21.1一次函数

合集下载

2.2.1一次函数

2.2.1一次函数

(1)(填空)月用电量为100度时,
应交电费 60 元;
(2)当时x≥100时,
y元
求y与x之间的函数关系式;110
(3)月用电量为260度时, 60
应交电费多少元。
x度
(2)
y=
1 2
x+10
(3)140
100
200
例3. 对每个实数x,设f(x)取y=4x+1,y=x+2,
两个函数中的最小值,用分段函数写出f(x)的
性质: 对于一次函数y=kx+b(k≠0)有以下性质:
① 变化率:即为直线的斜率k; 设(x1,y1), (x2,y2)为直线上任意两点,(x2≠x1).
则 y y2 y1 k
x x2 x1
或△y=k△x (k与两点在直线上的位置无关);
② 单调性:
k>0时,y=kx+b为增函数,k<0时y=kx+b为减 函数;
解析式。
y=4x+1
4x 1, f (x) x 2,
x1 3
x1 3
y=x+2
1 3
单调性:
k>0时,y=kx+b为增函数,k<0时y=kx+b为减
函数;
奇偶性:

b=0时,y=kx+b为奇函数.b≠0时既不是奇 结
函数也不是偶函数;
:
Байду номын сангаас

直线y=kx+b与坐标轴的交点:
函数图像横过点(2,0),且函数单调递减 y=k(x-2) (k<0)
③ 奇偶性:
b=0时,y=kx+b为奇函数.b≠0时既不是奇 函数也不是偶函数;

冀教版八年级数学下册第21章一次函数PPT课件全套

冀教版八年级数学下册第21章一次函数PPT课件全套
解: (1),(3),(5),(6)是正比例函数,比例系数分别 是3,- 1 ,π,- 3 . 2 (2)和(4)不是正比例函数.
(来自教材)
总结
知1-讲
(1)根据题意可先得到变量间的关系式,然后写成函 数表达式的形式.
(2)判断一个函数是否为正比例函数的方法:看两个 变量的比是不是常数,即函数是不是形如y=kx(k 为常数,且k≠0)的函数.
正比例函数的比例系数. (1) y= 4x;(2) y=3x 1;(3) y= 5x ;
6 (4) y= 9 ;(5) y= 0.9x;(6) y=( 5 1)x.
x
解:(1)(3)(5)(6)是正比例函数.(1)的比例系数为-4;
(3)的比例系数为 5 ;(5)的比例系数为-0.9; 6
(6)的比例系数为 5-1.
(来自教材)
知1-练
3 【中考·凉山州】已知函数y=2x2a+b+a+2b是正比例
函数,则a=___2_____,b=___- _1____.
3
3
4 【中考·上海】下列y关于x的函数中,是正比例函数
的为( C )
A.y=x2 B.y= 2 C.y= x D.y= x 1
x
2பைடு நூலகம்
2
(来自《典中点》)
知1-练
(1)已知函数y=kx. 当x=-2时,y=10. k=__-__5__.
(来自教材)
知2-练
2 已知y是x的正比例函数,当x=2时,y=8.
(1)写出y与x之间的函数关系式.
(2)当x=5时,求y的值.
(3)当y=5时,求x的值.
解: (1)y=4x.
(2)当x=5时,y=4×5=20.
(3)当y=5时,4x=5,解得x=

冀教版八年级数学下册《二十一章 一次函数 21.1 一次函数》教案_13

冀教版八年级数学下册《二十一章 一次函数  21.1 一次函数》教案_13

《一次函数》第一课时教学设计☆【概述】1、《一次函数》选自冀教版义务教育教科书八年级下册21.1.2;2、本节主要研究一次函数的概念,并类比于正比例函数,研究一次函数的图像和增减变化规律。

一次函数是一种最基本的初等函数,研究它的概念和图像性质,对它的函数解析式与函数图像的相互联系与转化能发挥重要作用,这是“数形结合”的思想方法的体现,它对今后进一步研究其他类型的函数具有启示作用。

☆【教学目标】依据以上分析,制定了如下三维目标:☆【教学重点、难点】重点:一次函数的概念和一次函数图像的性质;难点:一次函数的图像及其性质。

☆【学生特征分析】认知基础:学生之前对变量与函数、函数的概念、正比例函数及解析式、图像有了初步了解,为本节内容的学习奠定了良好的基础。

学习特点:学生处于八年级第二学期阶段,对于变量与函数、正比例函数的知识已经掌握,对它们的进一步的推广运用表现出思维活跃,有强烈的好奇心,并且具有一定的观察总结推理能力,以及文字转化为数学的符号的能力,具备一定的数形结合思想意识。

☆【教学策略选择与设计】教法:通过设置实际问题让学生探究一次函数的一般形式,得到一次函数的概念,然后用类比的方法降低新知识的难度,促进知识之间的联系,启发引导学生由正比例函数图像探寻一次函数的图像及其规律,使学生体会到数形结合的数学思维。

因此,主要教法是:探究式教学、启发式教学学法:通过对实际问题的探究发现,建立一次函数的概念及其性质,在小组合作中参与探索一次函数图像的规律,通过合作交流的方式学会探索问题和解决问题的基本方法与策略。

因此,主要学习法是:探究学习、合作交流☆【教学资源与工具设计】教具:冀教版新课标八年级下册教材,课件,黑板,粉笔、刻度尺等;学具:教材,铅笔,草稿纸,刻度尺;教学环境:现代多媒体教室。

☆【教学过程】(45分钟)主要流程:合作探究发现规律观察思考知识梳理巩固概念布置作业自主学习典例透析情境引入导入新课具体过程复习提问:(5分钟)1.前面我们学习了正比例函数的性质,哪位同学能叙述一下?并且举个正比例函数的例子呢?2.列出下列正比例函数的方程(1)小华步行的速度为每分钟30米,小华所走的路程S(单位:米)随他所走的时间t(单位:分钟)的变化而变化.(2)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm),随这些练习本的本数n的变化而变化;教师活动:用多媒体呈现问题,让学生举手回答和板书。

