高中数学《等差数列》试讲答辩

合集下载

安徽教师面试试讲数学《等差数列》教案

安徽教师面试试讲数学《等差数列》教案

安徽教师面试试讲数学《等差数列》教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的通项公式和前n项和公式。

2. 培养学生运用等差数列的知识解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容:1. 等差数列的概念2. 等差数列的通项公式3. 等差数列的前n项和公式4. 等差数列的性质5. 等差数列在实际问题中的应用三、教学重点与难点:1. 教学重点:等差数列的概念、通项公式、前n项和公式及性质。

2. 教学难点:等差数列通项公式和前n项和公式的推导及应用。

四、教学方法与手段:1. 教学方法:采用问题驱动法、案例分析法、小组讨论法等。

2. 教学手段:多媒体课件、黑板、粉笔等。

五、教学过程:1. 导入新课:通过生活中的实例引入等差数列的概念,激发学生的学习兴趣。

2. 知识讲解:讲解等差数列的概念、通项公式、前n项和公式及性质,引导学生理解并掌握。

3. 例题解析:分析并解答典型例题,让学生学会运用等差数列的知识解决问题。

4. 小组讨论:让学生分组讨论等差数列的应用问题,培养学生的合作意识。

5. 课堂练习:布置适量练习题,巩固所学知识。

6. 总结回顾:对本节课的主要内容进行总结,查漏补缺。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学反思:课后对教学效果进行反思,了解学生的掌握情况,针对存在的问题进行调整教学策略。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业评价:检查学生作业的完成情况,评估学生对课堂所学知识的掌握程度。

3. 单元测试评价:通过单元测试,了解学生对等差数列知识的整体掌握情况,为后续教学提供依据。

七、课后作业:1. 复习等差数列的概念、通项公式、前n项和公式及性质。

2. 完成课后练习题,包括简单应用题和综合提高题。

3. 总结等差数列的特点及解题方法,准备下一节课的学习。

安徽教师面试试讲数学《等差数列》教案

安徽教师面试试讲数学《等差数列》教案

安徽教师面试试讲数学《等差数列》教案一、教学目标:1. 知识与技能:(1)理解等差数列的定义及其性质;(2)学会等差数列的通项公式及其求和公式;(3)能够运用等差数列的知识解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质,培养学生抽象概括能力;(2)运用等差数列的通项公式和求和公式,提高学生解决问题的能力;(3)培养学生在探究、合作、交流中的数学思维。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

二、教学重难点:1. 教学重点:(1)等差数列的定义及其性质;(2)等差数列的通项公式和求和公式;(3)运用等差数列的知识解决实际问题。

2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。

三、教学过程:1. 导入:通过复习等差数列的前n项和公式,引导学生思考等差数列的通项公式。

2. 知识探究:(1)引导学生观察等差数列的定义,通过实例理解等差数列的概念;(2)引导学生发现等差数列的性质,如相邻两项的差是常数;(3)引导学生推导等差数列的通项公式;(4)引导学生掌握等差数列的求和公式。

3. 典例分析:运用等差数列的知识解决实际问题,如求等差数列的前n项和、某项的值等。

4. 练习巩固:布置练习题,让学生运用所学的等差数列知识解决问题。

5. 课堂小结:总结本节课所学内容,强调等差数列的定义、性质、通项公式和求和公式的运用。

四、课后作业:1. 完成练习册上的相关题目;2. 运用等差数列的知识解决生活中的问题,如计算工资、利息等。

五、教学反思:在课后对自己的教学进行反思,查看教学效果,针对学生的掌握情况,调整教学策略,为的教学做好准备。

六、教学评价:1. 学生对本节课所学的等差数列的定义、性质、通项公式和求和公式的掌握程度;2. 学生运用等差数列知识解决实际问题的能力;3. 学生在课堂上的参与程度、合作交流能力及数学思维的发展。

高中数学选择性必修二 精讲精炼 4 等差列的前n项和公式(精讲)(含答案)

高中数学选择性必修二 精讲精炼 4   等差列的前n项和公式(精讲)(含答案)

