【材料力学】孙训方第五版5-5

合集下载

材料力学第五版孙训方版课后习题答案

材料力学第五版孙训方版课后习题答案

从而得,Ax l2 4.76, Ay l2 2 l1 3 20.23 ( )
(2)
V F Ay F1 l1 +F2 l2 0 Ay 20.33 ( )
[习题 2-17] 简单桁架及其受力如图所示,水平杆 BC 的长度 l 保持不变,斜杆 AB 的长度 可随夹角 的变化而改变。 两杆由同一种材料制造, 且材料的许用拉应力和许用压应力相等。
1000 tan 4.7867339 o 83.7(mm)
(3)求荷载 F 的值 以 C 结点为研究对象,由其平稀衡条件可得:
Y 0 : 2N sin a P 0
P 2 N sin a 2A sin
2 735 0.25 3.14 12 sin 4.787 0 96.239( N )
1 18117 2 1414 256212 1600 ( ) 1.366(mm) 故: A 35000 210000 113 210000 177
[习题 2-13] 图示 A 和 B 两点之间原有水平方向的一根直径 d 1mm 的钢丝, 在钢丝的中点 C 加一竖向荷载 F。 已知钢丝产生的线应变为 0.0035 , 其材料的弹性模量 E 210GPa , 钢丝的自重不计。试求: (1)钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律) ; (2)钢丝在 C 点下降的距离 ; (3)荷载 F 的值。 解: (1)求钢丝横截面上的应力
N AB cos N BC 0
N BC N AB cos
(2)求工作应力
F cos F cot sin
2-17
AB
BC

孙训方材料力学第五版课后习题答案详解之欧阳治创编

孙训方材料力学第五版课后习题答案详解之欧阳治创编

第二章 轴向拉伸和压缩2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:;;(b )解:;;(c )解:;。

(d)解:。

返回Microsoft Corporation时间2021.03.10创作:欧阳治孙训方材料力学课后答案[键入文档副标题]lenovo [选取日期]2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3 试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)返回2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:返回2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D 两点间的距离改变量。

孙训方材料力学第五版课后的习题答案

孙训方材料力学第五版课后的习题答案

孙训⽅材料⼒学第五版课后的习题答案第⼆章轴向拉伸和压缩2-1 试求图⽰各杆1-1和2-2横截⾯上的轴⼒,并作轴⼒图。

(a )解:;;(b )解:;;(c )解:;。

(d) 解:。

[习题2-3] ⽯砌桥墩的墩⾝⾼m l 10=,其横截⾯⾯尺⼨如图所⽰。

荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩⾝底部横截⾯上的压应⼒。

解:墩⾝底⾯的轴⼒为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=+?--=墩⾝底⾯积:)(14.9)114.323(22m A =?+?=因为墩为轴向压缩构件,所以其底⾯上的正应⼒均匀分布。

MPa kPa mkN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图⽰⼀混合屋架结构的计算简图。

屋架的上弦⽤钢筋混凝⼟制成。

下⾯的拉杆和中间竖向撑杆⽤⾓钢构成,其截⾯均为两个75mm ×8mm 的等边⾓钢。

已知屋⾯承受集度为的竖直均布荷载。

试求拉杆AE 和EG 横截⾯上的应⼒。

解:=1)求内⼒取I-I 分离体得(拉)取节点E 为分离体,故(拉)2)求应⼒75×8等边⾓钢的⾯积 A =11.5 cm 2(拉)(拉)2-5图⽰拉杆承受轴向拉⼒,杆的横截⾯⾯积。

如以表⽰斜截⾯与横截⾯的夹⾓,试求当,30,45,60,90时各斜截⾯上的正应⼒和切应⼒,并⽤图表⽰其⽅向。

解:2-6 ⼀⽊桩柱受⼒如图所⽰。

柱的横截⾯为边长200mm的正⽅形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的⾃重,试求:(1)作轴⼒图;(2)各段柱横截⾯上的应⼒;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)[习题2-7] 图⽰圆锥形杆受轴向拉⼒作⽤,试求杆的伸长。

解:取长度为dx 截离体(微元体)。

则微元体的伸长量为:)()(x EA Fdx l d =? ,??==?l l x A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+?-=, 2211222)(u d x ld d x A ?=??? ??+-=ππ,dx l d d du d x l d d d 2)22(12112 -==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d lx A dx -?-=?-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l--===?πlld x l d d d d E Fl u d d E Fl 011221021221)(21)(2??+--=???-=ππ-+--=21221)(2111221d d l l d d d d E Fl π2-10 受轴向拉⼒F 作⽤的箱形薄壁杆如图所⽰。