初中数学- 一次函数知识点汇总-2021年实用必备

初中数学- 一次函数知识点汇总-2021年实用必备

21章 一次函数知识点汇总一、一次函数与正比例函数的定义与关系1. 一次函数概念: 形如y=kx+b (k 、b 都是常数,且k ≠0)的函数,叫一次函数。

当b=0时,y=kx (k 是常数,且k ≠0)是正比例函数。

强调: 在一次函数中,等号右边是关于自变量的一次整式形式,自变量的系数是不为0的常数,自变量的指数等于1。

2. 正比例函数与一次函数关系: 所有的正比例函数都是b=0的一次函数,因此,一次函数包含正比例函数,正比例函数只是一次函数中的一部分。

二、一次函数图像与性质1.一次函数的图像是一条直线。

正比例函数是过原点的直线。

画一次函数的图像是两点确定法,一般选取与坐标轴的两个交点的坐标。

2.求一次函数 y =kx +b(k ≠0)与两坐标轴交点坐标的求法:令x=0,则y=b;令y=0,解方程kx+b=0的解,所以一次函数与y 轴交点坐标为(0,b ),与x 轴交点的坐标为)0,(k b-3.该直线与两坐标轴围成的三角形面积计算公4. 一次函数y =kx +b(k ≠0)的图像和性质: ①模型中的k 决定图像的走势。

当k>0时,图像必过一、三象限,从左往右看直线是上升的,函数值y 随自变量x 的增大而增大; 当k<0时,图像必过二、四象限,是下降的,函数值y 随自变量x 的增大而减小。

②模型中的b 决定图像与y 轴交点的位置, 当b>0时,图像与y 轴交于正半轴,也可以说交点位于x 轴上方;当b<0时,图像与y 轴交于负半轴,也可以说交点位于x 轴下方。

当b=0时,图像过原点。

5. 对于一次函数y =kx +b(k ≠0), (1)判断k 值符号的方法:①增减性法:当y 随x 的增大而增大时,k >0;反之当y 随x 的增大而减小时,k <0.②直线升、降法:当直线从左到右上升时,k >0;反之当直线从左到右上升时,k <0.③经过象限法:当直线过第一、三象限时,k >0;当直线经过第二、四象限时,k <0. (2)判断b 值符号的方法:与y 轴交点法,即若直线y =kx +b 与y 轴交于正半轴,则b >0;与y 轴交于负半轴,则b <0;与y 轴交于原点,则b =0. 6.一次函数图像和性质当k >0时,直线y=kx +b 由左到右逐渐上升,y 随x 的增大而增大① b>0时,直线经过一、二、三象限;② b<0时,直线经过一、三、四象限;③ b=0时,直线经过一、三象限当k <0时,直线y=kx +b 由左到右逐渐下降,y 随x 的增大而减小① b>0时,直线经过一、二、四象限;② b<0时,直线经过二、三、四象限;③ b=0时,直线经过二、四象限7.直线y =k 1x +b 1与y =k 2x +b 2关系 (1)当k 1=k 2,b 1≠b 2时,两直线平行;(2)当k 1=k 2,b 1=b 2时,两直线重合;(3)当k 1≠k 2,b 1=b 2时,两直线交点在y 轴上(4)当121-=•k k ,b 1≠b 2时,两直线垂直 (5)当k 1≠k 2,b 1≠b 2时,两直线相交与一点。

八年级数学 第二十一章 一次函数(冀教版)

八年级数学 第二十一章 一次函数(冀教版)