4.2.2 等差数列的前n项和公式(精讲)考点一等差数列基本量计算【例1】(2021·全国高二课时练习)已知等差数列{a n }中, (1)131,22a d ==-,15n S =-,求n 及n a ;(2)115121022n n a ,a ,S ==-=-,求d . 【答案】(1)124n n ,a ==-;(2)171-.【解析】(1)∵()13115222n n n S n -⎛⎫=⨯+-⨯=- ⎪⎝⎭,整理得27600n n --=,解得12n =或5n =-(舍去), ()1231121422a ⎛⎫=+-⨯-=- ⎪⎝⎭.∵12124n n ,a a ===-.(2)由1()(1512)102222n n n a a n S +-===-,解得4n =. 又由()11n a a n d +-=,即()512141d -=+-,解得171d =-. 【一隅三反】1.(2021·全国高二课时练习)在等差数列{}n a 中. (1)156a =,32n a =-,5n S =-,求n 和d ; (2)14a =,8172S =,求8a 和d ;(3)已知2d =,11n a =,35n S =,求1a 和n . (4)已知742S =,510n S =,345n a -=,求n .【答案】(1)15n =,16d =-;(2)839a =,5d =;(3)153n a =⎧⎨=⎩或171n a =⎧⎨=-⎩;(4)20 .【解析】(1)由题意得()15352262n n n n S a a ⎛⎫=+=-=- ⎪⎝⎭,解得15n =, 又15531462a d =+=-,解得:16d =-;(2)由已知得()()818888417222S a a a =+=+=, 解得:839a =,又因为84739a d =+=,所以5d =;(3)由()()11121112352n n a a n n n S na ⎧=+-⨯=⎪⎨-=+⨯=⎪⎩,整理可得:212350n n -+=, 解得:153n a =⎧⎨=⎩或171n a =⎧⎨=-⎩;(4)()1747477274222a a a S a +⨯====,解得:46a =,所以()()()143645510222n n n n a a n a a n S -+++====, 解得:20n =.2.(2021·全国高二专题练习)已知等差数列{a n }中, (1)112a =,420S =,求6S ; (2)11a =,512n a =-,1022n S =-,求d . 【答案】(1)48;(2)-171.【解析】1)()140441242S a d -=+=,因为112a =,∵3d =.故()()16661661166348222S a d --=+=⨯+⨯=. (2)由()()151********n n n a a n S +-+===-,解得4n =,又由()11n a a n d +-=,即512141()d -=+-,解得171d =-. 3.(2021·全国)已知{}n a 是等差数列,n S 是其前n 项和. (1)若21a =-,1575S =,求n a 与n S ;(2)若1234124a a a a +++=,123156n n n n a a a a ---+++=,210n S =,求项数n .【答案】(1)3n a n =-,252n n nS -=;(2)6n =.【解析】(1)设等差数列{}n a 的公差为d ,根据题意可得211511151415752a a d S a d =+=-⎧⎪⎨⨯=+=⎪⎩, 解得12,1a d =-=,所以()2113n a n n =-+-⨯=-,()2152122n n n n nS n --=-+⨯=. (2)由题意,数列{}n a 是等差数列,其前n 项和为n S , 因为1234124a a a a +++=,123156n n n n a a a a ---+++=,由等差数列的性质,可得()()112341234n n n n n a a a a a a a a a a ---+=+++++++124156280=+=,解得170n a a +=,又由210n S =,所以()17021022n n n nS a a =+=⨯=,解得6n =. 考点二 等差数列前n 项和与中项性质【例2】(1)(2021·全国高二课时练习)在等差数列{a n }中,若S 10=120,则a 1+a 10的值是( ) A .12 B .24 C .36D .48(2)(2021·全国高二专题练习)设n S 是等差数列{}n a 的前n 项和,918S =,430(9)n a n -=>,已知336n S =,则n 的值为( ) A .18B .19C .20D .21【答案】(1)B(2)D 【解析】(1)由S 10=11010()2a a +,得a 1+a 10=101202455S ==,故选:B (2)由等差数列的性质可得19959()9182a a S a +===,解得52a =,故5432n a a -+=, 而154()()1633622n n n n a a nS a a n -+==+==,解得21n =,故选:D . 【一隅三反】1.(2021·湖南高二学业考试)等差数列{}n a 中,376a a +=,则{}n a 的前9项和等于( ) A .-18 B .27C .18D .-27【答案】B 【解析】()()19397999627222a a a a S ++⨯====.故选:B 2.(2021·全国高二课时练习)已知等差数列{a n }中,22383829a a a a ++=,且a n <0,则S 10为( )A .-9B .-11C .-13D .-15【答案】D【解析】由22383829a a a a ++=得2839()a a +=,因为0n a <,所以383a a +=-, 所以110381010()10()10(3)15222a a a a S ++⨯-====-.故选:D 3.(2021·六盘山高级中学高二月考(理))设等差数列{}n a 的前n 项和为,n S 若68,a a 是方程2650x x -+=的两根,则13S =( ) A .39 B .52C .45D .72【答案】A【解析】由题可得,68762a a a +==,所以73a =,即1371339S a ==.故选:A .4.(2021·全国高二课时练习)已知等差数列{}n a 的前n 项和为n S .若1m ,且2110m m m a a a -++-=,2138m S -=,则m =( ) A .38 B .20 C .10 D .9【答案】C【解析】根据等差数列的性质可得112m m m a a a -++=.∵2110m m ma a a -++-=,∵0m a =或2m a =. 若0m a =,显然()212138m m S m a -=-=不成立,∵2m a =. ∵()212138m m S m a -=-=,解得10m =. 故选:C .5.(2021·广东潮阳·高二期末)已知等差数列{}n a 的前n 项和为n S ,11a =,若1118m m m a a a +-++=,且28m S =,则m 的值为( ) A .7 B .8C .14D .16【答案】B【解析】因为{}n a 是等差数列,所以11318m m m m a a a a -+++==,解得:6m a =, 所以()116()2822m m m m a a S ++===,解得:8m =. 故选:B .考点三 等差数列前n 项和的最值【例3】(1)(2021·全国高二课时练习)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( ) A .21B .20C .19D .18(2)(2021·全国高二课时练习)设等差数列{a n }的前n 项和为S n ,若a 11-a 8=3,S 11-S 8=3,则使a n >0的最小正整数n 的值是( ) A .8B .9C .10D .11(3)(2021·全国高二单元测试)在等差数列{a n }中,a 8>0,a 4+a 10<0,则数列{a n }的前n 项和S n 中最小的是( )A .S 4B .S 5C .S 6D .S 7【答案】(1)B(2)C(3)C【解析】(1)∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d , ∵99-105=3d .∵d =-2.又∵a 1+a 3+a 5=3a 1+6d =105,∵a 1=39. ∵S n =na 1+(1)2n n -d =-n 2+40n =-(n -20)2+400. ∵当n =20时,S n 有最大值. 故选:B.(2)设等差数列{a n }的公差为d ,由S 11-S 8=3,得a 11+a 10+a 9=3,即3a 10=3,解得a 10=1, 于是得a 1+9d =1,而a 11-a 8=3d =3,即d =1,则有a 1=-8, 从而得等差数列{a n }的通项公式为:a n =-9+n , 由-9+n >0得n >9,而n 是正整数,则min 10n =, 所以使a n >0的最小正整数n 的值是10.故选:C (3)等差数列{a n }中,a 8>0,a 4+a 10=2a 7<0, 故a 7<0,870d a a =->7n ∴≤时,有0n a <,8n ≥时,有0n a >所以数列{a n }的前n 项和S n 中最小的是7S . 故选:D 【一隅三反】1.(2021·全国高二课时练习)已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( ) A .8 B .9 C .10 D .11【答案】B【解析】设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∵-26+7d -26+12d =5,解得d =3,∵22(1)35535530252632222624n n n S n n n n -⎛⎫=-+⨯=-=--⎪⎝⎭,∵n 为正整数,∵{a n }的前n 项和S n 取最小值时,n =9.故选:B .2.(2021·全国高二专题练习)已知n S 为等差数列{}n a 的前n 项和,10S <,212520S S +=,则n S 取最小值时,n 的值为( ) A .11 B .12 C .13 D .14【答案】A【解析】10S <,212520S S +=,∴公差0d >.∴11212025242(21)25022a d a d ⨯⨯⨯+++=, 1677200a d ∴+=,67072067067<<+,1116767067720067737a d a d a d ∴+<+=<+,111267067a a ∴<<,即11120a a <<n S ∴取最小值时,11n =.故选:A .3.(2021·全国高二专题练习)数列{}n a 的前n 项和232n S n n =-,则当2n 时,下列不等式成立的是( ) A .1n n S na na >> B .1n n S na na >> C .1n n na S na >> D .1n n na S na >>【答案】C【解析】数列{}n a 的前n 项和232n S n n =-,11321a S ∴==-=. 当2n 时,22132[3(1)2(1)]54n n n a S S n n n n n -=-=-----=-, 故数列{}n a 的通项公式为54n a n =-.故数列{}n a 是递减的等差数列,且公差等于4-,故当2n 时有112nn a a a a +>>, 再由1()2n n n a a S +=可得1n n na S na >>, 故选:C .4(2021·全国高二专题练习)已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .18B .19C .20D .21【答案】C【解析】设{}n a 的公差为d ,由题意得135********d a a a a d a a ++++==++,即1235a d +=,∵ 2461113599a a a a d a d a d ++=+++++=,即1333a d +=,∵由∵∵联立得139a =,2d =-,22(1)39(2)40(20)4002n n n S n n n n -∴=+⨯-=-+=--+, 故当20n =时,n S 取得最大值400. 故选:C .5.(2021·全国高二专题练习)已知等差数列{a n }的前n 项和是S n ,若S 15>0,S 16<0,则S n 的最大值是( ) A .S 1 B .S 7 C .S 8 D .S 15【答案】C【解析】∵等差数列{a n }的前n 项和为S n ,且S 15>0,S 16<0,()115151502a a S ⨯+∴=>,∵115820a a a +=>,()116161602a a S ⨯+∴=<,∵116890a a a a +=+<, ∵890,0a a ><, 980d a a =-<所以在数列{}n a 中,当9n <时,0n a >,当9n ≥时,0n a <, 所以当n =8时,S n 最大, 故选:C考点四 等差数列前n 项和的性质【例4】(1)(2021·河南高二月考)记等差数列{}n a 的前n 项和为n S ,已知55S =,1521S =,则10S =( ) A .9B .10C .12D .13(2)(2021·全国高二专题练习)等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有n n S T =1n n +,则77a b 等于( )A .34B .56C .910D .1314 (3)(2021·全国高二课时练习)设等差数列{}n a 的前n 项和为n S ,若20212020220212020S S-=,则数列{}n a 的公差d 为( ) A .1B .2C .3D .4【答案】(1)C(2)D(3)D【解析】(1)因为n S 是等差数列{}n a 的前n 项, 由等差数列前n 项和的性质可知: 5S ,105S S -,1510S S -成等差数列,所以()()105515102S S S S S -=+-,即()()101025521S S -=+-,解得:1012S =, 故选:C.(2)∵S 13=11313()2a a +=13a 7,T 13=11313()2b b +=13b 7,∵713713a S b T ==1314.故选:D.(3)由等差数列的性质,知n S n ⎧⎫⎨⎬⎩⎭为等差数列.又()112n n n S na d -=+,所以112n S n a d n -=+,则数列{}n a 的公差为数列n S n ⎧⎫⎨⎬⎩⎭的公差的2倍, 而n S n ⎧⎫⎨⎬⎩⎭的公差为20212020220212020S S -=,所以数列{}n a 的公差为4,故选:D .【一隅三反】1(2021·全国高二专题练习)设S n 是等差数列{a n }的前n 项和,若53a a =59,则95S S 等于( )A .1B .-1C .2D .12【答案】A【解析】95S S =19159()25()2a a a a ++=5395a a =1.故选:A. 2.(2021·河南高二月考)记等差数列{}n a 与{}nb 的前n 项和分别为n S 和n T ,若123n n S n T n +=+,则105510a b a b =( )A .8281B .8182C .4241D .4142【答案】C【解析】因为()()1191011919101191911919191202192193412a a a a a S b b b T b b +++=====+⨯++,()()1951995199199911029293212a a a a a S b b b T b b+++=====+⨯++,可得552110b a =,所以105510202142411041a b a b =⨯=, 故选:C.3.(2021·云南省楚雄天人中学高二月考(理))等差数列{}n a 中,n S 表示其前n 项和,若10100S =,20110S =,则30S =( ) A .-80 B .120 C .30 D .111【答案】C【解析】因为等差数列{}n a 中,n S 表示其前n 项和,所以1020103020,,S S S S S --成等差数列,即()30100,10,110S -成等差数列, 所以()3020110100S =-+,解得3030S = 故选:C4.(2021·南昌市豫章中学高二开学考试(理))已知等差数列{}n a 的前n 项和为n S ,且111n nS S n n+-=+,416S =,则1a =( ) A .1 B .2 C .3 D .4【答案】A【解析】由等差数列{}n a 的前n 项和为1()2n n n a a S +=,可得1112122n n n n S S a a dd n n ++--===⇒=+, 又由414342162S a ⨯=+⨯=,解得11a =. 故选:A.5.(2021·辽宁抚顺·高二期末)设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517SS =( ) A .2B .1-C .1D .0.5【答案】C【解析】因为在等差数列{}n a 中,891715a a =, 所以1151511588117171179915()15()152152117()17()172172a a S a a a a a a S a a a a ++⨯====⋅=++⨯, 故选:C考点五 含有绝对值的求和【例5】(2021·全国高二专题练习)若数列{}n a 的前n 项和是242n S n n =-+,则1210a a a ++=⋯+________.【答案】66【解析】因为242n S n n =-+当1n =时,111421a S ==-+=-;当2n ≥时,2215[()4211(2]2)4n n n a S S n n n n n -=-=----=+--+,所以20a <,30a >,40a >,. 故()()212012101210410221166a S a a a a ++=++=+⋯+-⨯++=故答案为:66【一隅三反】1.(2021·福建省连城县第一中学高二月考)(多选)已知公差为d 的等差数列{}n a ,n S 为其前n 项和,下列说法正确的是( )A .若90S <,100S >,则6a 是数列{}n a 中绝对值最小的项B .若3614S S =,则61247S S = C .若18a =,42a =,则12832a a a +++=D .若48a a =,0d ≠,则110S =【答案】CD 【解析】对于A :因为{}n a 为等差数列,且91000S S <⎧⎨>⎩,所以1911000a a a a +<⎧⎨+<⎩,即55600a a a <⎧⎨+>⎩, 所以65||a a >,即5a 是数列{}n a 中绝对值最小的项. 故选项A 错误;对于B :因为{}n a 为等差数列, 所以3S ,63S S -,96S S -,129S S -为等差数列, 设3S x =,由3614S S =得:64S x =, 故x ,3x ,94S x -,129S S -为等差数列 解得1216S x =, 所以61241164S x S x ==. 故选项B 错误;对于C :因为{}n a 为等差数列,且18a =,42a =, 所以36d =-,2d =-,则82(1)210n a n n =--=-+.则 128||||||a a a +++8642024632=+++++++=.故选项C 正确;对于D :因为{}n a 为等差数列,且48||||a a =,0d ≠, 所以48a a =-,480a a +=, 则481111111()11()022a a a a S ++===. 故选项D 正确;故选:CD.2.(2021·全国高二专题练习)已知等差数列{}n a 中,158a a +=,42a =.(1)求数列{}n a 的通项公式;(2)设123||||||||n n T a a a a =+++⋯+,求n T .【答案】(1)102n a n =-;(2)229,5940,5n n n n T n n n ⎧-=⎨-+>⎩. 【解析】(1)等差数列{}n a 中,158a a +=,42a =, ∴1124832a d a d +=⎧⎨+=⎩,解得18a =,2d =-, 8(1)(2)102n a n n ∴=+-⨯-=-.(2)由1020n a n =-,得5n ,50a =,620a =-<,123||||||||n n T a a a a =+++⋯+,∴当5n 时,2(1)8(2)92n n n T n n n -=+⨯-=-. 当5n >时,22(1)[8(2)]2(955)9402n n n T n n n -=-+⨯-+⨯-=-+. ∴229,5940,5n n n n T n n n ⎧-=⎨-+>⎩. 3.(2021·河南高二月考)已知数列{}n a 满足117a =-,121n n na a a +=+,*N n ∈. (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列1n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和n T . 【答案】(1)证明见解析;(2)228,14,832, 5.n n n n T n n n ⎧-+≤≤=⎨++≥⎩. 【解析】(1)由121n n n a a a +=+,可得121112n n n n a a a a ++==+即1112n n a a +-=. 因为117a =-,所以117a =-, 故数列1n a ⎧⎫⎨⎬⎩⎭是以7-为首项,2为公差的等差数列. (2)由(1)可得()171229nn n a =-+-⨯=-, 设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则()272982n n n S n n -+-==-.当14n ≤≤时,10na <, 212121111118n n n n T S n n a a a a a a ⎛⎫=+++=-+++=-=-+ ⎪⎝⎭; 当5n ≥时,10na >, 14514511111111n n nT a a a a a a a a ⎛⎫=++++=-+++++ ⎪⎝⎭ ()()2244216328328n S S S n n n n =-+-=--=-+-, 综上所述228,14832,5n n n n T n n n ⎧-+≤≤=⎨++≥⎩。

教师招聘面试说课稿 高中数学 等差数列前n项和说课稿

教师招聘面试说课稿 高中数学 等差数列前n项和说课稿

(第一课时)一、教材分析? 教材地位、作用? 教学目标? 教学重点、难点(一)、教材地位与作用数列是刻画离散现象的函数,是一种重要的数学模型。

人们往往通过离散现象认识连续现象,因此就有必要研究数列。

高中数列研究的主要对象是等差、等比两个基本数列。

本节课的教学内容是等差数列前n项和公式的推导及其简单应用。

在推导等差数列前n项和公式的过程中,采用了:1.从特殊到一般的研究方法;2.等差数列的基本元表示;3.逆序相加求和。

不仅得出了等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。

等差数列前n项和是学习极限、微积分的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系。

(二)、教学目标1、知识与技能目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。

过程与方法目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。

2、情感、态度与价值观目标:获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

(三)、教学重点、难点1、等差数列前n项和公式是重点。

2、获得等差数列前n项和公式推导的思路是难点。

二、教法分析教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。

探索与发现公式推导的思路是教学的重点。

如果直接介绍¡°逆序相加¡±求和,无疑就像波利亚所说的¡°帽子里跳出来的兔子¡±。

所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。

应用公式也是教学的重点。

为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过¡°选择公式¡±,¡°变用公式¡±,¡°知三求二¡±三个层次来促进学生新的认知结构的形成。

