HFSS天线仿真实验报告

合集下载

HFSS验证性仿真实验报告样例

HFSS验证性仿真实验报告样例

《微波技术与天线》HFSS仿真实验报告实验二印刷偶极子天线设计一、仿真实验内容和目的使用HFSS设计一个中心频率为2.45GHz的采用微带巴伦馈线的印刷偶极子天线,并通过HFSS软件Opitmetrics模块的参数扫描分析功能对印刷偶极子天线的一些重要结构参数进行参数扫描分析,分析这些参数对天线性能的影响。

二、设计模型简介整个天线分为5个部分,即介质层,偶极子天线臂,微带巴伦线,微带传输线,见图1。

天线各部分结构尺寸的初始值见表1。

图1 印刷偶极子天线结构图(顶视图)。

表1 印刷偶极子天线关键结构尺寸初始值。

三、建模和仿真步骤1、新建HFSS工程,添加新设计,设置求解类型:Driven Modal。

2、创建介质层。

创建长方体,名称设为Substrate,材质为FR4_epoxy,颜色为深绿色,透明度为0.6。

3、创建上层金属部分1)创建上层金属片,建立矩形面,名称Top_Patch,颜色铜黄色。

2)创建偶极子位于介质层上表面的一个臂。

画矩形面,名称Dip_Patch,颜色铜黄色。

3)创建三角形斜切角,创建一个三角形面,把由矩形面Top_Patch 和Dip_Patch组成的90折线连接起来。

4)合并生成完整的金属片模型。

4、创建下表面金属片1)创建下表面传输线Top_patch_1。

2)创建矩形面Rectangle1。

3)创建三角形polyline2。

4)镜像复制生成左侧的三角形和矩形面此步完成后得到即得到印刷偶极子天线三维仿真模型如图2所示。

5、设置边界条件1)分配理想导体。

2)设置辐射边界条件,材质设为air。

6、设置激励方式:在天线的输入端口创建一个矩形面最为馈电面,设置该馈电面的激励方式为集总端口激励,端口阻抗为50欧姆。

7、求解设置:求解频率(Solution Frequency)为2.45GHz,自适应网格最大迭代次数(Maximum Number of Passes):20,收敛误差(Maximum Delta S)为0.02。

电磁场HFSS实验报告【范本模板】

电磁场HFSS实验报告【范本模板】

实验一 T形波导的内场分析实验目的1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。

2、掌握T型波导功分器的设计方法、优化设计方法和工作原理. 实验仪器1、装有windows 系统的PC 一台2、HFSS15。

0 或更高版本软件3、截图软件实验原理本实验所要分析的器件是下图所示的一个带有隔片的T形波导。

其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口.正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片.通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。

T形波导实验步骤1、新建工程设置:运行HFSS并新建工程:打开HFSS 软件后,自动创建一个新工程:Project1,由主菜单选File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选Project\ Insert HFSS Design,在工程树中选择HFSSModel1,点右键,选择Rename项,将设计命名为TeeModel.选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项.设置长度单位为in:由主菜单选3D Modeler\Units ,在Set Model Units 对话框中选中in 项。

2、创建T形波导模型:创建长方形模型:在Draw 菜单中,点击Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为0。

8。

Material(材料)保持为Vacuum。

设置波端口源励:选中长方体平行于yz 面、x=2 的平面;单击右键,选择Assign Excitation\Wave port项,弹出Wave Port界面,输入名称WavePort1;点击积分线(Integration Line) 下的New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。

基于HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计报告

. . . .. .矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pecPort -3.1125,-16,-0.05 2.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn一、新建文件、重命名、保存、环境设置。

(1)、菜单栏File>>save as,输入0841,点击保存。

(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。

(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4)介质基片:点击,:x:-14.05,y:-16,z:0。

dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

HFSS的天线课程设计报告

HFSS的天线课程设计报告

图1:微带天线的构造一、 实验目的●利用电磁软件Ansoft HFSS 设计一款微带天线。

◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。

●在仿真实验的帮助下对各种微波元件有个具体形象的了解。

二、 实验原理1、微带天线简介微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的开展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。

微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。

图1是一个简单的微带贴片天线的构造,由辐射源、介质层和参考地三局部组成。

与天线性能相关的参数包括辐射源的长度L 、辐射源的宽度W 、介质层的厚度h 、介质的相对介电常数r ε和损耗正切δtan 、介质层的长度LG 和宽度WG 。

图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的心线穿过参考地和介质层与辐射源相连接。

对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2〔a 〕所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。

从图2〔b〕可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两局部,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线外表。

〔a〕俯视图〔b〕侧视图图2 矩形微带贴片天线的俯视图和侧视图2、天线几何构造参数推导计算公式假设矩形贴片的有效长度设为eL,那么有2/geLλ=式中,gλ表示波导波长,有egελλ/=式中,λ表示自由空间波长,eε表示有效介电常数,且21)121(2121-+-++=Whrreεεε式中,rε表示介质的相对介电常数,h表示介质层厚度,W表示微带贴片的宽度。

