单相电动机正反转控制实物接线图

合集下载

单相电机各种接法

单相电机各种接法

单相双值电容电机接线1.电源接在主绕组两端,副绕组串联电容组之后,与主绕组并联。

2.电容组与主绕组首端相接正转,电容组与主绕组尾端相接反转。

3.启动电容串接离心开关,然后和运转电容并联,组成电容组。

启动电容大,运行电容小。

主绕组阻值小,副绕组阻值大。

220V交流单相电机起动方式大概分一下几种:第一种,电容运转式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。

运转速率大致保持定值。

主要应用于电风扇,空调风扇电动机,洗衣机等电机。

图1 电容运转型接线电路第二种,电容启动式:电机静止时离心开关是接通的,给电后起动参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动完成任务,并被断开。

起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。

图2 电容起动型接线电路第三种,电容启动运转式(双值电容电机):电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。

而运行电容串接到起动绕组参与运行工作。

这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。

如图3图3 电容启动运转型接线电路(双值电容器)带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。

电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。

启动绕组阻值大,运转绕组阻值小。

正反转控制:图4是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。

一般洗衣机用得到这种电机。

这种正反转控制方法简单,不用复杂的转换开关。

图4 开关控制正反转接线图1,图2,图3,图5 正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。

对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。

电动机正反转自循环运动控制电路图原理

电动机正反转自循环运动控制电路图原理

电动机正反转自循环运动控制电路图原理平面磨床工作台运动示意图中行程开关SQ1、SQ2安装在工作台运动部件的。

左右两个极限位置,工作台上还安装左右两个挡铁。

平面磨床工作台的来回自循环运动
起动后,工作台运动向右运动至右极限位置时,右挡铁压下SQ2行程开关按钮,电动机转变转向驱动工作台向左运动。

工作台运动至左极限位置时,左挡铁压下SQ1行程开关按钮,电动机又一次转变转向驱使工作台向右运动,形成左右往复循环运动。

安装在行程开关外侧还有两个行程开关SQ3、SQ4。

如因某种故障,工作台到达SQ1或SQ2位置时,未能触动SQ1或SQ2所掌握的触头,工作台将连续运动到行程开关SQ3或SQ4处压下SQ3或SQ4,从而切断主电路电源迫使电动机停机,避开工作台超出允许极限位置而造成事故,因此SQ3、SQ4是超程爱护开关。

实现工作台往复运动的电动机正-反自循环掌握线路中按下SB2,KM1线圈通电,并通过KM1动合帮助触头自锁,主电路中KM1主触头闭合、KM2主触头断开,电动机正转驱动工作台右移。

左右来回自循环运动掌握线路
a)主电路b)掌握线路
工作台移至右极限位置时,右挡铁压下SQ1行程开关,KM1线圈因所在支路中的SQ1动断帮助触头断开而断电,并使KM1动合帮助触头解除自锁;KM2线圈则通过支路中的SQ1动合帮助触头闭合形
成自锁并通电,主电路中KM1主触头断开、KM2主触头闭合,电动机反转驱动工作台左移。

当工作台运动到左极限位置时,左挡铁压下SQ2行程开关时,又使主电路中KM1主触头闭合、KM2主触头断开,电动机再次正转驱动工作台右移,如此循环。

按下SB1,KM1线圈和KM2线圈均断电,自循环停止。

用倒顺开关控制单相电机正反转接线方法

用倒顺开关控制单相电机正反转接线方法

用倒顺开关控制单相电机正反转接线方法
接线:火线连接倒顺开关的L1端子,零线连接倒顺开关的L3端子,T1和L2端子短接,L2连接电动机U1端子,L3连接电动机U2端子,T2连接电动机W2端子, T3连接电动机V1端子, W1和V2接启动电容。

接线方法下如图:
1、正转的原理:
U1和V1用连接片连接起来,再把W2和U2用连接片连接起来,用导线分别接入到控制开关的火线和零线上去,就是正转。

2、反转的原理:
反转我们就是要调整主绕组或者副绕组的接线方式就可以了,具体接法是,U1和W2用连接片起来,再把V1和U2用连接片连接起来,
然后用导线分别接入到控制开关的火线和零线上去,它就是反转。

