电机正反转控制电路及实际接线图个人学习用

合集下载

电机正反转联动控制电路图

电机正反转联动控制电路图

按钮联锁正反转控制线路图2—12 按钮联锁正反转控制电路图图2-12 按钮联锁正反转控制电路图接触器联锁正反转控制线路双重联锁正反转控制线路元件安装图元件明细表1、线路的运用场合:正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。

如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;电梯、起重机的上升与下降控制等场所。

2、控制原理分析(1)、控制功能分析:A、怎样才能实现正反转控制?B、为什么要实现联锁?这两个问题是本控制线路的核心所在,务必要透彻地理解,否则只会接线安装,那只是知其然而不知其所以然。

另外,问题的提出,一方面让学生学会去思考,另一方面也培养学生发现问题、分析问题的能力。

教学中,计划先让学生温书预习(5分钟)、寻找答案,再集中讲解。

先提问抽查,让学生能各抒己见、充分发挥,最后再总结归纳,解答所提出的问题,进一步统一全班思路。

答案如下:A、电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W 相对调。

B、由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。

为安全起见,常采用按钮联锁和接触器联锁的双重联锁正反转控制线路(如原理图所示)(2)、工作原理分析C、停止控制:按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转(3)双重联锁正反转控制线路的优点:接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。

双重联锁正反转控制线路则兼有两种联锁控制线路的优点,操作方便,工作安全可靠。

3、怎样正确使用控制按钮?控制按钮按用途和触头的结构不同分停止(常闭按钮)、起动按钮(常开按钮)和复合按钮(常开和常闭组合按钮)。

按钮的颜色有红、绿、黑等,一般红色表示“停止”,绿色表示“起动”。

接线时红色按钮作停止用,绿色或黑色表示起动或通电。

电机正反转控制电路及实际接线图(个人学习用)

电机正反转控制电路及实际接线图(个人学习用)

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。

使KM1的线圈通电,电机开始正转运行。

按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。

由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。

如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。

为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。

电机正反转控制电路及实际接线图个人学习用

电机正反转控制电路及实际接线图个人学习用

电机正反转控制电路及实际接线图个人学习用Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。

使KM1的线圈通电,开始正转运行。

按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。

由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。

如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。

电机正反转控制原理电路图、电路分析及相关资料(电工进网作业证考试)教材

电机正反转控制原理电路图、电路分析及相关资料(电工进网作业证考试)教材

双重联锁(按钮、接触器)正反转控制电路原理图电机双重联锁正反转控制一、线路的运用场合Array正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。

如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;圈板机的辊子的正反转;电梯、起重机的上升与下降控制等场所。

二、控制原理分析(1)、控制功能分析:怎样才能实现正反转控制?为什么要实现联锁?电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。

由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。

为安全起见,常采用按钮联锁(机械)和接触器联锁(电气)的双重联锁正反转控制线路(如原理图所示);使用了(机械)按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。

另外,由于应用的(电气)接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。

(2)、工作原理分析:A、正转控制:按下SB1常闭触头先断开(对KM2实现联锁)SB1常开触头闭合KM1线圈得电KM1电机M启动连续正转工作KM1KM1联锁触头断开(对KM2实现联锁)B、反转控制:M失电,停止正转SB2按下线圈得电SB2KM2电机M启动连续反转工作KM2主触头闭合KM2联锁触头断开(对KM1实现联锁)C、停止控制:按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转;三、双重联锁正反转控制线路的优点接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。

电机正反转电路图

电机正反转电路图

电机正反转电路图电机正反转电路图三相异步电动机接触器联锁的正反转控制的电气电子原理图如图3-4所示。

线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。

这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。

控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。

220v单相电机正反原理单相电机不同于三相电机,三相电进入电机后,由于存在120°电角度,所以产生N S N S旋转磁场,推动转子旋转。

而单相电进入电机后,产生不了N S N S磁场,所以加了一个启动绕组,启动绕组在定子内与工作绕组错开90°电角度排列,外接离心开关和启动电容后与工作绕组并联接入电源,又因为电容有阻直通交的作用,交流电通过电容时又滞后一个电角度,这样就人为地把进入电机的单相电又分出来一相,产生旋转磁场,推动转子旋转。