第二十一章一次函数1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式.2.会利用待定系数法确定一次函数的表达式.3.能画出一次函数的图像,根据一次函数的图像和表达式y=kx+b(k≠0)探索并理解k>0和k<0时,图像的变化情况.4.体会一次函数与二元一次方程的关系.5.能用一次函数解决简单的实际问题.6.进一步发展学生的数学抽象能力,强化数学的应用意识.1.结合具体情境体会和理解一次函数及正比例函数的意义,能根据已知条件运用待定系数法确定一次函数的表达式.2.逐步学会运用函数的观点观察、分析问题,预测实际问题中的变量的变化规律.1.通过讨论一次函数与方程(组)的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系.2.通过本章的学习,要让学生感受数学的价值,培养和提高学生的应用意识.3.注重对学生情感态度的评价,在学生学习活动中,培养学生自信、自强的性格,记录学生在学习过程中的情感表现以及在解决问题的过程中所表现出来的创新精神.1.本章的内容、地位和作用.本章的知识内容主要包括:一次函数,一次函数的图像和性质,用待定系数法确定一次函数表达式,一次函数的应用,一次函数与二元一次方程的关系.这些内容彼此关联,依次递进.一次函数是在学习了一般的函数概念之后,进一步研究的第一类特殊函数,它不仅是现实生活中极为广泛的一类数量关系的抽象模型,有着广泛的应用,而且在整个函数知识的学习中,起着承上启下的重要作用,这主要表现为:第一,通过一次函数的学习,使学生对“函数”这一抽象的核心概念的理解更加深入,对“函数模型”的理解逐步走向深入与深刻、丰满与充实,对“函数”这一系统知识的认识与掌握进一步强化和提升;第二,一次函数的学习,不仅从变量关系类型上为二次函数、反比例函数的学习提供了对照与类比,更从研究方法(如“利用函数图像研究函数的性质”“借助待定系数法求函数表达式”等)上,展示了普遍的意义和作用.2.本章内容的呈现方式及特点.(1)一次函数的意义同样是比较抽象的,教科书中采用了这样的研究过程:从小学已认识的“成正比例的量”入手,先引入“正比例函数”,再扩展到“一次函数”.这样编排的目的,一是从学生已有的“数学现实”出发,使新知识的引入比较自然;二是采用“由特殊到一般”的归纳方式,符合学生的认知规律,有利于数学活动经验的积累.(2)对于学生来说,无论是“正比例函数”还是“一次函数”,其概念认识的形成,都必须借助于相当数量的、他们所熟悉的现实情境,通过归纳、抽象才能实现.因此,教科书特别关注情境的设置与“抽象”过程的有效展开,以促使学生产生有价值的数学思考,完成理性认识的飞跃.(3)对于一次函数性质的研究,教科书中突出了“数形结合”,即由图像特征引发出函数随自变量变化的增、减性质,因此,图像的绘制与观察,便起着铺垫与引导的重要作用.(4)教科书紧紧抓住“一点在函数的图像上”与“该点的坐标满足函数的表达式”的对应及一致性,导出用待定系数法求一次函数的表达式,意在突出“形与数”的统一与相互转化,并显示“方程”的广泛应用.随后,又专项研究了一次函数与二元一次方程的关系,更为有力地揭示了函数与方程的关联性.(5)所有内容的呈现,一是尊重学生的数学现实,二是尽可能展开学生的观察、思考、交流与研究的活动过程,以充分提供学生自主发展的空间.【重点】1.理解和掌握一次函数的图像和性质,能用待定系数法确定一次函数的表达式.2.一次函数的应用,一次函数与二元一次方程的关系.【难点】1.一次函数的图像和性质.2.一次函数的应用.1.本章之前,刚刚学习了第二十章“函数”,学生对于函数的意义和图像已有了初步的认识,对于相应知识的探究过程及方法,也有了初步的经验积累;另一方面,一次函数源于现实中极为广泛存在的“匀速”变化情境里的数量关系,这样的背景早在此前的许多“算术”应用题和“方程”应用题中以多种“特值”形式反复出现过.这些都是开始本章学习的“数学现实”,教学正是应当从这样的现实出发,用好这样的现实,以优化的过程取得优良效果.2.正比例函数是“成正比例的量”的一般化和发展,一次函数又是正比例函数的一般化和发展,许多数学知识就是沿着这样的途径扩展与增长出来的,教学中就要引导学生遵循这样的线索去探究,去再发现,构筑良好的知识系统,并借此提高学生的学习能力.3.一次函数的图像是直角坐标系里的一条直线(不与坐标轴平行),这正是函数对于自变量“匀速”变化的直观(形)反映,事实上,在确定的直角坐标系里,这样的直线与一次函数表达式是“一一对应”的.恰是基于这种对应,图像(直线)的倾斜情况就反映了一次函数对于自变量变化的增减情况(以及增减速度),一次函数的性质就是借此被“形象”地看出来的;另一方面,用待定系数法确定一次函数的表达式,也是以上述“一一对应”为根据的.因此,在教学中,引导学生通过画图像与研讨,感悟一次函数与其图像的关系便是十分重要的了.4.一次函数的应用的教学,应当特别关注两个方面,一是怎样将实际问题或数学问题转化为一次函数问题;二是通过广泛应用,进一步体会一次函数“匀速”变化的本质特征.5.从两个方面引导学生感悟一次函数与二元一次方程的联系,一是直接从表达式的相互转换进行引导,二是从它们对应于确定的直角坐标系里的同一条直线进行引导.由此使学生体会函数与方程的又一种沟通方式.回顾与反思1课时21.1一次函数1.结合具体情境,了解正比例函数与一次函数的关系和意义.2.掌握一次函数的一般形式,并能写出实际问题中正比例函数关系与一次函数关系的表达式.1.通过对具体实例的分析,发现函数的共同点,抽象出一次函数的概念.2.再一次感悟函数模型,培养学生的抽象能力.经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性.【重点】一次函数的概念,会写出实际问题中正比例关系与一次函数关系的表达式.【难点】能正确写出正比例函数和一次函数的表达式.第课时1.初步理解正比例函数的概念.2.能够判断两个变量是否能够构成正比例函数关系.3.能够利用正比例函数解决简单的数学问题.1.通过对问题的研究,体会数学模型的思想.2.在探索过程中,发展抽象思维及概括能力,体验特殊到一般的辩证关系.经历利用正比例函数解决实际问题的过程,逐步形成利用函数观点逐步认识世界的意识和能力.【重点】理解正比例函数的意义及解析式的特点.【难点】能列(或求)函数表达式,并正确地加以判断.【教师准备】课件1~8.【学生准备】复习成正比例的量.导入一:【课件1】一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只燕鸥大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈200(千米).若设这只燕鸥每天飞行的路程为200千米,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为y=200x(0≤x≤127).这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值,即y=200×45=9000(千米).以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.[设计意图]以现实生活中人们对鸟类的研究,抽象出数学问题,从而使学生对本节课的学习内容产生深厚的兴趣.导入二:【课件2】《阿甘正传》是一部励志影片.片中阿甘曾跑步绕美国数圈.假设他从德州到加州行进了21000千米,耗费了他150天的时间.(1)阿甘大约平均每天要跑步多少千米?(2)阿甘的行程y(千米)与跑步时间x(天)之间有什么关系?(3)阿甘一个月(按30天计算)的行程大约是多少千米?