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)-推荐下载

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)-推荐下载

单相电机的倒顺开关接线及原理有不少电工对单相电机的接线搞不清。

我先对单相电机的正反转原理讲一下。

单机电机里面有二组线圈,一组是运转线圈(主线圈),一组是启动线圈(副线圈),大多的电机的启动线圈并不是只启动后就不用了,而是一直工作在电路中的。

启动线圈电阻比运转线圈电阻大些,量下就知了。

启动的线圈串了电容器的。

也就是串了电容器的启动线圈与运转线圈并联,再接到220V电压上,这就是电机的接法。

当这个串了电容器的启动线圈与运转线圈并联时,并联的二对接线头的头尾决定了正反转的。

比起三相电动机的顺逆转控制,单相电动机要困难得多,一是因为单相电动机有启动电容、运行电容、离心开关等辅助装置,结构复杂;二是因为单相电动机运行绕组和启动绕组不一样,不能互为代用,增加了接线的难度,弄错就可能烧毁电动机。

有接线盒的单相电动机内部接线图上图,是双电容单相电动机接线盒上的接线图,图上清晰的反映了电动机主绕组、副绕组和电容的接线位置,你只需要按图接进电源线,用连接片连接Z2和U2,UI和VI,电动机顺转,用连接片连接Z2和U1,U2和VI,电动机逆转。

单相电动机各个元件也好鉴别,电容都是装在外面,用肉眼就可以看清楚接线位置(如上图)启动电容接在V2—Z1位置,运行电容接在V1—Z1间,从里面引出的线也好鉴别,接在(如上图)UI—U2位置的是运行绕组,接在Z1—Z2位置的是启动绕组、接在V1—V2位置的是离心开关。

用万用表也容易区分6根线,阻值最大的是启动绕组,阻值比较小的运行绕组,阻值为零的是离心开关。

如果运行绕组和启动绕组阻值一样大,说明这两个绕组是完全相同的,可以互为代用。

单相电动机的绕组两端和电容两端不分极性,任意接都可以,但启动绕组和运行绕组不能接反,启动电容和运行电容不能接反,否则容易烧启动绕组以下是自己为了消化吸收而画的接线图,在此献给广大电工朋友,希望能给大家带来一些帮助。

本人学识粗浅,特建立QQ群:79694587 以便大家相互学习。

详解单相电机电容接线图

详解单相电机电容接线图

详解单相电机电容接线图220V交流单相电机起动方式大概分一下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。

运转速率大致保持定值。

主要应用于电风扇,空调风扇电动机,洗衣机等电机。

接线图第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。

起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。

第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。

而运行电容串接到起动绕组参与运行工作。

这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。

如图3。

838电子带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。

电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。

正反转控制:图4是带正反转倒顺开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。

一般洗衣机用得到这种电机。

这种正反转控制方法简单,不用复杂的转换开关。

图1,图2,图3,图5 正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。

对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。

一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。

图1 电容运转型接线电路图2 电容起动型接线电路图3 电容启动运转型接线电路(双值电容器)图4 开关控制正反转接线图5 双值电容异步电动机倒顺接线图图6是实际的开关与电机连接图,这个倒顺开关如应用在三相电动机不需任何改动,如做单相电机换向用则稍做改动,红色,兰色线接入电源,黑色线是起动绕组线圈引出线,白色线运行绕组线圈引出线,左面一根灰色线是后接入的跨接线,正反转倒换就是靠开关自带的交叉连片来换向的,这种开关不足之处就是开关关闭后仍有一根线没有关闭,因此在安全上没有一定保障。

