2B -;(2)①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,此时抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-, 则222b b x a =-==-, ∴4b =-,代入顶点可得4c =-, ∴抛物线的解析式为244y x x =---;②抛物线2y x bx c =-++与线段AB 有交点,∴顶点坐标为(),2m m +,∴抛物线的解析式可化为()22y x m m =--++, 把点()4,2A --代入解析式可得,()2242m m -=---++,13m =-,24m =-,∴43m -≤≤-,把点()2.2B -代入解析式得, ()2222m m ---++=-, 30m =,45m =,∴0<5m ≤;综上所述:43m -≤≤-或0<5m ≤.【点睛】本题主要考查了二次函数与一次函数的综合,准确分析计算是解题的关键.24.(1)22y x x =-++;(2)52-+ 【分析】(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),利用待定系数法即可求得二次函数关系式;(2)先分别表示出点P 、Q 的横坐标,进而可表示出它们的纵坐标,再根据题意列出方程求解即可.【详解】解:(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),将(2,0),(0,2)代入2y x bx c =-++,得 4202b c c -++=⎧⎨=⎩解得12b c =⎧⎨=⎩∴二次函数的表达式为22y x x =-++;(2)∵正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,∴点P 的横坐标为-m ,点Q 的横坐标为2-m ,当x=-m 时,22y m m =--+,当x=2-m 时,2(2)22y m m +=---+ 23m m =-∵点Q 纵坐标是点P 纵坐标的2倍,∴2232(2)m m m m -=--+解得1m =,2m =(舍去)∴m 的值为52-+. 【点睛】本题考查了用待定系数法求二次函数关系式,正方形的性质等相关知识,熟练掌握待定系数法求二次函数关系式是解决本题的关键.25.(1)2s 或4s ;(2)不存在,证明见解析;(3)3秒,92【分析】(1)根据题意,利用t 表示个线段长度,根据面积为4可列出方程求解.(2)利用第一问中PCQ △的面积的表示方法,使其等于5,根据判别式判断方程是否有解.(3)利用求得的PCQ △的面积的表示的二次函数解析式,求出二次函数的最大值,符合题意即为所求最大面积.【详解】解:(1)由题意得:AP CQ t ==,6PC AC AP t ∴=-=-, 11(6)422PCQ S PC CQ t t ∴=⋅=-⋅=, 2680t t ∴-+=,(2)(4)0t t --=,12t =,24t =,∴2s 或4s 后PCQ △的面积为4.(2)1(6)52PCQ S t t =-=,26100t t -+=, 2(6)41040∆=--⨯=-<,方程无解,故PCQ △的面积不能为5.(3)1(6)2PCQ St t =-()216992t t =--+-219(3)22t =--+,, ∴当3t =时,max 92PCQ S =. 【点睛】 本题考查的是一元二次方程以及二次函数的应用,三角形的面积公式的求法和一元二次方程的解的情况.26.(1)1a =,3b =,4c =;(2)()1,6;(3)最小值为5,F 点的坐标为()1,2【分析】(1)将()1,0A -与()0,4C分别代入二次函数2y x bx c =-++和一次函数y x a =+求解即可;(2)过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,过点D 作l 的垂线,垂足为T ,由(1)可设点()2,34E m m m -++,则点H 的坐标为(),1m m +,然后根据割补法进行求解面积即可;(3)过A 作y 轴的平行线AS ,过F 作FG y ⊥轴交AS 于点M ,过F 作FN x ⊥轴于N ,由题意易得45DAB ∠=︒,则可证FM FN =,进而可得当N 、F 、E 所在直线与x 轴垂直时,1d FE FN =+-最小,然后问题可求解.【详解】(1)解:将()1,0A -与()0,4C分别代入二次函数2y x bx c =-++,得()2104b c c ⎧---+=⎪⎨=⎪⎩ , 解得34b c =⎧⎨=⎩; 将点()1,0A -代入一次函数y x a =+,得10a -+=,解得1a =,∴1a =,3b =,4c =;(2)解:由(1)所求的a ,b ,c 的值可得一次函数的解析式为:1y x =+,抛物线的解析式为:234y x x =-++,联立1y x =+与234y x x =-++得2134y x y x x =+⎧⎨=-++⎩,解得34x y =⎧⎨=⎩ ∴点D 的坐标为:()3,4,设点()2,34E m m m -++, 过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,则点H 的坐标为(),1m m +,过点D 作l 的垂线,垂足为T ;∴223EH m m =-++,4=AD , ∴()11112222AED AEH HED S S S EH AG EH DT EH AG DT =+=⨯+⨯=+=△△△ ()()223414218m m m m -++--⨯=--+,当1m =时,最大值为8,此时点E 的坐标为()1,6;(3)解:过A 作y 轴的平行线AS ,过F 作FP y ⊥轴交AS 于点M ,过F 作FN x ⊥轴于N ,∵点D 的坐标为()3,4,点A 坐标为()1,0-∴45DAB ∠=︒,∴AD 平分SAB ∠,∴FM FN =,∴11d FE FM FE FN =+-=+-显然,当N 、F 、E 所在直线与x 轴垂直时,1d FE FN =+-最小,最小值为615-=.此时点F 的横坐标为1,代入1y x =+得F 点的坐标为()1,2.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题关键.。
人教版九年级数学上册 一元二次方程单元测试卷(含答案解析)
人教版九年级数学上册 一元二次方程单元测试卷(含答案解析)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts .(1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值;(2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.【答案】(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析【解析】【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等;②AP BD ⊥,90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒,BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=,即54t -=,1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =, DN CD ∴<,∴点N 在点C 、D 之间,1.54AM t ==,4CD =,AM CD ∴=,如图②中,连接AC 交MD 于O ,90ABC BCD ∠=∠=︒,180ABC BCD ∴∠+∠=︒,//AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠,在AOM 和COD △中,AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=,ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-,ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x )2=(1﹣10%)2=81%. ∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.3.已知关于x 的一元二次方程kx 2﹣2(k +1)x +k ﹣1=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)是否存在实数k ,使1211x x -=1成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)k >﹣13且k ≠0;(2)存在,7213,k =±详见解析 【解析】【分析】(1)根据一元二次方程的根的判别式,建立关于k 的不等式,求得k 的取值范围.(2)利用根与系数的关系,根据21121211,x x x x x x --=即可求出k 的值,看是否满足(1)中k 的取值范围,从而确定k 的值是否存在.【详解】解:(1)由题意知,k ≠0且△=b 2﹣4ac >0∴b 2﹣4ac =[﹣2(k +1)]2﹣4k (k ﹣1)>0,即4k 2+8k +4﹣4k 2+4k >0,∴12k >﹣4解得:k >13-且k ≠0(2)存在,且7k =±理由如下: ∵12122(1)1,,k k x x x x k k+-+== 又有211212111,x x x x x x --== 2112,x x x x ∴-=22222121122,x x x x x x ∴-+=22121212()4(),x x x x x x ∴+-=2222441()(),k k k k k k+--∴-= 22(22)(44)(1),k k k k ∴+--=-21430,k k ∴--=1,14,3,a b c ==-=-24208,b ac ∴∆=-=1472k ±∴==± k >13-且k ≠0, 172130.21,3-≈--> 17.3+-∴满足条件的k 值存在,且7k =± .【点睛】本题考查的是一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.4.已知二次函数y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ①求a 的值;②求当a ≤x ≤b 时,一次函数y =ax +b 的最大值及最小值;【答案】①a 的值是﹣2或﹣4;②最大值=13,最小值=9【解析】【分析】①根据题意解一元二次方程即可得到a 的值;②根据a ≤x ≤b ,b =﹣3求得a=-4,由此得到一次函数为y =﹣4x ﹣3,根据函数的性质当x =﹣4时,函数取得最大值,x =﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ∴4=9×(﹣1)2﹣6a ×(﹣1)+a 2+3,解得,a 1=﹣2,a 2=﹣4,∴a 的值是﹣2或﹣4;②∵a ≤x ≤b ,b =﹣3∴a =﹣2舍去,∴a =﹣4,∴﹣4≤x ≤﹣3,∴一次函数y =﹣4x ﹣3,∵一次函数y =﹣4x ﹣3为单调递减函数,∴当x =﹣4时,函数取得最大值,y =﹣4×(﹣4)﹣3=13x =﹣3时,函数取得最小值,y =﹣4×(﹣3)﹣3=9.【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a 、b 的关系得到函数解析式是解题的关键.5.阅读以下材料,并解决相应问题:材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在求解某些特殊方程时,利用换元法常常可以达到转化的目的,例如在求解一元四次方程42210x x -+=,就可以令21x =,则原方程就被换元成2210t t -+=,解得 t = 1,即21x =,从而得到原方程的解是 x = ±1材料二:杨辉三角形是中国数学上一个伟大成就,在中国南宋数学家杨辉 1261 年所著的《详解九章算法》一书中出现,它呈现了某些特定系数在三角形中的一种有规律的几何排列,下图为杨辉三角形:……………………………………(1)利用换元法解方程:()()222312313+-++-=x x x x(2)在杨辉三角形中,按照自上而下、从左往右的顺序观察, an 表示第 n 行第 2 个数(其中 n≥4),bn 表示第 n 行第 3 个数,n c 表示第(n )1-行第 3 个数,请用换元法因式分解:()41-⋅+n n n b a c【答案】(1)x =或x = 或x=-1或x=-2;(2)()41-⋅+n n n b a c =(n 2-5n+5)2【解析】【分析】(1)设t=x 2+3x-1,则原方程可化为:t 2+2t=3,求得t 的值再代回可求得方程的解; (2)根据杨辉三角形的特点得出a n ,b n ,c n ,然后代入4(b n -a n )•c n +1再因式分解即可.【详解】(1)解:令t=x 2+3x-1则原方程为:t 2+2t=3解得:t=1 或者 t=-3当t=1时,x 2+3x-1=1解得:x =或x =当t=-3时,x 2+3x-1=-3解得:x=-1或x=-2∴方程的解为:x =或x =或x=-1或x=-2 (2)解:根据杨辉三角形的特点得出:a n =n-1(1)(2)2n n n b --= (2)(3)2n n n c --= ∴4(b n -a n )•c n +1=(n-1)(n-4)(n-2)(n-3)+1=(n 2-5n+4)(n 2-5n+6)+1=(n 2-5n+4)2+2(n 2-5n+4)+1=(n 2-5n+5)2【点睛】本题主要考查因式分解的应用.解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.6.问题提出:(1)如图1,在四边形ABCD 中,已知:AD BC ∥,90D ∠=︒,4BC =,ABC 的面积为8,求BC 边上的高.问题探究(2)如图2在(1)的条件下,点E 是CD 边上一点,且2CE =,EAB CBA =∠∠,连接BE ,求ABE △的面积问题解决(3)如图3,在(1)的条件下,点E 是CD 边上任意一点,连接AE 、BE ,若EAB CBA =∠∠,ABE △的面积是否存在最小值;若存在,求出最小值;若不存在;请说明理由.【答案】(1)4;(2)203;(3)存在,最小值为16216- 【解析】【分析】 (1)作BC 边上的高AM ,利用三角形面积公式即可求解;(2)延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,易得四边形BCDF 为矩形,在(1)的条件下BC=CD=4,则BCDF 为正方形,由EAB CBA =∠∠,结合∠FAB=∠CBA 可得∠FAB=∠EAB ,从而推出BF=BH=4,易证Rt △BCE ≌Rt △BHE ,所以EH=CE=2,设AD =a ,则AF=AH=4-a ,在Rt △ADE 中利用勾股定理建立方程可求出a ,最后根据S △ABE =1AE BH 2即可求解; (3)辅助线同(2),设AD=a ,CE=m ,则DE=4-m ,同(2)可得出m 与a 的关系式,设△ABE 的面积为y ,由y=1AE BH 2得到m 与y 的关系式,再求y 的最小值即可. 【详解】(1)如图所示,作BC 边上的高AM ,∵S △ABC =1BC AM=82∴82AM==44⨯ 即BC 边上的高为4;(2)如图所示,延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,∵AD BC ∥,90D ∠=︒∴∠BCD=∠D=90°=∠F∴四边形BCDF 为矩形,又∵BC=CD=4∴四边形BCDF 为正方形,∴DF=BF=BC=4,又∵AD ∥BC∴∠FAB=∠CBA又∵∠EAB=∠CBA∴∠FAB=∠EAB∵BF ⊥AF ,BH ⊥AE∴BH=BF=4,在Rt △BCE 和Rt △BHE 中,∵BE=BE ,BH=BC=4∴Rt △BCE ≌Rt △BHE (HL )∴EH=CE=2同理可证Rt △BAF ≌Rt △BAH (HL )∴AF=AH设AD=a ,则AF=AH=4-a在Rt △ADE 中,AD=a ,DE=2,AE=AH+EH=4-a+2=6-a由勾股定理得AD 2+DE 2=AE 2,即()22226+=-a a 解得8=3a ∴AE=6-a=103 S △ABE =111020AE BH=4=2233⨯⨯ (3)存在,如图所示,延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,同(2)可得CE=EH ,AF=AH ,设AD=a ,CE=EH=m ,则DE=4-m ,AF=AH=4-a在Rt △ADE 中,AD 2+DE 2=AE 2,即()()22244+-=-+a m a m整理得8=4+m a m ∴AE=AH+HE=2816444+-+=++m m m m m 设△ABE 的面积为y ,则y=()222161116AE BH=42244++=++m m m m ∴()()24216+=+y m m 整理得:223240++-=m ym y∵方程必有实数根∴()2=423240∆-⨯⨯-≥y y 整理得2322560+-≥y y∴()()16216162160⎡⎤⎡⎤---≥⎣⎦⎣⎦y y (注:利用求根公式进行因式分解) 又∵面积y ≥0∴216≥y即△ABE 的面积最小值为16216.