电石炉烟气余热利用及净化技术介绍

电石炉烟气余热利用及净化技术介绍
电石炉烟气余热利用及净化技术介绍

内燃式密闭电石炉烟气余热利用及净化技术

的开发与综合应用

汪为忠合肥合意环保科技工程有限公司

摘要:本文介绍了我国内燃式密闭电石炉炉气治理的污染现状,论述了目前使用的几种典型的炉气治理方法以及可行性对比。(碳化钙(CaC2)俗称电石。工业品呈灰色、黄褐色或黑色,含碳化钙较高的呈紫色。其新创断面有光泽,在空气中吸收水分呈灰色或灰白色。能导电,纯度愈高,导电性愈好。在空气中能吸收水分。加水分解成乙炔和氢氧化钙。与氮气作用生成氰氨化钙。)

1 概况

电石是基本的有机化工原料,由它制得的乙炔可替代石油制品生产醋酸、醋酸乙烯、聚氯乙烯、聚乙烯醇、乙炔碳黑等一系列数千种有机产品。又是冶金、矿山、机械、建筑等工业中必不可少的辅助材料。由于中国原油缺少,现在油价又节节攀升,从氯碱行业的信息看,电石法PVC还将发展,电石行业仍有发展的空间,但大部分电石厂技术落后,装备较差,环保意识淡薄,对我国环境状况构成威胁,随着社会发展和科学技术的进步,我国能源的日趋紧缺,环保要求更加严格,电石生产技术正向高效、节能和环保型的方向发展,形成煤、盐、电、碱、电石、PVC、水泥、CO利用的大型一体化项目,电石规模都在数十万吨以上,甚至规划超百万吨的,无疑将在整合和规范行业的健康发展上产生巨大影响。因此,电石工业朝密闭炉型、大型化、规模化已成趋势。

中国电石行业目前初步资料表明约有电石企业二百多户,生产能力超过700万吨,电石年产量居世界首位。在电石生产中,电石炉的烟气是最大的污染源,以一座20000KVA的内燃式密闭电石炉为例,年排放废气量(以每年生产10个月计算)达到4亿标准立方米,年粉尘排放量超过2000吨,污染极其严重。由于电石炉烟气温度高,粉尘性质

特殊,风量变化大,国内电石行业采用了许多除尘技术,进行了大量的烟气净化的实践,但都未能根本解决问题。在全国电石行业,无论是全密闭电石炉、半密闭电石炉还是开放式电石炉,其烟气治理技术多年来都一直是国内电石行业的难题而无法解决。电石行业及环保科技人员做了大量工作,尝试采用了各种除尘技术,但实际应用成功的很少。主要的问题是烟气排放不能达标,另外整个系统的运行可靠性较差,很多电石厂花费了许多人力物力上马的废气除尘装置用不了多久就失去功效而最终废弃不用。电石炉烟气的治理如此困难,主要原因是其烟气量大,含尘浓度高,粉尘性质十分特殊,烟气温度高并存在波动,烟气的性质随炉型的不同有很大的变化,这些给除尘器的设计选型带来了极大的困难。直到1996年8月,由合肥水泥研究设计院设计的我国第一台用于半密闭电石炉烟气的玻纤袋除尘器在三明化工总厂电石分厂20000KV A半密闭电石炉上建成投运,才实现了电石炉烟气治理技术的根本突破。三明化工厂电石炉烟气治理的成功标志着半密闭电石炉的烟气治理技术难题已经得到基本解决,可以说这是电石炉除尘技术发展的一次重大进步。此后三明化工厂另外两台半密闭电石炉也采用该项技术,胜利油田、福维、广维、焦作化一、新疆天业、云南维尼纶等企业内燃式密闭电石炉相继采用了这一技术,均获得了满意的效果。

以这些技术为基础,新的能够适合不同用户要求的电石炉烟气余热利用及烟气净化技术不断被开发出来,并很快获得应用,取得了很好的经济效益和社会效益。

2 内燃式密闭电石炉烟气特性

内燃式密闭电石炉是在引进国外电石炉的基础上根据我国的实际情况自行研制出来的炉型,其烟温及烟气量波动较大、粒径细小而

且还有一定的粘性,烟温较高,一般达到400℃以上。一般来说,电石炉的烟气特征如表1、表2、表3所示。

表1:内燃式密闭电石炉的烟气工艺参数

表2:电石炉烟气中粉尘的化学成分

表3:电石炉烟气中粉尘的粒径分布

3国内内燃式密闭电石炉烟气净化状况及存在的问题

从电石的粉尘性质可以看出,电石炉烟气温度高,粉尘性质复杂,烟气量大,比电阻高,治理难度是较大的。炉气由于在炉面燃烧,产生的炉气主要成分是CO2和粉尘,目前国内用于内燃式密闭电石炉的

净化处理方法中有两种,分别是湿法除尘和干法除尘,湿法除尘在实际使用过程中存在很大的问题,主要原因是粉尘中含有CaO,遇水生成Ca(OH)2,碱性、粘性大,在高温下形成酸液严重腐蚀设备并造成二次污染。干法除尘有旋风除尘、袋式除尘和静电除尘,旋风除尘由于除尘效率低一般都不能达标;静电除尘要降低粉尘比电阻,才能够实现粉尘的达标排放,国内目前能够实现达标排放的几乎没有;布袋除尘使用的比较普遍,但在选用时要考虑降温、滤料和清灰方式的选择才能实现粉尘的达标排放;相比来说,布袋除尘的除尘效率是最高的,可以达到99%。

多年来国内电石企业和环保科技人员做了大量工作,尝试采用了各种除尘技术,成功的先例较少。主要存在的问题为①除尘方式的选用不当,②整个系统的运行可靠性较差,而且影响电炉的正常生产。