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)概要

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)概要

单相电机的倒顺开关接线及原理有不少电工对单相电机的接线搞不清。

我先对单相电机的正反转原理讲一下。

单机电机里面有二组线圈,一组是运转线圈(主线圈),一组是启动线圈(副线圈),大多的电机的启动线圈并不是只启动后就不用了,而是一直工作在电路中的。

启动线圈电阻比运转线圈电阻大些,量下就知了。

启动的线圈串了电容器的。

也就是串了电容器的启动线圈与运转线圈并联,再接到220V电压上,这就是电机的接法。

当这个串了电容器的启动线圈与运转线圈并联时,并联的二对接线头的头尾决定了正反转的。

比起三相电动机的顺逆转控制,单相电动机要困难得多,一是因为单相电动机有启动电容、运行电容、离心开关等辅助装置,结构复杂;二是因为单相电动机运行绕组和启动绕组不一样,不能互为代用,增加了接线的难度,弄错就可能烧毁电动机。

有接线盒的单相电动机内部接线图上图,是双电容单相电动机接线盒上的接线图,图上清晰的反映了电动机主绕组、副绕组和电容的接线位置,你只需要按图接进电源线,用连接片连接Z2和U2,UI和VI,电动机顺转,用连接片连接Z2和U1,U2和VI,电动机逆转。

单相电动机各个元件也好鉴别,电容都是装在外面,用肉眼就可以看清楚接线位置(如上图)启动电容接在V2—Z1位置,运行电容接在V1—Z1间,从里面引出的线也好鉴别,接在(如上图)UI—U2位置的是运行绕组,接在Z1—Z2位置的是启动绕组、接在V1—V2位置的是离心开关。

用万用表也容易区分6根线,阻值最大的是启动绕组,阻值比较小的运行绕组,阻值为零的是离心开关。

如果运行绕组和启动绕组阻值一样大,说明这两个绕组是完全相同的,可以互为代用。

单相电动机的绕组两端和电容两端不分极性,任意接都可以,但启动绕组和运行绕组不能接反,启动电容和运行电容不能接反,否则容易烧启动绕组以下是自己为了消化吸收而画的接线图,在此献给广大电工朋友,希望能给大家带来一些帮助。

本人学识粗浅,特建立QQ群:79694587 以便大家相互学习。

电动机典型控制设计—电动机正反转控制设计(PLC设计课件)

电动机典型控制设计—电动机正反转控制设计(PLC设计课件)
(2) 如果对定时器和计数器进行复位操作,则被指定的T或C的位被复位, 同时其当前值被清0。
三、复位优先、置位优先锁存器
复位优先锁存器、置位优先锁存器:
指令功能
RS 复位优先锁存器,当置位信号和复位信号都有效时,复位信号优先,输出 线圈不接通。 SR 置位优先锁存器,当置位信号和复位信号都有效时,置位信号优先,输出 线圈接通。 RS、SR指令均为锁存器,一个复位优先,一个置位优先。S连接置位输入,R 连接复位输入。一旦输出线圈被置位,则保持置位状态直到复位输入接通。 置位、复位输入均以高电平状态有效。四、例1:抢答器的设计
抢答器有三个输入,分别为I0.0、I0.1和I0.2,输出分别为Q4.0、Q4.1和 Q4.2,复位输入是I0.4。要求:三人中任意抢答,谁先按按钮,谁的指示灯优 先亮,且只能亮一盏灯,进行下一问题时主持人按复位按钮,抢答重新开始。
抢答器程序 :
四、例2:正反转控制
关键:找出电动 机正反向运行置 位和复位的条件
项目二:电动机典型控制设计
任务二
电动机正 反转控制
置位复位指令学习
学习S7-1500的基本指令中 的置位复位指令用法。
一、本置课位程复的位性指质令符号
1
二、置位复位指令作用
置位指令将指定的地址置位(变为1状态并保持)。 复位指令将指定的地址复位(变为0状态并保持)。
置位 复位
I0.0
Q0.0
(S)
I0.1
Q0.0
(R)
I0.0 I0.1 Q0.0
(1) 在检测到I0.0闭合的上升沿时,输出线圈Q0.0被置为1,并保持,而不论I0.0为 何种状态。
(2) 在检测到I0.1闭合的上升沿时,输出线圈Q0.0被复位为0,并保持,而不论I0.0 为何种状态。