HFSS矩形微带贴片天线的仿真设计报告

HFSS矩形微带贴片天线的仿真设计报告

HFSS矩形微带贴片天线的仿真设计报告HFSS(High Frequency Structure Simulator)是一种常用于高频电磁场仿真的软件,可用于设计和优化天线等高频器件。

本文将对矩形微带贴片天线的仿真设计进行详细分析和报告。

1.研究目的本次仿真设计旨在设计一种结构简单、性能优越的矩形微带贴片天线。

希望通过HFSS软件的仿真分析,优化天线的频率特性、增益和辐射方向性。

2.设计细节首先,选择一种合适的基底材料和贴片形状。

常用的基底材料有FR-4、Rogers等,贴片形状一般选择矩形。

基于实际需求和设备限制,确定天线的工作频率范围和增益要求。

其次,根据工作频率计算出天线的尺寸。

根据微带天线的原理,通过公式计算出贴片的长度、宽度和介电常数。

可以利用尺寸调整和电气长度来调整频率响应和阻抗匹配。

然后,进行天线的仿真设计。

在HFSS软件中,建立仿真模型并进行电磁场分析。

可以通过调整尺寸、形状和介电常数等参数,优化天线的性能指标。

可以通过频率扫描和图形分析等方法,获得天线的频率响应、辐射特性、增益和辐射方向性等。

最后,评估和优化设计结果。

根据仿真结果对天线的性能进行评估,并进行合理的优化调整。

可以根据需求对天线的尺寸、形状和工艺参数进行调整,以达到最佳的性能指标。

3.仿真结果与分析通过分析仿真结果,可以总结出矩形微带贴片天线的设计优缺点:优点:1)结构简单,制造工艺成熟,易于实现和集成;2)在工作频率范围内具有较高的增益和辐射方向性;3)相对比较小的尺寸,适合应用于小型设备和多天线系统中。

缺点:1)工作频率受贴片尺寸和介电常数的影响较大,需要精确的尺寸控制和阻抗匹配设计。

4.结论与展望本文基于HFSS软件进行了矩形微带贴片天线的仿真设计和分析。

通过优化调整尺寸、形状和介电常数等参数,设计出了一种具有较高增益和辐射方向性的天线结构。

仿真结果表明,该设计满足了实际需求和性能指标。

然而,本文的仿真设计还存在一些改进空间。

hfss仿真实验报告

hfss仿真实验报告

hfss仿真实验报告HFSS仿真实验报告引言:HFSS(High Frequency Structure Simulator)是一款电磁仿真软件,广泛应用于高频电磁场分析和设计。