材料力学第五版孙训方版课后习题答案高等教育出版社

材料力学第五版孙训方版课后习题答案高等教育出版社

材料力学 高等教育出版社 孙训方[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。

解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。

荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:g Al F G F N ρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7图解:取长度为dx 截离体(微元体)。

则微元体的伸长量为:)()(x EA Fdxl d =∆ ,⎰⎰==∆l lx A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx ld d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u du d d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。

材料力学第五版(孙训方著)课后答案下载

材料力学第五版(孙训方著)课后答案下载

材料力学第五版(孙训方著)课后答案下载材料力学一般是机械工程和土木工程以及相关专业的大学生必须修读的课程,以下是为大家的材料力学第五版(孙训方著),仅供大家参考!点击此处下载???材料力学第五版(孙训方著)课后答案???固体力学的一个分支,研究结构构件和机械零件承载能力的基础学科。

其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。

在结构承受载荷或机械传递运动时,为保证各构件或机械零件能正常工作,构件和零件必须符合如下要求:①不发生断裂,即具有足够的强度;②构件所产生的弹性变形应不超出工程上允许的范围,即具有足够的刚度;③在原有形状下的平衡应是稳定平衡,也就是构件不会失去稳定性。

对强度、刚度和稳定性这三方面的要求,有时统称为“强度要求”,而材料力学在这三方面对构件所进行的计算和试验,统称为强度计算和强度试验。

为了确保设计安全,通常要求多用材料和用高质量材料;而为了使设计符合经济原则,又要求少用材料和用廉价材料。

材料力学的目的之一就在于为合理地解决这一矛盾,为实现既安全又经济的设计提供理论依据和计算方法。

在人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。

运用材料力学知识可以分析材料的强度、刚度和稳定性。

材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化结构设计,以达到降低成本、减轻重量等目的。

在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。

但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。

材料力学的研究内容包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。

材料力学第五版课后题答案(孙训芳)

材料力学第五版课后题答案(孙训芳)

材料力学(I)第五版(孙训芳编)甘肃建筑职业技术学院长安大学土木工程材料力学复习材料材料力学第五版课后答案(孙训芳编)4-1试求图示各梁中指定截面上的剪力和弯矩 a (5)=h (4)001100110002222200022132241111223121140,222233RA RB S S q F F a q a q F q a a q aa M q a q a q aF M q a a q a a q a ----==⨯==-⨯==-⨯⨯⨯===⨯-⨯⨯⨯=b (5)=f (4)4-2试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图 a (5)=a (4)b(5)=b(4)f(5)=f(4)4-3试利用载荷集度,剪力和弯矩间的微分关系做下列各梁的弯矩图和剪力e和f题)(e)(f)(h)4-4试做下列具有中间铰的梁的剪力图和弯矩图。

4-4 (b) 4-5 (b)4-5.根据弯矩、剪力与荷载集度之间的关系指出下列玩具和剪力图的错误之处,并改正。

4-6.已知简支梁的剪力图如图所示,试做梁的弯矩图和荷载图,梁上五集中力偶作用。

4-6(a) 4-7(a)4-7.根据图示梁的弯矩图做出剪力图和荷载图。

4-8用叠加法做梁的弯矩图。

4-8(b) 4-8(c)4-9.选择合适的方法,做弯矩图和剪力图。

4-9(b) 4-9(c)4-104-14.长度l=2m的均匀圆木,欲锯做Fa=0.6m的一段,为使锯口处两端面开裂最小,硬是锯口处弯矩为零,现将圆木放在两只锯木架上,一只锯木架放在圆木一段,试求另一只锯木架应放位置。

x=0.4615m4-184-19M=30KN 4-214-234-254-284-294-334-364-355-25-35-75-155-225-246-4 6/((233))A l Fl EA ∆=+6-127-3-55mpa 。

-55mpa7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。

孙训方材料力学第五版课后习题答案详解

孙训方材料力学第五版课后习题答案详解

Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;(c)解:;。

(d)解:。

返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)返回2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。