【点睛】本题考查四边形综合问题,正确作出辅助线,得出AB 平分∠FAC ,利用角平分线的性质定理得到BF=BH ,结合勾股定理求出AE 是解决(2)题的关键,(3)题中利用一元二次方程的判别式求最值是解题的关键.7.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题8.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE 和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数9.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.【答案】(1)y=;1.5≤x≤3;(2)长为8m,宽为1.5m.【解析】【分析】(1)由矩形的面积公式可得出y关于x的函数表达式,结合4≤y≤8可求出x的取值范围;(2)由篱笆的长可得出y=(11﹣2x)m,利用矩形的面积公式结合矩形园子的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)∵矩形的面积为12m2,∴y=.∵4≤y≤8,∴1.5≤x≤3.(2)∵篱笆长11m,∴y =(11﹣2x )m .依题意,得:xy =12,即x (11﹣2x )=12,解得:x 1=1.5,x 2=4(舍去),∴y =11﹣2x =8.答:矩形园子的长为8m ,宽为1.5m .【点睛】本题考查了一元二次方程的应用以及反比例函数的应用,解题的关键是:(1)利用矩形的面积公式,找出y 关于x 的函数表达式;(2)找准等量关系,正确列出一元二次方程.10.如图,在矩形ABCD 中,6AB = ,10BC = ,将矩形沿直线EF 折叠.使得点A 恰好落在BC 边上的点G 处,且点E 、F 分别在边AB 、AD 上(含端点),连接CF .(1)当32BG = 时,求AE 的长;(2)当AF 取得最小值时,求折痕EF 的长;(3)连接CF ,当△FCG 是以CG 为底的等腰三角形时,直接写出BG 的长.【答案】(1)92AE =;(2)62EF =3)185BG =. 【解析】【分析】 (1)根据折叠得出AE=EG ,据此设AE=EG=x ,则有BE=6-x ,由勾股定理求解可得;(2)由FG ⊥BC 时FG 的值最小,即此时AF 能取得最小值,显然四边形AEGF 是正方形,从而根据勾股定理可得答案;(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论:①FG=FC ;②FG=GC ;分别求解可得.【详解】(1)由折叠易知,AE EG =,设AE EG x ==,则有6BE x =-,由勾股定理,得()(222632x x =-+,解得92x =,即92AE = (2)由折叠易知,AF FG =,而当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC ⊥时,点E 与点B 重合,此时四边形AEGF 是正方形,∴折痕226662EF =+=(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论:①当FG=FC时,如图2,过F作FH⊥CG于H,则有:AF=FG=FC,CH=DF=GH设AF=FG=FC=x,则DF=10-x=CH=GH在Rt△CFH中∵CF2=CH2+FH2∴x2=62+(10-x)2解得:x=345,∴DF=CH=GH=10-165,即BG=10-165×2=185,②当FG=GC时,则有:AF=FG=GC=x,CH=DF=10-x;∴GH=x-(10-x)=2x-10,在Rt△FGH中,由勾股定理易得:x2=62+(2x-10)2,化简得:3x2-40x+136=0,∵△=(-40)2-4×3×136=-32<0,∴此方程没有实数根.综上可知:BG=185.【点睛】本题主要考查四边形的综合问题,解题的关键是掌握矩形和翻折变换的性质、正方形的判定与性质、勾股定理、一元二次方程根与系数的关系等知识点,也考查了分类讨论的数学思想.。
数学九年级上册《一元二次方程》单元测试含答案
人教版数学九年级上学期《一元二次方程》单元测试时间:100分钟 满分:100分一.选择题(每题3分,共30分)1.关于x 的方程(m ﹣3)x﹣mx +6=0是一元二次方程,则它的一次项系数是( ) A .﹣1 B .1 C .3 D .3或﹣12.方程x (x ﹣5)=x ﹣5的根是( )A .x =5B .x =0C .x 1=5,x 2=0D .x 1=5,x 2=13.已知一元二次方程ax 2+bx +c =0(a ≠0)中.下列说法:①若a +b +c =0,则b 2﹣4ac ≥0;②若方程两根为﹣1和2,则2a +c =0;③若方程ax 2+c =0有两个不相等的实根,则方程ax 2+bx +c =0必有两个不相等的实根;④若b =2a +3c ,则方程有两个不相等的实根.其中结论正确的有( )个.A .1个B .2个C .3个D .4个4.已知x 1,x 2是关于x 的一元二次方程x 2﹣(5m ﹣6)x +m 2=0的两个不相等的实根,且满足x 1+x 2=m 2,则m 的值是( )A .2B .3C .2或3D .﹣2或﹣35.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上一个月增长的百分数相同,则每月的平均增长率为( )A .10%B .15%C .20%D .25%6.已知m 、n 是一元二次方程x 2﹣3x ﹣1=0的两个实数根,则=( )A .3B .﹣3C .D .﹣ 7.某中学有一块长30cm ,宽20cm 的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .(30﹣x )(20﹣x )=×20×30B .(30﹣2x )(20﹣x )=×20×30C .30x +2×20x =×20×30D .(30﹣2x )(20﹣x )=×20×308.某商场在销售一种糖果时发现,如果以20元/kg 的单价销售,则每天可售出100kg ,如果销售单价每增加0.5元,则每天销售量会减少2kg .该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x 元/kg ,依题意可列方程为( )A .(20+x )(100﹣2x )=1800B .C .D .x [100﹣2(x ﹣20)]=18009.已知关于x 的一元二次方程mx 2﹣nx =p (m ≠0)的两个根为x 1=3,x 2=5,则方程m (2x +5)2﹣n (2x +5)﹣p =0的根为( )A .x 1=3,x 2=5B .x 1=﹣1,x 2=0C .x 1=﹣2,x 2=0D .x 1=11,x 2=15 10.定义新运算:a *b =a (m ﹣b ).若方程x 2﹣mx +4=0有两个相等正实数根,且b *b =a *a (其中a ≠b ),则a +b 的值为( )A .﹣4B .4C .﹣2D .2二.填空题(每题4分,共20分)11.方程x 2﹣3=0的解是 .12.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= . 13.已知实数a ,b 满足等式a 2﹣2a ﹣1=0,b 2﹣2b ﹣1=0,则的值是 .14.如果两个数的差为3,并且它们的积为88,那么其中较大的一个数为 .15.已知t 是实数,若a ,b 是关于x 的一元二次方程x 2﹣2x +t ﹣1=0的两个非负实根,则(a 2﹣1)(b 2﹣1)的最小值是 .三.解答题(每题10分,共50分)16.解方程:(1)x2﹣4=0;(2)(x+3)2=(2x﹣1)(x+3).17.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式a2﹣2a+5的最小值.方法如下:∵a2﹣2a+5=a2﹣2a+1+4=(a﹣1)2+4,由(a﹣1)2≥0,得(a﹣1)2+4≥4;∴代数式a2﹣2a+5的最小值是4.(1)仿照上述方法求代数式x2+10x+7的最小值;(2)代数式﹣a2﹣8a+16有最大值还是最小值?请用配方法求出这个最值.18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量y(台)和销售单价x (万元)满足如图所示的一次函数关系.(1)求月销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?20.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为m元,则该销售公司该月盈利万元(用含m的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)参考答案一.选择题1.解:由题意得:m 2﹣2m ﹣1=2,m ﹣3≠0,解得m =﹣1或m =3.m =3不符合题意,舍去,所以它的一次项系数﹣m =1.故选:B .2.解:∵x (x ﹣5)﹣(x ﹣5)=0,∴(x ﹣5)(x ﹣1)=0,则x ﹣5=0或x ﹣1=0,解得x =5或x =1,故选:D .3.解:①若a +b +c =0,方程ax 2+bx +c =0有一根为1,又a ≠0,则b 2﹣4ac ≥0,正确; ②由两根关系可知,﹣1×2=,整理得:2a +c =0,正确;③若方程ax 2+c =0有两个不相等的实根,则﹣ac >0,可知b 2﹣4ac >0,故方程ax 2+bx +c =0必有两个不相等的实根,正确;④由b =2a +3c ,b 2﹣4ac =(2a +3c )2﹣4ac =4(a +c )2+5c 2>0,所以④正确. 故选:D .4.解:∵x 1,x 2是关于x 的一元二次方程x 2﹣(5m ﹣6)x +m 2=0的两个不相等的实根, ∴x 1+x 2=5m ﹣6,△=[﹣(5m ﹣6)]2﹣4m 2>0,解得m <或m >2,∵x 1+x 2=m 2,∴5m ﹣6=m 2,解得m =2(舍)或m =3,故选:B .5.解:设这两个月的营业额增长的百分率是x .200×(1+x )2=288,解得:x 1=﹣2.2(不合题意舍去),x 2=0.2,答:每月的平均增长率为20%.故选:C .6.解:根据题意得m +n =3,mn =﹣1, 所以=.故选:B .7.解:设花带的宽度为xm ,则可列方程为(30﹣2x )(20﹣x )=×20×30, 故选:B .8.解:由题意可得,x (100﹣)=1800,故选:C . 9.解:∵关于x 的一元二次方程mx 2﹣nx =p (m ≠0)的两个根为x 1=3,x 2=5, ∴方程m (2x +5)2﹣n (2x +5)﹣p =0中2x +5=3或2x +5=5,解得:x =﹣1或x =0,即x 1=﹣1,x 2=0,故选:B .10.解:∵方程x 2﹣mx +4=0有两个相等实数根,∴△=(﹣m )2﹣4×4=0,解得m 1=4,m 2=﹣4,当m =﹣4时方程有两个相等的负实数解,∴m =4,∴a *b =a (4﹣b ),∵b *b =a *a ,∴b (4﹣b )=a (4﹣a )整理得a 2﹣b 2﹣4a +4b =0,(a ﹣b )(a +b ﹣4)=0,而a ≠b ,∴a +b ﹣4=0,即a +b =4.故选:B .二.填空题(共5小题)11.解:方程x2﹣3=0,移项得:x2=3,解得:x=±.故答案为:±.12.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.13.解:因为实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,(1)当a=b=1+或1﹣时,原式==2﹣2或﹣2﹣2;(2)当a≠b时,可以把a,b看作是方程x2﹣2x﹣1=0的两个根.由根与系数的关系,得a+b=2,ab=﹣1.则原式=﹣2.故填空答案:﹣2或2﹣2或﹣2﹣2.14.解:设较小的数为x,则较大的数为x+3,根据题意得:x(x+3)=88,即x2+3x﹣88=0,分解因式得:(x﹣8)(x+11)=0,解得:x=8或x=﹣11,∴x+3=11或﹣8,则较大的数为11或﹣8,故答案为:11或﹣815.解:∵a ,b 是关于x 的一元二次方程x 2﹣2x +t ﹣1=0的两个非负实根,∴可得a +b =2,ab =t ﹣1≥0,∴t ≥1,又△=4﹣4(t ﹣1)≥0,可得t ≤2,∴2≥t ≥1,又(a 2﹣1)(b 2﹣1)=(ab )2﹣(a 2+b 2)+1=(ab )2﹣(a +b )2+2ab +1,∴(a 2﹣1)(b 2﹣1),=(t ﹣1)2﹣4+2(t ﹣1)+1,=t 2﹣4,又∵2≥t ≥1,∴0≥t 2﹣4≥﹣3,故答案为:﹣3.三.解答题(共5小题)16.解:(1)∵x 2﹣4=0,∴x 2=4,则x 1=2,x 2=﹣2;(2)∵(x +3)2=(2x ﹣1)(x +3),∴(x +3)2﹣(2x ﹣1)(x +3)=0,∴(x +3)(﹣x +4)=0,则x +3=0或﹣x +4=0,解得x 1=﹣3,x 2=4.17.解:(1)∵x 2+10x +7=x 2+10x +25﹣18=(x +5)2﹣18,由(x +5)2≥0,得(x +5)2﹣18≥﹣18;∴代数式x 2+10x +7的最小值是﹣18;(2)﹣a 2﹣8a +16=﹣a 2﹣8a ﹣16+32=﹣(a +4)2+32,∵﹣(a +4)2≤0,∴﹣(a +4)2+32≤32,∴代数式﹣a 2﹣8a +16有最大值,最大值为32.18.解:(1)设BC =xm ,则AB =(33﹣3x )m ,依题意,得:x (33﹣3x )=90,解得:x 1=6,x 2=5.当x =6时,33﹣3x =15,符合题意,当x =5时,33﹣3x =18,18>18,不合题意,舍去.答:鸡场的长(AB )为15m ,宽(BC )为6m .(2)不能,理由如下:设BC =ym ,则AB =(33﹣3y )m ,依题意,得:y (33﹣3y )=100,整理,得:3y 2﹣33y +100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m 2的矩形养鸡场.19.解:(1)设y 与x 的函数关系式为y =kx +b , 依题意,得解得所以y 与x 的函数关系式为y =﹣5x +200.(2)依题知(x ﹣25)(﹣5x +200)=130.整理方程,得x 2﹣65x +1026=0.解得x 1=27,x 2=38.∵此设备的销售单价不得高于35万元,∴x 2=38(舍),所以x =27.答:该设备的销售单价应是27 万元.20.解:(1)∵当月仅售出1辆汽车,则该辆汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,∴该公司当月售出3辆汽车,则每辆汽车的进价为25﹣2×0.2=24.6万元;故答案为:24.6;(2)∵当月售出5辆汽车,∴每辆汽车的进价为25﹣4×0.2=24.2万元,∴该月盈利为5(m ﹣24.2)+5×0.6=5m ﹣118,故答案为:(5m ﹣118);(3)设需要售出x 辆汽车,由题意可知,每辆汽车的销售利润为:25.6﹣[25﹣0.2(x﹣1)]=(0.2x+0.4)(万元),当0≤x≤10,根据题意,得x•(0.2x+0.4)+0.6x=16.8,整理,得x2+5x﹣84=0,解这个方程,得x1=﹣12(不合题意,舍去),x2=7,当x>10时,根据题意,得x•(0.2x+0.4)+1.2x=16.8,整理,得x2+8x﹣84=0,解这个方程,得x1=﹣14(不合题意,舍去),x2=6,因为6<10,所以x2=6舍去.答:需要售出7辆汽车.。
人教版九年级数学上册单元测试题全套及答案