本篇报告将介绍一次使用HFSS进行的仿真实验,并对实验结果进行分析和讨论。

实验目的:本次实验的目的是通过HFSS仿真软件,对一个电磁场问题进行模拟和分析,以验证其在理论上的正确性。

通过仿真实验,可以更好地理解电磁场的行为规律,并为实际应用提供参考依据。

实验步骤:1. 建立模型:根据实验需求,首先在HFSS中建立相应的电磁场模型。

模型的建立需要考虑几何形状、材料特性等因素,以确保仿真结果的准确性。

2. 设置边界条件:在模型建立完成后,需要设置边界条件,即模型与外界的交互方式。

边界条件的设置对于仿真结果的准确性至关重要,需要根据实际情况进行选择和调整。

3. 定义材料特性:根据实际材料的电磁特性,对模型中的材料进行定义和设置。

材料的特性包括介电常数、磁导率等参数,对于仿真结果的准确性起到重要作用。

4. 设定激励源:在模型中添加激励源,即对电磁场进行激励的源头。

激励源的设置需要考虑频率、功率等参数,以确保仿真结果与实际情况相符。

5. 运行仿真:完成上述设置后,即可运行仿真。

HFSS将根据模型和设置的参数,计算并输出电磁场的分布情况。

实验结果与分析:通过HFSS仿真软件进行实验后,我们得到了电磁场的分布情况。

根据仿真结果,我们可以对电磁场的特性进行分析和讨论。

首先,我们可以观察到电磁场的强度分布情况。

根据模型的不同特点,电磁场的强度在不同区域呈现出不同的分布规律。

通过分析电磁场的分布情况,可以更好地理解电磁场的行为规律,并为实际应用提供指导。

其次,我们可以通过仿真结果来评估不同材料对电磁场的影响。

在模型中,我们可以设置不同材料的特性参数,通过仿真实验来观察不同材料对电磁场的吸收、反射等影响。

这对于材料的选择和设计具有重要的参考价值。

HFSS贴片天线仿真

HFSS贴片天线仿真

目录引言 (I)1 绪论 (3)1.1 HFSS简介 (3)1.1.1 HFSS发展历程 (3)1.1.2HFSS仿真原理 (3)1.1.3HFSS的仿真过程 (4)1.1.4HFSS的功能 (5)1.2应用领域 (5)1.3HFSS的基本操作 (5)1.3.1HFSS的一般仿真操作 (5)1.3.2HFSS的一般操作界面 (6)2 微带天线理论 (8)2.1微带天线 (8)2.1.1传输线即微带天线 (8)2.1.2微带贴片天线 (9)2.2圆形微带贴片天线理论 (10)2.3极化理论 (12)2.3.1圆极化理论简述 (12)2.3.2左旋圆极化与右旋圆极化 (13)3 贴片天线的仿真过程 (14)3.1实验内容 (14)3.2HFSS贴片天线仿真 (14)3.2.1创建工程 (14)3.2.2创建模型 (15)3.3设置参量 (22)3.3.1设置变量 (22)3.3.2设置模型材料参数 (23)3.3.3设置边界条件和激励源 (24)3.3.4设置求解条件 (25)3.4创建参数分析并求解 (26)3.4.1添加参数设置 (26)3.4.2定义输出变量 (28)3.4.3求解 (28)3.5优化求解 (29)3.5.1选择优化变量 (29)3.5.2设置远区辐射场 (29)3.5.3添加优化设置 (29)3.5.4求解优化分析 (30)4 结果演示与分析 (30)4.1贴片天线的仿真结果 (30)4.1.1贴片天线的仿真结果 (30)4.1.2贴片天线的仿真结果分析 (30)引言发生多撒飞洒发多少我都发范德萨范德萨分到达发到付啊放大但是的但是上的放大放大飞机返回来烦你的经费户附近的看是否就安分点积分激发你觉得离开谁惹你北京网络法律能发奶粉就发觉你废物了南方vfjdklafnlfefjdalfn费劲儿了奶粉就为了你附近的少年富放你家里是南方金额女王1 绪论1.1 HFSS简介电磁场学科是围绕麦克斯韦方程组为中心展开的研究。

HFSS实验二

HFSS实验二

微波技术与天线实验报告(二)
实验二:魔T内部场分析
1:实验目的
理解和分析魔T波导内部场结构及网络参数
2:实验步骤
1)、建立新的工程。

2)、设置求解类型。

在菜单栏中点击HFSS
弹出Suction Type窗口
选择Driven Modal
点击OK按钮
3)、设置模型单位
在菜单栏中点击Modeler>Units
设置模型单位
在设置单位窗口中选择:mm
点击OK
4)、设置模型的默认材料
在工具栏中设置模型的默认材料为真空
5)、创建魔T、
创建ARM-1
在右下角中的坐标输入栏中输入长方体的起始点位置坐标X:—25.0,Y:—10.0,Z:0.0
按回车键输入
输入长方体XYZ三个方向的尺寸dX:50.0,dY:20.0,dZ:75.0 设置激励端口
创建ARM-2
创建ARM-3和ARM-4
组合模型
将所有的ARM组合成一个模型
6)、求解设置
设置求解频率
设置扫频
7)、保存工具
8)求解该工程
9)后参数处理
S参数
S参数相位
场分布图场分布图动态显示
实验图形
望以后有机会做的更好吧...。

微带天线的hfss仿真设计实验内容

微带天线的hfss仿真设计实验内容

微带天线的hfss仿真设计实验内容该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

微带天线的hfss仿真设计实验内容该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。

文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 微带天线的hfss仿真设计实验内容can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to knowdifferent data formats and writing methods, please pay attention!微带天线是一种常见且实用的天线类型,在无线通信领域有着广泛的应用。

HFSS矩形微带贴片天线的仿真设计报告

HFSS矩形微带贴片天线的仿真设计报告

- -.基于 HFSS 矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub 0,0,0 28.1,32,-0.79 Bo* Rogers 5880 (tm)GND 0,0,-0.79 28.1,32,-0.05 Bo* pecPatch 7.03 , 8 , 0 12.45 , 16, 0.05 Bo* pecMSLine 10.13,0,-0.79 2.49 , 8 , 0.05 Bo* pecPort 10.13,0,-0.79 2.49 ,0, 0.89 RectangleAir -5,-5,-5.79 38.1 , 42, 10.79 Bo* Vacumn一、新建文件、重命名、保存、环境设置。