单相异步电动机反转原理及接线图

单相异步电动机反转原理及接线图

单相异步电动机反转原理及接线图一、工作原理单相交流电动机只有一个绕组,转子是鼠笼式的。

当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。

这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。

当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。

这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。

要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。

这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,如图2所示。

在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。

因此,起动绕组可以做成短时工作方式。

但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。

二、正反转接线图图一单相电动机要经过分相才能形成旋转磁场。

一般需要有两个绕组,一个是主绕组,另一个就是启动绕组。

两者相差90°电工角。

主绕组直接和L、N相连,启动绕组则串联电容后与电源相连。

这样,启动绕组由于电容有使电流超前于电压的功能,和主绕组的电流产生相位差并形成旋转磁场,使电机启动。

要使电机反转,只要把启动绕组与电源的接线的头尾对调一下就行了。

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)汇总

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)汇总

单相电机的倒顺开关接线及原理有不少电工对单相电机的接线搞不清。

我先对单相电机的正反转原理讲一下。

单机电机里面有二组线圈,一组是运转线圈(主线圈),一组是启动线圈(副线圈),大多的电机的启动线圈并不是只启动后就不用了,而是一直工作在电路中的。

启动线圈电阻比运转线圈电阻大些,量下就知了。

启动的线圈串了电容器的。

也就是串了电容器的启动线圈与运转线圈并联,再接到220V电压上,这就是电机的接法。

当这个串了电容器的启动线圈与运转线圈并联时,并联的二对接线头的头尾决定了正反转的。

比起三相电动机的顺逆转控制,单相电动机要困难得多,一是因为单相电动机有启动电容、运行电容、离心开关等辅助装置,结构复杂;二是因为单相电动机运行绕组和启动绕组不一样,不能互为代用,增加了接线的难度,弄错就可能烧毁电动机。

有接线盒的单相电动机内部接线图上图,是双电容单相电动机接线盒上的接线图,图上清晰的反映了电动机主绕组、副绕组和电容的接线位置,你只需要按图接进电源线,用连接片连接Z2和U2,UI和VI,电动机顺转,用连接片连接Z2和U1,U2和VI,电动机逆转。

单相电动机各个元件也好鉴别,电容都是装在外面,用肉眼就可以看清楚接线位置(如上图)启动电容接在V2—Z1位置,运行电容接在V1—Z1间,从里面引出的线也好鉴别,接在(如上图)UI—U2位置的是运行绕组,接在Z1—Z2位置的是启动绕组、接在V1—V2位置的是离心开关。

用万用表也容易区分6根线,阻值最大的是启动绕组,阻值比较小的运行绕组,阻值为零的是离心开关。

如果运行绕组和启动绕组阻值一样大,说明这两个绕组是完全相同的,可以互为代用。

单相电动机的绕组两端和电容两端不分极性,任意接都可以,但启动绕组和运行绕组不能接反,启动电容和运行电容不能接反,否则容易烧启动绕组以下是自己为了消化吸收而画的接线图,在此献给广大电工朋友,希望能给大家带来一些帮助。

本人学识粗浅,特建立QQ群:79694587 以便大家相互学习。

220V交流单相电机启动方式和接线图

220V交流单相电机启动方式和接线图

220V交流单相电机启动方式和接线图220V交流单相电机起动方式第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。