九年级数学上册半月测试题姓名:分数:时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.一元二次方程x2-8x-1=0配方后为( )A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=172.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为( )A.0,5 B.0,1 C.-4,5 D.-4,13.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为( ) A.4,-2 B.-4,-2 C.4,2 D.-4,24.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为( )A.1 B.-3或1 C.3 D.-1或35.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是( )A.4 B.6 C.8 D.106.已知关于x的一元二次方程x2+2x-(m-2)=0有实数根,则m的取值范围是( )A.m>1 B.m<1 C.m≥1 D.m≤17.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,∠OBC=45°,则下列各式成立的是( )A.b-c-1=0 B.b+c+1=0C.b-c+1=0 D.b+c-1=08.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD的周长为( )A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 29.当x取何值时,代数式x2-6x-3的值最小?( )A.0 B.-3 C.3 D.-910.如图,将边长为12 cm的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为32 cm2,则它移动的距离AA′等于()A .4 cmB .8 cmC .6 cmD .4 cm 或8 cm二、填空题(每小题3分,共24分)11.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为__ __.12.方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为__ __.13.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为__ __. 14.下面是某同学在一次测试中解答的填空题:①若x 2=a 2,则x =a ;②方程2x(x -2)=x -2的解为x =0;③已知x 1,x 2是方程2x 2+3x -4=0的两根,则x 1+x 2=32,x 1x 2=-2.其中错误的答案序号是____.15.已知一元二次方程x 2+3x -4=0的两根为x 1,x 2,则x 12+x 1x 2+x 22=___.16.如图,一个矩形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5 cm ,容积是500 cm 3的无盖长方体容器,那么这块铁皮的长为__ __,宽为__ __.17.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是__ _.18.若二次函数y =2x 2-4x -1的图象与x 轴交于A(x 1,0),B(x 2,0)两点,则1x 1+1x 2的值为__ __.三、解答题(共66分)19.(8分)用适当的方法解下列方程:(1)(x +1)(x -2)=x +1; (2)2x 2-4x =4 2.20.(8分) 已知:如图,二次函数y=ax2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M 为 它的顶点.(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB.21.(6分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.22.(8分)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.23.(8分) 已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).(1)求证:4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.24.(8分) 某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数解析式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.(10分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出__ __只粽子,利润为__ __元;(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,并且卖出的粽子更多?26.(10分)要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬路,下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)。
人教版数学九年级上册第一单元测试卷(附答案)
一元二次方程单元测试题(满分120分)一、选择题(每题3分,共30分) 1、下列方程中,是一元二次方程的是( )A. 0y x 3x 22=-+B.06x 5x 23=--C.4x 4x 2++D.03x2x 2=++2、如果01x 3)x 2(m 2=+++是一元二次方程,则m 的取值范围是 ( ) A. 0m = B.2m -=C.2m -≠D.0m ≠ 3、1x =是下列哪个方程的一个解?( )A.01x 3x 22=-+B.03x 5x 22=--C.05x 4x 2=-+D.03x 2x 2=-- 4、方程x x 2=的解是( )A.0x =B.1x =C.1x ±=D.0x =或者1x =5、用配方法解一元二次方程13x 12x 2=-时,等号左右两边应同时加上( )A.212B.12C.26D.6 6、一元二次方程05x 4x 2=+-的根的情况是( )A.有两个不相等的根B.有一个根C.有两个相等的根D.无实根7、一元二次方程02m x 22=+-x 有两个不相等的实根,则m 的取值范围是 ( )A.4m >B.4m -<C.44<<-mD.4m 4m >-<或者8、已知一个三角形的底比高多2,如果这个三角形的面积是24,则它的底是( )A.8B.6C.4D.29、已知方程08x 6x 2=+-的两个根分别是等腰三角形的底和腰,则它的周长是 ( ) A.8 B.10 C.8或10 D.610、一次排球比赛中每两队之间都要进行一次比赛,一共比赛了45场,则参赛的队伍一共有多少个? ( ) A.8 B.9 C.10 D.11二、填空题(每小题4分,共28分)11、一元二次方程9x 5x 42=-的二次项系数是_____________,常数项是____________。
12、如果2x =是方程08x 2mx 2=+-的一个解,那么=m ______________。
九年级数学上册(人教版)一二单元测试及答案
oba九年级数学一、二单元测试一、 选择题3*10=301. 函数y =自变量x 的取值范围是( )A .12x -≥B .12x ≥C .12x -≤D .12x ≤二、若是表示a ,b 两个实数的点在数轴上的位置如下图,那么化简2)((||b a b a ++- 的结果等于A .-2bB .2bC .-2aD .2a 3、化简:2)3(|1|-+-a a 的结果为( )A 、4—2aB 、0C 、2a —4D 、4 4、若a<1,化简1=( )A .a ﹣2B .2﹣aC .aD .﹣a五、假设关于x 的一元二次方程2210kx x --=有两个不相等的实数根,那么k 的取值范围是A.1k >-B.1k >-且0k ≠C.1k <D. 1k <且0k ≠ 六、若a 、b 为方程式x 2-4(x +1)=1的两根,且a >b ,那么ba=______? A .-5 B .-4 C .1 D. 37、关于x 的一元二次方程2210x mx m -+-=的两个实数根别离是12x x 、,且22127x x +=,那么212()x x -的值是( ) A .1B .12C .13D .25八、以下方程中,有两个不相等实数根的是( ).A .0122=--x xB .0322=+-x xC .3322-=x xD .0442=+-x x 九、假设方程2310x x --=的两根为1x 、2x ,那么1211x x +的值为( ) A .3B .-3C .13D .13-10、若n (0n ≠)是关于x 的方程220x mx n ++=的根,那么m +n 的值为 A.1 B.2 C.-1 D.-2二、填空题6*3=181一、计算:=-⨯263__________1二、假设整数m 知足条件2)1(+m =1+m 且m <52,那么m 的值是13、若,x y 为实数,且20x +=,那么2010()x y +的值为___________14、关于x 的一元二次方程02)12(22=-+++-k x k x 有实数根,那么k 的取值范围是 1五、一元二次方程230x mx ++=的一个根为1-,那么另一个根为1六、已知关于x 的一元二次方程02=--m x x 有两个不相等的实数根,那么实数m 的取值范围是 三、计算题4*5=201:)2(222+=+x x x )( 2: 3(x-1)=2x-23:2232)2(y y y =-+ 4: 122432+--四、应用题 共82分 1八、先化简,再求值:)2(24422x x x x x +÷+++,其中2=x (10分)1九、先化简,再求值:11()()-==++,其中,x yx y y x y x x y (10分)20、已知:关于x 的方程2210x kx +-= (10分) (1)求证:方程有两个不相等的实数根;(2)假设方程的一个根是1-,求另一个根及k 值.2一、某企业2006年盈利1500万元,2020年克服全世界金融危机的不利阻碍,仍实现盈利2160万元.从2006年到2020年,若是该企业每一年盈利的年增加率相同,求: (12分)(1)该企业2007年盈利多少万元?(2)假设该企业盈利的年增加率继续维持不变,估量2020年盈利多少万元?2二、已知a、b、c别离是△ABC 的三边,其中a=1,c=4,且关于x 的方程042=+-b x x 有两个相等的实数根,试判定△ABC 的形状.(12分)23已知12x x ,是方程220x x a -+=的两个实数根,且1223x x +=(14分)(1)求12x x ,及a 的值;(2)求32111232x x x x -++的值24、某商场销售一批名牌衬衫,平均天天可售出20件,每件获利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价方法,经调查发觉,•若是每件衬衫每降价一元,商场平均天天可多售出2件. (14分) ①假设商场平均天天获利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均天天获利最多?请你设计销售方案.答案:一BACDAACABD二11:2√2 12:0或113:1 14:大于等于-9/4 15:-3 16:大于-1/4 三1:-2或4 2: 1 3: 2或-1 4:√3 四18: 1/√2 19: 2 20:(2)K=1 另一根为1/2 21:(1)0.2 (2)2592 22:等腰三角形23(1)X1=1- √2 X2=1+√2 a=-1 (2)1 24(1)20 (2)15。
(精)新人教版九年级数学上册全单元测试卷(含答案)
新人教版九年级数学上个单元测试卷(含答案)第二十一章过关自测卷 (100分,45分钟)一、选择题(每题3分,共21分)1.下列方程是关于x 的一元二次方程的是( ) A.ax 2+bx +c =0 B.211x x=2 C.x 2+2x =y 2-1 D.3(x +1)2=2(x +1)2.若一元二次方程ax 2+bx +c =0有一根为0,则下列结论正确的是( ) A.a =0 B.b =0 C.c =0 D.c ≠03.一元二次方程x 2-2x -1=0的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根4.方程x 2+6x =5的左边配成完全平方式后所得方程为( ) A.(x +3)2=14 B.(x -3)2=14C.(x +6)2=12D.以上答案都不对 5.已知x =2是关于x 的方程32x 2-2a =0的一个根,则2a -1的值是( ) A.3 B.4 C.5 D.66.某县为发展教育事业,加强了对教育经费的投入,2012年投入3亿元,预计2014年投入5亿元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .3(1+x )2=5 B .3x 2=5C. 3(1+x %)2=5D. 3(1+x ) +3(1+x )2=57.使代数式x 2-6x -3的值最小的x 的取值是( ) A.0 B.-3 C.3 D.-9 二、填空题(每题3分,共18分)8.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为________. 9.如果方程ax 2+2x +1=0有两个不等实数根,则实数a 的取值范围是____________.10.已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)=________.11.在一幅长50 cm ,宽30 cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是1 800 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为________________.112.已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为________.13.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是_______________.三、解答题(14、19题每题12分,15题8分,16题9分,其余每题10分,共61分)14.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +1=0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.15.已知关于x 的方程x 2+kx -2=0的一个解与方程11x x +-=3的解相同. (1)求k 的值;(2)求方程x 2+kx -2=0的另一个解.16.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.17.〈绍兴〉某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?18.中秋节前夕,旺客隆超市采购了一批土特产,根据以往销售经验,每天的售价与销售量之间有如下表的关系:(2)如果这种土特产的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元/千克?(利润=销售总金额-成本)19.如图2,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向点D移动.(1)P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?图2 (2)P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?第二十二章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()A.-2B.2C.15D.-152.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是()图1 图2A.y=-2x2B.y=2x2C.y=-12x2 D.y=12x23.〈恩施州〉把抛物线y=12x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.y=12(x+1)2-3B.y=12(x-1)2-3C.y=12(x+1)2+1D.y=12(x-1)2+12a≠0)中的x与y的部分对应值如下表:给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;(2)当-12<x<2时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3 B.2C.1D.05.〈舟山〉若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=-2C.直线x=-1D.直线x=-46.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()C.α<1<β<2D.α<1且β>27.〈内江〉若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)8.〈南宁〉已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大图3二、填空题(每题4分,共32分)9.已知抛物线y=-13x2+2,当1≤x≤5时,y的最大值是______.10.