教师资格面试《等差数列》试讲稿及解析

教师资格面试《等差数列》试讲稿及解析

教师资格面试《等差数列》试讲稿及解析2017年教师资格面试《等差数列》试讲稿及解析关于模拟课堂与一般课堂在教学设计上是相同的,如确定教学内容、教学目标、教学方法及教学过程等;在教学过程中,目光的组织与交流作用、形体语言对于教师思想的传递与延伸同样存在。

那么,下面是店铺为大家整理的《等差数列》试讲稿及解析,欢迎大家阅读浏览。

一、说教材等差数列为人教版必修5第二章第二节的内容。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的性质与应用等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了学习对比的依据。

二、说学情对于我校的高中学生,知识经验比较贫乏,虽然他们的智力发展已到了形式运演阶段,但并不具备教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、说教学目标【知识与技能】能够准确的说出等差数列的特点;能够推导出等差数列的通项公式,并可以利用等差数列解决些简单的实际问题。

【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,锻炼知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。

【情感态度价值观】通过对等差数列的研究,激发主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

四、说教学重难点【重点】等差数列的概念,等差数列的通项公式的推导过程及应用。

【难点】等差数列通项公式的推导,用“数学建模”的思想解决实际问题。

高中数学面试试讲精选全文完整版

高中数学面试试讲精选全文完整版
3、通过阶梯性练习,提高学生分析问题和解决问题的能力。
3.情感态度价值观:1、通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;
2、养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:
等差数列的概念。等差数列的通项公式的推导过程及应用。
教学难点:
等差数列的通项公式的推导过程及应用。
教学方法:
讲授法、谈话法、讨论法。
学生学法:
自主学习法、探究学习法、合作学习法
教学过程:
情景导:故事导入:分别讲两个不同类型的故事引出课题。
提问两个数列有什么特点?这种数列叫什么?今天来认识一个新朋友(板书:等差数列)
新课讲授:1、等差数列的概念,数学表达式。
2、等差数列的通项公式及推导。
3、巩固知识 例1
4、运用知识:数学建模思想(梯子问题)
5.知识检查:课本P114 习题3
板书设计:
教学反思:
可编辑修改精选全文完整版
课题:等差数列
课型:新授课
课时:1课时
教学环境/教具:多媒体教室
教学目标:
1.知识与技能:1、理解并掌握等差数列的概念;
2、了解等差数列的通项公式的推导过程及思想;
3、初步引入“数学建模”的思想方法并能运用。
2.过程与方法:1、培养学生观察、分析、归纳、推理的能力;
2、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;

2018下半年高中数学教师资格证面试考题-试讲及答辩(精选)第一批

2018下半年高中数学教师资格证面试考题-试讲及答辩(精选)第一批

2018下半年高中数学教师资格证面试考题-试讲及答辩(精选)高中数学《偶函数》一、考题回顾二、考题解析【教学过程】(一)导出课题同学们,“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映.让我们看看下列函数有什么共性?(二)形成概念【答辩题目解析】1.初中函数与高中函数概念的区别?【参考答案】高中函数概念与初中概念相比更具有一般性。

实际上,高中的函数概念与初中的函数概念本质上是一致的。

不同点在于,表述方式不同──高中明确了集合、对应的方法。

初中虽然没有明确定义域、值域这些集合,但这是客观存在的,也已经渗透了集合与对应的观点。

与初中相比,高中引入了抽象的符号f(x)。

f(x)指集合B中与x对应的那个数。

当x确定时,f(x)也唯一确定。

另外,初中并没有明确函数值域这个概念。

2.一个函数不是奇函数就是偶函数对吗?如果不对,请举例。

高中数学《直线与平面垂直的判定》一、考题回顾二、考题解析【教学过程】(一)引入新课直接阐述生活中有很多直线和平面垂直的现象,直接引出本节课的学习内容《直线与平面垂直的判定》。

(二)探索新知1.直线与平面垂直的概念图片展示旗杆与地面、大桥的桥柱与水面的图片。

提问:通过对这些现象的观察,说一说旗杆与地面、大桥的桥柱与水面给大家的直观感受是什么?再说一说生活中还有哪些直线与平面垂直的现象?预设:图片中旗杆与地面、大桥的桥柱与水面给人垂直的现象。

教室中的桌腿和地面、两面墙相交的直线与地面……展示将旗杆与地面抽象成数学图形。

【答辩题目解析】1.判断直线与平面垂直的方法有哪些?【参考答案】(1)定义法。

(2)利用判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

2.直线与平面平行的判定定理是什么?如何推导出来的?【参考答案】定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

推导:在翻书过程中,通过对书本的边缘所在直线与桌面所在的平面之间的关系,探究得到直线与平面平行判定定理的初步认识;再利用直接探究如下图形,探究得出判定定理。

2019年教师资格证高中数学面试真题及答案

2019年教师资格证高中数学面试真题及答案

2019年教师资格证高中数学面试真题及答案2019上半年教师资格证高中数学面试真题及答案(第一批)高中数学《奇函数的性质》1、题目:奇函数的性质2、内容:3、基本要求(1)让学生理解奇函数的含义,并能够利用奇函数的性质解决问题。

(2)教学中注意师生间的交流互动,有适当的提问环节,突出学生的研究主体地(3)要求配合教学内容有适当的板书设计。

(4)请在10分钟内完成试讲内容。

答辩题目:1定义在R上的奇函数,x=0处的函数值如何?为什么?2本节课的教学目标是什么二、考题解析【教学过程】(一)导入新课回顾偶函数的定义及性质。

教师引导:偶函数是轴对称性质在函数图象中的一种特殊体现。

除了轴对称,我们还学过什么样的对称性呢?预设:还有中心对称。

引题:本日我们就来研究中心对称性质在函数图像中的一种非凡表现。

板书课题《奇函数的性质》。

【参考答案】知识与技能:理解并掌握奇函数的定义及其性质,会灵活运用奇函数的性质解决问题。

过程与方法:经历奇函数概念的形成过程,体会从特殊到一般的数学思想方法,提高分析问题、解决问题的能力。

情感态度与价值观:积极参与研究过程,激发研究兴趣,提高研究信心,培养良好的数学研究惯。

高中数学《平面与平面的位置关系》1、题目:高中数学《平面与平面的位置关系》2、内容:3、基本要求:(1)如果教学期间需要其他辅助教学工具,进行演示即可(2)让学生结合生活实例理解平面与平面的位置关系(3)教学中注意师生间的交流互动,有适当的提问环节,突出学生的研究主体位置(4)要求配合教学内容有适当的板书设计。

(5)请在10分钟内完成试讲内容。

答辩问题:1本节课在教材中有着什么样的地位和作用?2在本节课的教学过程中,对于探究平面与平面的位置关系你是如何设计的?二、考题解析【教学过程】(一)导入新知回顾直线与直线、直线与平面的位置关系。

提问:平面与平面的位置关系又是如何的呢?引出课题——平面与平面的位置关系。

(三)课堂练如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论。

高中数学一轮复习《等差数列性质》精讲

高中数学一轮复习《等差数列性质》精讲

高中数学一轮复习《等差数列性质》精讲【基础知识】1.等差数列的性质:(1在等差数列{}n a中,从第2项起,每一项是它相邻二项的等差中项;(2在等差数列{}n a中,相隔等距离的项组成的数列是等差数列,如:1a,3a,5a,7a,……;3a,8a,1 3a,18a,……;(3在等差数列{}n a中,对任意m,n N+∈,(n m a a n m d=+-,n m a a d n m-=-(m n≠;(4在等差数列{}n a中,若m,n,p,q N+∈且m n p q+=+,则m n p q a a a a+=+,特殊地,2m p q=+时,则2m p q a a a=+,m a是p q a a、的等差中项.(5等差数列被均匀分段求和后,得到的数列仍是等差数列,即232,,n n n n n S S S S S--成等差数列.(6两个等差数列{}n a与{}n b的和差的数列{}n n a b±仍为等差数列.(7若数列{}n a是等差数列,则{}n ka仍为等差数列.2.设数列{}n a是等差数列,且公差为d,(Ⅰ若项数为偶数,设共有2n项,则①-S S nd=奇偶;②1n n S a S a+=奇偶;(Ⅱ若项数为奇数,设共有21n-项,则①S S-偶奇n a a==中(中间项;②1S n S n=-奇偶.3.(,p q a q a p p q==≠,则0p q a+=,m n m n S S S mnd+=++.4.如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.5.若{}n a与{}n b为等差数列,且前n项和分别为n S与'n S,则2121'm m m m a S b S--=.【规律技巧】1.等差数列的性质是等差数列的定义、通项公式以及前n项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.等差数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用,故应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.3.应用等差数列的性质要注意结合其通项公式、前n项和公式.4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向、形成解题策略.【典例讲解】【例1】(1设S n为等差数列{a n}的前n项和,S 8=4a 3,a 7=-2,则a 9=(A.-6B.-4C.-2D.2【答案】A(2(2014·浙江卷已知等差数列{a n}的公差d>0.设{a n}的前n项和为S n,a 1=1,S 2·S 3=36.①求d及S n;②求m,k(m,k∈N*的值,使得a m+a m+1+a m+2+…+a m+k=65.规律方法(1一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*,只有当序号之和相等、项数相同时才成立. (2在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】(1设数列{a n},{b n}都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+ b 37等于(A.0B.37C.100D.-37(2若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为(A.13B.12C.11D.10(3已知等差数列{a n}的前n项和为S n,且S 10=10,S 20=30,则S 30=________.【答案】(1C(2A(360【针对训练】1、在等差数列{}n a中,已知3810a a+=,则753a a+=(A.10B.18C.20D.28【答案】C【解析】因为3810a a+=,所以由等差数列的性质,得5610a a+=,所以753a a+=562220a a+=,选C.2、在等差数列{}n a中,若58113a a a++=,则该数列的前15项的和为____________.【答案】15【解析】因为在等差数列{}n a中,若58113a a a++=.所以8833,1a a=∴=.又因为等差数列的前15项和为1158158(152********a a a S a+⨯⨯====.故填15.3、设等差数列{}n a的前n项和为n S,若911a=,119a=,则19 S等于.【答案】190【解析】由等差数列的性质知911101191022a a a++===,191019190S a==.综合点评:这些题都是等差数列的性质的应用,熟记等差数列的性质,并能灵活运用是解这一类题的关键,注意等差数列与等比数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用.网Z+X+X+K]【巩固提升】1、等差数列{}n a中的1a、4025a是函数16431(23-+-=x x x x f的极值点,则=20132log a(A.B.C.D.【答案】A2、设n S为等差数列{}n a的前n项和,给出四个结论:(12810a a a+≠(22(0n S an bn a=+≠(3若,,,*m n p q N∈,则m n p q a a a a+=+的充要条件是m n p q+=+(4若611S S=,则90a=其中正确命题的个数为(A.1B.2C.3D.4【答案】A3.已知{a n}是等差数列,a 1=1,公差d≠0,S n为其前n项和,若a 1,a 2,a 5成等比数列,则S 8=________.【答案】64【解析】设数列{a n}的公差为d,由a 1,a 2,a 5成等比数列,得(1+d2=1·(1 +4d,解得d=2或d=0(舍去,所以S 8=8×1+8(8-12×2=64.4.在等差数列{a n}中,a 15=33,a 25=66,则a 35=________.【解析】a 25-a 15=10d=66-33=33,∴a 35=a 25+10d=66+33=99.【答案】995.设S n为等差数列{a n}的前n项和,S 2=S 6,a 4=1,则a 5=________.【解析】由题意知⎩⎪⎨⎪⎧2a 1+d=6a 1+6×52d,a 1+3d=1,解得⎩⎪⎨⎪⎧a 1=7,d=-2,∴a 5=a 4+d=1+(-2=-1.【答案】-16.已知等差数列{a n}中,S 3=9,S 6=36,则a 7+a 8+a 9=________. 【答案】45。