(1)、菜单栏File>>save as,输入Antenna,点击保存。

(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。

(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型(1)点击创建GND,起始点:*:0,y:0,z:-0.79,d*:28.1,dy:32,dz:-0.05修改名称为GND, 修改材料属性为 pec,(2) 介质基片:点击,:*:0,y:0,z:0。

d*: 28.1,dy: 32,dz: - 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

点击OK(3) 建立天线模型patch,点击,*:7.03,y: 8, z:0 ,d*: 12.45,dy: 16,dz: 0.05命名为patch,点击OK。

HFSS-矩形微带贴片天线的仿真设计报告

HFSS-矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计-、新建文件、重命名、保存、环境设置。

(1) 、菜单栏File»save as,输入Antenna,点击保存。

(2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units 选择mm,点击OK。

(4)、菜单栏Tools»Options>>Modeler Options,勾选"Edit properties of new pri ”,点击OK。

建立微带天线模型Sf W41Vhi t |Ev«l i Qftttdl ¥D«1CTkptLi9in"ordintl 吉GlebaFoil ti DBL o B o■■O M魯Oto * …ISlEt2S 1M 2& iwttiit32—321--Q 05■-Q CO**修改名称为GND,修改材料属性为pec ,LJCwhna | I修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色透明度0.4。

⑴点击创建GND起始点:x:0 , y:0 , z:-0.79 dx:28.1,dy:32,dz:-0.05ITIN1fT11 11Or a rht * 般z心lh ■>!看fi...UnTruiiptrtiit.0 21Ut4"«hljr厂厂厂厂厂厂厂厂(2)介质基片:点击,:x:0,y:0,z:0。

dx: 28.1,dy: 32,dz: - 0.794,点击OK(3) 建立天线模型patch , 匚gag]C^crdiMlt .7 03 #812 «5-»TSi m命名为patch ,点击OK£弹・・^扌 ikt-lir iIMSLine,dx:2.46 , dy: 8 , dz: 0.05 ,点击: ,x:7.03,y: 8, z:0,dx: 12.45 , dy: 16 , dz: 0.05(4)建立天线模型微带线点击:,x:10.13,y: 0, ,z: 0V AI IP«ICTiptLMCcMtniCrtktitBtiGUbtlPtiili m10 13 H 0』p> 10 1A d 0t 炸■A tIStnB MA MZSi r«4 «0 ffiM命名为MSLine,材料pec,透明度0.4班“啊叶¥Dwfcripti Mt R4*4-«JyKi lEUn.r V^lerial■p -W**p«*厂 lEkiidltF厂Ori GlobdLr B«4*lr厂r Ccl^T* Edit rTrimjspw*»t0 *r选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite(5)、建立端口。

HFSS仿真实验报告样例

HFSS仿真实验报告样例

《微波技术与天线》HFSS仿真实验报告实验二印刷偶极子天线设计专业通信工程年级2011 级姓名毛佳雯学号1116428042指导老师评分一、仿真实验内容和目的使用HFSS设计一个中心频率为 2.45GHz的采用微带巴伦馈线的印刷偶极子天线,并通过HFSS软件Opitmetrics模块的参数扫描分析功能对印刷偶极子天线的一些重要结构参数进行参数扫描分析,分析这些参数对天线性能的影响。

二、设计模型简介整个天线分为5个部分,即介质层,偶极子天线臂,微带巴伦线,微带传输线,见图1。

天线各部分结构尺寸的初始值见表1。

图1印刷偶极子天线结构图(顶视图)。

表1印刷偶极子天线关键结构尺寸初始值。

批注[y1]:实际报告撰写中,表格应手动编制,不允许直接截图。

三、建模和仿真步骤1、新建 HFSS 工程,添加新设计,设置求解类型:Driven Modal。

2、创建介质层。

创建长方体,名称设为 Substrate,材质为 FR4_epoxy,颜色为深绿色,透明度为0.6。

3、创建上层金属部分1)创建上层金属片,建立矩形面,名称 Top_Patch,颜色铜黄色。

2)创建偶极子位于介质层上表面的一个臂。

画矩形面,名称 Dip_Patch,颜色铜黄色。

3)创建三角形斜切角,创建一个三角形面,把由矩形面 Top_Patch 和 Dip_Patch 组成的90 折线连接起来。

4)合并生成完整的金属片模型。

4、创建下表面金属片1)创建下表面传输线 Top_patch_1。

2)创建矩形面 Rectangle1。

3)创建三角形 polyline2。

4)镜像复制生成左侧的三角形和矩形面此步完成后得到即得到印刷偶极子天线三维仿真模型如图2所示。

5、设置边界条件1)分配理想导体。

2)设置辐射边界条件,材质设为 air。

6、设置激励方式:在天线的输入端口创建一个矩形面最为馈电面,设置该馈电面的激励方式为集总端口激励,端口阻抗为50欧姆。

7、求解设置:求解频率(Solution Frequency)为 2.45GHz,自适应网格最大迭代次数(Maximum Number of Passes):20,收敛误差(Maximum Delta S)为 0.02。