③采用干法除尘时设备采用的清灰方式选用不当,建议采用新型的高压喷管脉冲清灰技术。电石炉的烟气特点主要为烟气量大、含尘多、粉尘颗粒细小比重轻且具有一定的粘度、烟气温度较高并存在一定程度的波动。④采用干法除尘时的滤料选用不当,由于电石炉烟气温度变化较大,不同的炉型及不同的工艺状况其温度不同,即使是同种炉型在不同的煅烧阶段其温度也会有变化,选用滤料应以烟气波动过程中所达到的最高温度来考虑,综合考虑是选用冷却系统+常温滤料(高温滤料)+除尘器或是无冷却系统直接为高温滤料+除尘器的方式,对电石炉的烟气温度估计不足而导致滤袋烧坏的现象时有发生。电石炉烟气的治理如此困难,多年来电石炉烟气除尘一直是电石行业的一大难题。

4内燃式密闭电石炉高温烟气净化技术介绍

4.1工艺流程

内燃式密闭电石炉炉气净化系统一般由一个主系统和四个附属系统来组成的,主要工艺流程简图为:

4.2主要工艺过程说明

上述整个工艺流程是采用余热利用或降温装置加袋式除尘器系统的负压工艺流程,具体为电石炉高温炉气进入专门设计的余热锅炉或冷却设备降温,降至200℃左右,然后经袋除尘器净化后由高压风机排出。整个炉气的混合、流动均由引风机作为动力源,整个系统处于负压状态。袋除尘器采用高压脉冲喷吹进行清灰,当积聚在滤袋外表面的粉尘达到一定的厚度,清灰系统发出清灰信号,脉冲系统进行高压清灰,清灰结束后又进入正常的过滤状态。电石炉废气保留旁通烟道,主烟道和旁通烟道用水冷蝶阀进行切换。整个系统采用计算机控制系统集中控制。除尘器收集下的粉尘由灰斗和储灰仓储存,定时由小车或输送设备输送作为建材原料。

系统中应设置紧急降温装置和旁通烟道,以自动或手动阀门切换。

还可以考虑将出炉口烟气一并考虑由上述净化系统集中处理。

上述整个工艺流程的完成均由一Micropro控制系统完成自控及过程中温度压力的监测,清卸灰的实现,并实行报警功能。

a.每台电石炉单独设向天排空的旁通烟道,并设蝶阀控制;

b.每台电石炉单引主烟道用蝶阀控制;

c.当余热锅炉或冷却设备降温至200度左右后进入长袋脉冲除尘器过滤净化。

d.除尘系统用一台引风机进行抽引,变频控制,由一根钢烟囱排出;

上述主要工艺过程就是烟气冷却,净化设备、清灰装置、自动控制系统、旁路系统和报警装置组成。

4.3关键技术

4.3.1降温技术

目前国内布袋承受的烟气温度一般在220℃以下,因此首先将烟气温度降到220℃以下,然后进行布袋除尘,冷却方式常用空冷、水冷或加冷风等方法来降温,但这些方法是不经济的,最科学的方法是对烟气进行余热利用的同时也降低烟温。余热利用可获得一定的经济效益,从而改变环保只投入无产出的情况。选择冷却器或者余热锅炉的形式要根据各厂的实际情况来定。

4.3.2漏风技术问题

系统中严重的漏风,加快除尘器的过滤速度,降低除尘效率,增加引风机的负担,使整个系统无法正常使用。降低烟气温度,减少余热利用量,增加排烟量。

4.3.3阻力技术问题

系统阻力过大,会造成引风机压头不足,无法将电炉烟气全部抽入系统运行。

4.3.4受热面清灰技术问题

电石炉烟气中含尘量大而粉尘细小,很容易在管壁、炉墙上产生很厚的积尘层,因此能否有效地清除受热面上的积灰层,是余热锅炉能否有效地进行工作,回收利用烟气余热产生过热蒸汽,同时保证烟温降至200℃左右,保证布袋除尘器安全工作的关键。

4.3.5控制系统

控制系统由计算机、PLC、显示器、操作箱温压仪表等组成;采用定时、定阻联合清灰设计;停机自清灰系统;提供烟气超温放风报警系统及主旁通烟道自动切换系统;提供除尘器进出口温度和压差显示;独立卸灰输送控制系统及卸灰系统连锁开启控制;提供稳定炉面负压的自动控制;提供主烟道和旁通烟道切换阀的电动操作及开度显示;

内燃式密闭电石炉烟气温度变化幅度很大,平均温度500℃,高时连续在600℃以上,这对冷却设备的受热面布置和排烟温度的控制带来很大的困难,也给后面的除尘器滤料带来很大的冲击,对整个系统的安全带来隐患,因此必须有可靠的温控技术和经济安全措施作为安全运行的保证。所以设计的冷却装置和余热锅炉必须适应比较大的温度变化范围,同时要有温控装置控制排烟温度幅度在30℃左右,另外还加有紧急自动进冷风装置。

4.3.6除灰外运系统

除灰外运系统是保证除尘器除灰与飞灰外运中无二次污染设计的,飞灰比重轻,容易造成二次污染,应采用密封输送,封闭型集灰箱装运飞灰的系统,以确保无二次污染。

4.4余热综合利用

对于密封好的内燃式密闭电石炉炉气温度可达到600℃左右,其热量还是有很大的利用价值,针对不同的用户可选择烘干焦碳或余热锅炉产蒸汽的方式。炉气中热量的利用,可以达到更高的经济效益、环保效益和社会效益,开创三丰收的局面。

5.投资比较

根据各公司电石扩建实际情况,将不同的净化方法做以下比较:

6 小结

我公司在全国各地电石炉烟气净化与余热利用系统的成功应用,

较好地解决了电石生产节能与环保问题,各项技术都已经被证明先进可靠、运转率高,并取得经济效益、环境效益、社会效益三丰收的成绩。这对推动整个电石行业的技术进步具有重要意义。之后,更具针对性、更经济、新型的电石炉余热利用及烟气净化技术不断被开发应用,满足不同炉型和用户的需要。余热利用方面既可以采用余热锅炉副产蒸汽、也可考虑采用空气冷却器烘干焦炭;冷却器方面可考虑强制风冷、自然风冷、水冷供选择;除尘技术方面也有脉冲袋技术、玻纤除尘技术、静电除尘技术供用户选择。