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是__________.11.已知函数y=(k-3)x2+2x+1的图象与x轴有公共点,则k的取值范围是________.12.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是________.13.二次函数y=ax2+bx的图象如图4,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为__________.图4 图514.如图5,已知函数y=-3x与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+3x=0的解为_______.15.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是__________ cm2.16.如图6,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为__________.图6三、解答题(每题12分,共36分)17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3). (1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.图718.在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=x2-(k+2)x+14k2+1.(1)k取什么值时,此抛物线与x轴有两个交点?(2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值.19.〈广州〉已知抛物线y 1=ax 2+bx +c 过点A (1,0),顶点为B ,且抛物线不经过第三象限. (1)使用a 、c 表示b ;(2)判断点B 所在象限,并说明理由;(3)若直线y 2=2x +m 经过点B ,且与该抛物线交于另一点C ,8c b a ⎛⎫+ ⎪⎝⎭,求当x ≥1时y 1的取值范围.第二十三章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.已知下列命题:①关于一点对称的两个图形一定不全等;②关于一点对称的两个图形一定是全等图形;③两个全等的图形一定关于一点对称.其中真命题的个数是()A.0 B.1 C.2 D.32.〈江苏泰州〉下列标志图(图1)中,既是轴对称图形,又是中心对称图形的是()图13.如图2,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()图2A.10°B.15°C.20°D.25°4.如图3①,将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是图3②中的()图35.如图4所示的图案中,绕自身的某一点旋转180°后还能与自身重合的图形的个数是()图4A.1B.2C.3D.4C.第三象限D.第四象限7.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图5①.在图5②中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图5①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()图5A.6 B.5 C.3 D.28.如图6,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B.60,2C.60D.60图6二、填空题(每题4分,共24分)9.如图7,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则α=_______.图710.如图8,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是_______.图8A′、C′仍落在格点上,则线段AB扫过的图形的面积是_______平方单位(结果保留π).图9 图1012.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为_______.13.如图10,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,则PP′的长是_______.14.如图11①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图11②、图11③、…,则旋转得到的图11⑩的直角顶点的坐标为_______.图11三、解答题(17题10分,18题12分,19题14分,其余每题8分,共52分)15.如图12,在平面直角坐标系中,三角形②③是由三角形①依次旋转后所得的图形.图12(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图中画出再次旋转后的三角形④.16.如图13所示,(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:图13(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所给出的两个共同特征.(注意:①新图案与图①~④的图案不能重合;②只答第(2)问而没有答第(1)问的解答不得分)17.如图14,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由;图14(2)若矩形ABCD面积为2,求四边形BDEG的面积.18.如图15,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为(1,1).(1)若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点D到达点D1,求点B1、C1、D1的坐标;图15(2)若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,求a的值.19.〈潍坊〉如图16①所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至长方形CE′F′D′,旋转角为α.图16(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图16②,G为BC中点,且0°<α<90°,求证:GD′= E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.第二十四章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.〈重庆〉如图1,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°图1 图22.〈甘肃兰州〉如图2是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8 cm,水面最深地方的高度为2 cm,则该输水管的半径为()A.3 cm B.4 cm C.5 cm D.6 cm3.〈甘肃兰州〉圆锥底面圆的半径为3 cm,其侧面展开图是半圆,则圆锥母线长为()A.3 cm B.6 cm C.9 cm D.12 cm图3 图44.如图3,边长为a的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O点所经过的路径长为()A.6a B.5a C.2aπD aπEB的中点,则下列结论不成立的是()5.〈山东泰安〉如图4,已知AB是⊙O的直径,AD切⊙O于点A,点C是⌒A.OC//AE B.EC=BCC.∠DAE=∠ABE D.AC⊥OE6.〈2013,晋江市质检〉如图5,动点M,N分别在直线AB与CD上,且AB//CD,∠BMN与∠MND的平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是()图5A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.以上都有可能7.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120°B.125°C.135°D.150°8.〈贵州遵义〉如图6,将边长为1 cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()图6A.32πcm B.322⎛⎫+⎪⎝⎭πcm C.43πcm D.3 cm二、填空题(每题4分,共24分)9.〈四川巴中〉如图7,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于________.图7 图810.〈重庆〉如图8,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).11.〈贵州遵义〉如图9,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为________(结果保留根号).图9 图1012.如图10,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为每秒1个单位长度,以O ABC的边第二次相切时是出发后第________秒.13.如图11,正六边形ABCDEF中,AB=2,P是ED的中点,连接AP,则AP的长为________.图11 图1214.如图12,AB为半圆O的直径,C为半圆的三等分点,过B,C两点的半圆O的切线交于点P,若AB的长是2a,则P A的长是________.三、解答题(15题9分,16题10分,17题11分,18题14分,共44分)15. 如图13所示,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以C长为半径画圆,则点A,B,M与⊙C的位置关系如何?图1316. 如图14,已知CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.(1)求证:AB是⊙O的切线;图14(2)若⊙O的半径为2,求⌒BD的长.17.如图15,从一个直径为4的圆形铁片中剪下一个圆心角为90°的扇形ABC.(1)求这个扇形的面积;图15(2)在剩下的材料中,能否从③中剪出一个圆作为底面,与扇形ABC围成一个圆锥?若不能,请说明理由;若能,请求出剪的圆的半径是多少.18. 如图16,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;图16(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.第二十五章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.〈大连〉一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.352.〈牡丹江〉小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.110B.25C.15D.3103.〈贵阳〉一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6 B.10 C.18 D.204.一纸箱内有红、黄、蓝、绿四种颜色的纸牌,且图1所示为各颜色纸牌数量的统计图.若小华自箱内抽出一张牌,且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为()A.15B.25C.13D.12图15.小江玩投掷飞镖的游戏,他设计了一个如图2所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A. 13B.23C.12D.34图26.〈临沂〉如图3,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A. 34B.13C.23D.12图3 图47.在学习概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟试验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图4),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的试验中,不科学的有()A.0个B.1个C.2个D.3个8.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则小文赢.下面说法正确的是()A.小强赢的概率最小B.小文赢的概率最小C.小亮赢的概率最小D.三人赢的概率相等二、填空题(每题3分,共18分)9.〈长沙〉在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是_______.10.一只昆虫在如图5所示的树枝上爬行,假定昆虫在每个岔路口都会随机地选择一条路径,则它停留在A 叶面的概率是_______.图5 图611.如图6,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤⑥都可使这个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为_______.12.王红和刘芳两人在玩转盘游戏,如图7,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是_______.图713.〈重庆〉在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为_______.14.〈济宁〉甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是_______.三、解答题(18题10分,19,20题每题12分,其余每题8分,共58分)15.已知口袋内装有黑球和白球共120 个,请你设计一个方案估计一下口袋内有多少个黑球,多少个白球?16.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次摸出的小球的标号相同;(2)两次摸出的小球标号的和等于4.17.〈扬州〉端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图8).规定:同一日内,顾客在本商场每消费满100元就可以转转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得_______元购物券,最多可得______元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.图818.〈包头〉甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图9所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲胜;若指针所指两个区域的数字之和为4的倍数,则乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树状图的方法,求甲获胜的概率;图9(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.19.有三张正面分别写有数-2 ,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数作为y的值,两次结果记为(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使代数式2223x xy yx y x y-+--有意义的(x ,y )出现的概率;(3)化简代数式2223x xy yx y x y-+--,并求使代数式的值为整数的(x ,y )出现的概率.20.〈潍坊〉 随着我国汽车产业的发展,城市道路拥堵问题日益严峻,某部门对15个城市的交通状况进行了调查,得到的数据如下表所示.(1)根据上班花费时间,将下面的频数分布直方图(如图10)补充完整;图10(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=-上班堵车时间上班花费时间上班堵车时间×100%,比如,北京的堵车率=145214-×100%≈36.8%;沈阳的堵车率=123412-×100%≈54.5%,某人欲从北京,沈阳,上海,温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.期末选优拔尖测试(120分,90分钟)一、选择题(每题3分,共24分)1.