微波技术与天线实验10利用HFSS仿真对称振子阵列天线

微波技术与天线实验10利用HFSS仿真对称振子阵列天线

一实验目的1 学会使用Ansoft软件hfss工具包分析阵列天线的基本步骤。

2 计算四元阵的方向图,并观察馈电电压相位改变时方向图的变化。

图0 对称振子四元阵二实验原理及步骤1、建立天线模型按照教材P199图5.2-17给出的四元阵的示意图,计算出天线各单元的尺寸和坐标位置,建立模型进行仿真(如图0)。

工作频率为3GHz,波长lbd=100mm。

四分之一波长振子单臂长度l0=lbd/4=25mm, 阵列单元间距d=lbd/250mm,各振子臂为以z轴各为轴的圆柱体,模型如表1。

其中r0=1mm,l0= 25mm,d=50mm。

表1 振子模型各振子的激励加在矩形平面上(平行于yz面),模型如表2。

表2 激励源模型Airbox为立方体,顶点坐标为(-lbd/4-r0, -lbd/4-r0, -lbd/4- l0-0.5mm),尺寸为xsize=2*(lbd/4+r0), ysize=2*lbd/4+4*r0+3*d,zsize=2*(lbd/4+l0+0.5mm)。

其中lbd=100 mm,材料为vaccum,边界条件为radiation。

2、设置频率3GHz,运行计算。

3、设置立体角度在Project Manager窗口中,选择dipole>HFSSDesign1>Radiation,点击鼠标右键,选择Inser Farm Field Setup>Infinite Sphere,出现远场辐射球设置界面“Far Field Radiation Sphere”,设置如图1,点击确定。

图1 远场辐射球设置界面4、仿真结果(1)等幅同相激励选择project manger窗口中的Field Overlays,点击鼠标右键Edit Source,按照图2所示设置各端口的激励源,等幅同相激励。

此时H面方向图如图3,立体方向图如图4。

图3 α=0时的H面方向图(theta=90deg)图4 α=0的立体方向图(2)等幅α=90。

微波技术与天线仿真实验报告.docx

微波技术与天线仿真实验报告.docx

《微波技术与天线》HFSS仿真实验报告实验二H面T型波导分支器设计一.仿真实验内容和目的使用HFSS设计一个带有隔片的H面T型波导分支器,首先分析隔片位于T型波导正中央,在8~10GHz的工作频段内,波导输入输出端口的S参数随频率变化的关系曲线以及10GHz时波导表面的电场分布;然后通过参数扫描分析以及优化设计效用分析在10GHz处输入输出端口的S参数随着隔片位置变化而变化的关系曲线;最后利用HFSS优化设计效用找出端口三输出功率是端口二输出功率两倍时隔片所在位置。

二.设计模型简介整个H面T型波导分为两个部分:T型波导模型,隔片。

见图1。

图1三.建模和仿真步骤1.运行HFSS并新建工程,把工程另存为Tee.hfss。

2.选择求解类型:主菜单HFSS→solution type→driven modal,设置求解类型为模式驱动。

3.设置长度单位:主菜单modeler→units→in,设置默认长度单位为英寸。

4.创建长方体模型1)从主菜单选择draw→box,进入创建长方体模型的工作状态,移动鼠标到HFSS工作界面的右下角状态栏,在状态栏输入长方体的起始点坐标为(0,-0.45,0),按下回车键确认之后在状态栏输入长方体的长宽高分别为2,0.9,0.4。

2)再次按下回车键之后,在新建长方体的属性对话框修改物体的位置,尺寸,名称,材料和透明度等属性。

在attribute选项卡中将长方体名称项(name)修改为Tee,材料属性(material)保持为真空(vacuum)不变,透明度(transparent)设置为0.4。

3)设置端口激励4)复制长方体第二个和第三个臂5)合并长方体5.创建隔片1)创建一个长方体并设置位置和尺寸2)执行相减操作上诉步骤完成后即可得到H面T型波导的三维仿真模型图如图2所示图26.分析求解设置1)添加求解设置:在工程管理窗口中展开工程并选中analyse节点,单击右键,在弹出的快捷菜单中选择add solution type并设置相关参数,完成后工程管理窗口的analyse节点下会添加一个名称为setup1的求解设置项2)添加扫频设置:在工程管理窗口中展开analysis节点,右键单击前面添加的setup1求解设置项,在弹出菜单中单击add frequency sweep,并设置sweep name,sweep type,等参数。

天线仿真实验报告

天线仿真实验报告

课程名称电磁场与电磁波学院通信工程年级 2010 级专业通信班姓名 X X X学号 X X X时间 X X X一、实验目的:1、熟悉HFSS软件设计天线的基本方法;2、利用HFSS软件仿真设计以了解天线的结构和工作原理;3、通过仿真设计掌握天线的基本参数:频率、方向图、增益等。

二、实验仪器:1、HFSS软件三、实验原理:1、天线是用金属导线、金属面或其他介质材料构成一定形状,架设在一定空间,将从发射机馈给的视频电能转换为向空间辐射的电磁波能,或者把空间传播的电磁波能转化为射频电能并输送到接收机的装置。