变式:(1)如果把150天改成300天,那么阿甘的行程y(千米)与跑步时间x(天)之间有什么关系?(2)如果阿甘再按这个速度跑步两个月(一个月按30天计算),行程大约是多少千米?[设计意图]通过情境导入,激发学生的学习兴趣,体会变量之间的对应关系,为下文的学习做好铺垫.1.出示教材“观察与思考”.【课件3】提出问题:?为什么?教师引导学生得出:通过观察与计算可以发现小刚离开家的路程与时间的比值等于0.2,即这两个量成正比例关系,也就是一个量在增加,另一个量也在增加;一个量在减少,另一个量也相应地减少.如果用s表示路程,用t表示时间,你能写出它们之间的函数关系式吗?学生思考后得到函数关系式为s=0.2t.2.出示教材“做一做”.【课件4】1.小亮每小时读20页书.若读书时间用字母t(h)表示,读过书的页数用字母m(页)表示,则用t表示m的函数表达式为.2.小米去给学校运动会买奖品,每支铅笔0.5元.若购买铅笔的数量用n(支)表示,花钱的总数用w(元)表示,则用n表示w的函数表达式为.3.拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05 mL.设t min后,水龙头滴水V mL,则用t表示V 的函数表达式为.教师让学生讨论结果,分别写出它们的函数表达式.1.m=20t2.w=0.5n3.V=5t想一想:上面的函数表达式有什么共同特点?引导学生总结:上面的式子都能写成y=kx(k为常数,且k≠0)的形式.我们把形如y=kx(k为常数,且k≠0)的函数,叫做正比例函数.其中,非0常数k叫做比例系数.那么怎么判断一个函数是否为正比例函数呢?分析:正比例函数满足的条件是:(1)自变量的指数是1;(2)自变量在一次单项式中.[设计意图]从小学已熟悉的“成正比例的量”出发,由“匀速”行驶过程中行驶时间与所行路程的关系,抽象出正比例函数.思路二【课件5】下列问题中的变量对应规律可用怎样的函数表示?(1)圆的周长l随半径r的大小变化而变化;(2)铁的密度为7.8 g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化;(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;(4)冷冻一个0 ℃物体,使它每分钟下降2 ℃,物体的温度T(单位: ℃)随冷冻时间t(单位:分钟)的变化而变化.认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和自变量的函数.【课件6】填写下表:观察(1)中l与r(1)中l与r的对应值的比值(l/r)总是一个常数(2π).因为2π是不变的,圆的周长l与半径r的比值是一定的,我们说l与r成正比例.学生模仿练习说明(2)(3)(4)中有没有成正比例的.(2)中m与V的比值是7.8,是一个常量,所以m与V成正比例;(3)中h与n的比值是0.5,是一个常量,所以h与n成正比例;(4)中T与t的比值是-2,是一个常量,所以T与t成正比例.这些函数有什么共同点?发现:它们都是常数与自变量的乘积的形式.总结正比例函数的定义:一般地,如果变量x,y有关系y=kx(k是一个不等于0的常数),那么变量x,y成正比例,函数y=kx(k≠0)叫做正比例函数,其中常数k叫做比例系数,自变量x的取值范围是一切实数,比例系数不能为零.学生模仿练习说出(1)(2)(3)(4)中的比例系数.[设计意图]由实际生活入手,列举实际问题,感悟数学与生活的实际联系;另外通过探究函数关系式中的两个变量的正比例关系,让学生体会正比例函数的一般形式.[知识拓展]正比例函数的判别:(1)自变量的指数是1次;(2)自变量的系数不为0;(3)不含有常数项.下列函数中,哪些是正比例函数?请指出其中正比例函数的比例系数.(1)y=3x; (2)y=2x+1;(3)y=-; (4)y=;(5)y=πx; (6)y=-x.让学生独立完成,并说明理由.教师注意指导,强调判断的方法.解:(1),(3),(5),(6)是正比例函数,比例系数分别是3,-,π,-.(2)和(4)不是正比例函数.练一练:下列函数中哪些是正比例函数?请指出其中正比例函数的比例系数.(1)y=-2x; (2)y=;(3)y=-; (4)v=;(5)y=x-1; (6)y=2πr;(7)y=2x2.指名回答,得出(1)(4)(6)是正比例函数,比例系数分别是-2,,2π.【课件8】有一块10公顷的成熟麦田,用一台收割速度为0.5公顷/时的小麦收割机来收割.(1)求收割的面积y(公顷)与收割时间x(h)之间的函数关系式.(2)求收割完这块麦田需用的时间.引导学生思考完成,小组可以互相交流.解:(1)y=0.5x.(2)把y=10代入y=0.5x中,得10=0.5x,解得x=20,即收割完这块麦田需要20 h.想一想:y(公顷)与收割时间x(h)之间的函数关系是正比例函数吗?比例系数是多少?这个比例系数代表的意义是什么?强调:这个比例系数是每小时收割的量,收割机每工作1小时,收割麦田0.5公顷.实际问题中的比例系数是单位量中增加或减少的值.[设计意图]使学生理解和掌握正比例函数的一般形式,能正确地加以判断,培养学生解决问题的能力,巩固所学的知识.一般地,如果变量x,y有关系y=kx(k是一个不等于0的常数),那么变量x,y成正比例,函数y=kx(k≠0)叫做正比例函数,其中常数k叫做比例系数,自变量x的取值范围是一切实数,比例系数不能为零.1.下列问题中,是正比例函数的是 ()A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系解析:A.∵S=ab,∴矩形的长和宽的积是定值,不是正比例函数;B.∵S=a2,∴自变量的次数是2,不是正比例函数;C.∵S=ah,∴三角形的面积一定,底边和底边上的高的积是定值,不是正比例函数;D.∵s=vt,∴速度固定时,路程和时间是正比例关系,故本选项正确.故选D.2.下列函数中,y是x的正比例函数的是()A.y=2x-1B.y=xC.y=2x2D.y=kx解析:A.y=2x-1,不是正比例函数,故本选项错误;B.y=x,符合正比例函数定义,故本选项正确;C.y=2x2,自变量次数不为1,故本选项错误;D.y=kx,k有可能为0,故本选项错误.故选B.3.函数y=(a+1)-是正比例函数,则a的值是()A.2B.-1C.2或-1D.-2解析:∵函数y=(a+1)-是正比例函数,∴a-1=1,且a+1≠0,解得a=2.故选A.4.若函数y=(3-m)-是正比例函数,则常数m的值是 ()A.-.±C.±3 D.-3解析:由正比例函数的定义,可得m2-8=1,且3-m≠0,解得m=-3.故选D.5.关于x的一次函数y=x+5m-3,若要使其成为正比例函数,则m=.解析:根据正比例函数的定义,可得5m-3=0,解得m=.故填.6.写出下列各题中x与y之间的关系式,并判断y是否为x的正比例函数?如果是正比例函数,指出比例系数.(1)小红去商店买笔记本,每个笔记本2.5元,小红所付买本款y(元)与买本的个数x(个)之间的关系;(2)圆的面积y(厘米2)与它的半径x(厘米)之间的关系.解析:(1)根据每个笔记本2.5元,可得出小红所付买本款y(元)与买本的个数x(个)之间的关系;(2)根据圆的面积公式即可得出圆的面积y(厘米2)与它的半径x(厘米)之间的关系.解:(1)由题意得y=2.5x,y是x的正比例函数,比例系数是2.5.(2)由题意得y=πx2,y不是x的正比例函数.第1课时活动1新知探究1.关系式:y=kx(k为常数,且k≠0).2.满足的条件:(1)自变量的指数是1;(2)自变量在一次单项式中.活动2例题讲解例1例2一、教材作业【必做题】1.教材第85页练习第1,2题.2.教材第86页习题A组第1,2,3题.【选做题】教材第86页习题B组.