2019-2020年高中数学数列版块二等差数列等差数列的通项公式与求和完整讲义(学生版)

2019-2020年高中数学数列版块二等差数列等差数列的通项公式与求和完整讲义(学生版)

2019-2020年高中数学数列版块二等差数列等差数列的通项公式与求和完整讲义(学生版)典例分析【例1】等差数列的前项和为,若,,则下列结论正确的是()A. B. C. D.【例2】数列的前项和,求它的通项公式.【例3】数列的前项和,,则数列的前项和_______.【例4】数列的前项和,则_______.【例5】设等差数列的前项的和为,且,,求.【例6】设等差数列的前项的和为,且,,求.【例7】有两个等差数列,,其前项和分别为,,若对有成立,求.【例8】在等差数列中,,,为前项和,⑴求使的最小的正整数;⑵求的表达式.【例9】 等差数列的前项和为,前项和为,则它的前项和为_______.【例10】 等差数列中,,,问数列的多少项之和最大,并求此最大值.【例11】 已知二次函数()()222103961100f x x n x n n =+-+-+,其中.⑴ 设函数的图象的顶点的横坐标构成数列,求证:数列为等差数列;⑵ 设函数的图象的顶点到轴的距离构成数列,求数列的前项和.【例12】 等差数列前项的和为,其中,项数为奇数的各项的和为,求其第项及公差.【例13】 设等差数列的公差为,,且,求当取得最大值时的值.【例14】 已知等差数列中,,,,则( )A .B .C .D .【例15】已知是等差数列,且,,求数列的通项公式及的前项和.【例16】在各项均不为0的等差数列中,若,则等于()A.B.C.D.【例17】设数列满足,,,且数列是等差数列,求数列的通项公式.【例18】已知22=-+++-,f x x n x n n()2(1)57⑴设的图象的顶点的纵坐标构成数列,求证为等差数列.⑵设的图象的顶点到轴的距离构成,求的前项和.【例19】已知数列是等差数列,其前项和为,.⑴求数列的通项公式;⑵设是正整数,且,证明.【例20】在等差数列中,,,为前项和,⑴求使的最小的正整数;⑵求的表达式.【例21】有固定项的数列的前项和,现从中抽取某一项(不包括首相、末项)后,余下的项的平均值是.⑴求数列的通项;⑵求这个数列的项数,抽取的是第几项.【例22】 已知23123()n n f x a x a x a x a x =+++⋅⋅⋅+,成等差数列(为正偶数).又,,⑴求数列的通项;⑵试比较与的大小,并说明理由.【例23】 设,为实数,首项为,公差为的等差数列的前项和为,满足则的取值范围是 .【例24】 设等差数列的前项和为,若,,则当取最小值时,等于( )A .B .C .D .【例25】 在等比数列中,若公比,且前项之和等于,则该数列的通项公式 .【例26】 已知是公差不为零的等差数列,,且,,成等比数列.⑴求数列的通项;⑵求数列的前项和.【例27】 已知数列满足,,且对任意,都有22121122()m n m n a a a m n +-+-+=+-⑴求,;⑵设证明:是等差数列;⑶设,求数列的前项和.【例28】设等差数列的前项和为,,则等于()A.10 B.12 C.15 D.30【例29】已知等差数列的前项和为,且满足,则数列的公差是()A. B. C. D.【例30】若为等差数列,是其前项和,且,则的值为()A.B.C.D.【例31】已知等差数列,等比数列,则该等差数列的公差为()A.或 B.或 C. D.【例32】已知数列的通项公式,设其前项和为,则使成立的最小自然数等于()A. B. C. D.【例33】等差数列中,,,此数列的通项公式为,设是数列的前项和,则等于.【例34】设集合由满足下列两个条件的数列构成:①②存在实数,使.(为正整数)⑴在只有项的有限数列,中,其中,,,,,,,,,;试判断数列,是否为集合的元素;⑵设是等差数列,是其前项和,,证明数列;并写出的取值范围;⑶设数列,且对满足条件的常数,存在正整数,使.求证:.【例35】 已知数列满足:,21221,12,2n n n n a n n a a -+⎧⎪⎪=⎨++⎪⎪⎩为偶数为奇数,.⑴求的值;⑵设,,求证:数列是等比数列,并求出其通项公式;⑶对任意的,,在数列中是否存在连续的项构成等差数列?若存在,写出这项,并证明这项构成等差数列;若不存在,说明理由.2019-2020年高中数学数列的概念与简单表示”课堂实录一、教学目标:知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。