解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。

孙训方材料力学第五版课后习题答案解析详细讲解

孙训方材料力学第五版课后习题答案解析详细讲解

WORD格式可编辑Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;(c)解:;。

(d) 解:。

返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。

解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。

孙训方材料力学第五版课后习题答案详解

孙训方材料力学第五版课后习题答案详解

Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;(c)解:;。

(d) 解:。

返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A= cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。

解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。

孙训方材料力学第五版课后习题答案详细讲解

孙训方材料力学第五版课后习题答案详细讲解

Microsoft Corporation训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;(c)解:;。

(d) 解:。

返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。

解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。

孙训方第五版 材料力学课件-高等教育出版社

孙训方第五版 材料力学课件-高等教育出版社
扭转
T n
纯弯曲
M
M
第二章 轴向拉伸和压缩
主讲教师:郑新亮
2016年12月13日星期二
第一节 轴向拉伸与压缩的概念及实例
轴向拉伸与压缩是四种基本变形中最基本、最 简单的一种变形形式。 1、工程实例
拉杆 P
压杆
P
P
第一节 轴向拉伸与压缩的概念及实例
2、轴向拉伸与压缩的概念
受力特点:作用于杆端外力的合力作用线与杆件轴线重合 变形特点:沿轴线方向产生伸长或缩短
变 形
{
弹性变形 塑性变形
材料力学是在弹性范围内研究构件的承载能力
第二节 变形固体的基本假设
材料力学对变形固体所做的几个基本假设:
1 均匀连续性假设
变形固体的机械性质在固体内各点都是一样的,并且组成变形 固体的物质毫无空隙的充满了构件的整个几何容积。
2 各向同性假设
变形固体在各个方向上具有相同机械性质。具有相同机械性质 的材料为各向同性材料。
第二节 受轴向拉伸或压缩时横截面上的内力和应力
横截面上的应力分布:
F
ζ
1、正应力的概念:
内力在横截面上的分布集度
N A
单位: 帕斯卡 Pa (=N/m2)
常用单位: MPa=106 Pa GPa=109 Pa
第二节 受轴向拉伸或压缩时横截面上的内力和应力
2、正应力的符号规定:
当轴向力为正时,正应力为正(拉应力),反之 为负(压应力)
2
第二节 受轴向拉伸或压缩时横截面上的内力和应力
讨论: cos 2 sin 2 2
45 90
0
o
o
,max

材料力学第五版孙训方版课后习题答案

材料力学第五版孙训方版课后习题答案

[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。

解:由题意可得:3323311,,3/()3/(/)llNfdx F kl F k F lF x Fx l dx F x l=====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高ml10=,其横截面面尺寸如图所示。

荷载kNF1000=,材料的密度3/35.2mkg=ρ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:gAlFGFNρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN-=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22mA=⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

MPakPamkNAN34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7图解:取长度为dx截离体(微元体)。

则微元体的伸长量为:)()(xEAFdxld=∆,⎰⎰==∆llxAdxEFdxxEAFl0)()(lxrrrr=--121,22112112dxlddrxlrrr+-=+⋅-=,2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。

孙训方材料力学第五版

孙训方材料力学第五版

孙训方材料力学第五版
孙训方老师的《材料力学》第五版是一本深入浅出的教材,旨在帮助学生全面
掌握材料力学的基本理论和方法,为材料学、机械工程等相关专业的学生打下坚实的基础。

本书内容丰富、系统,涵盖了材料力学的各个方面,具有很高的教学和应用价值。

首先,本书在内容安排上十分合理,从材料的基本性质和应力、应变的概念入手,逐步深入到材料的弹性力学、塑性力学、断裂力学等内容,全面介绍了材料力学的基本理论。

每一章节都有清晰的逻辑结构,层层深入,使得学生能够循序渐进地学习,轻松掌握知识要点。

其次,本书注重理论与实践的结合,不仅介绍了材料力学的基本理论,还通过
大量的实例和案例分析,帮助学生将理论知识应用到实际问题中。

例如,在讲解材料的弹性力学时,书中不仅介绍了弹性模量、泊松比等基本概念,还通过实例分析了不同材料的应力-应变关系,使学生能够更加深入地理解理论知识。

此外,本书还突出了对重点难点问题的讲解,对一些常见的难点问题,如薄壁
压力容器的计算、断裂力学中的裂纹扩展等,进行了重点剖析,使学生能够更加深入地理解和掌握这些问题,为日后的学习和工作打下坚实的基础。