反转时,只要把工作绕组或者启动绕组的两个接线对调一下就行,产生S N S N的磁场,电机就反转了。

网友完善的答案好评率:75%单相电机的接线方法,是在副绕组中串联(不是并联)电容,再与主绕组并联接入电源;只要调换一下主绕组与副绕组的头尾并联接线,电机即反转如果电机是3条出线的,其中一条是公共点!(分别与另外2条线的测电阻其值较小)接电源零线!然后把剩下的两条线并联电容,在电容的一端接220V电源相(火)线,就可以了!若要改变电机转向只要把220V电源相(火)线接在电容的另一端就可以了!笼型电动机正反转的控制线路(电路图)发布: | 作者: | 来源: jiasonghu | 查看:775次 | 用户关注:接通电源让KMF--线圈通电其主触点闭合三相电源ABC 分别通入电机三相绕组UVW,电动机正转。

KMF线圈断电,主触点打开,电机停。

电动机正反转控制实验心得

电动机正反转控制实验心得

电动机正反转控制实验心得概述电动机是现代社会生活中广泛应用的一种设备,它能将电能转化为机械能,广泛应用于工业生产、家用电器等领域。

在实际应用中,电动机使用正反转功能非常重要,可以实现设备的多功能操作。

本文将详细介绍电动机正反转控制的实验心得和经验总结。

实验目的通过实验,探究电动机正反转的控制方法,加深对电动机原理的理解,培养实际操作技能。

实验设备与材料•电动机•电源•开关•电阻箱•电压表•电流表•连接线等实验步骤1.将电动机、电源、开关和电阻箱等设备连接好,按照电路图正确接线。

2.打开电源,确认电路连接无误。

3.将开关拨到正转位置,观察电动机的运动方向。

4.将开关拨到反转位置,观察电动机的运动方向。

5.根据实验需要,调整电阻箱的阻值,观察电动机的转速变化。

实验结果与分析根据实验步骤进行操作,实验结果如下:正转控制1.开关拨到正转位置,电动机正转运行,方向与预期一致。

2.调整电阻箱的阻值,观察转速变化,阻值越小,转速越快。

反转控制1.开关拨到反转位置,电动机反转运行,方向与预期一致。

2.调整电阻箱的阻值,观察转速变化,阻值越小,转速越快。

实验心得•电动机正反转控制是实际操作中常见的一种需求,掌握相关原理和方法对于工程技术人员非常重要。

•在实验过程中,要保证电路连接准确,确保实验结果的准确性。

•实验过程中观察电动机的运动方向和转速变化,能更好地理解电动机的工作原理,加深对电机学的理解。

•对于不同型号、不同功率的电动机,可能需要调整电阻箱的阻值来控制转速,需要根据实际情况进行调整。

•在操作过程中,要注意安全,避免触电、短路等意外情况的发生。

实验总结本次实验通过对电动机的正反转控制进行了实际操作,加深了对电动机工作原理的理解。

实验中注意了电路连接的准确性,观察了电动机的运动方向和转速变化。

实验过程中注意了安全事项,避免了操作中的意外发生。

通过本次实验,我掌握了电动机正反转控制的方法和技巧,在实际工作中能够更好地应用电动机。

电机正反转控制原理电路图、电路分析及相关

电机正反转控制原理电路图、电路分析及相关

双重联锁(按钮、接触器)正反转控制电路原理图电机双重联锁正反转控制一、线路的运用场合Array正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。

如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;圈板机的辊子的正反转;电梯、起重机的上升与下降控制等场所。

二、控制原理分析(1)、控制功能分析:怎样才能实现正反转控制?为什么要实现联锁?电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。

由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。

为安全起见,常采用按钮联锁(机械)和接触器联锁(电气)的双重联锁正反转控制线路(如原理图所示);使用了(机械)按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。

另外,由于应用的(电气)接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。

(2)、工作原理分析:A、正转控制:按下SB1常闭触头先断开(对KM2实现联锁)SB1常开触头闭合KM1线圈得电KM1电机M启动连续正转工作KM1KM1联锁触头断开(对KM2实现联锁)B、反转控制:M失电,停止正转SB2按下线圈得电SB2KM2电机M启动连续反转工作KM2主触头闭合KM2联锁触头断开(对KM1实现联锁)C、停止控制:按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转;三、双重联锁正反转控制线路的优点接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。