部分应用业绩

燃气锅炉排烟余热分析

以煤炭作为主要燃料的工业锅炉仍占据着主导地位。随着天然气工业的迅速发展,以此种清洁能源为燃料的锅炉将会逐渐增多。与燃煤相比,燃烧天然气虽然排放的二氧化硫及氮氧化物的含量很少,减轻了对环境的压力,但燃烧后产生的大量水蒸气随高温烟气排放到环境中,造成了能量的严重浪费。而采用冷凝式锅炉将高温烟气中的显热和潜热予以回收,可以达到充分利用能源降低运行成本的效果。 引言 冷凝式换热器就是增设在天然气锅炉尾部的余热回收装置,当烟气在通道内通过传热面,温度降至露点温度以下,从而使排烟中的水蒸气凝结释放潜热传递给回收工质,可以将排烟中大量的能量加以回收利用,从而达到节能环保的效果。随着制造工业的不断发展,各种新型高效的冷凝换热装置层出不穷,不论从结构还是实际余热回收效果来看都有了非常大的改进。 1 烟气的特性分析 天然气成分绝大部分为烃,燃气锅炉排烟中水蒸气的含量较高,分析表明,排烟中可利用的热能中,水蒸气的汽化潜热所占的份额相当大。每1m3天然气燃烧后可以产生1. 55 kg水蒸气,具有可观的汽化潜热,大约为3 700 kJ/Nm3,占天然气的低位发热量的10%以上。传统锅炉中,排烟温度一般在160~250℃,烟气中的水蒸气仍处于过热状态,不可能凝结成液态的水而放出汽化潜热。因此传统的天然气锅炉理论热效率一般只能达到95%左右,利用冷凝式换热器只要把

烟气温度降到烟气露点温度以下,就可回收烟气中的显热和水蒸气的凝结潜热,按低位发热量为基准计算,天然气锅炉热效率可达到和超过110%。本文以纯天然气为例对烟气的露点温度以及锅炉理论热效率进行计算分析,表1为纯天然气的成分。 1.1露点计算 在水蒸气分压力不变的情况下,使空气冷却至饱和湿蒸汽状态时,将有水滴析出,此时的温度即为露点温度。天然气燃烧特性分析(以1 m3天然气计算)烟气中水蒸气的体积分数达17˙4%,若燃烧在大气压力下进行,当空气过量系数α为1.1时(本文中的计算均以此作为计算依据),其相应的烟气露点温度是57℃。露点温度随过量空气系数的变化曲线见图1。 通过观察可知,烟气露点温度随过量空气系数的变化而变化。因为根据道尔顿分压定律,露点温度的高低与烟道中水蒸气的分压量(即水蒸气的含量)成正比,随着过量空气系数的增加,烟道中水蒸气的相对体积减小,水蒸气的容积份额会有所下降,其露点温度也随之降低。实际上,虽然各地方天然气中成分含量有所不同,但由于其主要成分均为甲烷且占绝大部分,其他成分影响很小,经计算的露点温度误差不超过0.3%(符合实际要求的范围),并且由于实际燃烧的影响因素较多,也使得计算不可能达到很精确,通常是在理论值附近的一个范围内波动,在实际应用中还需根据不同情况进行修正分析。

烟气净化技术规格书

庐江县生活垃圾焚烧发电项目 烟气净化系统 技术规范书 庐江盛运环保电力有限公司 2016年1月

目录 第1章工程概述 (3) 1.1工程概况 (3) 1.2工程建设条件 (4) 第2章总体要求 (8) 2.1供货原则和范围 (8) 2.2技术要求 (12) 2.3服务要求 (18) 2.4项目进度要求 (20) 第3章系统供货范围 (21) 3.1烟气净化系统 (21) 3.2电气系统 (44) 3.3仪表与控制系统 (46) 第4章技术服务 (52) 第5章资料和图纸清单 (57) 5.1设计图纸资料 (57) 5.2技术资料清单 (60) 5.3供货及服务计划 (60) 5.4供货清单 (60)

第1章工程概述 1.1 工程概况 项目名称:庐江县生活垃圾焚烧发电项目 建设单位:庐江盛运环保电力有限公司 建设地点:庐江县蛇形山 建设规模:处理规模为400吨/日 1.1.1 项目规模及设备配置 焚烧炉形式:往复式机械炉排 焚烧炉数量:1台 单台焚烧炉处理能力:400吨/日 生活垃圾设计低位热值:6280 kJ/kg 烟气处理方式:半干法(石灰浆)+活性炭喷射+布袋除尘飞灰处理方式:“飞灰+水泥+螯合剂+水”固化工艺 汽机配备:1×7.5MW 水冷凝汽式汽轮机 发电机配备:1×7.5MW 年额定运行时间:≥8000 小时 全厂整体合理使用寿命:≥30年 1.1.2 工程技术参数

1.2 工程建设条件 1.2.1 气象条件 庐江属亚热带季风气候区,四季分明,寒暑显著,阳光充足,雨量充沛,利于各种动植物生长繁殖。优越的生态环境,养育着丰富的生物资源,有桔梗、党参、鸡内金、柴胡等538种中药材,有松、杉、竹、果等70多种林木。53.86

【VIP专享】电石炉尾气净化系统培训教材

电石炉尾气净化系统培训教材 前言 净化系统在电石公司电石循环产业链中,占据着很重要的位置。如果净化系统出现问题,直接影响到石灰、兰炭和电石的产量。所 以说,净化系统是否能安全连续的运行是与电石公司业绩直接挂钩的。 学习和掌握净化系统的操作知识是必要的也是紧迫的。本次主 要就净化系统的操作、巡检和安全生产技术规程做讲解。 一、炉气特性 电石炉生产过程中,在投料、物料焙烧、出电石等不同生产阶 段的烟气温度和烟气量是不同的,可分为电石炉出炉烟尘和电石炉 尾气烟尘。电石炉尾气温度为500-850℃,瞬间温度1000℃,含尘量100-150g/Nm3。炉气含CO达70-90%, 是一种热值较高气体,同时含有一定量焦油等,炉气热值为2600-2700大卡/Nm3。 尾气烟尘经过降温除尘后,气体成分97%是一氧化碳,3%其他气体。因此电石炉尾气除尘系统,也称电石炉尾气净化系统。 2、净化系统的操作 设备启动前准备 设备正常启动操作 设备正常停车操作 电炉低负荷生产,净化系统运行操作 一氧化碳送气烧窑开停车操作