高中数学《等差数列的性质》知识点讲解及重点练习

高中数学《等差数列的性质》知识点讲解及重点练习

第2课时 等差数列的性质学习目标 1.能根据等差数列的定义推出等差数列的常用性质.2.能运用等差数列的性质简化计算.知识点一 等差数列通项公式的变形及推广设等差数列{a n}的首项为a1,公差为d,则①a n=dn+(a1-d)(n∈N*),②a n=a m+(n-m)d(m,n∈N*),③d=a n-a mn-m(m,n∈N*,且m≠n).其中,①的几何意义是点(n,a n)均在直线y=dx+(a1-d)上.②可以用来利用任一项及公差直接得到通项公式,不必求a1.③可用来由等差数列任两项求公差.知识点二 等差数列的性质1.若{a n},{b n}分别是公差为d,d′的等差数列,则有数列结论{c+a n}公差为d的等差数列(c为任一常数){c·a n}公差为cd的等差数列(c为任一常数){a n+a n+k}公差为kd的等差数列(k为常数,k∈N*){pa n+qb n}公差为pd+qd′的等差数列(p,q为常数)2.下标性质:在等差数列{a n}中,若m+n=p+q(m,n,p,q∈N*),则a m+a n=a p+a q.特别地,若m+n=2p(m,n,p∈N*),则有a m+a n=2a p.3.在等差数列中每隔相同的项选出一项,按原来的顺序排成一列,仍然是一个等差数列.4.等差数列{a n}的公差为d,则d>0⇔{a n}为递增数列;d<0⇔{a n}为递减数列;d=0⇔{a n}为常数列.思考 若{a n}为等差数列,且m+n=p(m,n,p∈N*),则a m+a n=a p一定成立吗?答案 不一定.如常数列{a n},1+2=3,而a1+a2=2a3.1.在等差数列{a n}中,a3+a5=10,则a1+a7等于( )A.5 B.8 C.10 D.14答案 C解析 a 1+a 7=a 3+a 5=10.2.在等差数列{a n }中,a 100=120,a 90=100,则公差d 等于( )A .2B .20C .100D .不确定答案 A解析 ∵a 100-a 90=10d ,∴10d =20,即d =2.3.在等差数列{a n }中,若a 5=6,a 8=15,则a 14=________.答案 33解析 由题意得d =a 8-a 58-5=15-68-5=3.∴a 14=a 8+6d =15+18=33.4.已知在等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12=________.答案 15解析 由等差数列的性质,得a 7+a 9=a 4+a 12=16,又∵a 4=1,∴a 12=15.一、a n =a m +(n -m )d 的应用例1 已知{a n }为等差数列,a 15=8,a 60=20,求a 75.解 方法一 (利用a n =a m +(n -m )d )设数列 {a n }的公差为d ,则a 60=a 15+(60-15)d =8+45d ,所以d =20-845=1245=415,所以a 75=a 60+(75-60)d =20+15×415=24.方法二 (利用隔项成等差数列)因为{a n }为等差数列,所以a 15,a 30,a 45,a 60,a 75也成等差数列,设其公差为d ,a 15为首项,则a 60为第四项,所以a 60=a 15+3d ,得d =4,所以a 75=a 60+d =24.反思感悟 灵活利用等差数列的性质,可以减少运算.令m =1,a n =a m +(n -m )d 即变为a n=a1+(n-1)d,可以减少记忆负担.跟踪训练1 已知{b n}为等差数列,若b3=-2,b10=12,则b8=________.答案 8解析 方法一 ∵{b n}为等差数列,∴可设其公差为d,则d=b10-b310-3=12-(-2)7=2,∴b n=b3+(n-3)d=2n-8.∴b8=2×8-8=8.方法二 由b8-b38-3=b10-b310-3=d,得b8=b10-b310-3×5+b3=2×5+(-2)=8.二、等差数列性质的应用例2 (1)已知数列{a n}是等差数列,若a1-a9+a17=7,则a3+a15等于( )A.7 B.14 C.21 D.7(n-1)答案 B解析 因为a1-a9+a17=(a1+a17)-a9=2a9-a9=a9=7,所以a3+a15=2a9=2×7=14.(2)已知数列{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,那么数列{a n+b n}的第37项为( )A.0 B.37 C.100 D.-37答案 C解析 设等差数列{a n},{b n}的公差分别为d1,d2,则(a n+1+b n+1)-(a n+b n)=(a n+1-a n)+(b n+1-b n)=d1+d2,所以数列{a n+b n}仍然是等差数列.又d1+d2=(a2+b2)-(a1+b1)=100-(25+75)=0,所以a37+b37=a1+b1=100.反思感悟 等差数列运算的两种常用思路(1)基本量法:根据已知条件,列出关于a1,d的方程(组),确定a1,d,然后求其他量.(2)巧用性质法:观察等差数列中项的序号,若满足m+n=p+q=2r(m,n,p,q,r∈N*),则a m+a n=a p+a q=2a r.跟踪训练2 (1)数列{a n}满足3+a n=a n+1且a2+a4+a6=9,则log6(a5+a7+a9)的值是( )A.-2 B.-12C.2 D.12答案 C解析 由3+a n=a n+1,得a n+1-a n=3.所以{a n}是公差为3的等差数列.又a2+a4+a6=9,且a2+a6=2a4,所以3a4=9,则a4=3,所以a7=a4+3d=3+3×3=12,故log6(a5+a7+a9)=log6(3a7)=log636=2.(2)设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=________.答案 35解析 因为数列{a n},{b n}都是等差数列,所以数列{a n+b n}也构成等差数列,所以2(a3+b3)=(a1+b1)+(a5+b5),所以2×21=7+a5+b5,所以a5+b5=35.三、等差数列中对称设项法的应用例3 (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数;(2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数.解 (1)设这三个数依次为a-d,a,a+d,则Error!解得Error!所以这三个数为4,3,2.(2)设这四个数为a-3d,a-d,a+d,a+3d(公差为2d),依题意得2a=2且(a-3d)(a+3d)=-8,即a=1,a2-9d2=-8,所以d2=1,所以d=1或d=-1.又四个数成递增等差数列,所以d>0,所以d=1,故所求的四个数为-2,0,2,4.反思感悟 等差数列的设项方法和技巧(1)当已知条件中出现与首项、公差有关的内容时,可直接设首项为a1,公差为d,利用已知条件建立方程(组)求出a1和d,即可确定此等差数列的通项公式.(2)当已知数列有3项时,可设为a-d,a,a+d,此时公差为d.若有5项、7项、…时,可同理设出.(3)当已知数列有4项时,可设为a-3d,a-d,a+d,a+3d,此时公差为2d.若有6项、8项、…时,可同理设出.跟踪训练3 已知五个数成等差数列,它们的和为5,平方和为859,求这5个数.解 设第三个数为a ,公差为d ,则这5个数分别为a -2d ,a -d ,a ,a +d ,a +2d .由已知有Error!整理得Error!解得a =1,d =±23.当d =23时,这5个数分别是-13,13,1,53,73;当d =-23时,这5个数分别是73,53,1,13,-13.综上,这5个数分别是-13,13,1,53,73或73,53,1,13,-13.数列问题如何选择运算方法典例 在等差数列{a n }中,a 3+a 7+2a 15=40,求a 10.解 方法一 设数列{a n }的公差为d .则a 3+a 7+2a 15=a 1+2d +a 1+6d +2(a 1+14d )=4a 1+36d =4(a 1+9d )=4a 10=40,∴a 10=10.方法二 ∵a 3+a 7+2a 15=a 3+a 7+a 15+a 15=a 10+a 10+a 10+a 10=40,∴a 10=10.[素养提升] (1)等差数列中的计算大致有两条路:一是都化为基本量(a 1,d ,n ),然后解方程(组);二是借助等差数列的性质简化计算.前者是通用方法,但计算量大,后者不一定每个题都能用,能用上会使计算简单些,所以建议学习者立足通法,注意观察各项序号特点,能巧则巧,但不要刻意追求巧法.(2)本例中明确题目的运算对象,选择适当的运算方法,灵活运用运算技巧,充分体现数学运算的数学核心素养.1.在等差数列{a n }中,已知a 3=10,a 8=-20,则公差d 等于( )A .3B .-6C .4D .-3答案 B解析 由等差数列的性质得a8-a3=(8-3)d=5d,所以d=-20-105=-6.2.在等差数列{a n}中,a4+a5=15,a7=12,则a2等于( )A.3 B.-3 C.32D.-32答案 A解析 由数列的性质,得a4+a5=a2+a7,所以a2=15-12=3.3.在等差数列{a n}中,若a3+a5+a7+a9+a11=100,则a1+a13的值为( )A.20 B.30 C.40 D.50答案 C解析 ∵a3+a11=a5+a9=2a7,∴a3+a5+a7+a9+a11=5a7=100,∴a7=20.∴a1+a13=2a7=40.4.由公差d≠0的等差数列a1,a2,…,a n组成一个新的数列a1+a3,a2+a4,a3+a5,…,下列说法正确的是( )A.新数列不是等差数列B.新数列是公差为d的等差数列C.新数列是公差为2d的等差数列D.新数列是公差为3d的等差数列答案 C解析 因为(a n+1+a n+3)-(a n+a n+2)=(a n+1-a n)+(a n+3-a n+2)=2d,所以数列a1+a3,a2+a4,a3+a5,…是公差为2d的等差数列.5.在等差数列{a n}中,已知5是a3和a6的等差中项,则a1+a8=________.答案 10解析 由5是a3和a6的等差中项,可得a3+a6=2×5=10,则由等差数列的性质可得a1+a8=a3+a6=10.1.知识清单:(1)等差数列通项公式的变形运用.(2)等差数列的性质.(3)等差数列中项的设法.2.方法归纳:解方程组法.3.常见误区:(1)对等差数列的性质不理解而致错.(2)不注意运用性质而出错或解法烦琐.1.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m的值为( ) A.12 B.8 C.6 D.4答案 B解析 由等差数列的性质,得a3+a6+a10+a13=(a3+a13)+(a6+a10)=2a8+2a8=4a8=32,∴a8=8,又d≠0,∴m=8.2.已知数列{a n},{b n}为等差数列,且公差分别为d1=2,d2=1,则数列{2a n-3b n}的公差为( )A.7 B.5C.3 D.1答案 D解析 由于{a n},{b n}为等差数列,故数列{2a n-3b n}的公差d=(2a n+1-3b n+1)-(2a n-3b n)=2(a n+1-a n)-3(b n+1-b n)=2d1-3d2=1.3.若等差数列{a n}的首项a1=5,a m=3,则a m+2等于( )A.13 B.3-4m-1C.3-2m-1D.5-2m-1答案 B解析 设等差数列{a n}的公差为d,因为a1=5,a m=3,所以d=a m-a1m-1=-2m-1.所以a m+2=a m+2d=3+-4m-1=3-4m-1.4.(多选)若{a n}是等差数列,下列数列中仍为等差数列的是( )A.{|a n|} B.{a n+1-a n}C.{pa n+q}(p,q为常数) D.{2a n+n}答案 BCD解析 数列-1,1,3是等差数列,取绝对值后:1,1,3不是等差数列,A不成立.若{a n}是等差数列,利用等差数列的定义,{a n+1-a n}为常数列,故是等差数列,B成立.若{a n}的公差为d,则(pa n+1+q)-(pa n+q)=p(a n+1-a n)=pd为常数,故{pa n+q}是等差数列,C成立.(2a n+1+n+1)-(2a n+n)=2(a n+1-a n)+1=2d+1,故{2a n+n}是等差数列,D成立.5.已知等差数列{a n}中,a2+a5+a8=9,那么关于x的方程x2+(a4+a6)x+10=0( ) A.无实根B.有两个相等的实根C.有两个不等的实根D.不能确定有无实根答案 A解析 因为a4+a6=a2+a8=2a5,a2+a5+a8=3a5=9,所以a5=3,则方程为x2+6x+10=0,因为Δ=62-4×10=-4<0,所以方程无实根.6.已知数列{a n}是等差数列,若a4+a7+a10=17,a4+a5+a6+…+a12+a13+a14=77,则a15 =________,若a k=15,则k=________.答案 11 21解析 ∵a4+a7+a10=3a7=17,∴a7=17 3 .又∵a4+a5+…+a13+a14=11a9=77,∴a9=7.故d=a9-a79-7=7-1732=23.∴a15=a9+(15-9)d=7+6×23=11,∵a k =a 9+(k -9)d =15,∴15-7=(k -9)×23,∴k =21.7.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.答案 -21解析 设这三个数为a -d ,a ,a +d ,则Error!解得Error!或Error!∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21.8.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.答案 1或2解析 ∵a ,b ,c 成等差数列,∴2b =a +c ,∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2.9.在等差数列{a n }中.(1)已知a 2+a 3+a 23+a 24=48,求a 13;(2)已知a 2+a 3+a 4+a 5=34,a 2·a 5=52,求公差d .解 (1)根据已知条件a 2+a 3+a 23+a 24=48,得4a 13=48,∴a 13=12.(2)由a 2+a 3+a 4+a 5=34,得2(a 2+a 5)=34,即a 2+a 5=17,由Error!解得Error!或Error!∴d =a 5-a 25-2=13-43=3或d =a 5-a 25-2=4-133=-3.10.四个数成递减等差数列,四个数之和为26,第二个数与第三个数之积为40.求这四个数.解 设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ),依题意,得Error!解得Error!或Error!又四个数成递减等差数列,所以d <0,所以d =-32,故所求的四个数为11,8,5,2.11.设等差数列的公差为d ,若数列{}12n a a 为递减数列,则( )A .d >0B .d <0C .a 1d >0D .a 1d <0答案 D解析 由数列{}12n a a 为递减数列,得11122,n n a a a a <-再由指数函数性质得a 1a n -1>a 1a n ,由等差数列的公差为d 知,a n -a n -1=d ,所以a 1a n -1>a 1a n ⇒a 1a n -a 1a n -1<0⇒a 1(a n -a n -1)<0⇒a 1d <0.12.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14 B .15 C .16 D .17答案 C解析 设公差为d ,∵a 4+a 6+a 8+a 10+a 12=120,∴5a 8=120,a 8=24,∴a 9-13a 11=(a 8+d )-13(a 8+3d )=23a 8=16.13.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( )A .a 1+a 101>0B .a 2+a 101<0C .a 3+a 99=0D .a 51=51答案 C解析 由等差数列的性质得:a 1+a 101=a 2+a 100=…=a 50+a 52=2a 51,由于a 1+a 2+a 3+…+a 101=0,所以a 51=0,故a 3+a 99=2a 51=0.14.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的17等于较小的两份之和,则最小的一份为( )A.53B.103C.56D.116答案 A 解析 设五个人所分得的面包个数为a -2d ,a -d ,a ,a +d ,a +2d ,其中d >0,则(a -2d )+(a -d )+a +(a +d )+(a +2d )=5a =100,∴a =20.由17(a +a +d +a +2d )=a -2d +a -d ,得3a +3d =7(2a -3d ),∴24d =11a ,∴d =556,∴最小的一份为a -2d =20-1106=53.15.若关于x 的方程x 2-x +m =0和x 2-x +n =0(m ,n ∈R ,且m ≠n )的四个根组成首项为14的等差数列,则数列的公差d =________,m +n 的值为________.答案 16 3172解析 设x 2-x +m =0,x 2-x +n =0的根分别为x 1,x 2,x 3,x 4,则x 1+x 2=x 3+x 4=1(且1-4m >0,1-4n >0).设数列的首项为x 1,则根据等差数列的性质,数列的第4项为x 2.由题意知x 1=14,∴x 2=34,数列的公差d =34-144-1=16,∴数列的中间两项分别为14+16=512,512+16=712.∴x 1·x 2=m =316,x 3·x 4=n =512×712=35144.∴m +n =316+35144=3172.16.已知两个等差数列{a n }:5,8,11,…与{b k }:3,7,11,…,它们的项数均为100,则它们有多少个彼此具有相同数值的项?解 由题意,知a n =3n +2(n ∈N *),b k =4k -1(k ∈N *),两数列的共同项可由3n +2=4k -1求得,所以n=43k-1.而n∈N*,k∈N*,所以设k=3r(r∈N*),得n=4r-1.由已知Error!且r∈N*,可得1≤r≤25.所以共有25个相同数值的项.。

高中高二等差数列说课精选文稿

高中高二等差数列说课精选文稿

等差数列讲课稿一.教材剖析1.教材的地位与作用本节课《等差数列》是《高中数学第一册》第三章第二节第一课时的内容,是在学生学习了数列的相关看法和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入学习。