电机正反转控制电路及实际接线图

电机正反转控制电路及实际接线图

在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。

使KM1的线圈通电,电机开始正转运行。

按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。

由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。

如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。

为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。

电机正反转控制实验报告

电机正反转控制实验报告

电机正反转控制实验报告
一、实验目的
1、掌握可编程控制器的工作原理。

2、通过动手接线,提高学生的实际动手能力以及加强对PLC基本结构的了解。

3、通过实验,加强学生对PLC逻辑顺序编程的理解,使学生能够熟练应用三菱PLC的开发工具软件和软元件。

二、实验内容
三.硬件电路图
将PLC与实验装置上面的接线端子连接,通过PLC来对上面的电机进行控制。

四、
五、PLC梯形图
PLC梯形图如下:
I/O分配如下:
六、
七、工作原理
当启动按钮SB1按下时,X0接通,系统进入工作状态,当停止按钮SB2接通时,X1接通,系统停止工作。

当SB1按下而SB2断开时,且电机没有进行正转或反转,此时若按下SB3,即正转按钮,,则X3接通,此时Y0输出为1,正转接触器KM1吸合,电机正转。

同理按下SB4,则X3为1,Y1为1,KM2吸合,点击反转。

若电机在正转过程中按下SB3,则电机停止正转,寄存器M1接通,而后计时器T0进行2秒计时,计时完成后T0为1,X1,X2,Y0均为0且M1为1,则Y1接通,进入反转。

同理课设计电机反转过程中按下正转按钮后延时2s进入正转。

八、
九、使用说明书
按下启动按钮SB1,再按下正转按钮SB3.,正传接触器KM1吸合,电机正转。

再按下反转按钮SB4,经过短暂延时(2s)后(可以避免机械接触器反应迟钝所造成的事故),反转接触器KM2吸合,电机反转。

交流接触器控制下的电机正反转实物接线图

交流接触器控制下的电机正反转实物接线图

流接触器实物接线图(各种组合电器接线图)
最近经常在网上看到朋友们需要交流接触器的实物接线图,因此我整理了一份关于接触器和其他控制电器的接线图,希望对有需要的朋友门有所帮助,因为接触器的及控制电器的接线方法很多,所以不可能完全举例出来,还请谅解,这里我们提供部分常用的关于接触器的控制电路及其它电器的接线方法
Y/△手启动
Y
F4-11:左为常开、右为常闭触点
顺启动
逆启动电机顺逆转控制
停止按扭启动按钮H3BA
延时断电停机
负载
卷扬机电路
桥式全波整流滤波电路
三相四线电度表互感器接线
熔断■器停止按钮启动按钗
热继电器
负载
熔断■器停止按钮启动按钮
CJ10-10接触器
员载





熔断器
负载
启动按钮
I it L L
岛总I低I Jjfel屮]门上下限温控.
www.iiii-sli.cuin
顺启动
逆启动
启动顺转•撞末行程顺停逆启动,撞始行程逆停延时顺启动不断循环
KM1 KM
丫/△启动电路
SB2 KM1
工 2 KT 3 KM3_4_Q
KM1
KM2
KT 丢
KM3
KM2
KM3
6 KM1
7 n
IU
KM3 9
Y/△起动
液位继电器自动控制泵水
水泵电机




■ OB ■■■■
5
KM3 KM1
9
自楞3U£器
自耦交圧器降压启动
停止 启动。

电机正反转加时间继电器控制电路原理图解

电机正反转加时间继电器控制电路原理图解

电机正反转加时间继电器控制电路原理图解
如下图所示是一种由一台电动机在规定时间范围内作连续可逆的正反方向运转的自动控制电路。

图中用时间继电器KT1、KT2作时间控制元件,中间继电器KA1、KA2起中间控制作用。

合上电源开关Q和旋转开关S,这时时间继电器KT1得电,中间继电器KA1得电吸合。

接触器KM1得电并吸合,电动机作正向限时运转。

待延时时间到,时间继电器KT1常闭延时断开触点断开,使中间继电器KA1断电,其触点KA1断开,接触器KM1线圈断电,主触点KM1断开,电动机瞬时停止正转。

电动机正反转,限时自动往返(时间继电器)控制电路接线图
在时间继电器KT1常闭延时断开触点断开的同时,其常开延时闭合触点KT1闭合,反转中间继电器KA2暂时得电吸合,其常开触点闭合自锁,并使时间继电器KT2得电,反转接触器KM2得电并吸合,电动机作反向限时运转。