运转速率大致保持定值。

主要应用于电风扇,空调风扇电动机,洗衣机等电机。

第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。

起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。

第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。

而运行电容串接到起动绕组参与运行工作。

这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。

如图3。

带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。

电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般大于400V。

正反转控制:图4是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。

一般洗衣机用得到这种电机。

这种正反转控制方法简单,不用复杂的转换开关。

图1,图2,图3,正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。

对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。

一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。

图1 电容运转型接线电路图2 电容起动型接线电路图3 电容启动运转型接线电路(双值电容器)图4 开关控制正反转接线图5 交流220v电动机接线图。

电动机正反转行程开关接线图

电动机正反转行程开关接线图

C6150普通车床电气4)闭合自锁 KM线圈通电 KM主触点闭合 KMY主触点闭合 按下SB2 KMY线圈通电 KMY(4-7)断开,实现联锁 KT(5-6)动断触点延时断开 KT线圈通电 KMY主触点断开 KMY(4-7)动断触点复位 KT(7-8)动合触点延时闭合 KM△(7-8)闭合自锁 KM△线圈通电 KM△主触点闭合 电动机绕组连接成△形运行 KM△(4-5)断开,实现联锁 KMY线圈断电 电动机绕组连接成Y形起动
KT线圈断电
KT动合、动断触点全部复位
电动机定子绕组在Y形联结时起动电流为△形联结的1/3,Y 形联结时的起动转矩也是△形联结时的1/3,所以这种方法 只适用于空载或轻载起动,由于Y-△降压起动投资少、维修 方便,在生产中得到广泛应用。
先合上隔离开关QS: KM(3-4)闭合自锁 KM线圈通电 KM主触点闭合 KMY主触点闭合 按下SB2 KMY线圈通电 KMY(4-7)断开,实现联锁 KT(5-6)动断触点延时断开 KT线圈通电 KMY主触点断开 KMY(4-7)动断触点复位 KT(7-8)动合触点延时闭合 KM△(7-8)闭合自锁 KM△线圈通电 KM△主触点闭合 电动机绕组连接成△形运行 KM△(4-5)断开,实现联锁 KMY线圈断电 电动机绕组连接成Y形起动
KT线圈断电
KT动合、动断触点全部复位
电动机定子绕组在Y形联结时起动电流为△形联结的1/3,Y 形联结时的起动转矩也是△形联结时的1/3,所以这种方法 只适用于空载或轻载起动,由于Y-△降压起动投资少、维修 方便,在生产中得到广泛应用。
M7130平面磨床电气控制原理图
Z3040摇臂钻床电气控制原理图

单相电机正反转

单相电机正反转

在单相电机中,通常主绕组的线径较大,电阻值较小,匝数也较小。

但有些正反转的单相电机并没有主副绕组之分。

其实是这样,主线圈的1(2)接副线圈的2(1),这样就正传。

反过来主线圈的1(2)接副线圈的1(2),这样就反转,以上两个图,一般的常规单相电机都可以用,不论他的主线圈与副线圈的参数一样不一样,另外还有一种单相电机,工作中需要他正反转,但是采用上面的办法,比较麻烦,实现自动控制,器件需要也多,所以就出现了,不分主副线圈的单相电机,就是主副线圈的参数一样,这种不分主副线圈的单相电机,除了用上面的这个办法外还可以这样(只适用于不分主副线圈的电机,各位看清楚了。

如果单相电机两个线圈的外观上,明显不一样,就不能采用此方法,切记切记)顺便说一下,洗衣机的电机就是不分主副的单相电机第一个图和第二个是一样的,第二个比较清楚一点,第二个图还可以变形为这样,这样也可以实现反转单相电机的画法还有一种倒顺开关控制的单相电机正反转落地扇电机接线图来个用接触器控制的,单相电机正反转,在KM1的下方红线和粉线互换,或者蓝线和黄线互换,电机就可以反转了KM1和KM2的二次线路就用三相电机的普通正反转互锁电路就行了单相电容电机接法单相电动机有三个抽头,首先用万用表电阻挡测量三个线头之间的电阻值,电阻最大的两个线头之间并联电容,另一个线头(公共端)接电源的一端。

然后用万用表的电阻挡测量公共端与接电容两端的线头之间的电阻,阻值稍大的一端接电源的另一端,绝对一次性接正转,若要想改变方向,将接电容一端的电源线改接为另一端即可.三个出线的单相电机主绕组、副绕组容易判断:1、先两两测出三条线的阻值,记住最大值的两条线及其阻值,第三条线就是主、副的连接点;2、分别测出接点与两端的阻值(这两个阻值之和必须等于上述的最大值)。