2、天线能把传输线上传播的导行波变换成在无界媒介中传播的电磁波,或者进行相反的变变换。

在无线电设备中用来发射或接收电磁波的部件。

无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。

此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。

一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。

同一天线作为发射或接收的基本特性参数是相同的。

这就是天线的互易定理。

四、 实验步骤:1、根据个人在班级的序号N ,设计一个工作频率为()[]GHz N f 102.020-⨯+=的41波长单极子天线,所用导线的直径为mm R 10=,长度为mm L 0的天线。

2、以频率上的长度0L 为基准,讨论当天线长度为()mm L 20±时,天线的谐振频率、带宽和方向图的变化。

3、在频率0f 上,讨论当天线直径0R 为mm 2和mm 3时,天线的谐振频率、带宽和方向图的变化。

4、结合工作生活实际,谈谈对天线的认识。

5、仿真图形如下:五、实验过程原始记录(数据、图表、计算等):1、频率为2.44GHz,L=L0,R0=1mm①谐振频率:②三维方向图:③二维方向:2、频率为2.44GHz,L=(L0-2)mm,R0=1mm①谐振频率:②二维方向:3、频率为2.44GHz,L= (L0+2) mm,R0=1mm①谐振频率:②二维方向:4、频率为2.44GHz,L=L0,R0=2mm①谐振频率:②二维方向:六、实验结果及分析:由频率为2.44GHz,R0=1mm,L分别为L0、L0-2)mm、(L0+2) mm时的谐振频率曲线可以看出:①当天线长度小于初始长度L时,带宽的上下限截止频率都有所变大,但是带宽的大小无太大变化。

基于HFSS缝隙耦合贴片天线的仿真设计报告

基于HFSS缝隙耦合贴片天线的仿真设计报告

基于HFSS缝隙耦合贴片天线的仿真设计报告HFSS(High Frequency Structure Simulator)是一种电磁仿真软件,广泛应用于无线通信、微波电路、天线设计等领域。

其中,扇形缝隙耦合贴片天线是一种常见的天线结构,具有较好的性能和应用潜力。

本报告将基于HFSS对缝隙耦合贴片天线进行仿真设计。

在设计前,我们首先要设置仿真的参数。

通过选择“Analysis”菜单下的“Design Settings”打开仿真参数设置对话框。

在对话框中,我们可以设置模型的频率范围、单位、边界条件等。

根据实际需求,选择合适的参数设置后,可以开始进行仿真设计。

在HFSS软件中,我们可以进行多种类型的仿真分析,如S参数、辐射模式、电场分布等。

在缝隙耦合贴片天线的仿真设计中,我们可以使用S参数分析来研究天线的频率响应。

通过选择“Analysis”菜单下的“S-parameters”选项,进行设置并运行仿真。

仿真完成后,可以得到天线的S参数结果,包括频率响应和射频性能指标。

除了S参数仿真,我们还可以进行辐射模式仿真。

通过选择“Analysis”菜单下的“Radiation”选项,进行设置并运行仿真。

仿真完成后,可以得到天线的辐射模式图,可以直观地观察到天线的辐射特性。

此外,HFSS还提供了电场分布仿真功能,可以用于研究天线的电场分布状况。

通过选择“Analysis”菜单下的“Fields”选项,进行设置并运行仿真。

仿真完成后,可以得到天线的电场分布图,可以观察到天线不同部分的电场强度和分布情况。

通过上述的仿真设计,我们可以对缝隙耦合贴片天线的性能进行评估和优化。

根据仿真结果,可以对天线的尺寸、结构或材料进行调整和优化,以达到更好的性能指标。

综上所述,基于HFSS的缝隙耦合贴片天线仿真设计可以为天线工程师提供一种快速、准确的设计手段。

通过HFSS软件的功能和仿真工具,可以对天线的性能进行全面分析和评估,为天线设计和优化提供有力的支持。

HFSS天线仿真实验报告

HFSS天线仿真实验报告

HFSS天线仿真实验报告半波偶极子天线设计通信0905杨巨U2009138922012-3-7半波偶极子天线设计半波偶极子天线仿真实验报告一、实验目的1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图特性等4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法二、实验仪器1、装有windows系统的PC一台2、 HFSS13.0软件3、截图软件三、实验原理1、首先明白一点:半波偶极子天线就是对称阵子天线。

2、对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。

一臂的导线半径为a,长度为l。

两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。

对称振子的长度与波长相比拟,本身已可以构成实用天线。

3、在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。

取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。

4、在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。

利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

1 / 8半波偶极子天线设计电流元I(z)dz所产生的辐射场为图2 对称振子辐射场的计算如图2 所示,电流元I(z)所产生的辐射场为其中5、方向函数四、实验步骤1、设计变量设置求解类型为Driven Model 类型,并设置长度单位为毫米。