数列是高中数学重要内容之一,是前一章《函数》内容的延长,表现教材编排的连续性,它在本质生活中有宽泛的本质应用,起着承上启下的作用,同时官也是培育学生数学能力的优秀题材。

等差数列作为数列部分的主要内容,是学生研究特别数列的开始,对后续内容的学习,不论在知识上,仍是在方法上都拥有踊跃的意义。

2.教课目的确实定及依照( 1 )教课参照书和教课纲领明确指出:本节的要点是等差数列的看法及其通项公式的推导过程和应用。

本节先在详细例子的基础上引出等差数列的看法,接着用不完整归纳法归纳出等差数列的通项公式,最后依据这个公式去进行相关计算。

可见本课内容的安排旨在培育学生的察看剖析、归纳猜想、应用能力。

(2)从学生知识层面看:学生对数列有了初步的接触和认识,对方程、函数、数学公式的运用拥有必定技术,函数、方程思想领会渐渐深刻。

(3)从学生素质层面看:我从高一年重生开始注意培育学生自主合作研究的学习习惯,学生思想活跃中,讲堂参加意识较浓,且高一年学生拥有必定理解、剖析、推理的能力。

基于上述剖析原由,我拟订了本节课的要点、难点和教课目的:要点、难点要点:等差数列的看法及通项公式。

难点:( 1)理解等差数列“等差”的特色及通项公式的含义。

(2)从函数、方程的看法看通项公式教课目的知识目标:理解等差数列的看法,认识等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式,并能用公式解决一些简单本质问题。

能力目标:( 1 )培育学生察看剖析、猜想归纳、应用公式的能力;( 2 )在领悟函数与数列关系的前提下,浸透函数、方程的思想。

感情目标:( 1 )经过平等差数列的研究,领会从特别到一般,又到特别的认识事物规律,培育学生主动研究,勇于发现的求知精神。

数学试讲教案《等差数列》

数学试讲教案《等差数列》

数学试讲教案《等差数列》一、教学目标:1. 让学生理解等差数列的定义及其性质。

2. 让学生掌握等差数列的通项公式和求和公式。

3. 培养学生运用等差数列解决实际问题的能力。

二、教学内容:1. 等差数列的定义2. 等差数列的性质3. 等差数列的通项公式4. 等差数列的求和公式5. 等差数列在实际问题中的应用三、教学重点与难点:1. 重点:等差数列的定义、性质、通项公式和求和公式。

2. 难点:等差数列通项公式的推导和求和公式的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究等差数列的定义和性质。

2. 利用公式法,引导学生推导等差数列的通项公式和求和公式。

3. 运用实例分析法,让学生学会运用等差数列解决实际问题。

五、教学过程:1. 导入:通过分析实际问题,引导学生思考等差数列的定义和性质。

2. 新课导入:讲解等差数列的定义,引导学生探究等差数列的性质。

3. 公式推导:引导学生利用已知条件推导等差数列的通项公式和求和公式。

4. 实例分析:运用实例分析等差数列在实际问题中的应用。

5. 课堂练习:布置练习题,让学生巩固等差数列的知识点。

6. 总结:对本节课的内容进行总结,强调重点和难点。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学策略1. 案例分析:通过分析具体的等差数列案例,让学生更直观地理解等差数列的概念和特点。

2. 互动讨论:鼓励学生积极参与课堂讨论,提出自己的观点和疑问,增强课堂的互动性。

3. 练习巩固:设计一系列的练习题,让学生在实践中掌握等差数列的性质和公式。

七、教学步骤1. 等差数列的定义:引导学生通过观察一系列递增或递减的数,发现它们的规律,从而引入等差数列的概念。

2. 等差数列的性质:通过示例和练习,让学生掌握等差数列的常见性质,如相邻两项的差是常数等。

3. 等差数列的通项公式:引导学生通过观察和归纳,推导出等差数列的通项公式。

4. 等差数列的求和公式:教授等差数列的求和公式,并通过练习让学生学会如何应用。

高中数学教师面试答辩100题

高中数学教师面试答辩100题

高中数学教师面试答辩100题1.小组讨论有什么作用?2.你认为什么是快乐教育?3.本节课的教学重点是什么?4.倒序相加法运用了什么?5.学生在王老师的背后粘了个小乌龟,发现后,王老师转身打乐同学两个耳光,你作为老师怎么看?6.如何培养学生的合作精神和数学应用能力?7.李老师让不听讲的同学上课看漫画书,你怎么看?8.老师和学生家长进行沟通,批评家长太溺爱孩子,家长不以为然,你怎么处理?9.作为数学老师,如何让自己的语言表达准确?10.1.30万亿元怎么用科学计数法来表示?11.什么是无理数?12.老师的着装你认为应该什么样的?13.a为什么大于等于1小于10?14.你本节课的教学目标是什么?15.如何引导学生的逻辑推理能力?16.日历中3乘以3的方框内的九个数和中间那个数有什么关系?表达式是什么?(《探索日历中的规律》)17.这个关系是否适用于别的月份的日历?(《探索日历中的规律》)18.除了这个关系你还有别的发现吗?(《探索日历中的规律》)19.怎么让学生理解梯形的面积?20.你是如何体现本节课的重点的?21.题目中的利润和进价与售价的关系是什么?22.多项式的运算顺序是怎么样的?23.本节课切线与之前学习的有什么不同?24.你是哪个学校哪个专业的,现在从事什么工作?25.余弦定理怎么推导的?26.你本节课教学工具有什么?学生讨论的时候老师该做些什么?27.y=x3在原点的斜率公式。

28.你本课的教学目标是什么?你是怎么设计拓展的?29.说三个词让学生一下明白什么是可能性。

30.概率跟频率的区别是什么?31.怎样得出任意九个数字之和都是中间数的九倍?32.如果给你个机会改进自己,你要改哪里?33.板书是否合理,说明教材的结构,用序号但是书上没有,为什么?34.你认为统计的步骤有哪些?你认为哪种方法最容易,该怎么引导学生?35.这道题你解题思路是什么?36.你讲的这一节写上面的都有哪些方法?37.为什么用48和62这两个数进行估算?(《两、三位数乘以一位数的计算》)38.除了黑板上的一组数字,你怎么来说明奇数偶数?39.如果学生剪出来的不是长方形怎么办?(《圆柱体的表面积》)40.教师的指导作用有哪些?41.小学二年级应该要用到教具吗?为什么?42.一元二次应用题解题步骤?43.等比数列求和推导。