1、设备启动前的操作 炉气净化系统启动前,专业巡检人员,要对风机油位、风机的 循环冷却水、风机电机、卸灰阀(电机)、刮板机(电机)、电动阀门、氮气压力、空气压力、电器自控以及所有防爆膜进行检查,一 切正常后,才能启动净化系统。 风机连轴箱油位: 连轴箱有无漏油, 连轴箱油位不能低于油位显示窗口的1/3. 造成后果:连轴箱温度过高轴承损坏。 风机的循环冷却水: 风机连轴箱的循环冷却水 在二楼集水槽处观察净化风机的循环冷却水回水是否正常(有 无回水)。 造成后果:连轴箱轴承温度过高轴承损坏。 卸灰阀: 净化巡检时观察卸灰阀是否工作(电机是否烧坏、卸灰阀内部 卡死)。电机烧坏时及时更换电机,卸灰阀内部卡死时必须排除故障,排除不了及时更换卸灰阀。 造成后果:如未及时发现卸灰阀不工作可造成部分布袋烧坏和 净化不能开启

工业硅电炉烟气除尘净化系统技术方案

30000KV硅锰电炉烟气除尘净化系统技术及工艺方案 一、概述 工业硅锰电炉在冶炼过程中产生大量含尘烟气,其烟尘主要成份为SiO2,烟气粒径大部分小于1um—0.05um,对周边环境造成很大的污染。而这种污染物硅微粉,越来越广泛地应用于水利电力工程、耐火材料、公路工程、桥梁隧道、化工橡胶、陶瓷等工业领域,市场上供不应求。因此,投资建设工业硅锰电炉除尘回收系统,不仅具有巨大的社会效益、环保效益,更具有良好的投资效益。 我公司致力于开发环保创新技术、生产性能优越的除尘设备及系统配置,并可介入环保设备的运营管理,为客户培训技术人员,以提高设备的运转率,实现最大的经济效益。本着以最少的投入达到最理想效果的原则,特制定本方案。 二、设计依据 2.1 本设计根据中华人民共和国冶金工业局《钢铁工业烟气净化技术政策规定》第七章铁 合金电炉烟气净化之规定而设计的。 2.2 本方案排放标准执行GB9078—1996《工业窑炉大气污染物排放标准》表2 第1 序号“铁合金熔炼炉”一类地区排放标准:≤100mg/Nm3。 三、工业硅矿热电炉废气工艺参数: 3.1 30000KV工业硅炉废气参数: 炉气量:350000Nm3/h 烟气温度:600℃ 含尘浓度:4-6g/Nm3 烟气成份:% N2 O2 CO H2O 76.6 16.67 4.44 2.29 烟尘成份:% SiO2 Fe2O3 MgO CaO C 92.45 0.08 0.076 0.33 0.36 烟尘粒度:um>1 1~0.04 0.04~0.01 % 10 30 60 烟尘堆比重:0.2t/m3 3.2 废气特征及废气主要工艺参数的确定 每生产1t 工业硅大约生成1700~2300m3炉气(标态),相比硅铁电炉, 工业硅锰电炉的炉气量要大30%左右,其烟气主要成份CO,含量约60~80%,其次是N2 和H2O,发热值约10000~12000KJ/m3(标态),冶炼时炉气穿过料层进入烟罩,与空气接触的CO燃烧后生成 烟气,烟气量的大小及温度的高低与混入空气量的大小有直接关系。 根据上述废气特征,需对工业硅矿热电炉设置适应其废气特征的除尘系统,除尘系统可 分为余热回收型和非热能回收型,考虑到余热回收型投资太高,其投资的性价比也不经济,但可以采集热能进行其它的利用,如烘干物料或生产生活热水。因此,本方案对工业硅锰电炉的除尘系统工程按非热能回收型考虑,选型参数为: 温度:100—200℃(前置U 型冷却器,并附设混风阀) 根据计算,工况烟气量:450000m3/h 四、除尘非热能回收系统工艺流程根据上述废气特点,结合国内相同炉型除尘系统业已成功的范例,本方案认为:除尘系统可使用目前国内最先进的除尘技术,即采用新型长袋离线脉冲袋式除尘器。该系统具有钢耗量

密闭电石炉尾气净化综合利用的工艺布置及注意事项

密闭电石炉尾气净化综合利用的工艺布置及注意事项在密闭及高温环境下,密闭电石炉中会伴随有碳素原料的不完全燃烧及分解,从而产生大量电石炉尾气。本文系统介绍了电石炉尾气净化工艺流程及其后续回收利用装置的工艺布置。 在电石生产中,实行清洁生产是必要的,但不能仅仅停留在清洁生产的层面上,还要深度思考循环经济理念的应用,发展循环经济。电石炉尾气含尘量大,温度高,并含有部分焦油等粘性物质,单座30000kVA密闭电石炉尾气量为2525Nm3/h,直接进行烟尘治理难度很大,国内开发的尾气直接燃烧净化技术,经生产实践证明是成功的。 该技术针对电石尾气的具体特点,认为尾气先净化后利用难度大。而直接送入电石尾气锅炉作为燃料,燃烧后再除尘大大降低了袋式除尘器设计和使用难度。同时利用了尾气潜热和显热,产生蒸汽加以利用。该技术已经在国内多家密闭炉电石生产厂家推广使用,取得了较好的经济和社会效益。 电石炉尾气净化的工艺流程分为两部分:干法净化、水洗净化。 干法净化工艺流程简述 净化气体在电石炉及净化系统全密闭的状态下生成,并且炉气的温度通过控制冷却风机的台数来调节,使炉气温度控制在220℃~280℃之间运行,否则炉气将冷却析出焦油,造成淤积管道,黏结阀门或烧损过滤器布袋等严重后果。 电石炉内产生的炉气温度为500℃~900℃,炉压0mmHg~5mmHg(0Pa~50Pa)。当过滤器工作时,灼热的炉气经过水冷烟道,温度下降到500℃左右,经一级旋风除尘器,再经三级空气