最后,本书的语言通俗易懂,图文并茂,生动形象,能够激发学生学习的兴趣。

书中的案例分析、习题训练等环节设计合理,能够帮助学生巩固所学知识,提高解决实际问题的能力。

总之,孙训方老师的《材料力学》第五版是一本权威、全面、深入浅出的教材,适合材料学、机械工程等相关专业的学生使用,也可作为工程技术人员的参考书。

希望广大学生能够认真学习本书,掌握材料力学的基本理论和方法,为将来的学习和工作打下坚实的基础。

孙训方材料力学第五版课后习题答案详解

孙训方材料力学第五版课后习题答案详解

Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章??????轴向拉伸和压缩? ? ? ? ? ? ? ? ??????????2-1? 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;??????(c)解:;。

(d)解:。

??????2-2 ?试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:2-3?试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:2-4? 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

???解:=1)? 求内力取I-I分离体?得? (拉)取节点E为分离体,???故(拉)2)??????? 求应力?? 75×8等边角钢的面积A= cm2?(拉)?(拉)2-5(2-6)? 图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

?? 解:??????????2-6(2-8) ?一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:? (压)? (压)2-7(2-9) ?一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:???2-8(2-11) ?受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。

孙训方材料力学第五版课后习题答案详解

孙训方材料力学第五版课后习题答案详解

Microsoft Corporation 孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;(c)解:;。

(d) 解:。

返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A= cm2(拉)(拉)返回2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:返回2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。

解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。

材料力学第五版孙训方

材料力学第五版孙训方

有有还有造句
1、盛夏的花竞香开放,有牡丹,有茉莉,还有莲花。

2、大课间,同学们有的跳绳,有的踢毽子,还有的玩捉迷藏,他们玩的真开心呀!
3、春天来了,外面美极了,有花香,有绿叶,还有鸟鸣。

4、花园里有许多花,有的是红的,有的是紫的,还有的是白的。

5、有人喜欢下雪,有人喜欢阴天,还有人喜欢晴天。

6、小鱼有的在玩捉迷藏,有的在比谁游得快,还有的的在吐泡泡。

7、有的人喜欢把人生比作一条路,有的人喜欢把人生比作一杯酒,还有的人喜欢把人生比作一团麻。

我却要把人生比作一朵花。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



2012-6-16
3

解:一般情况下,选择梁的截面尺寸或选择型钢的型 号时,先按正应力强度条件选择截面尺寸或型钢型号,然
后按切应力强度条件以及刚度条件进行校核,必要时再作
更改。
2012-6-16
4
1. 按正应力强度条件选择槽钢型号 作梁的剪力图和弯矩 图如图c和图e。最大弯矩
在距左支座0.8 m处,
2

48 EI
可见,对于此梁上的左边两个集中荷载,应为
wC
2012-6-16
Fa 3 l 4 a
2

2

9
48 EI
于是由叠加原理可得
w max w C 1 48 EI [ 120 10 N 0 . 4 m 3 2 . 4 m 4 0 . 4 m
3 2 2 2
2 2
2
2
m 4 0 .6 m
2 2
2
]

48 210 10 Pa 2 1 780 10

1671 10 N m

m
4

4 . 66 10
3
m
而许可挠度为
w
2012-6-16
1 w l 2 . 4 m 6 10 l 400
5 q l 2 a 384 EI ql EI
4
4
2
2 l 2 a
16 EI
0 . 000 616
13
而此时外伸端D和E的挠度也仅为
wD wE qa
4

q (l 2 a ) 24 EI ql EI
4
3
a
qa 2
2
(l 2 a ) 2 EI
2012-6-16
8
3. 按刚度条件校核 此简支梁上各集中荷载的指向相同,故可将跨中截 面C的挠度wC作为梁的最大挠度wmax。本教材附录Ⅳ序号 11中给出了简支梁受单个集中荷载F 时,若荷载离左支座
的距离a大于或等于离右支座的距离b,跨中挠度wC的计
算公式为
wC Fb 3 l 4 b
2