高中数学《等差数列的性质及实际应用第二课时》专题突破含解析

高中数学《等差数列的性质及实际应用第二课时》专题突破含解析

第二课时 等差数列的性质及实际应用课标要求素养要求1.能根据等差数列的定义推出等差数列的性质,并能运用这些性质简化运算.2.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.通过推导等差数列的性质及其应用,提升学生的数学抽象和逻辑推理素养,通过利用等差数列的相关公式解决实际应用问题,提升学生的数学建模和数学运算素养.新知探究请同学们思考以下问题:若等差数列{a n }为1,3,5,7,…,2n -1,则数列{a n +2},{2a n }是等差数列吗?提示 因为等差数列的通项为a n =2n -1,则a n +2=2n -1+2=2n +1,2a n =2(2n -1)=4n -2,可判断数列{a n +2},{2a n }都是等差数列,一般地,若{a n }为等差数列,则{a n +c },{ca n }也是等差数列,你还知道等差数列的其他性质吗?1.等差数列通项公式的变形及推广(1)a n =dn +(a 1-d )(n ∈N *),(2)a n =a m +(n -m )d (m ,n ∈N *),(3)d =a n -a m n -m(m ,n ∈N *,且m ≠n ).2.若{a n },{b n }分别是公差为d ,d ′的等差数列,则有数列结论{c+a n }公差为d 的等差数列(c 为任一常数){c ·a n }公差为cd 的等差数列(c 为任一常数){a n +a n +k }公差为2d 的等差数列(k 为常数,k ∈N *){pa n+qb n}公差为pd+qd′的等差数列(p,q为常数)3.等差数列的项的对称性在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和,即a1+a n=a2+a n-1=a3+a n-2=….4.下标性质在等差数列{a n}中,若m+n=p+q(m,n,p,q∈N*),则a m+a n=a p+a q.特别的,若m+n=2p(m,n,p∈N*),则有a m+a n=2a p.拓展深化[微判断]1.等差数列{a n}中,必有a10=a1+a9.(×)提示 反例:a n=n-1,a10=9,a1+a9=8,不满足a10=a1+a9.2.若数列a1,a2,a3,a4,…是等差数列,则数列a1,a3,a5,…也是等差数列.(√)3.若数列a1,a3,a5,…和a2,a4,a6…都是公差为d的等差数列,则a1,a2,a3…也是等差数列.(×)提示 反例:设两数列为1,3,5,…,4,6,8,…,显然1,4,3,6,5,8,…不是等差数列.4.若数列{a n}为等差数列,则a n+1=a n-1+2d,n>1,且n∈N*.(√)[微训练]1.在等差数列{a n}中,a10=18,a2=2,则公差d=( )A.-1B.2C.4D.6解析 由题意知a10-a2=8d,即8d=16,d=2.答案 B2.已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有( )A.a1+a101>0B.a2+a101<0C.a3+a99=0D.a51=51解析 ∵a1+a2+…+a101=0,又∵a1+a101=a2+a100=a3+a99=…=2a51,∴101a51=0,∴a51=0,a3+a99=2a51=0.答案 C3.在等差数列{a n}中,若a2+a8=-3,a4=-2,则a6=________.解析 由a2+a8=a4+a6得a6=-1.答案 -1[微思考]1.在等差数列{a n}中,a k,a k+m,a k+2m,…(k,m∈N*)是等差数列吗?若是,公差是多少?提示 是.若{a n}的公差为d,则a k,a k+m,a k+2m,…的公差为md.2.在等差数列{a n}中,若m,n,p,q,…成等差数列,那么a m,a n,a p,a q,…也成等差数列吗?若成等差数列,公差是什么?提示 成等差数列,若{a n}的公差为d,则a m,a n,a p,a q,…的公差为(n-m)d.题型一 a n=a m+(n-m)d的应用【例1】 在等差数列{a n}中,已知a2=5,a8=17,求数列的公差及通项公式.解 因为a8=a2+(8-2)d,所以17=5+6d,解得d=2.又因为a n=a2+(n-2)d,所以a n=5+(n-2)×2=2n+1,n∈N*.规律方法 灵活利用等差数列的性质,可以减少运算.令m=1,a n=a m+(n-m)d 即变为a n=a1+(n-1)d,可以减少记忆负担.【训练1】 已知{b n}为等差数列,若b3=-2,b10=12,则b8=________.解析 法一 ∵{b n}为等差数列,∴可设其公差为d,则d=b10-b310-3=12-(-2)7=2,∴b n=b3+(n-3)d=2n-8.∴b8=2×8-8=8.法二 由b8-b38-3=b10-b310-3=d,得b8=b10-b310-3·5+b3=2×5+(-2)=8.答案 8题型二 等差数列性质的应用【例2】 已知数列{a n }为等差数列,且公差为d .(1)若a 15=8,a 60=20,求a 105的值;(2)若a 2+a 3+a 4+a 5=34,a 2a 5=52,求公差d .解 (1)法一 由题意得{a 1+14d =8,a 1+59d =20,解得{a 1=6415,d =415.故a 105=a 1+104d =6415+104×415=32.法二 ∵{a n }为等差数列,∴d =a 60-a 1560-15=415,∴a 105=a 60+45×415=32.法三 ∵{a n }为等差数列,∴a 15,a 60,a 105也成等差数列,则2a 60=a 15+a 105,∴a 105=2×20-8=32.(2)由a 2+a 3+a 4+a 5=34,得2(a 2+a 5)=34,∴a 2+a 5=17.由{a 2+a 5=17,a 2a 5=52,解得{a 2=4,a 5=13或{a 2=13,a 5=4.∴d =a 5-a 25-2=13-43=3或d =a 5-a 25-2=4-133=-3.规律方法 等差数列运算的两条常用思路(1)根据已知条件,列出关于a 1,d 的方程(组),确定a 1,d ,然后求其他量.(2)利用性质巧解,观察等差数列中项的序号,若满足m +n =p +q =2r (m ,n ,p ,q ,r ∈N *),则a m +a n =a p +a q =2a r .【训练2】 (1)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.(2)已知等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9=________.解析 (1)3a 5+a 7=2a 5+(a 5+a 7)=2a 5+2a 6=2(a 3+a 8)=20.(2)法一 由性质可知,数列a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9是等差数列,所以2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9),则a 3+a 6+a 9=2×33-39=27.法二 设等差数列{a n }的公差为d ,则(a 2+a 5+a 8)-(a 1+a 4+a 7)=(a 2-a 1)+(a 5-a 4)+(a 8-a 7)=3d =-6,解得d =-2,所以a 3+a 6+a 9=a 2+d +a 5+d +a 8+d =27.答案 (1)20 (2)27题型三 等差数列的设法与求解【例3】 已知四个数依次成等差数列且是递增数列,四个数的平方和为94,首尾两数之积比中间两数之积少18,求此等差数列.解 设四个数为a -3d ,a -d ,a +d ,a +3d ,则{(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94,(a -3d )(a +3d )+18=(a -d )(a +d ),又因为是递增数列,所以d >0,所以解得a =±72,d =32,此等差数列为-1,2,5,8或-8,-5,-2,1.【迁移】 已知单调递增的等差数列{a n }的前三项之和为21,前三项之积为231,求数列{a n }的通项公式.解 法一 根据题意,设等差数列{a n }的前三项分别为a 1,a 1+d ,a 1+2d ,则{a 1+(a 1+d )+(a 1+2d )=21,a 1(a 1+d )(a 1+2d )=231,即{3a 1+3d =21,a 1(a 1+d )(a 1+2d )=231,解得{a 1=3,d =4或{a 1=11,d =-4.因为数列{a n }为单调递增数列,所以{a 1=3,d =4,从而等差数列{a n }的通项公式为a n =4n -1.法二 由于数列{a n }为等差数列,所以可设前三项分别为a -d ,a ,a +d ,由题意得{(a -d )+a +(a +d )=21,(a -d )a (a +d )=231,即{3a =21,a (a 2-d 2)=231,解得{a =7,d =4或{a =7,d =-4.由于数列{a n }为单调递增数列,所以{a =7,d =4,从而a n =4n -1.规律方法 等差数列项的常见设法(1)通项法:设数列的通项公式,即设a n=a1+(n-1)d.(2)对称项设法:当等差数列{a n}的项数为奇数时,可设中间一项为a,再以公差为d向两边分别设项:…,a-2d,a-d,a,a+d,a+2d,…;当等差数列{a n}的项数为偶数时,可设中间两项分别为a-d,a+d,再以公差为2d向两边分别设项:…,a-3d,a-d,a+d,a+3d,….对称项设法的优点是:若有n个数构成等差数列,利用对称项设法设出这个数列,则其各项和为na.【训练3】 已知四个数成等差数列,它们的和为26,中间两项的积为40,求这四个数.解 法一 设此等差数列的首项为a1,公差为d.根据题意,得{a1+(a1+d)+(a1+2d)+(a1+3d)=26,(a1+d)(a1+2d)=40.化简得{4a1+6d=26,a21+3a1d+2d2=40,解得{a1=2,d=3或{a1=11,d=-3.所以这四个数分别为2,5,8,11或11,8,5,2.法二 设这四个数为a-3d,a-d,a+d,a+3d,则由题意得{(a-3d)+(a-d)+(a+d)+(a+3d)=26,(a-d)(a+d)=40,即{4a=26,a2-d2=40,解得{a=132,d=32或{a=132,d=-32,所以所求四个数为2,5,8,11或11,8,5,2.题型四 等差数列的实际应用【例4】 中国历法推测遵循以算为主、以测为辅的原则.例如《周髀算经》和《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中115.146寸表示115寸146分(1寸=10分).节气冬至小寒(大雪)大寒(小雪)立春(立冬)雨水(霜降)惊蛰(寒露)春分(秋分)晷影长/寸135.0125.56115.146105.23695.32685.41675.5节气清明(白露)谷雨(处暑)立夏(立秋)小满(大暑)芒种(小暑)夏至晷影长/寸65.55655.64645.73635.82625.91616.0已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中小寒与清明之间的晷影长之差为( )A.105.6寸 B.48寸C.57.6寸D.67.2寸解析 设晷影长构成等差数列{a n },公差为d ,则a 1=130.0,a 13=14.8,d =a 13-a 113-1=-9.6,故小寒与清明之间的晷影长之差即为a 2-a 8=-(a 8-a 2)=-6d =57.6.答案 C规律方法 解决等差数列实际应用问题的步骤及注意点(1)解答数列实际应用问题的基本步骤:①审题,即仔细阅读材料,认真理解题意;②建模,即将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题;③判型,即判断该数列是否为等差数列;④求解,即求出该问题的数学解;⑤还原,即将所求结果还原到实际问题中.(2)在利用数列方法解决实际问题时,一定要弄清首项、项数等关键问题.【训练4】 假设某市2020年新建住房400万平方米,预计在今后的若干年内,该市每年新建住房面积均比上一年增加50万平方米.那么该市在________年新建住房的面积开始大于820万平方米.解析 设n 年后该市新建住房的面积为a n 万平方米.由题意,得{a n }是等差数列,首项a 1=450,公差d =50,所以a n =a 1+(n -1)d =400+50n .令400+50n >820,解得n >425.由于n ∈N *,则n ≥9.所以该市在2 029年新建住房的面积开始大于820万平方米.答案 2 029一、素养落地1.通过学习等差数列的性质解决等差数列问题,培养逻辑推理及数学运算素养,通过利用等差数列解决实际问题,提升数学建模素养.2.在等差数列{a n}中,当m≠n时,d=a m-a nm-n,利用这个公式很容易求出公差,还可变形为a m=a n+(m-n)d.3.等差数列{a n}中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.4.等差数列{a n}中,若m+n=p+q,则a n+a m=a p+a q(n,m,p,q∈N*),特别地,若m+n=2p,则a n+a m=2a p.二、素养训练1.在等差数列{a n}中,已知a3=10,a8=-20,则公差d等于( )A.3B.-6C.4D.-3解析 由等差数列的性质得a8-a3=(8-3)d=5d,所以d=-20-105=-6.答案 B2.在等差数列{a n}中,a1=2,a3+a5=10,则a7等于( )A.5B.8C.10D.14解析 法一 设等差数列的公差为d,则a3+a5=2a1+6d=4+6d=10,所以d=1,a7=a1+6d=2+6=8.法二 由等差数列的性质可得a1+a7=a3+a5=10,又a1=2,所以a7=8.答案 B3.在等差数列{a n}中,a1+a5=2,a3+a7=8,则a11+a15=________.解析 (a3+a7)-(a1+a5)=4d=6,则d=32,则a11+a15=(a1+a5)+20d=2+20×32=32.答案 324.在等差数列{a n}中,已知5是a3和a6的等差中项,则a1+a8=________.解析 由题意知a3+a6=10,故a1+a8=a3+a6=10.答案 105.三个数成等差数列,这三个数的和为6,三个数之积为-24,求这三个数.解 设这三个数分别为a-d,a,a+d.由题意可得{(a-d)+a+(a+d)=6,(a-d)·a·(a+d)=-24,解得{a=2,d=4或{a=2,d=-4.∴所求三个数为-2,2,6或6,2,-2.基础达标一、选择题1.在等差数列{a n}中,若a2+a4+a6+a8+a10=80,则a7-12a8的值为( )A.4B.6C.8D.10解析 由a2+a4+a6+a8+a10=5a6=80,∴a6=16,∴a7-12a8=12(2a7-a8)=12(a6+a8-a8)=12a6=8.答案 C2.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m 为( )A.12B.8C.6D.4解析 由等差数列性质得,a3+a6+a10+a13=(a3+a13)+(a6+a10)=2a8+2a8=4a8=32,∴a 8=8,又d ≠0,∴m =8.答案 B3.在等差数列{a n }中,a 2 018=log 27,a 2 022=log 217,则a 2 020=( )A.0B.7C.1D.49解析 a 2 020=12(a 2 018+a 2 022)=12(log 27+log 217)=12log 2 1=0.答案 A4.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分六钱,令前三人所得与后二人等,各人所得均增,问各得几何?”其意思是:“已知A ,B ,C ,D ,E 五人个分重量为6钱(‘钱’是古代的一种重量单位)的物品,A ,B ,C 三人所得钱数之和与D ,E 二人所得钱数之和相同,且A ,B ,C ,D ,E 每人所得钱数依次成递增等差数列,问五个人各分得多少钱的物品?”在这个问题中,C 分得物品的钱数是( )A.25B.45C.65D.75解析 设5个人分得的物品的钱数为等差数列中的项a 1,a 2,a 3,a 4,a 5,则a 1+a 2+a 3=a 4+a 5,a 1+a 2+a 3+a 4+a 5=6=5a 3,a 3=65.答案 C5.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A.10B.20C.40D.2+log 25解析 因为2a 1·2a 2·…·2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4=220,所以原式=log 2220=20.答案 B 二、填空题6.在等差数列{a n }中,若a 2+2a 2a 8+a 6a 10=16,则a 4a 6=________.解析 ∵等差数列{a n }中,a 2+2a 2a 8+a 6a 10=16,∴a 2+a 2(a 6+a 10)+a 6a 10=16,∴(a 2+a 6)(a 2+a 10)=16,∴2a 4·2a 6=16,∴a 4a 6=4.答案 47.已知数列{a n }是等差数列.若a 4+a 7+a 10=17,a 4+a 5+a 6+…+a 12+a 13+a 14=77,且a k =13,则k =________.解析 设数列{a n }的公差为d ,∵a 4+a 7+a 10=3a 7=17,∴a 7=173.∵a 4+…+a 14=11a 9=77,∴a 9=7,d =23.∴a k -a 9=(k -9)d ,即13-7=(k -9)×23,解得k =18.答案 188.已知等差数列{a n }中,a 1+a 3+a 8=5π4,那么cos(a 3+a 5)=________.解析 在等差数列{a n }中,由a 1+a 3+a 8=5π4,得a 1+(a 1+2d )+(a 1+7d )=5π4,∴3a 1+9d =5π4,即a 1+3d =a 4=5π12,∴a 3+a 5=2a 4=5π6,则cos(a 3+a 5)=cos 5π6=-32.答案 -32三、解答题9.已知三个数成单调递增等差数列,它们的和等于18,它们的平方和等于116,求这三个数.解 设这三个数分别为a -d ,a ,a +d ,且d >0.由题意可得{(a -d )+a +(a +d )=18,(a -d )2+a 2+(a +d )2=116,解得{a =6,d =2或{a =6,d =-2.∵d >0,∴a =6,d =2.∴这三个数是4,6,8.10.已知数列{a n }满足a n +1=1+a n 3-a n(n ∈N *),且a 1=0.(1)求a 2,a 3;(2)是否存在一个实常数λ,使得数列{1a n -λ}为等差数列,请说明理由.解 (1)因为a 1=0,a n +1=1+a n 3-a n (n ∈N *),所以a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=12.(2)假设存在一个实常数λ,使得数列{1a n -λ}为等差数列,所以2a 2-λ=1a 1-λ+1a 3-λ,即213-λ=10-λ+112-λ,解得λ=1.因为1a n +1-1-1a n -1=11+a n 3-a n -1-1a n -1=3-a n 2(a n -1)-1a n -1=1-a n2(a n -1)=-12,又1a 1-1=-1,所以存在一个实常数λ=1,使得数列{1a n -λ}是首项为-1,公差为-12的等差数列.能力提升11.下面是关于公差d >0的等差数列{a n }的四个结论:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列{a nn}是递增数列;p 4:数列{a n +3nd }是递增数列.其中正确的为( )A.p 1,p 2 B.p 3,p 4C.p 2,p 3D.p 1,p 4解析 设等差数列首项a 1,d >0,则a n =a 1+(n -1)d =dn +(a 1-d ),∴数列{a n }递增,p 1正确;na n=dn 2+(a1-d )n ,当n <d -a 12d 时,不递增,p 2错误;a n n =d +a 1-dn,当a 1-d >0时,不递增,p 3错误;[a n +1+3(n +1)d ]-(a n +3nd )=a n +1-a n +3d =4d >0,{a n +3nd }递增,p 4正确,故选D.答案 D12. 有一批电视机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价为760元,以此类推,每多买一台则所购买各台的单价均减少20元,但每台最少不低于440元;乙商场一律按原价的75%销售.某单位需购买一批此类电视机,则去哪一家商场购买花费较少?解 设某单位需购买电视机n 台.在甲商场购买时,所买电视机的售价构成等差数列{a n },a n =780+(n -1)×(-20)=-20n +800,由a n =-20n +800≥440,得n ≤18,即购买台数不超过18台时,每台售价(800-20n )元;购买台数超过18台时,每台售价440元.到乙商场购买时,每台售价为800×75%=600(元).比较在甲、乙两家家电商场的费用(800-20n )n -600n =20n (10-n ).当n <10时,(800-20n )n >600n ,到乙商场购买花费较少;当n =10时,(800-20n )n =600n ,到甲、乙商场购买花费相同;当10<n ≤18时,(800-20n )n <600n ,到甲商场购买花费较少;当n >18时,440n <600n ,到甲商场购买花费较少.因此,当购买电视机台数少于10台时,到乙商场购买花费较少;当购买电视机10台时,到两家商场购买花费相同;当购买电视机台数多于10台时,到甲商场购买花费较少.创新猜想13.(多选题)已知等差数列{a n }中,a 1=3,公差为d (d ∈N *),若2021是该数列的一项,则公差d不可能是( )A.2B.3C.4D.5解析 由2021是该数列的一项,即2021=3+(n-1)d,所以n=2 018d+1,因为d∈N*,所以d是2 018的约数,故d不可能是3,4和5.答案 BCD14.(多空题)已知两个等差数列{a n}:5,8,11,…与{b n}:3,7,11,…,它们的公共项组成数列{c n},则数列{c n}的通项公式c n=________;若数列{a n}和{b n}的项数均为100,则{c n}的项数是________.解析 由于数列{a n}和{b n}都是等差数列,所以{c n}也是等差数列,且公差为3×4=12,又c1=11,故c n=11+12(n-1)=12n-1.又a100=302,b100=399,由{11≤12n-1≤302,11≤12n-1≤399,解得1≤n≤25.25,故{c n}的项数为25.答案 12n-1 25。