如图1所示的图形中,既是轴对称图形又是中心对称图形的是( )图12.下列成语所描述的事件是必然事件的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖3.如图2,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.75°B.72°D.65°图2 图34.有一块长为30 m,宽为20 m的矩形菜地,准备修筑同样宽的三条直路(如图3),把菜地分成六块作为试验田,种植不同品种的蔬菜,并且种植蔬菜面积为矩形菜地面积的34,设道路的宽度为x m,下列方程:①30x+20x×2=30×20×14;②30x+20x×2-2x2=30×20×14;③(30-2x)(20-x)=30×20×34,其中正确的是()A.①②B.①③C.②③D.①②③5.已知关于x的一元二次方程x2-2x=m有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<-2C.m=0 D.m>-16.半径相等的圆内接正三角形、正方形、正六边形的边长之比为()A.1B∶1C.3∶2∶1 D.1∶2∶3图47.如图4,点A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则如图5所示图象中表示y与t之间函数关系最恰当的是()图5 图68.二次函数y=ax2+bx+c(a≠0)的图象如图6所示,则下列5个代数式:ab,ac,a-b+c,b2-4ac,2a+b中,值大于0的个数为()A.5 B.4 C.3 D.2二、填空题(每题3分,共21分)9.(陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则m的最小值为_______.10.已知点P(a,-3)关于原点的对称点为P1(-2,b),则a+b的值是_______.11.已知2x2-4x+c=0的一个根,则方程的另一个根是_______.12.如图7所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面3 m高处各有一壁灯,两壁灯间的水平距离为6 m,则厂门的高度约为_______.(精确到0.1 m)图713.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6 cm,则此圆锥的表面积为_______cm2.14.已知⊙O1和⊙O2的半径分别是一元二次方程x2-5x+6=0的两根,且O1O2=1,则⊙O1和⊙O2的位置关系是_______.15.如图8,Rt△ABC的边BC位于直线l上,AC∠ACB=90°,∠A= 30°;若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为_______ (结果用含π的式子表示).图8三、解答题(16~18题每题6分,19~22题每题8分,23题11分,24题14分,共75分)16.已知抛物线经过两点A(1,0),B(0,-3),且对称轴是直线x=2,求此抛物线的解析式.17.解方程x2-4x+2=0.(用配方法)18.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+1)x+k(k+1)=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.19.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”“2”“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.20.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图9(1),连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;图9(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图9(2)为例说明理由.21.如图10,AC是⊙O的直径,P A切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;图10(2)若⊙O的半径为2,求弦AB及P A,PB的长.22.“五一”期间,小明和同学一起到游乐场游玩.如图11为某游乐场大型摩天轮的示意图,其半径是20m,它匀速旋转一周需要24分钟,最底部点B离地面1m.小明乘坐的车厢经过点B时开始计时.(1)计时4分钟后小明离地面的高度是多少?图11 (2)在旋转一周的过程中,小明将有多长时间连续保持在离地面31m以上的空中?23.为了实现“畅通市区”的目标,市地铁一号线准备动工,市政府现对地铁一号线第15标段工程进行招标,施工距离全长为300米.经招标协定,该工程由甲、乙两公司承建,甲、乙两公司施工方案及报价分别为:(1)甲公司施工单价y1(万元/米)与施工长度x(米)之间的函数关系为y1=27.8-0.09x,(2)乙公司施工单价y2(万元/米)与施工长度x(米)之间的函数关系为y2=15.8-0.05x.(注:工程款=施工单价×施工长度)(1)如果不考虑其他因素,单独由甲公司施工,那么完成此项工程需工程款多少万元?(2)考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款140万元(从工程款中扣除).①如果设甲公司施工a米(0<a<300),那么乙公司施工______米,其施工单价y2=_______万元/米,试求市政府共支付工程款P(万元)与a(米)之间的函数关系式;②如果市政府支付的工程款为2 900万元,那么应将多长的施工距离安排给乙公司施工?24.如图12,y关于x的二次函数y=-3m (x+m)(x-3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于点D.以AB为直径作圆,圆心为点C,定点E的坐标为(-3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;。
最新人教版初中数学九年级数学上册第二单元《二次函数》测试题(有答案解析)(2)
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①② B .②③C .①④D .③④2.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小3.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个4.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位 D .先向右平移4个单位,在向下平移1个单位5.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x =7.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .48.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .49.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353A .5B .3-C .13-D .27-11.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .12.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题13.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.14.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.15.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()332,C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)16.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m .17.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.18.将抛物线y =2(x ﹣1)2+3绕着点A (2,0)旋转180°,则旋转后的抛物线的解析式为_____.19.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________20.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)三、解答题21.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题: (1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元? (3)求到哪个月末时,该果园累积利润可达到30万元?22.已知抛物线的解析式为y =﹣3x 2+6x+9. (1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.23.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值; (2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴.24.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站ABCDEx (千米) 8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式.(2)李林骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用22121178y x x -+=来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 25.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0).(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长.26.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0. (1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤,解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.D解析:D 【分析】根据二次函数的性质进行判断即可. 【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误;B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0, ∴函数图象与x 轴有两个交点, 故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大, 故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确, 故选:D . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.3.B解析:B 【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵由二次函数的图象可知:抛物线的开口向上, ∴a >0;又∵二次函数的图象与y 轴的交点在负半轴, ∴c <0;∴ac <0,即①正确; ②由图象知,对称轴x =2ba-=1,则b =﹣2a <0.故②正确;③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确; ④由图象可知当x >1时,y 随x 的增大而增大;故④错误. 综上所述,正确的结论是:①②③. 故选:B . 【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.4.C解析:C 【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况. 【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.C解析:C 【分析】根据图像判断二次函数的系数a 、b 、c 的正负性,即可求得. 【详解】∵二次函数图像开口向下 ∴a <0又∵二次函数图形与y 轴交点在y 正半轴上 ∴c >0∵对称轴在y 轴左侧∴02ba -< ∴b <0∴ac <0,bc <0∴点(,)A ac bc 在第三象限 故选C 【点睛】本题考查二次函数的图像与性质,掌握二次函数图像与系数的关系是解题关键.6.D【分析】直接利用二次函数对称轴求法得出答案. 【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.7.C解析:C 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行分析,进而对所得结论进行判断. 【详解】①由二次函数2y ax bx c =++的图象开口向上可知a >0,图象与y 轴交点在负半轴,c <0,对称轴b 1x=-=2a 3,2b=-a 3<0,因此0abc >,故正确; ②由图象可知x =−1时,y =a−b +c >0,故正确;③对称轴b 1x=-=2a 3,2+30a b =,故错误; ④由图象与x 轴有两个交点,可知240b ac ->,故正确. 所以①②④三项正确, 故选:C . 【点睛】本题考查了二次函数与系数的关系,解答本题关键是掌握二次函数y =ax 2+bx +c 系数符号的确定.8.C解析:C 【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下 ∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.C解析:C 【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论. 【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确. 故选:C . 【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.10.D解析:D 【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案. 【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-, ∴当1x =时,27y =-.故选:D . 【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键.11.D解析:D 【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案. 【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意;故选:D .【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.12.C解析:C【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大,∴A 、B 、D 都不正确,C 正确,故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).二、填空题13.【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标再根据图象法即可得【详解】由图象可知抛物线的对称轴为与x 轴的一个交点坐标为则其与x 轴的另一个交点坐标为结合图象得:当时故答案为:【点睛】本题 解析:13x【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标,再根据图象法即可得.【详解】由图象可知,抛物线的对称轴为1x =,与x 轴的一个交点坐标为(1,0)-,则其与x 轴的另一个交点坐标为(3,0),结合图象得:当0y <时,13x ,故答案为:13x.【点睛】 本题考查了二次函数的对称性、二次函数与不等式,熟练掌握二次函数的对称性是解题关键.14.