冷却器,炉气温度降为250℃~280℃,未净化的气体称之为粗气,尾气经粗气风机升压后并列进入3台过滤器中,过滤器内设置有聚四氟乙烯材料和玻璃纤维丝编织的耐高温过滤袋,将尾气中的粉尘过滤下来。 净化后的气体中粉尘含量为50mg/Nm3,在这之前,旋风除尘器及空冷器已将大颗粒粉尘滤下,从过滤器出来的气体,则称为净气。净气被净气风机送往用户做燃料燃烧,也可以送往下一工段进一步净化用于更高要求的用户使用。 从电石炉至净气风机出口的这段我们称之为干法净化。后续的进一步净化因为采用了水这一介质,我们称之为水洗净化。 水洗净化工艺流程简述 由净气风机出口送出的尾气,经过尾气总管送至喷淋塔、洗涤塔尾气与塔顶部喷下的水溶液逆流接触脱出尾气中的粉尘、焦油,并进一步降温至40℃左右,再经过气柜进行缓冲后送入罗茨风机输送给用户。 经湿法净化后的尾气可以用于热电厂的燃气锅炉代替煤粉燃烧炉气后产生蒸汽,带动汽轮机进行发电以及蒸汽的供应;也可以用于粒碱项目代替天然气加热熔岩炉。这两项技术已经在新疆天业进行使用并取得了良好的效果。一氧化碳还可以用于制作甲醇,及乙二醇等化工产品,市场前景广阔,有着客观的经济利益。 电石炉尾气净化工艺布置注意事项: 1)因为一氧化碳属于无色无味易燃易爆,有剧毒的高危气体,整个系统须保持正压以避免空气中的氧气进入系统发生安全事故; 2)因为从电石炉出来的尾气温度较高,因此输送炉气的管道上须布置自然补偿弯或者补偿装置用于消除线性膨胀应力; 3)因为在电石的生产过程中伴随有原料水分的蒸发及后续水洗净化工段水溶液中的饱和水随尾气的流动,故当温度低于水的露点时便会有液态水的析出,在管道的建设过程中需要分段的对管道进行放坡并在最低点设置排水阀定期排出管道内的水,防止积水过度,增加管道的阻力,及防止管道发生变形;

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

烟气净化系统施工方案

烟气净化系统施工方案 一、概况 铝电解生产过程中,从电解槽排出大量氟化氢气体和含氟粉尘等有害物质,为防止对周围环境的污染,采用干法净化技术进行净化回收。 铝电解生产原料氧化铝对氟化氢气体有较强的吸附能力,用它对含氟烟气进行干法吸附净化。 吸附方法为管道化法:电解槽含氟烟气从总烟管进入袋式收尘器之前,将新鲜氧化铝、循环氧化铝分别加入排烟总管中。在气固两相充分接触过程中,氟化氢被氧化铝吸附。加入的氧化铝和从电解槽中随烟气带出的粉尘,均在袋式收尘器内被分离下来返回电解槽使用,净化后的烟气经排烟机送入烟囱排空。 ****铝厂电解车间由两栋长831.6m,宽24m跨的厂房组成,厂房间距40m。两厂房内共配置236台240KA预焙电解槽,其中6台备用。设计三套电解烟气净化系统,配置在两栋电解厂房中间。 干法净化系统主要由排烟净化和供排料两部分组成。 1 、排烟净化系统 所有电解槽均用小型活动盖板和上部盖板密闭,槽内烟气通过集气罩及上部的连结支管与系统连接。 每台电解槽的支管均接在室外架空的水平干管上,干管接至脉冲袋式除尘器,经过净化后的烟气,通过排烟风机后送入60米高的烟囱排空。 2、供、排料系统 干法净化的供、排料系统包括新鲜氧化铝和循环氧化铝两部分的输送。新鲜氧化铝来自电解车间新鲜氧化铝仓,采用风动溜槽送入烟管内与氟化氢气体接触反应;循环氧化铝是从袋式除尘器回收下来的含氟氧化铝,经风动溜槽、空气提升机等,送至含氟氧化铝仓,一部分重返烟气总管进行循环吸附,另一部分供电解槽使用。 二、除尘器的性能和工作原理 除尘器含尘气体由风管进口阀进入尘气室,在挡风板形成的预分离室内,大颗粒