数学试讲教案《等差数列》

数学试讲教案《等差数列》

数学试讲教案《等差数列》一、教学目标:1. 让学生理解等差数列的定义及其性质。

2. 培养学生运用等差数列的知识解决实际问题的能力。

3. 提高学生对数学知识的兴趣,培养学生的逻辑思维能力。

二、教学内容:1. 等差数列的定义2. 等差数列的性质3. 等差数列的通项公式4. 等差数列的前n项和公式5. 等差数列的实际应用问题三、教学重点与难点:1. 重点:等差数列的定义、性质、通项公式和前n项和公式的理解和运用。

2. 难点:等差数列的实际应用问题的解决。

四、教学方法:1. 采用问题驱动法,引导学生主动探索等差数列的知识。

2. 通过实例分析,让学生理解等差数列的实际应用价值。

3. 利用数形结合的思想,帮助学生直观地理解等差数列的性质。

五、教学过程:1. 导入:通过引入一些实际问题,如计算工资、统计数据等,引导学生发现等差数列的规律。

2. 等差数列的定义:让学生通过观察实例,总结等差数列的定义,并进行总结。

3. 等差数列的性质:引导学生通过数学推理,得出等差数列的性质,并进行验证。

4. 等差数列的通项公式:让学生通过观察、归纳、推理等方法,得出等差数列的通项公式。

5. 等差数列的前n项和公式:让学生通过实际问题,引入等差数列的前n项和公式,并进行运用。

6. 实际应用问题:让学生通过解决实际问题,运用等差数列的知识,提高学生的应用能力。

7. 总结:对本节课的内容进行总结,强化学生对等差数列的理解。

8. 作业布置:布置一些有关等差数列的练习题,巩固所学知识。

六、教学策略:1. 案例分析:通过分析具体的等差数列案例,让学生更好地理解等差数列的概念和性质。

2. 互动讨论:鼓励学生参与课堂讨论,分享彼此对等差数列的理解和心得。

3. 问题解决:引导学生运用等差数列的知识解决实际问题,提高学生的应用能力。

4. 思维训练:通过设置一些思维题,锻炼学生的逻辑思维和数学推理能力。

七、教学步骤:1. 等差数列的定义:引导学生通过观察和分析,总结等差数列的定义。

教师招聘面试说课稿 高中数学等差数列前n项和说课稿

教师招聘面试说课稿 高中数学等差数列前n项和说课稿

数学说课稿尊敬的各位评委,各位专家,大家好!我是今天的2号考生,今天我要说课的内容是《等差数列的前n项和》。

下面,我将从教材分析,教学目标,教学重点难点,学情分析,教法与学法分析,教学过程等几个方面来进行我的说课!首先呢,我就来谈一谈教材,本节课是选自人教版高中数学必修 5第二章第三节的内容。

“等差数列的前n 项和”是对前面所学的等差数列相关知识的巩固和应用,无论在知识还是能力上,都是进一步学习其他数列知识的基础.同时,在推导等差数列的前n项和公式的过程中所采用的“倒序相加法”是今后数列求和的一种常用且重要的方法.因此,掌握等差数列的前n项公式及推导为后面将要学习的等比数列、极限、微积分的相关知识打下坚实的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系。

同时起到了承上启下的重要作用.接下来,我来说下我的教学目标新课程指出三维目标是一个密切联系的有机整体,要求我们从教学中以知识技能培养为主线,并注重情感与价值观的培养充分体现在教学中。

新课标指出教学主体是学生。

因此教学目标从学生出发,制定如下目标:首先是知识与技能目标通过这节课的学习,要求学生掌握等差数列的前n项和公式及推导过程;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题其次是过程与方法目标在教学过程中,让学生经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。

最后,是情感态度与价值目标通过公式的推导过程,展现数学中的对称美。

体会模仿与创新的重要性下面,我来谈一下教学的重点和难点根据教材大纲,结合本教材的特点,我把教学重点确定为:等差数列前n项和公式的推导,理解及应用.结合本年级学生的心理特点和认知结构,我把教学难点确定1、对公式推导过程中归纳出一般规律的理解与领会2、灵活应用等差数列前n 项公式解决一些简单的有关问题接下来,我来说说教法和学法为了完成既定的教学目标,解决重点,突破难点,为了更好的培养学生的自学能力,在遵循启发式教学原则的基础上,本节课我主要采用以引导发现发为主,练习法为辅的教学方法,意在通过特殊等差数列求和问题出发引导学生导出一般等差数列的求和公式,从而调动学生的积极性,同时给学生提供一个广阔的探索空间,一个充分展示创新能力的机会.在学法指导上,根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者、辅导者、引导者,因此,在本节课的教学中我主要是引导学生通过观察、类比得到等差数列的前n项和公式,从而激发学生的求知欲和学习积极性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《等差数列》试讲答辩为帮助各位考生备战教师资格面试,中公教师网整理了各学科教师资格面试试讲答辩语音示范,以下是高中数学《等差数列》试讲答辩,希望对各位考生有所帮助!
【面试备课纸】
3.基本要求:
(1)要有板书;
(2)试讲十分钟左右;
(3)条理清晰,重点突出;
(4)学生掌握等差数列的特点与性质。

【教学设计】
一、教学目标
【知识与技能】能够复述等差数列的概念,能够学会等差数列的通项公式的推导过程及蕴含的数学思想。

【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,提高知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。

【情感态度与价值观】通过对等差数列的研究,具备主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

二、教学重难点
【教学重点】
等差数列的概念、等差数列的通项公式的推导过程及应用。

【教学难点】
等差数列通项公式的推导。

三、教学过程
环节一:导入新课
教师PPT展示几道题目:
1.我们经常这样数数,从0开始,每隔5一个数,可以得到数列:0,5,15,20,25
2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92。

3.2000年,在澳大利亚悉尼举行的奥运会上,女子举重正式列为比赛项目,该项目共设置了7个级别,其中交情的4个级别体重组成数列(单位:kg):48,53,58,63。

教师提问学生这几组数有什么特点?学生回答从第二项开始,每一项与前一项的差都等于一个常数,教师引出等差数列。

环节二:探索新知
1.等差数列的概念
学生阅读教材,同桌讨论,类比等比数列总结出等差数列的概念
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

问题1:等差数列的概念中,我们应该注意哪些细节呢?
环节三:课堂练习
抢答:下列数列是否为等差数列?
(1)1,2,4,6,8,10,12,……
(2)0,1,2,3,4,5,6,……
(3)3,3,3,3,3,3,3,……
(4)-8,-6,-4,-2,0,2,4,……
(5)3,0,-3,-6,-9,……
环节四:小结作业
小结:1.等差数列的概念及数学表达式。

关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。

相关文档
最新文档