待延时时间到,时间继电器KT2的常闭延时断开触点断开,使中间继电器KA2断电,接触器KM2断电,电动机瞬时停止反转。

由于中间继电器KA2的断电,其常闭触点复位,时间继电器KT1得电,中间继电器KA1吸合,KM1得电吸合,电动机又处于正向限时运转状态。

这样周而复始重复前面工作过程,使电动机在规定时间内作连续可逆运转。

若需使电动机停止,可扳开旋转开关S,待KT2延时时间到,电动机停转。

本电路适用于在规定时间内作连续可逆运转的生产机械。

直流电机正反转电路控制图

直流电机正反转电路控制图
QS
FU SB3
16
1、线号顺序自右 向左,按回路 进行;
2、每个连接点不 超过两根引线。
3、最后接自保触点。
哈哈!
这叫顺藤
1
摸瓜
KM1
SB1
KM2
5
4
3
FR
2
8
7
KM1
9
12
SB2
KM2
KM1
11
10
14
KM2
13
三、接线、检查注意事项
• 按照电路图接线,从头到尾、顺藤摸瓜,后结分叉。 • 通电前检查:按图理线,万用表电阻档检测(分别按住
KM1 KM2 电气互锁
利用复合 按钮的触 点实现互 锁控制称 机械互锁。
含有双重互锁的正反转控制
SB SB1
断开 后闭合
KM1 SB2
闭合 KM2 当电机正转时, 按下反转按钮SBR
KM2 KM1 先断开
KM1 KM2
恢复闭合
停止正转 电机反转
断电 通电
二、从原理图中看控制回路怎样接线
AB C
和松开解除其和按钮测量主回路、控制回路两端通断情 况)。 • 带电检查:万用表交流电压档检测(电源、线圈、常开 触电)
0
2
10
5 57
0 10
直流电动机正反转的控制线路
1、先要搞清电路原理图,禁止盲目接线 2、先接主回路,再接控制回路 3、通电前一定要进行仔细检查
1、先要搞清电路原理图,禁止盲目接线 2、先接主回路,再接控制回路 3、通电前一定要进行仔细检查
“联锁”触点
. . SB SB1 KM2 KM1 通电
按下S
KM1 SB2
KM1 KM2

电机正反转接线实习报告

电机正反转接线实习报告

电机正反转接线实习报告一、实习目的1. 熟悉和了解交流接触器、热继电器、行程开关等常用低压电器设备的结构、工作原理及使用方法,接线方法及线号标记。

2. 掌握三相异步电动机行程开关控制的正反转电路工作原理,电气原理图、元件布置图和接线图的绘制,接线方法及接线工艺。

3. 了解失压、过载、零位保护的控制作用。

4. 熟悉上述电路的故障分析及排除方法。

二、实习内容1. 根据电动机正反转控制电路图,分析电动机的正反转原理。

2. 绘制电动机正反转控制电路的电气原理图、元件布置图和接线图。

3. 进行电动机正反转控制电路的接线,包括主电路和控制电路的连接。

4. 对电动机正反转控制电路进行调试,确保电路正常工作。

5. 分析并排除电动机正反转控制电路中可能出现的故障。

三、实习步骤1. 检查各电器元件的质量情况,了解其使用方法。

2. 根据电动机正反转控制电路图,分析电路的工作原理。

3. 绘制电气原理图、元件布置图和接线图。

4. 按照接线图,先接主电路,再接控制电路。

5. 接线完成后,进行电路的检查和调试。

6. 操作启动和停止按钮,观察电动机的运行情况。

7. 分析并排除可能出现的故障。

四、实习心得1. 通过本次实习,我对电动机正反转控制电路的原理和接线方法有了更深入的了解。

2. 我学会了如何根据电动机正反转控制电路图绘制电气原理图、元件布置图和接线图。

3. 在实际操作中,我掌握了电动机正反转控制电路的接线工艺和调试方法。

4. 通过故障分析和排除,我提高了自己解决实际问题的能力。

5. 实习过程中,我学会了与同学合作,共同完成任务。

6. 我认识到理论知识与实际操作的重要性,将在今后的学习中更加努力。

五、实习总结本次电机正反转接线实习让我对电动机控制电路有了更全面的了解,提高了我的实际操作能力和解决问题的能力。

我深刻认识到理论知识与实际操作的密切关系,将在今后的学习和工作中,将所学知识运用到实际中,不断提高自己的技能水平。

电机正反转电路图

电机正反转电路图

直流电机的简介是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机,由定子和转子两大部分组成。

是能实现直流电能和机械能互相转换的电机。

当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。

直流电机分为直流发电机、直流电动机两类。

直流发电机是把机械能转化为直流电能的机器。

直流电动机,是将直流电能转换为机械能的转动装置。

电机正反转电路图用plc控制电动机正反转原理1、实验原理三相异步电动机定子三相绕组接入三相交流电,产生旋转磁场,旋转磁场切割转子绕组产生感应电流和电磁力,在感应电流和电磁力的共同作用下,转子随着旋转磁场的旋转方向转动。