二、课后作业【基础巩固】1.下面函数中,是正比例函数的是()-A.y=6xB.y=C.y=x2+6xD.y=3x-12.已知y=(m+1),若y是x的正比例函数,则m的值为()A.1B.-1C.1,-1D.03.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A.0B.1C.±1D.-14.下列说法正确的是()A.三角形的面积一定时,它的一条边长与这条边上的高满足正比例关系B.长方形的面积一定时,它的长和宽满足正比例关系C.正方形的周长与它的边长满足正比例关系D.圆的面积和它的半径满足正比例关系【能力提升】5.函数y=x中自变量x的取值范围是.6.若x,y是变量,且函数y=(k+1)x|k|是正比例函数,则k=.7.已知自变量为x的函数y=mx+2-m是正比例函数,则m=,该函数的解析式为.8.已知y是x的正比例函数,当x=3时,y=-2,那么y与x之间的比例系数是.【拓展探究】9.当k为何值时,y=(k2+2k)x-是正比例函数?10.已知y是x的正比例函数,且当x=-3时,y=6.(1)写出y与x的函数关系式;(2)当x=-6时,求对应的函数值y;(3)当x取何值时,y=?【答案与解析】1.A(解析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,即可得出A中y=6x是正比例函数.)2.A(解析:由题意得解得m=1.)解得k=1.)3.B(解析:∵函数y=(k+1)x+k2-1是正比例函数,∴-4.C(解析:分别利用三角形、长方形、圆的面积和正方形的周长公式得出函数关系,进而判断得出即可.)5.全体实数(解析:自变量在整式中,所以自变量的取值范围为全体实数.)6.1(解析:根据题意得|k|=1,且k+1≠0,解得k=1.)7.2y=2x(解析:由题意得m≠0,2-m=0,∴m=2,该函数的解析式为y=2x.)8.-(解析:设y与x之间的函数关系式是y=kx,把x=3,y=-2代入,得-2=3k,解得k=-.)9.解:根据题意得k2-3=1,①k2+2k≠0.②由①得k=±2.当k=-2时,k2+2k=0,y=0不是正比例函数;当k=2时,k2+2k=8,y=8x是正比例函数.∴当k=2时,函数y=(k2+2k)x-是正比例函数.10.解:(1)设正比例函数解析式为y=kx,把x=-3,y=6代入,得-3k=6,解得k=-2,所以此函数的关系式是y=-2x.(2)把x=-6代入解析式,可得y=12. (3)把y=代入解析式,可得x=-.本堂课的重点是对正比例函数的概念的理解.难点是能正确判断正比例函数,并确定比例系数.通过教师的引导,启发调动学生的积极性,让学生自主地去分析发现函数的定义及规律.教师的主导作用与学生的主体地位达到了统一,使本课时的重点得到了突出,难点得到了突破;对学生学习中的情况进行了指导,作出了反馈;培养了学生的归纳概括和解决问题的能力.本课时的教学注重由传授单一的知识技能,转为学生“自主探索发现总结规律”,使学生对新的知识与数学思想方法更容易理解和掌握.(1)在探索正比例函数概念的过程中没有让学生充分地说理.(2)在应用新知这一环节中对学生习题的反馈情况了解得不够全面.(3)课堂内容较简单,教师在教学过程中没有呈现发展学生思维能力的补充例题,以满足不同学生的需要.(1)要充分相信学生总结规律的能力,在学生总结规律过后给予肯定,不必加以过多的语言进行重复,给学生足够的空间思考回答问题.(2)在学生明确正比例函数的概念后,应用新知反馈练习时,可以采取课堂小测验等方法进行,这样教师可以更准确地掌握学生对新知识的掌握情况.(3)在问题探讨及新课导入的过程中出现的问题串让学生自己读题后解决,教师不必帮助读题,这样可以更加集中学生的注意力,激发学习兴趣.(4)适当增加稍微难一点的例题,帮助学生分析,锻炼学生的思维能力.练习(教材第85页)1.解:(1)具有. (2)不具有. (3)不具有. (4)不具有.2.(1)9(2)4(3)-5习题(教材第86页)A组1.解:(1)是正比例函数,比例系数为-4. (2)不是正比例函数. (3)是正比例函数,比例函数为.(4)不是正比例函数. (5)是正比例函数,比例系数为-0.9. (6)是正比例函数,比例系数是-1.2.解:(1)y=4x. (2)当x=5时,y=4×5=20. (3)解方程4x=5,得x=.3.解:(1)V=8S. (2)当S=64时,V=64×8=512.B组1.解:∵x和y成正比例,∴设x=my(m为常数,且m≠0).∵y和z成正比例,∴设y=nz(n为常数,且n≠0).∴x=my=mnz.∵m,n为常数,且m≠0,n≠0,∴mn为常数,且mn≠0.∴x是z的正比例函数.解得m=-3.2.解:根据题意得-一次函数是在对一般“函数”概念有了初步认识之后,继续学习的第一类特殊函数.本节内容就是深入地认识一次函数,按照“成正比例的量”——“正比例函数”——“一次函数”这一递升次序安排的,这样做的目的主要有两个:一是更好地体现事物“由简单到复杂”“由特殊到一般”的发展规律;二是成正比例的量在小学已较为熟悉,由此抽象出正比例函数,进而由正比例函数扩展到一次函数,可更好地借用学生已有的数学知识,有效地展现知识的“抽象”生成过程,使一次函数概念的形成更自然、更深刻,更好地体现模型思想.希望教师充分注意上述立意.《义务教育数学课程标准》(2011年版)指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径.”一次函数就是最为重要的数学模型之一,这一要求的实现要靠切实有效的教学活动.1.首先引导学生回忆上一章刚学习过的函数的意义,为本节的学习铺垫好进一步抽象的基础.其次,回忆小学时学习过的成正比例的量.实际上,成正比例的量是函数的最早雏形,也是学生最为熟悉的正比例函数的实例.2.对于“观察与思考”和“做一做”活动中的问题情境,应努力引导学生通过思考与解答,体会出如下两点:第一:每一对成正比例的量之间都是一种函数关系,并且都可以表示成函数是自变量某一确定“倍数”的形式——这正是正比例函数形式定义的基础.第二:每一对成正比例的量构成的函数,函数对于自变量的变化都是“匀速”的.这正是正比例函数及一次函数的本质特征.3.对于正比例函数的定义,应强调k既可以是正数也可以是负数,因此,正比例函数是成正比例的量的拓展与再抽象.第课时1.理解一次函数的概念,以及一次函数与正比例函数之间的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题.在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.经历利用一次函数、正比例函数解决实际问题的过程,逐步形成利用函数观点增强认识现实世界的意识和能力.【重点】1.一次函数的概念.2.根据已知信息写出一次函数表达式.【难点】理解一次函数的定义及与正比例函数的关系.【教师准备】课件1~9.【学生准备】复习正比例函数的定义.导入一:【课件1】问题:某登山队大本营所在地的气温为15 ℃,海拔每升高1 km气温下降6 ℃.登山队员由大本营向上登高x km时,他们所处位置的气温是y℃.试用解析式表示y与x的关系.分析:从大本营向上,当海拔每升高1 km时,气温从15 ℃就减少6 ℃,那么海拔增加x km时,气温从15 ℃减少6x℃.因此y与x的函数关系式为y=15-6x(x≥0).当然,这个函数也可表示为y=-6x+15(x≥0).当登山队员由大本营向上登高0.5 km时,他们所在位置的气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上课时所学的正比例函数有何不同?它又是什么函数呢?我们这节课将学习这些问题.。