提前定义对称阵子天线的基本参数并初始化2、创建偶极子天线模型,即圆柱形的天线模型。

其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。

HFSS仿真实验报告样例

HFSS仿真实验报告样例

〈〈微波技术与天线》HFSS仿真实验报告实验二印刷偶极子天线设计一、仿真实验内容和目的使用HFSS设计一个中心频率为2.45GHz的采用微带巴伦馈线的印刷偶极子天线, 并通过HFSS 软件Opitmetrics模块的参数扫描分析功能对印刷偶极子天线的一些3!要结构参数进行参数扫描分析,分析这些参数对天线性能的影响。

二、设计模型简介整个天线分为5个部分,即介质层,偶极于天线臂,微带巴伦线,微带传输线,见三、建模和仿真步骤1、新建HFSSC程,添加新设计,设置求解类型:Driven Modal。

2、创建介质层。

创建长方体,名称设为Substrate,材质为FR4_epoxy颜色为深绿色,透明度为0.6。

3、创建上层金属部分1)创建上层金属片,建立矩形面,名称Top_Patch颜色铜黄色。

2)创建偶极子位于介质层上表面的一个臂。

画矩形面,名称Dip_Patch,颜色铜黄色。

3)创建三角形斜切角,创建一个三角形面,把由矩形面Top_Patch和Dip_Patch组成的90折线连接起来。

4)合并生成完整的金属片模型。

4、创建下表面金属片■I批注[y1]:实际报告撰写中,表格应手动编制,不允许直接截图。

1)创建下表面传输线Top_patch_1。

2)创建矩形面Rectangle1。

3)创建三角形polyline2。

4)镜像复制生成左侧的三角形和矩形面此步完成后得到即得到印刷偶极子天线三维仿真模型如图2所示。

5、设置边界条件1)分配理想导体。

2)设置辐射边界条件,材质设为air。

6、设置激励方式:在天线的输入端口创建一个矩形面最为馈电面,设置该馈电面的激励方式为集总端口激励,端口阻抗为50欧姆。

7、求解设置:求解频率(Solution Frequency)为2.45GHz自适应网格最大迭代次数(Maximum Number of Passes) : 20,收敛误差(Maximum Delta S)为0.02。

hfss仿真实验报告

hfss仿真实验报告

hfss仿真实验报告《HFSS仿真实验报告》HFSS(High Frequency Structure Simulator)是一种专业的电磁场仿真软件,广泛应用于微波、射频和毫米波领域。

本文将介绍一项基于HFSS的仿真实验报告,以展示该软件在电磁场仿真方面的应用和效果。

实验目的:本次实验旨在利用HFSS软件对一个微波天线的性能进行仿真分析,包括天线的辐射特性、频率响应和波束形成等方面的性能。

实验步骤:1. 绘制天线的三维模型:首先利用HFSS软件绘制出所要仿真的微波天线的三维模型,包括天线的几何结构、材料属性等。

2. 设置仿真参数:设定仿真的频率范围、网格密度等参数,以确保仿真结果的准确性。

3. 运行仿真:将绘制好的天线模型导入HFSS软件中,进行电磁场的仿真计算。

4. 分析仿真结果:根据仿真结果,分析天线的辐射特性、频率响应等性能指标,并对天线的性能进行优化。

实验结果:通过HFSS软件的仿真计算,得到了微波天线在不同频率下的辐射图案、增益、方向图等性能指标。

同时,还对天线的几何结构进行了优化设计,进一步提高了天线的性能。

结论:本次实验充分展示了HFSS软件在电磁场仿真方面的强大功能,能够准确、高效地分析微波天线的性能。

通过HFSS的仿真实验,可以为天线设计和优化提供重要的参考和指导,有助于提高天线的性能和可靠性。

总结:HFSS仿真实验报告展示了该软件在电磁场仿真方面的应用优势,为微波、射频和毫米波领域的工程师和研究人员提供了重要的工具和支持。

相信在未来的发展中,HFSS软件将继续发挥重要作用,推动电磁场仿真技术的进步和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[键入公司名称]
[键入文档标题]
通信0905
杨巨
U2
2012-3-7
半波偶极子天线仿真实验报告
一、实验目的
1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法
2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法
3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图
特性等
4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法
二、实验仪器
1、装有windows系统的PC一台
2、HFSS13.0软件
3、截图软件
三、实验原理
1、首先明白一点:半波偶极子天线就是对称阵子天线。

对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。

一臂的导线半径为a,长度为l。

两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。

对称振子的长度与波长相比拟,本身已可以构成实用天线。

在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。

取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。

4、
在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。

利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

电流元I(z)dz所产生的辐射场为
图2 对称振子辐射场的计算
如图2 所示,电流元I(z)所产生的辐射场为
其中
5、方向函数
四、实验步骤
1、设计变量
设置求解类型为Driven Model 类型,并设置长度单位为毫米。