【分析】连接OB 过点B 作BD ⊥x 轴于D 根据正方形的性质求得∠BOA=45°OB=根据三角函数和勾股定理可得点B 的坐标为()代入抛物线即可求解【详解】如图连接OB 过点B 作BD ⊥x 轴于D ∵四边形OABC解析:6-【分析】连接OB ,过点B 作BD ⊥x 轴于D ,根据正方形的性质求得∠BOA=45°,OB=,根据三角函数和勾股定理可得点B 的坐标为(),代入抛物线()20y axa =<即可求解.【详解】如图,连接OB ,过点B 作BD ⊥x 轴于D ,∵四边形OABC 是边长为2的正方形,∴∠BOA=45°,OB=∵AC 与x 轴负半轴的夹角为15°,∴∠AOD=45°﹣15°=30°,∴BD= 12,, ∴点B 的坐标为(), ∵点B 在抛物线()20y axa =<的图象上,则:(2a =解得:6a =,故答案为6a =-故答案为:6-.【点睛】本题主要考查根据坐标求解析式,涉及到正方形的性质、勾股定理、三角函数值,解题的关键是熟练掌握所学知识求得点B 的坐标.15.【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】 根据二次函数图象的对称性可知,332(),C y 中,|323||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.16.18【分析】先建立平面直角坐标系以直线DE 为x 轴y 轴为经过点C 且垂直于AB 的直线设AB 与y 轴交于H 求出OC 的长然后设该抛物线的解析式为:根据条件求出解析式再令y=0求出x 的值即可得到DE 的长度【详解解析:18【分析】先建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于H ,求出OC 的长,然后设该抛物线的解析式为:2y ax k =+,根据条件求出解析式,再令y =0,求出x 的值,即可得到DE 的长度.【详解】解:如图所示,建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于点H ,∵AB=12,∴AH=BH=6,由题可知:OH=5,CH=4,∴OC=5+4=9,∴B (6,5),C (0,9)设该抛物线的解析式为:2y ax k =+,∵顶点C (0,9),∴抛物线29y ax =+,代入B (6,5)得5=36a +9,解得19a =-, ∴抛物线解析式为2199y x =-+, 当y=0时,21099x =-+, 解得x =±9, ∴E (9,0),D (-9,0),∴OE=OD=9,∴DE=OD+OE=9+9=18,故答案为:18.【点睛】本题主要考查二次函数的综合应用问题,解答本题的关键是正确地建立平面直角坐标系,是一道非常典型的试题.17.【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴从而求出m 的值再根据二次函数的解析式即可得出答案【详解】二次函数的顶点在y 轴上此二次函数的对称轴为y 轴即解得二次函数的解析式为其顶点坐标为故答案 解析:()0,2【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴,从而求出m 的值,再根据二次函数的解析式即可得出答案.二次函数()232y x m x m =-+-+的顶点在y 轴上, ∴此二次函数的对称轴为y 轴,即()2023m x -=-=⨯-, 解得2m =,∴二次函数的解析式为232y x =-+,∴其顶点坐标为()0,2,故答案为:()0,2.【点睛】本题考查了二次函数的顶点坐标和对称轴,熟练掌握二次函数的对称性是解题关键. 18.y =﹣2(x ﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标进而由此写出旋转后的抛物线所对应的函数表达式即可【详解】解:抛物线y =2(x ﹣1)2+3的顶点为(13)设绕解析:y =﹣2(x ﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标,进而由此写出旋转后的抛物线所对应的函数表达式即可.【详解】解:抛物线y =2(x ﹣1)2+3的顶点为(1,3),设绕着点A (2,0)旋转180°得到(x ,y ), ∴12x +=2,32y +=0, 解得x =3,y =﹣3,∴绕着点A (2,0)旋转180°得到(3,﹣3),故旋转后的抛物线解析式是y =﹣2(x ﹣3)2﹣3.故答案为:y =﹣2(x ﹣3)2﹣3.【点睛】本题考查二次函数图象与几何变换,由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 19.【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值.解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点,∴△=b 2-4a=0,若a=1,则b 可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.20.下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c 由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax 2+bx+c ,由题意得:2=c 2=42142a b c a b c ⎧⎪++⎨⎪-=-+⎩解得3=-83=42a b c ⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a <0,则该函数图像开口向下. 故答案为:下.【点睛】 本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.三、解答题21.(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】 (1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】 解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a ,解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-, 得1492710.52y =⨯-⨯=, 把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-, 化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.22.(1)x =1;(2)与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【分析】(1)根据对称轴公式,可以求得该抛物线的对称轴;(2)令x=0求出相应的y 值,再令y=0,求出相应的x 的值,即可得到该抛物线与x 轴,y 轴的交点坐标.【详解】解:(1)∵抛物线的解析式为y =﹣3x 2+6x+9,∴该抛物线的对称轴为直线x =﹣2b a =﹣62(3)⨯-=1, 即该抛物线的对称轴为直线x =1;(2)∵抛物线的解析式为y =﹣3x 2+6x+9,∴当x =0时,y =9,当y =0时,x =﹣1或x =3,即该抛物线与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 23.(1)94a =;(2)2x = 【分析】(1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点, 0∴∆=,即940a -=, ∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=,∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】 本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值.24.(1)122y x =+;(2)应在B 站出地铁,时间最短,为79min 2.【分析】(1)根据数据表,运用待定系数法解答即可;(2)设李华从文化宫回到家所需的时间为y ,则y=12y y +列出y 与x 的二次函数解析式,最后运用二次函数求最值解答即可.【详解】解:(1)设1y kx b =+,将(8,18),(9,20)代入得:188209k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩, 所以122y x =+;(2)设李华从文化宫回到家所需的时间为y ,则22121122117898022y y x x x x x +=++-+=-+2179(9)22x =-+ 则当9x =时,12y y +取最小值792, 则应在B 站出地铁,时间最短,为79min 2. 【点睛】 本题主要考查了运用待定系数法求一次函数的解析式、二次函数的应用等知识点,根据题意,确定二次函数的解析式是解答本题的关键.25.(1)二次函数的解析式为223y x x =--;(2)375(,)28P ,四边形ABPC 的面积的最大值为758;(3)Q(1,-2),三角形QAC + 【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)求出点A 关于直线x=1对称点B ,再求直线BC 与对称轴交点Q ,将AQ+CQ 转化为BC ,在RtΔAOC 中求AC ,在R tΔBOC 中求BC 即可.【详解】(1)()()1,0,0,3A C --在曲线上, ∴103b c c -+=⎧⎨=-⎩, 解得:23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令y=0,得x=3或x=-1,∴B(3,0),且C(0,-3),设BC 的直线为y=kx+b , 330b k b =-⎧⎨+=⎩, 解得31b k =-⎧⎨=⎩, ∴经过点B ,C 的直线为y=x-3,设点P 的坐标为()2,23x x x --,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,∵23375(x )228ABC BCP ABPC S S S ∆∆=+=--+四边形, ∴当32x =时,四边形ABPC 的面积的最大值为758; (3) ∵点A 关于直线x=1对称点B (3,0),∴直线BC 与对称轴的交点为Q ,则Q 为QA+QC 最小时位置,有(2)BC 的直线为y=x-3,当x=1,y=1-3=-2,∴Q(1,-2), ()221310AC =+-=2232AQ CQ CB OC OB +==+=∴三角形QAC 1032【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理,掌握这些知识与方法,会用它们解决问题是关键.26.(1)证明见解析;(2)a>1或a<﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x2+(2k-1)x+2=0得到k=2,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x2+(2k-1)x+2﹣y=0恒成立,由此列出关于x、y的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k=1时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k2-12k+9=(2k-3)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根(2)解:令y=0,则(k-1)x2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x的一元二次方程,得x1=﹣2,x2=11-k,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴1-k=-1,k=2.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)依题意得(k-1)x2+(2k-1)x+2﹣y=0恒成立,即k(x2+2x)-x2-x﹣y+2=0恒成立,得:x2+2x=0;x1=0,y1=2;x2=-2,y2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.。
人教版数学九年级上册第二单元测试试卷(含答案)(2)
人教版数学9年级上册第2单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若将双曲线y=2x向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是( )A.0<a<12B.12<a<1C.1<a<2D.2<a<32.(3分)已知抛物线y=﹣(x﹣m)2+2m过不同的两点A(a,n),B(b,n),则当点C(a+b,m)在该函数图象上时,m的值为( )A.0B.1C.0或1D.±13.(3分)抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n4.(3分)如果二次函数y=ax2+bx+c的图象全部在x轴的上方,那么下列判断中一定正确的是( )A.a>0,b>0B.a>0,b<0C.a>0,c<0D.a>0,c>0 5.(3分)已知:二次函数y=﹣x2+x+6,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=m与新图象有2个交点时,m的取值范围是( )A.m<―254B.m≤―254或m=0C.m<―254或m=0D.―254<m<06.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)中,x与y的部分对应值如表:x…﹣10124…y…﹣10.510.5﹣3.5…有下列结论:①函数有最大值,且最大值为1;②b=1;③若x 0满足a x 02+bx 0+c =0,则2<x 0<3或﹣1<x 0<0;④若方程ax 2+bx +c +m =0有两个不等的实数根则m <﹣1;其中正确结论的个数是( )A .1B .2C .3D .47.(3分)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x …﹣2﹣1012…y =ax 2+bx +c…tm﹣2﹣2n…且当x =―12时与其对应的函数值y >0,则下列各选项中不正确的是( )A .abc >0B .m =nC .a <83D .图象的顶点在第四象限8.(3分)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则下列结论正确的是( )A .x 1<﹣1<5<x 2B .x 1<﹣1<x 2<5C .﹣1<x 1<5<x 2D .﹣1<x 1<x 2<59.(3分)已知二次函数y =x 2+bx +c ,当m ≤x ≤m +1时,此函数最大值与最小值的差( )A .与m ,b ,c 的值都有关B .与m ,b ,c 的值都无关C .与m ,b 的值都有关,与c 的值无关D .与b ,c 的值都有关,与m 的值无关10.(3分)已知二次函数y =2x 2﹣4x ﹣1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是 .12.(3分)已知抛物线y=x2与直线y=(k+2)x+1﹣2k的两个不同交点分别为A(x1,y1),B(x2,y2).若x1和x2均为整数,则实数k的值为 .13.(3分)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.14.(3分)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D (m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为 .15.(3分)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为 .三、解答题(共8小题,满分75分)16.(9分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若抛物线y=x2﹣(2k+1)x+k2+k与x轴相交于A、B两点,当OA+OB=5时,求k的值.17.(9分)如图,抛物线y=―12x2+2x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明△ABC为直角三角形.18.(9分)某科技公司生产一款精密零件,每个零件的成本为80元,当每个零件售价为200元时,每月可以售出1000个该款零件,若每个零件售价每降低5元,每月可以多售出100个零件,设每个零件售价降低x元,每月的销售利润为w元.(1)求w与x之间的函数关系式;(2)为了更好地回馈社会,公司决定每销售1个零件就捐款n(0<n≤6)元作为抗疫基金,当40≤x≤60时,捐款后每月最大的销售利润为135000元,求n的值.19.