电石炉尾气的处理和综合利用_顾丽萍

电石炉尾气的处理和综合利用 顾丽萍 (宝钢工程技术集团有限公司,上海 201999) 摘要电石乙炔是基本的化工原料,在化学工业的发展史上起过极为重要的作用。由于近年来世界石油化工高速发展,在发达国家已由乙烯、丙烯取代了电石乙炔的地位。根据我国化学工业的生产状况以及能源资源现状,电石作为化工原料还会在我国存在相当长的一段时间,而电石炉是高能耗、高污染设备,电石炉在生产过程中会产生大量高温的含尘尾气(烟气),这些尾气处理不当,会影响操作人员的健康,排入大气就会对环境产生污染。而电石炉的尾气中含有大量CO,又是一种可利用的能源介质。本文主要针对电石炉尾气的特性,对电石炉尾气进行收集、净化处理,使电石炉尾气满足清洁能源的要求,这样既改善了电石炉的操作环境,又变废为宝,节约了能源,提高了企业的经济效益,同时符合《电石行业准入条件》的规定。 关键词电石,电石炉尾气,净化,综合利用 Manage and Integrate Utilize the Exhaust Gas of Calcium Carbide Furnace Gu Liping (Baosteel Engineering & Technology Group Co., Ltd., Shanghai 201999, China) Abstract Acetylene derived from calcium carbide is the elementary raw chemical material which had played a significant role in chemical industry developing history. As the result of the high speed expansion of world petroleum chemical in recent years, it has been replaced by ethane and propylene in developed countries. Based on the status of production and energy sources of chemical industry in our nation, calcium carbide will have been used as raw chemical material in a quite long time. As calcium carbide furnace is high expand energy and high pollution facility, it will produce a large quantity of high temperature exhausted gas during production process. Those exhausted gas will impact operators’ health and cause environmental pollution if it was mishandled and been emitted into the atmosphere. There is a great amount of carbon monoxide in exhausted gas of calcium carbide furnace which can be used as a kind of energy medium. Basing on the characteristic of exhausted gas of calcium carbide furnace, this thesis mainly introduced how to collect, purify and manage those exhausted gas in order to meet the standard of clean energy. Thus it not only improved the operation environment of calcium carbide furnace but also make it possible to recycle and save energy which will increase the economic benefit of enterprise and finally correspond the regulation of Access conditions of calcium carbide industry. Key words calcium carbide, cxhausted gas of calcium carbide furnace, purify,integrate utilization 1引言 电石是基本的化工原料,其利用丰富廉价的石灰石、炭材为资源,生产出低成本的电石,从而满足PVC 等产品对电石的需求,对于延伸产业链、发展循环经济、提升市场竞争力、增强企业抵御风险能力,具有十分重要的意义。而电石炉是高能耗、高污染设备,电石炉在生产过程中会产生大量高温的含尘尾气(烟气), 顾丽萍,女,工学士,高级工程师,长期从事燃气工程的专业设计与研究工作,guliping@https://www.360docs.net/doc/304542132.html,

火力发电厂烟气余热利用的分析及运用

POWER SUPPLY TECHNLLOGIES AND APPLICATIONS 火力发电厂烟气余热利用的分析及运用 郭洪远 (宁夏京能宁东发电有限责任公司宁夏灵武750400) 【摘要】由于目前水资源、能源紧缺、环境日益恶化等等状况,合理有效的利用电厂的烟气余热,提高火电机组的效率,减少煤耗是节能的主要且重要的措施之一。在火力发电厂中,锅炉的排烟余热问题一直是困扰人们的一个问题。本文对发电厂烟气余热利用的途径进行了分析,重点研究了利用烟气余热来加热凝结水的系统。研究表明,设置烟气余热系统,可大大提高火力发电厂热效率,降低煤耗,增加发电量,具有一定的经济效益和社会效益。因此在电厂优化设计中,合理有效的利用火电厂的烟气余热,提高机组运行效率,节约用水,减少煤耗,是节能的关键。 【关键词】烟气余热;优化设计;提高效率;节能 引言 由数据统计可知,在火力发电厂中,锅炉的排烟热损失大约占锅炉热损失的70%,随着锅炉运行时间的增加,受热面污染程度也随之增加,排烟温度要比设计温度高大约25℃,在我们国家,存在着很多锅炉投运时间较长、排烟温度较高甚至达到200℃的火电机组。如果能够合理的利用工艺和新技术来降低锅炉排烟温度,回收利用排出的烟气余热,将较大程度上降低火力发电厂的煤耗,达到节约能源的目的。 1.烟气余热利用的状况 目前,国外已经把火电机组的排烟温度设计为大约100℃,比之前的排烟温度值大大降低,在近几年来国外建立火电厂的共同特点有: (1)烟气的最终排放并不是通过常见的专用烟囱,而是通过自然风冷却塔排人大气之中。 (2)增添了烟气热量回收的环节,即在烟气脱硫装置和除尘器之间的烟道上安装了烟气冷却器,回收的热量用于凝结水的加热。