(完整word)冀教版八年级数学下册第二十一章一次函数知识点,推荐文档

(完整word)冀教版八年级数学下册第二十一章一次函数知识点,推荐文档

一次函数基本题型题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;点(,)A A A x y1、点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;3、点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,因此,正比例函数是特殊的一次函数。

1、下列函数①y=x -6;②y=x 2;③y=8x;④y=7-x 中,y 是x 的一次函数的是( )A 、①②③B 、①③④C 、①②③④D 、②③④ 2、下列函数中,既是一次函数,又是正比例函数的是( )A 、215y x = B 、()25y x x x=-- C 、12y x =D 、51y x =-3、如果()2213m y m x-=-+是一次函数,则m 的值是( )A 、1B 、-1C 、±1D 、 4、函数23y x =-,当1x =时,y 的值是( )A 、1B 、0C 、-1D 、-5 题型四、函数图像及其性质 1、特殊直线方程:X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 2、填写下表1.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四2.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<33.已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( ) A 、k>0,b>0 B 、k>0,b<0 C 、k<0,b>0 D 、k<0,b<04、设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,• 则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )二、一次函数的增减性解析式 (为常数,且)自变量取值范围图像 形状 过 和 点的一条直线(与x 轴和y 轴的交点) 、的取值示意图位置 经过 像限 经过 像限 经过 像限经过 像限趋势从左向右从左向右 函数变化规律随的增大而随的增大而yx1、已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1、y 2大小关系是( ) A 、y 1 >y 2 B 、y 1 =y 2 C 、y 1 <y 2 D 、不能比较2、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是: ( ) A 、12y y > B 、12y y < C 、12y y = D 、无法确定.3、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、阻值为1R 和2R 的两个电阻,其两端电压U 关于电流强度I 的函数图象如图,则阻值( )(A )1R >2R (B )1R <2R(C )1R =2R (D )以上均有可能三、一次函数与坐标轴围成的三角形的面积1、一次函数y= -2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 图象与坐标轴所围成的三角形面积是 .2、已知一次函数y kx b =+的图象经过点(0,1),且图象与x 轴、y 轴所围成的三角形的面积为2,求,k b 的值.3、已知直线m 经过两点(1,6)、(-3,-2),它和x 轴、y 轴的交点式B 、A ,直线n 过点(2,-2),且与y 轴交点的纵坐标是-3,它和x 轴、y 轴的交点是D 、C ;(1) 分别写出两条直线解析式,并画草图; (2) 计算四边形ABCD 的面积; (3) 若直线AB 与DC 交于点E ,求△BCE 的面积。

一次函数的性质PPT课件

一次函数的性质PPT课件

2
2
请谈谈:
(1)哪些函数的图像与y轴的交点在x轴的上方,哪些函数的图像与y
轴的交点在x轴的下方?
(2)函数的图像与y轴的交点在x轴的上方和函数的图像与y轴的交点
在x轴的下方,这两种函数,它们的区别与常数项有怎样的关系?
(3)正比例函数的图像一定经过哪个点?
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
4
新知导入 课程讲授 随堂练习 课堂小结ຫໍສະໝຸດ 一次函数 的性质内容
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
当k>0, b>0时,经过一、二、三象限; 当k>0 ,b<0时,经过一、三、四象限; 当k<0 ,b>0时,经过 一、二、四象限; 当k<0 ,b<0时,经过二、三、四象限.
2
(2)当2k+1=0,即k=- 1 时,函数y=(2k-1)x+(2k+1)的图像经过原点.
2
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
例 (3)当k满足什么条件时,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在 x轴的下方?
(3)当2k+1<0时,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在x轴的 下方. 解2k+1<0,得k<- 1 .
新知导入 课程讲授 随堂练习 课堂小结
CONTENTS
2
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
问题1.1 请在如图所示的直角坐标系中,画出一次函数y=2x+3和y=1 x-2的

数学下册第二十一章一次函数21.1一次函数课时1正比例函数作业课件(新版)冀教版

数学下册第二十一章一次函数21.1一次函数课时1正比例函数作业课件(新版)冀教版

知识点2 正比例函数 的表达式
5. 已知正比例函数y=kx(k≠0)中,当x=-2时,y=8,则它的表达式为 ( ) A.y=-4x B.y=4x C.y=-x D.y=x
答案
∵当x=-2时,y=8,∴-2k=8,解得k=-4,∴这个正比例函数的表达式是y=-4x.
知识点2 正比例函比例函数 的表达式
8. 已知A,B两市相距600 km,一辆汽车从A市开出驶向B市,行驶速度为80 km/h. (1)以该汽车开出时间t(h)为自变量,写出该汽车离A市的距离s(km)与时间t(h)之间的函 数关系式; (2)该汽车开出多少时间后离B市200 km?
答案
8.解:(1)∵A,B两市相距600 km,一辆汽车从A市开出驶向B市,行驶速度为80 km/h, ∴该汽车离A市的距离s(km)与t(h)之间的函数关系式为s=80t. (2)由(1)得600-80t=200,解得t=5. 答:该汽车开出5 h后离B市200 km.
第二十一章 一次函
一次函数
课时1 正比例 函数
知识点1 正比例函 数的概念
答案
知识点1 正比例函 数的概念
答案
知识点1 正比例函 数的概念
3. [2021河北唐山期末]下列选项中,两个变量之间成正比例关系的是 ( ) A.总路程为80 km,行驶速度v(km/h)与行驶时间t(h)之间的关系 B.圆的面积S(cm2)与它的半径r(cm)之间的关系 C.某水池原有水15 m3,现打开进水管进水,进水速度为5 m3/h,x h后水池有水y m3 D.一个正方形,它的周长C(dm)与边长a(dm)之间的函数关系
答案
分析如表.
知识点1 正比例函 数的概念
4. 易错题[教材P86习题B组T2变式] 当m,n为何值时,y=(m+1)x|m+2|-2n+8是正比例函数?