(9分)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,―94)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.20.(9分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c 经过B,C两点.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上的一动点,当点E到直线BC的距离最大时,求点E 的坐标;(3)Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,B,C 为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.21.(10分)如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.(10分)如图,抛物线y=﹣x2+ax与直线y=﹣x+b交于点A(4,0)和点C.(1)求a和b的值;(2)求点C的坐标,并结合图象写出不等式﹣x2+ax>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向右平移2个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.23.(10分)如图,抛物线y=ax2﹣2ax﹣3a与x轴交于A,B两点,与y轴交点为(0,﹣3),顶点为C.(1)求a的值;(2)求顶点C的坐标;(3)抛物线的对称轴与x轴交于点P,连接BC,BC的垂直平分线MN交直线PC 于点M,交BC于点N,求线段PM的长.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.B;4.D;5.C;6.C;7.C;8.A;9.C;10.D;二、填空题(共5小题,满分15分,每小题3分)11.x1=﹣3,x2=1.12.213.14 914.(﹣5,﹣4)或(0,1)15.1或―4 5三、解答题(共8小题,满分75分)16.(1)证明:∵Δ=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴无论k取何值时,方程总有两个不相等的实数根;(2)解:由x2﹣(2k+1)x+k2+k=0,解得:x1=k,x2=k+1,∴A(k,0),B(k+1,0),∵OA+OB=5,∴|k|+|k+1|=5,①当k<﹣1时,|k|+|k+1|=5变为﹣k﹣(k+1)=5,解得:k=﹣3;②当﹣1≤k<0时,|k|+|k+1|=5变为﹣k+k+1=5,此方程无解;③当k≥0时,|k|+|k+1|=5变为k+k+1=5,解得:k=2.综上所述,k的值为﹣3或k=2.17.(1)解:对于抛物线y=―12x22x+2,当y=0时,则―12x2+2x+2=0,解得x1=―x2=当x=0时,y=2,∴A(―0),B(0),C(0,2).(2)证明:连接AC,BC,∵OA OB=AOC=∠BOC=90°,∴AC22+22=6,BC2=(2+22=12,∴AC2+BC2=6+12=18;∵AB=(―∴AB2=(2=18,∴AC2+BC2=AB2,∴△ABC是直角三角形.18.解:(1)设每个零件售价降低x元,则每个零件的实际售价为(200﹣x)元,每月的实际销售量为(1000+x5×100),则w=(200﹣x﹣80)(1000+x5×100)=20x2十1400x+120000,∵x≥0200―x―80≥0,∴0≤x≤120,∴w与x之间的函数关系式为w=﹣20x2+1400x+120000(0≤x≤120);(2)设捐款后的实际利润为p元,则p=﹣20x2+1400x+120000﹣(1000+x5×100)n,整理得:p=﹣20x2+(1400﹣20n)x+120000﹣1000n,则p是x的二次函数,其对称轴为直线x=―140020n2×(20)=70n2,∵0<n≤6,∴32≤70n2<35,∵﹣20<0,∴函数图象开口向下,当40≤x≤60时,p随x的增大而减小,∴当x=40时,p有最大值135000,即﹣20×402+40(1400﹣20n)+120000﹣1000n=135000,解得:n=5.19.解:(1)设抛物线L1的表达式是y=a(x―1)2―9 4,∵抛物线L1过点A(﹣2,0),∴0=a(―2―1)2―9 4,解得a=1 4,∴y=14(x―1)2―94.即抛物线L1的表达式是y=14(x―1)2―94;(2)令x=0,则y=﹣2,∴C(0,﹣2).Ⅰ.当AC为正方形的对角线时,如图所示,∵AE3=E3C=CD3=D3A=2,∴点D3的坐标为(0,0),点E3的坐标为(﹣2,﹣2).设y=14x2+bx,则―2=14×22―2b,解得b=32即抛物线L2的解析式是y=14x2+32x.Ⅱ.当AC为边时,分两种情况,如图,第①种情况,点D1,E1在AC的右上角时.∵AO=CO=E1O=D1O=2,∴点D1的坐标为(0,2),点E1的坐标为(2,0).设y=14x2+bx+2,则0=14×22+2b+2,解得:b=―3 2,即抛物线L2的解析式是y=14x2―32x+2.第②种情况,点D2E2在AC的左下角时,过点D2作D2M⊥x轴,则有△AD2M≌△AD1O,∴AO=AM,D1O=D2M.过E2作E2N⊥y轴,同理可得,△CE2N≌△CE1O,∴CO=CN,E1O=E2N.则点D2的坐标为(﹣4,﹣2),点E2的坐标为(﹣2,﹣4),设y=14x2+bx+c,则―2=14×16―4b+c―4=14×4―2b+c,解得b=12c=―4,即抛物线L2的解析式是y=14x2+12x―4.综上所述:L2的表达式为:y=14x2+32x,y=14x2―32x+2或y=14x2+12x―4.20.解:(1)∵直线y=﹣x+4与x轴交于点C,与y轴交于点B,∴点B,C的坐标分别为B(0,4),C(4,0),把点B(0,4)和点C(4,0)代入抛物线y=ax2+x+c,得:16a+4+c=0,c=4,,解之,得a=―12,c=4,,∴抛物线的解析式为y=―12x2+x+4.(2)∵BC为定值,∴当△BEC的面积最大时,点E到BC的距离最大.如图,过点E作EG∥y轴,交直线BC于点G.设点E的坐标为(m,―12m2+m+4),则点G的坐标为(m,﹣m+4),∴EG=―12m2+m+4―(―m+4)=―12m2+2m,∴S△BEC=12EG⋅OC=12×4(―12m2+2m)=―m2+4m=―(m―2)2+4,∴当m=2时,S△BEC最大.此时点E的坐标为(2,4).(3)存在.由抛物线y=―12x2+x+4可得对称轴是直线x=1.∵Q是抛物线对称轴上的动点,∴点Q的横坐标为1.①当BC为边时,点B到点C的水平距离是4,∴点Q到点P的水平距离也是4.∴点P的横坐标是5或﹣3,∴点P的坐标为(5,―72)或(―3,―72);②当BC为对角线时,点Q到点C的水平距离是3,∴点B到点P的水平距离也是3,∴点P的坐标为(3,52 ).综上所述,在抛物线上存在点P,使得以P,Q,B,C为顶点的四边形是平行四边形,点P的坐标是(5,―72)或(―3,―72)或(3,52).21.解:(1)根据题意得:D (﹣2,0),C (2,0),E ((0,1),设抛物线的解析式为y =ax 2+1(a ≠0),把D (﹣2,0)代入得:4a +1=0,解得a =―14,∴抛物线的解析式为y =―14x 2+1;(2)在y =―14x 2+1中,令y =134―3=14得:14=―14x 2+1,解得x∴距离地面134米高处,隧道的宽度是;(3)这辆货运卡车能通过该隧道,理由如下:在y =―14x 2+1中,令y =3.6﹣3=0.6得:0.6=―14x 2+1,解得x =±5,∴|2x |≈2.53(m ),∵2.53>2.4,∴这辆货运卡车能通过该隧道.22.解:(1)∵抛物线y =﹣x 2+ax 的图象过点A (4,0),∴0=﹣42+a ×4,解得a =4,∵直线y =﹣x +b 的图象过点A (4,0),∴0=﹣4+b ,解得b =4;(2)由(1)得,抛物线解析式为y =﹣x 2+4x ,一次函数解析式为y =﹣x +4,联立方程组y =―x 2+4x y =―x +4,解得:x =1y =3或x =4y =0(舍去),∴点C 坐标为(1,3),由图象得不等式﹣x 2+ax >﹣x +b 的解集为:1<x <4;(3)∵抛物线y =﹣x 2+4x 的对称轴为直线x =2,∴C 点关于对称轴的对称点坐标为(3,2),又∵抛物线y =﹣x 2+4x 的顶点坐标为(2,4),∴当M (0,4)时,N 点坐标为(2,4),此时抛物线与线段MN 有一个交点,当M (4,0)时,此时抛物线与线段MN 有一个交点,当M (1,3)时,此时抛物线与线段MN 有两个交点,∴0≤x M ≤4且x M ≠1.23.解:(1)∵抛物线y =ax 2﹣2ax ﹣3a 与y 轴交点为(0,﹣3),∴﹣3a =﹣3,∴a =1,即a 的值为1;(2)∵a =1,∴抛物线y =ax 2﹣2ax ﹣3a =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点C 的坐标为(1,﹣4);(3)∵顶点C 的坐标为(1,﹣4),∴物线的对称轴为直线x =1,∴P (1,0),∵抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点,令y =0,则x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∴BP =2,PC =4,∴BC =∵MN 垂直平分BC ,∴CN =12BC MNC =90°,∴∠BPC =∠MNC .又∠MCN =∠BCP ,∴△MCN ∽△BCP ,∴CN CP =CM CB ,即4CM ,∴CM =52,∴PM =PC ﹣CM =4―52=32.即线段PM 的长为32.。
人教版九年级数学上册《 一元二次方程 》单元检测试卷(附答案)
人教版九年级数学上册《一元二次方程》单元检测试卷班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分)1. 一元二次方程(x−1)2=1的解是()A.x1=0,x2=1B.x=0C.x=2D.x1=0,x2=22. 关于x的一元二次方程x2+bx+c=0的两个实数根分别为−2和3,则()A.b=1,c=−6B.b=−1,c=−6C.b=5,c=−6D.b=−1,c=63. 将方程−x2−8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.−8、−10B.−8、10C.8、−10D.8、104. 用配方法解方程x2−6x+5=0,配方的结果是()A.(x−3)2=1B.(x−3)2=−1C.(x+3)2=4D.(x−3)2=45. 已知x=1是方程x2+bx−2=0的一个根,则b的值是()A.1B.2C.−2D.−16. 关于x的一元二次方程√2x2+√2a2=3ax的两根应为()A.−√2±a√2B.√2a,√22aC.2±√2a4D.±√2a7. 为执行“两免一补“政策,某市2008年投入教育经费4900万元,预计2010年投入6400万元.设这两年投入教育经费的年平均增长率为x,那么下面列出的方程正确的是()A.4900x2=6400B.4900(1+x)2=6400C.4900(1+x%)2=6400D.4900(1+x)+4900(1+x)2=64008. 关于x的一元二次方程(x−k)2+k=0,当k>0时的解为()A.k+√kB.k−√kC.k±√−kD.无实数解9. 已知代数式3−x与−x2+3x的值互为相反数,则x的值是()A.−1或3B.1或−3C.1或3D.−1和−310. 如图,在△ABC中,AC=50m,BC=40m,∠C=90∘,点P从点A开始沿AC边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着射线CB匀速移动,当△PCQ的面积等于300m2运动时间为()A.5秒B.20秒C.5秒或20秒D.不确定二、填空题(本题共计 10 小题,每题 3 分,共计30分)11. 方程5x2−2x−11=0的解为________.12. 关于x的一元二次方程(2k−1)x2−8x+6=0无实数根,则k的最小整数值是________.13. 已知7x2−12xy+5y2=0,且xy≠O,则yx=________.14. 若一元二次方程x2−(a+1)x+a=0的两个实数根分别是2、b,则a−b=________.15. 关于x的一元二次方程(k−1)x2−4x−1=0总有实数根,则k的取值范围是________.16. 已知α,β方程x2+2x−5=0的两根,那么α2+αβ+3α+β的值是 ________.17. 对于任意实数k,关于x的方程x2−2(k+1)x−k2+2k−1=0的根的情况为________.18. 某种植物的主干长出若干数目的支干又长出同样数目的小分支,主干、支干和小分支的总数是91.设每个支干长出x个小分支,则可得方程为________.19. 在长宽为10cm、8cm的矩形纸片中央挖掉一个矩形,得到一个四边等宽的矩形方框.如果挖掉部分的面积为24cm2,则方框的边宽是________.20. 如图,在长为32米,宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上小草.要使草坪的面积为540平方米,则道路的宽为________米.三、解答题(本题共计 7 小题,共计60分)21.(8分) 解方程:(1)x2−4x−2=0(2)(x+3)(x−6)=−8.22. (6分)有一幅长20cm、宽16cm的照片,现要为这幅照片配一个四条边宽度相同的相框,且相框边所占面积为照片面积的二分之一,求相框边的宽度.23.(6分) 已知关于x的一元二次方程x2−2kx+k2+k+1=0有两个实数根.(1)试求k的取值范围;(2)若此方程的两个实数根x1、x2,满足1x1+1x2=−2,试求k的值.24.(10分) 如图,小明把一张边长为10厘米的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,(1)如果要求长方体盒子的底面面积为81cm2,求剪去的小正方形边长为多少?(2)长方体盒子的侧面积是否可能为60cm2?为什么?25.(10分) 某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?26. (10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?27.(10分) 在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.参考答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.D【简单解析】先把方程直接开平方得到,再求的值就容易了.2.B【简单解析】根据根与系数的关系得到,,然后解一次方程即可得到与的值.3.D【简单解析】一元二次方程,,是常数且的、、分别是二次项系数、一次项系数、常数项.4.D【简单解析】把常数项移项后,应该在左右两边同时加上一次项系数的一半的平方.5.A【简单解析】由一元二次方程的解的定义,将x=1代入已知方程列出关于b的新方程,通过解新方程来求b的值即可.6.B【简单解析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可.7.B【简单解析】这两年投入教育经费的年平均增长率为x,根据某市2008年投入教育经费4900万元,预计2010年投入6400万元可列方程.8.D【简单解析】首先把常数k移到方程右边,再两边直接开平方,因为−k<0,故方程无实数解.9.A【简单解析】由于代数式3−x与−x2+3x的值互为相反数,则(3−x)+(−x2+3x)=0,整理得,x2−2x−3=0,根据方程系数的特点,应用因式分解法解答.10.C【简单解析】根据三角形的面积公式列出方程即可解决问题.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【简单解析】找出方程中,,的值,代入求根公式即可求出解.12.【简单解析】根据一元二次方程的定义和判别式的意义得到且,解得,然后找出此范围内的最小整数即可.13.解一元二次方程-因式分解法【简单解析】分解因式后求出,,分别代入求出即可.14.【简单简单解析】根据根与系数的关系得出,变形即可得出答案.15.【简单简单解析】由方程为一元二次方程可得知;由方程总有实数根可得出根的判别式,解关于的一元一次不等式即可得出结论.16.【简单简单解析】欲求的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.17.【简单简单解析】首先确定,,,然后求出的值,进而作出判断.18【简单简单解析】由题意设每个支干长出个小分支,每个小分支又长出个分支,则又长出个分支,则共有个分支,即可列方程.19.