因此转子的旋转方向是通过改变定子旋转磁场旋转的方向来实现的,而旋转磁场的旋转方向只需改变三相定子绕组任意两相的电源相序就可实现。

如图2.1所示为PLC控制异步电动机正反转的实验原理电路。

左边部分为三相异步电动机正反转控制的主回路。

由图2.1可知:如果KM5的主触头闭合时电动机正转,那么KM6 主触头闭合时电动机则反转,但KM5 和KM6 的主触头不能同时闭合,否则电源短路。

右边部分为采用PLC对三相异步电动机进行正反转控制的控制回路。

由图可知:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC的输入口X2;继电器 KA4、KA5 分别接于PLC 的输出口Y33、Y34,KA4、KA5 的触头又分别控制接触器KM5和KM6的线圈。

实验中所使用的PLC为三菱FX2N系列晶体管输出型的,由于晶体管输出型的输出电流比较小,不能直接驱动接触器的线圈,因此在电路中用继电器KA4、KA5 做中间转换电路。

在KM5和KM6线圈回路中互串常闭触头进行硬件互锁,保证软件错误后不致于主回路短路引起断路器自动断开。

电路基本工作原理为:合上QF1、QF5,给电路供电。

当按下正向按钮,控制程序要使Y33为1,继电器KA4线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序要使Y34 为1,继电器KA5 线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。

5张电路图教你控制电机正反转怎么接线

5张电路图教你控制电机正反转怎么接线

有很多初学机修的电工朋友,不知道该从哪些地方入手,今天我就列举一个应用最广的电路:控制电机正反转的接线,由浅入深,让你一步步脱离新手。

点动
KM接触器的线圈A1和A2分别连一条火线,SB启动按钮串到任意一条火线都可以实现点动效果,启动按钮都是接的按钮开关的NO常开点。

接触器自锁
比点动多了一条自锁线,SB2是停止按钮,停止按钮都是接的按钮开关的NC常闭一端。

自锁是通过自身的常开点在线圈通电吸合的状态下持续供电的一种接法。

这是个互锁的点动效果,两个接触器线圈A1的位置连一起接的零线,然后A2和另一个接触器的NC常闭点交叉连接。

辅助NC常闭点的出线接启动按钮,这时候同时按下2个启动按钮只能有一个吸合。

接触器互锁
这个图其实就是接触器互锁加上接触器的自锁,KM1和KM2互锁,每个接触器都可以自锁。

这个也是控制电机正反转的电路图。

如果可以的话,SB1和SB2还可以机械互锁。

控制电机正反转的完整电路
这个图比上一个图又多了一个机械互锁,SB2和SB3分别串了彼此的
常闭点,这样就实现了双重互锁。

这个也是控制电机正反转接线的完整电路图。

电机正反转控制原理图

电机正反转控制原理图

电机正反转控制原理图
电机正反转控制原理图如下:
1. 电源:接入电机的电源线,提供与电机工作电压相匹配的电力。

2. 开关:用于控制电机的正反转,包括一个双刀双掷开关或者两个单刀双掷开关。

开关可设置为手动或自动控制。

3. 电机:转子内嵌在定子之间,转子内部包含电枢和永磁体。

电枢通过电流控制转子的旋转方向。

4. 继电器:用于控制电机的正反转,通过控制继电器的通断来改变电机的电流方向。

5. 保护装置:用于保护电机和控制电路免受过流、过载或其他故障的影响。

包括熔断器、热继电器和过载保护开关等。

6. 控制电路:通过控制电路中的连接与断开,实现电机的正反转控制。

控制电路由开关、继电器和保护装置等组成。

7. 接地线:连接电机及其控制电路的接地线,确保电路安全可靠地接地。

注意:上述文字仅为描述电机正反转控制原理图的要点,不包括标题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相异步电动机正反转控制电路图原理及plc接线与编程
在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的.
在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。

使KM1的线圈通电,开始正转运行。

按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。

由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。

如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。

为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。

图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。

其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。

有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。

这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。

有的热继电器有复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点恢复原状。

如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。

因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。

如果用式电机过载保护来代替热继电器,也应注意它的复位.
电动机正反转实物接线图
按钮联锁正反转控制电路图
接触器联锁正反转控制线路
双重联锁正反转控制线路。

相关文档
最新文档