数学冀教版八年级下册第21章一次函数 课件

数学冀教版八年级下册第21章一次函数 课件
时间t/min 1 2 3 4 5 … 17.5 路程s/km 0.2 0.4 0.6 0.8 1 … 3.5
(1)当t=2min时,s=__0_._4_km, s _0_._2__km/min; t
当t=5min时,s=__1___km,s _0_._2__km/min; t
(2)小刚行驶的时间和路程成正比例吗? (3)s与t之间的函数关系式为__S_=_0_.2_t__.
典例分析 例2:有一块10公顷的成熟麦田,用一台收割速度为0.5公 顷/时的小麦收割机来收割. (1)求收割的面积y(公顷)与收割时间x(h)之间的函数关 系式; (2)求收割完这块麦田需要的时间.
解: (1) y=0.5x;
(2) 把y =10代入y =0.5x中,得 10=0.5x,
解得 x = 20,即收割完麦田需20h.



知道图像上两
代入所
数 表
待定系数法
个点的坐标或 图像过两个已
设表达 式

知点
y=kx+b



根据表格信

息求函数表
达式
求出k,b的值, 写出函数表达

教学课件
数学 八年级下册 冀教版
第二十一章 一次函数
21.4 一次函数的应用
热身练习 1.汽车由南京驶往相距300千米的上海,当它的平均速 度是100千米/时,下面哪个图形表示汽车距上海的路程 s(千米)与行驶时间t(时)的函数关系?( )
S(千米) S(千米) S(千米) S(千米)
300
300
300
300
o 3 t(时)o A
3 t(时)o B
3 t(时)o 3 t(时)

一次函数ppt课件

 一次函数ppt课件
-13-
21.1 一次函数
[易错分析]
■混淆一次函数与正比例函数的概念
例 已知 y 关于 x 的函数表达式为 y= +k-3. 若函数是一次函数,
则 k=________;若函数是正比例函数,则 k=________.
解析:若函数 y=
+k-3 是一次函数,则 k2-8=1,所以 k=±3;若函
数 y=
+k-3 是正比例函数,则 k2-8=1,且 k-3=0,所以 k=3.
答案:±3 3
易错:3 ±3
错因:记混一次函数与正比例函数的概念导致错解.
易错警示:要牢记正比例函数与一次函数的关系,正比例函数是一次函数
的特殊形式,即正比例函数是一次函数,但一次函数不一定是正比例函数.
-14-
21.1 一次函数
答案:D
题型解法:根据正比例函数的定义确定字母的值时,需使比例系数和自
变量的指数同时符合条件.
-7-
21.1 一次函数
■题型二 应用正比例函数的图像和性质比较比例系数的大小 例 2 如图,三个正比例函数的图像分别对应函数关系式:①y=ax,
②y=bx,③y=cx,将 a,b,c 从小到大排列并用“<”连接为 ( )
④y=2x2+1,自变量 x 的次数不为 1,故不是一次函数.综上,是一次函数的
有①②③,共 3 个.
答案:B
易错:C
错因:误认为②不是一次函数.②是正比例函数,正比例函数也是一次函数.
满分备考:判断函数是否为一次函数时,首先将函数关系式化简整理,看
是否满足 y=kx+b 的形式,其次辨别比例系数 k 是否等于 0,另外需注意,来自-4-21.1 一次函数

冀教版八年级数学下册《二十一章 一次函数 21.1 一次函数》教案_8

冀教版八年级数学下册《二十一章 一次函数  21.1 一次函数》教案_8

一次函数目标1.知识目标理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式。

2.能力目标经理探索正比例函数和一次函数概念的过程,发展学生的抽象思维能力。

3.情感目标通过对正比例函数和一次函数的探究,发展数学应用能力,深刻体会数学知识来源于实际生产、生活,又服务于实际生产、生活。

重点理解正比例函数和一次函数的概念。

难点根据题设条件寻找一次函数表达式。

学习环节学习过程师生随笔感悟新知探究新知1.什么是函数?2.函数的三种表示方法是什么?卡片1 一、试着做做(完成课本512页)二、互动学习1.上述三个函数表达式有什么共同特点?(提示:①自变量是否在分母上;②自变量的次数是几)2.定义:如果两个变量x和y之间的函数关系可以表示为____________的形式,那么就称y是x的一次函数。

其中_____是自变量,____是自变量系数;当______时,一次函数就成为y=kx(k是常数,k≠0)这时y叫x的正比例函数。

3.(1)上面得到的三个函数表达式,哪些是一次函数?哪些是正比例函数?一次函数___________________________________________________正比例函数______________________________________________(2)写两个一次函数的表达式,其中有一个是正比例函数,并与同学交流。

三、应用尝试1.在函数1)y=2-x 2)y=8+0.032t 3)y=1+x14)y=xx53卡片25)y=0.5x+316)y=-6-5x,其中一次函数有______,正比例函数有____2.当m为何值时32)2(--=m xmy+(m-4)是一次函数?3.已知y与x成正比例,当x=5时y=12,求y与x的函数关系式。

四、质疑问题、自主反馈例如图∆ABC是边长为x的等边三角形(1)求BC边上的高h和x的函数关系式,h是x的一次函数吗?(2)求三角形ABC的面积S与x之间的函数关系式,S是x 的一次函数吗?归纳整理五、巩固练习1.下列函数中,既是一次函数又是正比例函数的是()1x2yA.+=3x-yB.=x-=3yC.5D.y2-=x2.若函数y=(k+3)x+b-3是正比例函数,则k与b的值应满足的条件是()A.k=-3,b=3 B.k≠-3,b≠3C.k≠-3b=3 D.k=-3,b≠33.一棵树现在的高度是2.2米,且未来十年内平均每年会长高25厘米,设x年后的树高为y米,则y与x的函数关系式是________,y是x的________函数。

冀教初中数学八下《21.1第二十一章一次函数》PPT课件 (1)