【简单简单解析】设方框的边宽为,则挖掉的矩形的长为,宽为,根据“挖掉部分的面积为”列出方程并解答即可.20.【简单简单解析】把四块耕地拼到一起正好构成一个矩形,矩形的长和宽分别是和,根据矩形的面积公式,列出关于道路宽的方程求解.三、解答题(本题共计 7 小题,共计60分)21.【简单简单解析】(1)利用配方法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程.22.相框边的宽度为2cm .一元二次方程的应用【简单简单解析】设镜框边宽度为x ,则镜框长为(20+2x),宽为(16+2x),完整图形面积为照片面积的(1+12),依题意列方程求解.23.解:(1)∵方程有实数根,∴△=4k 2−4(k 2+k +1)≥0,解得k ≤−1.(2)由根与系数关系知:{x 1+x 2=2k x 1x 2=k 2+k +1, 又1x 1+1x 2=−2,化简代入得2kk 2+k+1=−2, 解得k =−1,经检验k =−1是方程的根且使原方程有实数根,∴k =−1.根的判别式根与系数的关系【简单简单解析】(1)根据方程有两个实数根可以得到△≥0,从而求得k 的取值范围;(2)利用根与系数的关系将两根之和和两根之积代入代数式求k 的值即可.24.剪去的小正方形边长为0.5cm ;(2)设剪去的正方形的边长为xcm .4x(10−2x)=60,整理可得:2x 2−10x +15=0,△=b 2−4ac =100−4×2×15=−20<0,∴此方程没有实数根,∴长方体盒子的侧面积不可能为60cm 2.一元二次方程的应用根的判别式【简单简单解析】(1)等量关系为:(10−2×剪去正方形的边长)2=81,把相关数值代入即可求解.(2)利用长方体盒子的侧面积为60cm 2,求出一元二次方程根的情况即可.25.该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价510元,由题意,得 (40−30−x)(0.5x +4)=510,解得:x 1=8,x 2=60∵有利于减少库存,∴x =60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.一元二次方程的应用【简单简单解析】(1)设每次降价的百分率为x,(1−x)2为两次降价的百分率,40降至32.4就是方程的平衡条件,列出方程求解即可;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可.26.所围矩形猪舍的长为10m、宽为8m.一元二次方程的应用【简单简单解析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25−2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.27.每张门票的原定票价为400元;(2)设平均每次降价的百分率为y,根据题意得400(1−y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.一元二次方程的应用分式方程的应用【简单简单解析】(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x−80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.。
人教版数学九年级上册第一年级测试试卷(含答案)
人教版数学9年级上册第1单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列是关于x的一元二次方程的是( )A.x2―1x=2021B.x(x+6)=0C.a2x﹣5=0D.4x﹣x3=22.(3分)关于x的一元二次方程x2+3x﹣2=0的根的情况是( )A.有两个不相等的实数根B.只有一个实数根C.有两个相等的实数根D.没有实数根3.(3分)已知关于x的一元二次方程kx2﹣(k﹣2)x+4=0的一个根是2,则k的值是( )A.2B.﹣2C.4D.﹣44.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x,那么x满足的方程是( )A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+x)+50(1+x)2=182D.50+50(1+x)=1825.(3分)若方程ax2﹣2x+c=0是关于x的一元二次方程,则a满足的条件是( )A.a>0B.a<0C.a=0D.a≠06.(3分)已知方程x2=m的解是有理数,那么对于下列实数m不能取的数是( )A.1B.4C.14D.127.(3分)已知关于x的一元二次方程x2+4x+5=0,下列说法正确的是( )A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定8.(3分)一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共共握66次手.若设这次会议到会的人数为x人,依题意可列方程( )A .12x (x ﹣1)=66B .12(1+x )2=66C .x (1+x )=66D .x (x ﹣1)=669.(3分)下表是某公司2022年1月份至5月份的收入统计表.其中,2月份和5月份被墨水污染.若2月份与3月份的增长率相同,设它们的增长率为x ,根据表中的信息,可列方程为( )月份12345收入/万元101214A .10(1+x )2=12﹣10B .10(1+x )2=12C .10(1+x )(1+2x )=12D .10(1+x )3=1410.(3分)关于x 的一元二次方程kx 2+2x ﹣1=0有两个相等的实数根,则k =( )A .﹣2B .﹣1C .0D .1二、填空题(共5小题,满分15分,每小题3分)11.(3分)当k 满足 时,方程(k ﹣1)x 2+3x +1=0是一元二次方程.12.(3分)若m 是方程x 2﹣x ﹣1=0的一个根,则m 2﹣m +2022的值为 .13.(3分)解方程:(x ﹣7)(x ﹣2)=0,则方程的两个根是x 1=7,x 2= .14.(3分)小明在计算某数的平方时,将这个数的平方误看成它的2倍,使答案少了35,则这个数为 .15.(3分)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由50元降为39元,设平均每次降价的百分率是x ,则根据题意,可列方程为 .三、解答题(共10小题,满分75分)16.(6分)用适当的方法解下列一元二次方程:(1)x 2﹣2x ﹣15=0;(2)(x +4)2﹣5(x +4)=0.17.(6分)按要求解下列方程:(1)x 2﹣8x +1=0(配方法);(2)x 2+2x =3(公式法).18.(7分)已知关于x 的一元二次方程14x 2―(m ―1)x +(m 2―2m)=0.(1)求证:对于任意实数m ,该方程总有两个不相等实数根;(2)如果此方程有一个根为0,求m 的值.19.(7分)已知关于x 的方程(k ﹣2)x 2﹣2x +1=0有两个实数根.(1)求k 的取值范围;(2)当k 取最大整数时,求此时方程的根.20.(7分)直播购物逐渐走进人们的生活.某电商在抖音上对一款标价为400元/件的商品进行直播销售,为了尽快减少库存,直播期间,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.求该种商品每次降价的百分率.21.(7分)2022年北京冬奥会吉祥物“冰墩墩”深受大家的喜爱.某特许零售店冰墩墩毛绒玩具的销售日益火爆.据统计,该店2021年10月的销量为3万件,2021年12月的销量为3.63万件.求该店冰墩墩毛绒玩具销量的月平均增长率.22.(8分)开展农技培训,实施人才强村战略,因地制宜采用新媒体手段远程指导生产,利用广播电视、微信公众号等开展农技培训.某地区加强了培训经费的投入,2020年投入3000万元,预计2022年投入4320万元.求该地区这两年投入培训经费的年平均增长率.23.(9分)已知关于x 的一元二次方程12x 2―mx +m ﹣5=0.(1)求证:此方程总有两个不相等的实数根;(2)若m 为整数,且此方程的两个根都是整数,写出一个满足条件的m 的值,并求此时方程的两个根.24.(9分)直播带货作为一种线上新型销售模式,绕过了经销商等传统中间渠道,实现产品和消费者的直接对接,小刚线上通过直播带货销售家乡的某种特产水果.已知这种水果的成本价为10元/千克,通过前几个周的销售他发现这种水果每周的销售量y (件)与销售单价x (元)之间的关系近似满足一次函数关系:y =﹣2x +80.(1)如果小刚本周将这种水果的售价定为16元/千克,那么本周他销售这种水果可获利多少?(2)如果小刚下周继续销售这种水果,是否能获得500元的利润?25.(9分)某花圃需要绿化的面积为52000米2,施工队在绿化了28000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中,如图有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门,此时花圃的面积刚好为45米2,求此时花圃的长和宽.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B ; 2.A ; 3.D ; 4.B ; 5.D ; 6.D ; 7.C ; 8.A ; 9.B ; 10.B ;二、填空题(共5小题,满分15分,每小题3分)11.k ≠1; 12.2023; 13.2; 14.﹣5或7; 15.50(1﹣x )2=39;三、解答题(共10小题,满分75分)16.(1)∵x 2﹣2x ﹣15=0,∴(x ﹣5)(x +3)=0,∴x ﹣5=0或x +3=0,∴x 1=5,x 2=﹣3;(2)∵(x +4)2﹣5(x +4)=0,∴(x +4)(x +4﹣5)=0,∴x +4=0或x ﹣1=0,∴x 1=﹣4,x 2=1.17.解:(1)x 2﹣8x +1=0,∴x 2﹣8x +16=15,∴(x ﹣4)2=15,∴x ﹣4∴x 1=4+x 2=4―(2)x 2+2x ﹣3=0Δ=22﹣4×1×(﹣3)=16,∴x ∴x 1=1,x 2=﹣3.18.(1)证明:对关于x 的一元二次方程14x 2―(m ―1)x +(m 2―2m)=0,Δ=[﹣(m ﹣1)]2﹣4×14(m 2﹣2m )=m 2﹣2m +1﹣m 2+2m =1,∴Δ>0,∴对于任意实数m ,一元二次方程14x 2―(m ―1)x +(m 2―2m)=0总有两个不相等实数根;(2)解:如果此方程有一个根为0,则14×02﹣(m ﹣1)×0+(m 2﹣2m )=0,∴m 2﹣2m =0,解得m=0或m=2,答:m的值为0或2.19.解:(1)∵关于x的方程(k﹣2)x2﹣2x+1=0有两个实数根,∴k―2≠0Δ=(―2)2―4(k―2)×1≥0,解得k≤3且k≠2.(2)由题意得,k=3,当k=3时,方程为x2﹣2x+1=0,即(x﹣1)2=0,解得x1=x2=1.20.解:设该种商品每次降价的百分率为x,依题意得:400(1﹣x)2=324,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:该种商品每次降价的百分率为10%.21.解:设该店冰墩墩毛绒玩具销量的月平均增长率为x,依题意得:3(1+x)2=3.63,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:该店冰墩墩毛绒玩具销量的月平均增长率为10%.22.解:设该地区这两年投入培训经费的年平均增长率为m,依题意得:3000(1+m)2=4320,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该地区这两年投入培训经费的年平均增长率为20%.23.(1)证明:Δ=b2﹣4ac=(―m)2―4×12(m―5)=m2﹣2m+10=(m﹣1)2+9,∵(m﹣1)2≥0,∴(m﹣1)2+9>0,∴无论m取何值,方程总有两个不相等的实数根;(2)将m=1代入方程12x2―mx+m﹣5=0中,得(x﹣1)2=9,解得:x=4或﹣2.∴当m=1时,x的值为4或﹣2.24.解:(1)(16﹣10)×(﹣2×16+80)=(16﹣10)×(﹣32+80)=6×48=288(元).答:本周他销售这种水果可获利288元.(2)不能获得500元的利润,理由如下:依题意得:(x﹣10)(﹣2x+80)=500,整理得:x2﹣50x+650=0,∵Δ=(﹣50)x2﹣4×1×650=﹣100<0,∴该方程无实数根,∴不能获得500元的利润.25.解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:5200028000x―52000280001.5x=4,解得:x=2000,经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设花圃的宽度为x米,则BC=22+2﹣3x=24﹣3x,根据题意,得(24﹣3x)x=45,解得:x1=3,x2=5.∵当x=3时,24﹣3x=15>14,∴不符合题意,舍去.∴宽为5米,长为9米.答:花圃的长为9米,宽为5米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学测试题
姓名__________得分__________
一、选择题(每小题3分,共30分)将正确答案填入下表相应空格内
A、x≥2
B、x≠3
C、x≥2或x≠3
D、x≥2且x≠3 2的值等于()
A.-2 B.±2 C.2 D.4
3.一元二次方程的2650
x x
+-=左边配成完全平方式后所得的方程为( ) A.2
(3)14
x-=B.2
(3)14
x+=C.2
1
(6)
2
x+=D.以上答案都不对
4.下列计算错误
..的是( )
A. B.= C.
D.3
5.若0
)1
(2=
+
+
-c
bx
x
a是关于x的一元二次方程,则()
A.a=1 B.a≠1 C.a≠-1 D.a≠0且b≠0
6n的最小值是()
A.4;B.5;C.6;D.7
7.下列根式中属最简二次根式的是()
8.下列方程,是一元二次方程的是()
①3x2+x=20,②2x2-3xy+4=0,③4
1
2=
-
x
x,④x2=4-,⑤0
4
3
2=
-
-x
x
A.①②B.①②④⑤C.①③④D.①④⑤9.下列方程中,有两个不等实数根的是()
A .238x x =-
B .2510x x +=-
C .271470x x -+=
D .2753x x x -=-+ 10.若b b -=-3)3(2,则( ) A .b>3 B .b<3 C .b ≥3 D .b ≤3 二、填空题(每小题3分,共18分)
11.方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是______.
12.已知16的算术平方根是
13.如果最简二次根式a +1与24-a 是同类根式,那么a = . 14.若x<2,化简x x -+-3)2(2的正确结果是 ___. 15.观察下列各式:①、312
311=+
,②、413412=+ ③、5
1
4513=+,…请写出第⑦个式子: ,用含n (n ≥1)的式子写出你猜想的规律: 。
16.若一个三角形的三边长均满足方程2
680x x -+=则此三角形的周长
为 。
17、当m=__________时,一元二次方程x 2+(2m-3)x+(m 2-3)=0没有实数根,当m________时,有实数根。
三、计算或化简(每小题4分,共8分)
17 .
.
18. )543
182(18342421⨯÷-
四、解下列方程(每小题4分,共16分)
19.221
035x x -+= 20.3x 2-6x +1=0(用配方法)
21、2
430x x --= 22、2
(3)2(3)0x x x -+-=
五、解答题:
21. 先化简再求值:
)1
2
(122+-÷++x x x x x ,其中2=x (6分)
22.如图,有一面积为2150m 的长方形鸡场,鸡场的一边靠墙(墙长m 18),另三边用竹篱笆围成,如果竹篱笆的长为m 35,求鸡场的长与宽各为多少米?(8分)
23. .一月份销售额为100万元,二月份由于种种原因,经营不善,销售额下降
10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到108.9万元,求三、四月份平均每月增长的百分率是有多少?(10分)
24.(本题10分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
24. 已知关于x 的一元二次方程2x +4x +m -1=0。
(10分)
(1)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根;
(2)设1x 、2x 是(1)中你所得到的方程的两个实数根,求:
2
1
x x +1
2x x 的值。