其中阻值较小的是主绕组,阻值较大的是副绕组。

一般对于单相电容启动交流电机,与电容串联的那个绕组接头就是副绕组。

设副绕组电阻为R1,主绕组电阻为R2,则 R1>R2。

单相电动机结构、原理、正反转控制(图文详细)

单相电动机结构、原理、正反转控制(图文详细)

单相电机正反转控制
简易通过转换开关正反转控制: 如图是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值
是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗 衣机用得到这种电机。这种正反转控制方法单,不用复杂的转换开关。
图4 开关控制正反转接线
正反转控制:只需电容分别串入1-2线圈或3-4线线圈即可完成正逆转。 对 起动与运行绕组的判断:两个线圈的电阻是一样的。
类。
1. 电容启动后脱离式电动机
• 这种接法一般用在空气压缩机,切割机,木工机床等负载 大而不稳定的地方。 。
• 当电机一旦启动,转速上升至额定转速70%时,离心开 关脱开副绕组即断电,电机即可正常运转。
2. 罩极式电动机
• 罩极式单相交流电动机,它的结构简单,其电气性 能略差于其他单相电机,但由于制作成本低,运行噪 声较小,对电器设备干扰小,所以被广泛应用在电风 扇、电吹风、吸尘器等小型家用电器中。
3. 单电容单相电动机
• 单电容运转式:这种电机结构简单、启动快速、转速 稳定,被广泛应用在电风扇、排风扇、抽油烟机等家 用电器中。
• 其串接的电容器,当电机在通电启动或者正常运行时, 均与启动绕组串接。由于电机其启动的转矩较小,因 此很适于排风机、抽风机等要求启动力矩低的电器设 备中应用
• “电容运转式”,这种电容即有启动作用又有运转的 功能。这种型式一般用在300w以下的电机上。
• 在家用电器电机类中还有一种直流微型电动机。该电机在录音机、随身听、录 像机、打印机、传真机等家用电器中广泛应用。直流微型电机由于定子绕组和 转子绕组之间的串接形式不同,又可分为并激、串激、复激等几种类别。
• 并激式电机:应用在家用电器中的电机,其定子绕组和转子绕组,绕组之间的串 接一般采用并激形式,即电机的定子磁场线圈与电枢绕组线圈并联后接到电源 上。当通电后电机可保持磁场恒定,并利用电枢电路控制电机转速。这种直流 电机的最大特点是当负载产生波动变化时,电机的转速保持定速状态。 此外,在直流电动机中还有一种结构更为简单、用在玩具上的电机,这种电机 是用永久磁铁作固定磁场的电动机,在电子玩具、电动剃须刀、微型按摩器等 日用小电器中得以广泛应用。

正反转控制线路原理图

正反转控制线路原理图

正反转控制线路原理图
1、上图为电动机正反转控制线路。

其中,L1、L
2、L3为电源进
线,QS为隔离开关,FU1为主回路熔断器3个,FU2为控制回路熔断器2个。

KM1、KM2为控制负荷的主接触器,电机采用热继电器作为过负荷保护之用。

2、启动过程:合上隔离换向开关QS,按下SB1启动按钮→KM1
线圈得电→KM1自保接点闭合实现自保→KM1主触头闭合电动机正向运转→KM1联锁接点断开KM2线圈回路实现联锁。

反转时,在电动机停稳的情况下,以同样的方法启动SB2即可。

3、故障处理:无法启动时,首先检查FU1、FU2是否烧坏;其次
检查热继电器是否动作;再就是检查启动、停止按钮是否完好,主接触器线圈是否烧毁或断线等。

电动机自锁正转电气原理图
1、启动过程:合上QS→控制回路得电→按下SB2→KM线圈得电
→其主触头闭合→电动机得电运转→其辅助接点闭合自锁→电动机正常运转。

2、热继电器FR为保护电动机过负荷之用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档