提前定义对称阵子天线的基本参数并初始化
2、创建偶极子天线模型,即圆柱形的天线模型。

其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。

3、设置端口激励
半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。

4、设置辐射边界条件
要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。

这里创建一个沿Z轴放置的圆柱模型,材质为空气。

把圆柱体的表面设置为辐射边界条件。

5、外加激励求解设置
分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。

6、设计检查和运行仿真计算
7、HFSS天线问题的数据后处理
具体在实验结果中阐释。

五、实验结果
1、回波损耗S11
回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。

图中所示是在2.5 G Hz ~3.5 G Hz频段内的回波损耗,设计的偶极子天线中心频率约为3 G Hz,S11<-10dBd的相对带宽BW=(3.25-2.775)/3*100%=15.83%
2、电压驻波比
驻波比,一般指的就是电压驻波比,是指驻波的电压峰值与电压谷值之比。

由图可以看到在3G赫兹附近时,电压驻波比等于1,说明此处接近行波,传输特性比较理想。

3、smith圆图
史密斯圆图是一种计算阻抗、反射系数等参量的简便图解方法。

采用双线性变换,将z复平面上。

实部r=常数和虚部x=常数两族正交直线变化为正交圆并与:反射系数|G|=常数和虚部x=常数套印而成。

从smith圆图可以看到,在中心频率3G赫兹时的归一化阻抗约为1,说明端口的阻抗特性匹配良好。

4、输入阻抗
传输线、电子电路等的输入端口所呈现的阻抗。

实质上是个等效阻抗。

只有确定了输入阻抗,才能进行阻抗匹配。

图中所示的输入阻抗分别为实部和虚部,在中心频率3G赫兹时,输入阻抗比较的理想,容易实现匹配。

5、方向图
方向图是方向性函数的图形表示,他可以形象描绘天线辐射特性随着空间方向坐标的变化关系。

辐射特性有辐射强度、场强、相位和极化。

通常讨论在远场半径为常数的大球面上,天线辐射(或接收)的功率或者场强随位置方向坐标的变化规律,并分别称为功率方向图和场方向图。

天线方向图是在远场区确定的,所以又叫远场方向图。

电场方向图:
由图可以看到,电场方向以Z轴为对称轴,在XOY平面上电场最强,且沿四周均匀辐射。

但沿着Z轴方向电场强度很弱。

磁场方向图:
磁场方向图在XOY平面上接近一个圆,虽然看上去有些误差。

说明磁场在XOY平面上辐射较为均匀。

三维增益方向图:
这张图可以很具体的看出半波偶极子天线沿着Z轴对称辐射的情况。

6、其他参数
利用HFSS软件仿真还可以得到天线在该辐射表面上得最大辐射强度、方向性系数、最大强度及其所在方向等参数。

看着这一张密密麻麻的图表,很多参数还不是很明白,还需研究。

六、实验分析
设计一个天线,无论是作为发射天线还是接收天线,我们都很关心其方向参数、输入阻抗参数、增益参数、频带宽度等参数。

这里也主要就上诉几个参数来讨论半波偶极子天线的优缺点。

1、半波偶极子天线在轴向无辐射
2、半波偶极子天线的辐射与其电长度密切相关。

当电长度小于0.5时,波瓣宽度最窄,在
垂直与轴向的平面内辐射最强,随着电长度的增加,开始出现副瓣,主瓣宽度变宽,最大辐射方向发生偏移。

3、半波偶极子天线的输入阻抗受频率影响很剧烈,说明宽频带时其较难实现负载匹配,所
以相对应的频带宽度也较窄。

4、在谐振频率附近时,我们从图中可以看到,天线的输入阻抗接近传输线的特性阻抗,实
现匹配较易,而且在中心频率附近,电波的传输特性也最好,从而可以实现较大效率的功率传输。

5、通过对实验得到结果的分析,不难发现,半波偶极子天线的诸多特性与电长度关系很大,
所以可以通过调整天线的电长度来实现不同功能和要求的半波偶极子天线应用。

6、最后还要补充一点:半波偶极子的输入阻抗还与天线的粗细有关。

七、实验总结
通过本次HFSS天线仿真实验,使我更加真实、贴切的了解天线的原理和用途。

生活中我们可以见到各种奇形怪状的天线,却不知其意义何在。

在这次实验过程中,我不停的操作、翻阅资料、上网查阅文献,对天线仿真设计的各个环节有了一个较为清楚的认识,对天线的各种参数也有了具体的理解,这些东西对以后的相关学习和研究打下了基础。

另外,这次实验中我感觉较难的部分在与如何通过确定一种具体天线的参量模型来模拟设计天线模型,来仿真验证天线特性。

相关文档
最新文档