电石炉气净化技术研究进展

广东化工 2019年第5期· 160 · https://www.360docs.net/doc/304542132.html, 第46卷总第391期电石炉气净化技术研究进展 张礼树,张杰,韦光建 (四川天一科技股份有限公司,四川成都 610225) [摘要]我国现有电石生产企业200多家,每年产生的电石炉气超过150亿m3,绝大部分被放空,既严重污染大气环境,又造成CO资源的极大浪费。电石炉气经净化后可以实现一氧化碳等资源的利用。完整的电石炉气净化过程包括脱粉尘、除焦油、耐硫脱氧、脱硫、脱磷砷和氟氯等工序,西南化工研究设计院有限公司通过几年潜心研究,开发了一整套电石炉气净化提纯技术。 [关键词]电石炉气;一氧化碳;净化;技术 [中图分类号]TQ028.8 [文献标识码]A [文章编号]1007-1865(2019)05-0160-03 Research Progress of Carbide Furnace Vent Gas purification Technology Zhang Lishu, Zhang Jie, Wei Guangjian (Sichuan Tianyi Science and Technology Co., Ltd., Chengdu 610225, China) Abstract: There are more than 200 calcium carbide factories in China, which produce over 1.5 billion cubic metres of calcium carbide furnace gas every year. Most of the calcium carbide furnace gas was exhansted, which not only seriously polluted the environment, but also caused a great waste of carbon monoxide resources.The carbon monoxide resources can be utilization after purification. The purification process of calcium carbide furnace gas includes dust & tar removal, sulfur-tolerant deoxidation, desulfurization, phosphorization-arsenic removal and fluorine-chlorine removal. The SWRDICI developed a set of purification technology for calcium carbide furnace gas after years of hard work. Keywords: carbide furnace gas;carbon monoxide;purification;technology 1技术与市场需求 我国现有电石生产企业200多家,据不完全统计,我国每年产生的电石炉尾气超过150亿m3,绝大部分被放空或“点天灯”,既严重污染大气环境,又造成CO资源的极大浪费。2008年以来,我国开始逐步淘汰落后的开放式电石炉,推广密闭电石炉。如果我国全部电石生产都改用密闭式电石炉,按当前的电石产量,每年仍将产生70亿立方米的电石炉气,规模巨大。若作为碳一化工原料,每立方米价值按1.5元计,相当于每年回收价值135亿元的CO气。 密闭式电石炉每生产一吨电石副产电石炉尾气约400 Nm3。电石炉气的典型组成[1]见表1。 表1 电石炉气组成 Tab.1 Composition of carbide furnace gas 序号名称化学式含量/% 含量/(mg/m3) 1 一氧化碳 CO >74~84.5 2 氢气H2<2 3 甲烷 CH4<0.5 4 二氧化碳 CO2<2~10 5 氮气N2<1~8 6 氧气O2<0.2~0.6 7 其它<1~5 8 氢氰酸 HCN <0.3 9 硫化物硫化氢H2S <519 10 硫醇 RSH <250 11 羰基硫 COS <268 12 二硫化碳 CS2<3165 13 元素磷P4<25 14 磷化氢 PH3<20 15 砷化氢 AsH3<0.3 16 氟化物(F) SiF4< 17 粉尘>(150~200)×103 18 气体温度400~800 ℃ 19 气体压力微正负压 电石炉尾气中包含硫化物、磷化物、砷化物、氟化物、氯化物等高污染物质。仅按密闭式电石产量1000万吨计,每年共产生电石炉尾气40亿Nm3以上,有53万吨粉尘、6000吨焦油、1810吨磷化物、6500吨硫化物等有毒物排入大气。若采用清洁净化技术,99 %以上的粉尘、焦油、磷、硫废物可以无害处理利用,每年可回收利用的CO资源,折合标准煤209万吨以上、减排200万吨CO2。 电石炉气净化后可作为燃料使用。南京苏冶钙业技术有限公司刘银江等[2]发明了一种电石炉尾气的燃烧利用装置,电石炉的尾气排放接管、热交换器、除尘器、加压风机、燃烧器依次串联,燃烧器的喷嘴伸入热工窑炉内。电石炉尾气经热交换器降低温度,进入除尘器除尘,再经加压风机加压,被送入燃烧器的燃气管,最终将电石炉气喷入热工窑炉内燃烧。电石炉尾气的燃烧利用装置与热工窑炉及窑尾除尘系统结合,用于生产石灰或其它产品或用于物料烘干。 除此之外,电石炉气经净化提纯得到CO和氢气,还可作为 [收稿日期] 2019-02-14 [作者简介] 张礼树(1962-),男,四川泸州人,高级工程师,主要研究方向为变压吸附及碳一化学。

高温带腐蚀烟气净化方案.

攀枝花钢城集团有限公司西磁分公司二车间湿法除尘系统 实施方案

攀枝花钢企瑞天安全环保有限公司二〇一三年四月

项目名称: 二车间湿法除尘系统项目设计阶段:实施方案 负责人: 报告审核人: 报告编制人:

工程摘要 1. 工程名称 攀枝花钢城集团有限公司西磁分公司二车间湿法除尘系统项目 2. 工程规模 烟气经洗涤后,固体粉尘排放浓度符合《大气污染物综合排放标准》。 3. 工艺方案 粉尘治理采用引风方式将烟气收集后进行冷却降温,再经洗涤塔去除氧化铁粉尘后经室外高空排放,工艺过程:引风管→喷淋降温→复合洗涤→调节阀→风机→排烟囱; 4. 系统参数 抽风量:6000~8000m3/h 风机功率:18.5kw 冷却净化塔组合:2-□1400×1400×(高6000) 5. 主要技术经济指标 (1)工程费用:68.78万元 其中:设备制造费:22.86万元 建安费:21.23万元 措施费: 1.45万元 规费: 4.78万元

(2)其它费用: 1.24万元(4)税金: 2.84万元(3)项目总投资:50.31万元

目录 1.总论 ......................................................................................................................................... 71.1项目改造背景及必要性....................................................................................................... 71.2 设计的范围 ......................................................................................................................... 91.3设计目标 ...........................................................................................................................102.生产现状 ..............................................................................................................................112.1生产工艺流程简介............................................................................................................112.2现状及存在问题................................................................................................................112.3研究重点 ...........................................................................................................................113.环境及工艺条件...................................................................................................................123.1环境条件 ...........................................................................................................................123.2工艺条件 ...........................................................................................................................123.3工艺状况 ...........................................................................................................................124.设计依据及原则...................................................................................................................124.1设计依据法规和规范标准:............................................................................................124.2设计原则 ...........................................................................................................................135.技术方案 ..............................................................................................................................135.1粉尘污染现状 ...................................................................................................................135.2系统解决方案 ...................................................................................................................165.3工艺流程及说明................................................................................................................175.4 设备选择 ..........................................................................................................................196.平面布置 ..............................................................................................................................216.1循环水池 ...........................................................................................................................216.2设备布置 ...........................................................................................................................217.各系统主要设备及参数.......................................................................................................218.建设进度 ..............................................................................................................................23

电石炉中控工培训手册

大地化工一分公司一号密闭炉 表工培训手册 为贯彻公司稳定发展储备人才的指示精神,本炉特编制该培训手册,望各新进人员认真学习,结合实际生产操作,努力钻研岗位技能早日成长为优秀的仪表操作工。 目录: 一、密闭电石炉员工基本须知 二、仪表操作工基础知识 1、仪表操作岗位的作用? 2、生产电石的基本原料是什么? 3、生产电石的原料的质量要求: 4、什么是电石的发气量及发气量和电石质量的关系? 5、石灰中的杂质对电石生产有什么样的危害? 6、什么叫生烧石灰,为什么要求控制石灰的生烧率? 7、什么叫过烧石灰?它对电石生产有那些危害性? 8、为什么说碳素材料中的灰分越少对电石生产越好? 9、碳素材料中的水分对电石生产有什么影响? 10、怎样理解碳素材料中的挥发份对电石生产的影响? 11、电石生产中碳素材料的粒度多大才算合适? 12、什么是炉料的配比? 13、电石炉内的料层结构是怎样的? 14、什么是连续式自动烧结电极?