2

30 10 40 10 12 10
9
3
N 0 . 8 m 3 2 . 4 m 4 0 . 8 m
2 2 2 2
3
3
N 0 . 9 m 3 2 . 4 N 0 . 6 m 3 2 . 4
3 2 8
2
m 4 0 .9 m
Mmax=62.4 kN· m。梁所需 的弯曲截面系数为
M 62 . 4 10
3 6
Wz

max

N m Pa
170 10
367 10
6
m
3
2012-6-16
5
而每根槽钢所需的弯曲截面系数Wz≥367×10-6 m3/2=183.5× 10-6m3。由型钢表查得20a号槽钢其Wz=178 cm3,虽略小于所需
4
384 EI
2012-6-16
Байду номын сангаас12
如果将两个铰支座各内移一个距离a而成为如图a所
示的外伸梁,且a=0.207l,则不仅最大弯矩减小为
(a)
M
2
M
max
C
M
A
M
2
B
qa 2
0 . 0214 ql
而且跨中挠度减小为
qa 2
2
w max w C
2012-6-16
3
m
由于wmax<[w],故选用20a号槽钢满足刚度条件。
10
Ⅱ. 提高梁的刚度的措施 (1) 增大梁的弯曲刚度EI 由于不同牌号的钢材它们的弹性模量E大致相同 (E≈210 GPa),故从增大梁的弯曲刚度来说采用高强度钢 并无明显好处。为增大钢梁的弯曲刚度,钢梁的横截面均 采用使截面面积尽可能分布在距中性轴较远的形状,以增
a
8 EI
0 . 000 207
2012-6-16
( )
14
所谓改变结构的体系来提高梁的刚度在这里是指增加 梁的支座约束使静定梁成为超静定梁,例如在悬臂梁的自 由端增加一个铰支座,又例如在简支梁的跨中增加一个铰 支座。
2012-6-16
15
的Wz=183.5×10-6 m3而最大弯曲正应力将略高于许用弯曲正应
力[],但如超过不到5%,则工程上还是允许的。 现加以检验:

max

62 . 4 10 N m
3
2 178 10

6
m
3

175 10 Pa 175 MPa
6
超过许用弯曲正应力的百分数为(175-170)/170≈3%,未超过 5%,故允许。事实上即使把梁的自重 (2×22.63 kg/m=0.4435
跨比),[q]为许可转角。上列刚度条件常称之为梁的刚度 条件。
2012-6-16
1
土建工程中通常只限制梁的挠跨比,
机械工程中,对于主要的轴,w l 1 5000 ~
1 1 w ~ l 250 1000 1
。在
;对于传动轴还
~ 0 . 001 rad
kg/m)考虑进去,超过许用弯曲正应力的百分数仍不到5%。
2012-6-16
6
2. 按切应力强度条件校核 最大剪力FS,max=138 kN,在左支座以右0.4 m范围内各
横截面上。每根槽钢承受的最大剪力为
F S , max 2 138 kN 2 69 10
3
N
每根20a号槽钢其横截面在中性轴一 侧的面积对中性轴的静矩,根据该号 槽钢的简化尺寸(图d)可计算如下:
要求限制在安装齿轮处和轴承处的转角,q 0 . 005
10000

2012-6-16
2
例题1 图a所示简支梁由两根槽钢组成(图b),试选择既
满足强度条件又满足刚度条件的槽钢型号。已知[]=170
MPa,[]=100 MPa,E=210 GPa,
1 w l 400
2012-6-16
7
100 11 11 * S z , max 73 mm 11 mm 100 mm 100 11 mm 7 mm mm 2 2
104000 mm
3
每根20a号槽钢对中性轴的惯性矩由型钢表查得为 Iz =1780 cm4 于是
§5-5梁的刚度校核 .提高弯曲刚度的措施
Ⅰ. 梁的刚度校核 对于产生弯曲变形的杆件,在满足强度条件的同时,
为保证其正常工作还需对弯曲位移加以限制,即还应该满 足刚度条件:
w max l w l
q max [q ]
w 式中,l为跨长, 为许可的挠度与跨长之比(简称许可挠 l
大截面对于中性轴的惯性矩Iz,例如工字形截面和箱形截
面。
2012-6-16
11
(2) 调整跨长和改变结构的体系
跨长为l 的简支梁受集度为q的满布均布荷载时,最大 弯矩和最大挠度均出现在跨中,它们分别为
ql 8 5 ql
4 2
M
max

0 . 125 ql
2
w max
0 . 0130
ql EI
max
( F S , max / 2 ) S z , max I zd
6

( 69 10
3
N) 104 10
-8
-6 3
m
3
(1780 10
m )( 7 10
4
m)
57 . 6 10
Pa 57.6 M Pa
其值小于许用切应力[]=100 MPa,故选用20a号槽钢满足切 应力强度条件。
相关文档
最新文档