15、自动式烧结电极采用什么原料? 16、电极糊的烧结过程是怎样的? 17、焙烧电极糊的热源有那些? 18、电极软断的原因是什么?如何处理和预防 19、电极硬断的原因是什么?如何处理和预防 20、形成高炉温的条件有那些? 21、怎样掌握电极的工作长度和插入料层的深度? 22、什么叫明弧操作?有什么危害? 23、为什么会有塌料现象?如何预防? 24、为什么有时候加料刚完,电极反而上升? 25、电极入料深度测量方法的原理是什么? 26、炉气中氢气含量超过规定指标会发生事故吗? 三、表工必须知道的电学知识 1、电流、电压和电阻 2、欧姆定律 3、电流的热效应 4、功率因数 5、三相交流电路

电石炉尾气

:由中化化工科学技术研究总院、天津碳一有机合成工程设计有限公司承担的包头希望铝业集团海平面高分子工业有限公司利用密闭电石炉尾气年产10万吨甲酸钠项目初步设计审批会日前在包头召开。专家认为,该技术项目在实现电石尾气综合利用上具有示范意义。密闭式电石炉炉气成分主要以CO为主,大约占到80%左右。生产1吨电石一般要产生400多立方米炉气。CO是合成各类碳一化学品最重要的原料气。目前,在密闭式电石炉炉气利用上,大都把炉气用来烧锅炉或石灰,虽然增添了效益,但也增加了污染物排放。本次审批的甲酸钠项目,是利用两台48000kV A密闭电石炉炉气与烧碱反应,再经结晶、干燥而得到甲酸钠,实现电石尾气的综合利用。该项目创了电石炉气生产化工产品的先例。甲酸钠生产工艺过程中,最关键技术是炉气净化。该技术最大特点是采用干湿法除尘,省去布袋过滤等工艺,可大大提高除尘效果及电石炉炉气利用率。业界专家普遍认为,该项目如建成示范工程,将带动电石尾气的综合利用。新能源汽车技术路径需要“变线” 天华院填补国内大乙烯大型裂解炉领域空白植物多元醇替代聚醚技术引关注生成胰岛素的胰岛细胞可再生95%高浓度电子级磷酸技术问世废弃油脂制生物环保增塑剂项目通过鉴定 甲酸 我国除了山东肥城阿斯德化工公司(6万万t/a)、南京扬巴石化合资装置(5万t/a)、济南化工厂(2万t/a)和新安江化工厂(1万t/a)采用甲酸甲酯水解工艺生产甲酸,其余皆为甲酸钠法生产。 (一)甲酸钠法 上游原料:甲酸钠、硫酸 工艺:甲酸钠同硫酸进行酸解反应,产生甲酸和硫酸钠,再经蒸馏、冷凝后,即可获得 甲酸产品,此法成本较高,污染大,副产品难以处理。 基本化学反应是:2HCOONa+H2SO4——2HCOOH +Na2SO4 在工业生产中,甲酸钠酸化法生产甲酸的适宜工艺条件是采用60%的硫酸,甲酸钠与硫酸的质量比1:2.1,反应温度为50摄氏度,反应时间为45分钟,此时甲酸溶液的质量最高。 市场价格:目前国内市场85%甲酸售价在4500元/t左右。 附加值:甲酸装置规模按2000t/a(含量85%)计算: (1)劳动定员:5人/班,实行三班制,其中人均工资按7000元/年计算。 (2)生产车间建筑面积约270m2,库房300m2。 (3)设备投资40万元。 (4)总投资约50万元。 目前国内市场85%甲酸售价在4500元/t,国际上甲酸售价在5000元/吨,吨产品利润约500

电石炉尾气净化系统操作规程

30000KV A 电石炉炉气净化岗位操作规程 文件编号: 版本:A 分发号: 审核:日期: 批准:日期: 受控状态:持有者: 2013年月日发布 2013年月日实施

电石炉炉气净化岗位操作规程 一、岗位基本任务 1、负责电石炉净化系统的开车、正常运行、停车操作,实现炉气利用和烟气达标排放。 2、负责电石炉净化系统的相关参数调整工作。 3、负责电石炉净化系统的控制操作。 4、负责净化系统运行工作的管理。 5、负责岗位的设备巡视。 二、操作方法 1、开车前的准备及检查工作 1.1过滤器启动前的准备及检查工作 1.1.1检查所有氮气管路是否连通,特别是链板机及各电机用于轴密封的氮气。 1.1.2检查电机的旋转方向,如反转,应调整到正确的旋向。 1.1.3必须在开始检查、维修之前切断电源。 1.1.4必须在开始检查、维修之前用氮气置换、排放一氧化碳,在确定一氧化碳化验结果为0 后,使用压缩空气对过滤器内进行清扫,保证过滤器内的氧气含量>18%。 1.1.5过滤器必须在检查、维修之前从约200℃的操作温度冷却下来。 1.1.6启动后检查和调整粗气风机的转速(压力调节阀)将电石炉的炉压控制到规定的压力。 1.2粗气风机、净气风机、冷却风机启动前的准备检查工作 1.2.1检查电机转动方向是否正常,用手盘动是否灵活。 1.2.2检查冷却水有无渗漏,冷却水系统是否正常工作。 1.2.3检查油箱的油面是否正常。 1.2.4检查传动三角带与皮带轮是否正常配套及松紧程度。 1.2.5检查各螺栓是否坚固。 1.2.6检查皮带罩是否安置合适,有无擦碰皮带现象。 1.2.7检查轴承润滑是否合适,达到润滑系统正常要求。 1.2.8启动风机时检查风叶有无异常震动。 1.2.9检查是否有工具或其他物品遗忘在风机内或管道内。 1.2.10启动风机时要用钳式电流表检查风机电机三相是否平衡。

相关文档
最新文档