冀教初中数学八下《21.1第二十一章一次函数》PPT课件 (1)
(5)对于与实际问题有关系的,自变量的取值范围应使实际问 题有意义。
四. 函数图象的定义:一般的,对于一个函数, 如果把自变量与函数的每对对应值分别作为点 的横、纵坐标,那么在坐标平面内由这些点组 成的图形,就是这个函数的图象.
下面的2个图形中,哪个图象中y是关于x的函数.
图1
图2
五、用描点法画函数的图象的一般步骤:
解:(1)设所求函数关系式为:Q=kt+b。 把t=0,Q=40;t=3.5,Q=22.5分别代入上式,得
b 40 22.5 3.5k b
解得
k 5 b 40
解析式为:Q=-5t+40 (0≤t≤8)
5、柴油机在工作时油箱中的余油量Q(千克)与工作
时间t(小时)成一次函数关系,当工作开始时油箱中有
七.正比例函数的图象与性质:
(1)图象:正比例函数y= kx (k 是常数, k≠0)) 的图象是经过原点的一条直线,我 们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三, 一象限,从左向右上升,即随着x的增大 y也增大;当k<0时,直线y= kx经过二,四 象限,从左向右下降,即随着 x的增大y 反而减小。
油40千克,工作3.5小时后,油箱中余油22.5千克
(1)写出余油量Q与时间t的函数关系式. Q=-5t+40
(2)画出这个函数的图象。
(0≤t≤8)
(2)、取t=0,得Q=40;取t=8,得Q=0。描出点
A(0,40),B(8,0)。然后连成线段AB即是所
求的图形。
注意:(1)求出函数关系式时,
Q
(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的 一切实数。

冀教版八年级数学下册《二十一章 一次函数 21.1 一次函数》教案_27

冀教版八年级数学下册《二十一章 一次函数  21.1 一次函数》教案_27
教学目标
1.经历由现实情境抽象出正比例函数的过程;
2.进一步感悟函数模型,培养与发展学生的抽象能力;
3.体会数学知识来源于生活,培养学生细心观察的良好品质.
教学重点
理解和掌握正比例函数表达式的特点
教学难点
由实例抽象概括出正比例函数概念
教学流程安排
授课环节
教学内容
学生活动
教师活动
设计意图
课题引入
让学生思考并回答些下问题
(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了距始发站1 100 km的南京站?
认真倾听
播放幻灯片带领学生尝试解决问题
复习旧知,引入新知,从学生熟悉的正比例的量引入该课,符合学生的认知顺序
创设问题
思考下列问题:
1. y=300t中,变量和常量分别是什么?其对应关系式是函数关系吗?谁是自变量,谁是函数?
1.已知正比例函数y=kx,当x=3时,y=-15,求k的值.
2.若y关于x成正比例函数,当x=4时,y=-2.
(1)求出y与x的关系式;
(2)当x=6时,求出对应的函数值y.
学生自己读题审题
展示创设问题
问题链设计,层层递进,从最简单问题入手,步步加深。
方法总结
待定系数法
已知y与x+2成正比例,当x=4时,y=12,
1.上一章我们学习了函数,现在,
⑴请举出两个函数的实例,并指出其中的变量和常量;2011年开始运营的京沪高速铁路全长1 318km.设列车平均速度为300km/h.考虑以下问题:(1)乘京沪高速列车,从始发站北京南站到终点站海虹桥站,约需要多少小时(结果保留小数点后一位)?(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?

冀教版八年级数学_21.1.2 一次函数

冀教版八年级数学_21.1.2  一次函数

④y=x2中,一次函数的个数是( B )
A.1 B.2 C.3 D.4
感悟新知
知1-练
5. 已知y=(m-3)x|m|-2+1是y关于x的一次函数,则m 的值是( A ) A.-3 B.3 C.±3 D.±2
6. 若3y-4与2x-5成正比例,则y是x的( B ) A.正比例函数 B.一次函数 C.没有函数关系 D.以上均不正确
相同点与不同点?
感悟新知
一般地,解决行程类的问题时,常常借助如下图 示来分析.
知1-讲
分析上图,容易看出,s与t的函数关系式为s=3.5-0.2t.其 中, 3.5,0.2是常量,s与t是变量.如果将t作为自变量,那么s 是t的函数.因为3.5-0.2t≥0,所以成t≤17.5.
所以t的取值范围为0 ≤ t ≤ 17.5.
x
3
解:(1)(2)(4)是一次函数.(1)中的k=-1,b= 1 ;
3
(2)中的k=2π,b=0;(4)中的k=0.5,b=
π 3
.
感悟新知
3. 下列函数中,y是x的一次函数的是( C )
知1-练
A.y=x2+2x
B.y=- 3 x
C.y=x
D.y= 2x +1
4. 下列函数:①y=2x-1;②y=πx;③y=1x ;
第二十一章 一次函数
21.1 一次函数
第1课时 一次函数
学习目标
1 课时讲解 一次函数的定义
确定应用问题中的一次函数表达式
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
课时导入
函数可以用来刻画数景之间的关系,一次函数是一 种重要的函数. 现在,我们来探究一次函数.
感悟新知

一次函数(专题精讲)讲义

一次函数(专题精讲)讲义

【知识点梳理】1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数. 【说明】(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数. (3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数.2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数. (4)由于k ,b 的符号不同,直线所经过的象限也不同;①当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限); ③当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限); ④当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x 向上平移一个单位得到的.【例题解析】例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32 m +(m-4)是一次函数?【小结】某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.跟踪练习:已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 . 【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M例7 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.例8 已知y+a 与x+b (a ,b 为是常数)成正比例.(1)y 是x 的一次函数吗?请说明理由; (2)在什么条件下,y 是x 的正比例函数?例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x 分,两种通讯方式的费用分别为y 1元和y 2元.(1)写出y 1,y 2与x 之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式; (2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.例11已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?(5)k为何值时,y随x的增大而减小?例12判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.【课后习题】1. 如图,你能找出下列四个一次函数对应的图象吗?请说出你的理由.(1)12+-=x y ; (2)13-=x y ; (3)x y = ; (4)x y 32-=.2.(1)判断下列各组直线的位置关系:①x y =与1-=x y ; ②213-=x y 与2131--=x y . (2)已知直线532+=x y 与一条经过原点的直线l 平行,则这条直线l 的函数关系______ ;若直线a 与直线l 垂直且过点(0,-2),则直线a 的函数关系式为 .3.(1)一次函数x y 3-=的图象经过_ 象限,y 随x 的增大而__________; (2)一次函数n mx y +=A .0,0<<nmB .0,0><n mC .0,0>>n mD .0,0<>n m4.在下列四个函数中,y 值随x 值的增大而减小的是( ).A .x y 2=B .63-=x yC .52+-=x yD .73+=x y5.如图,已知一次函数k kx y +=的图象大致是( ).A .B .C .D .6.直线32+=x y 与x 轴正方向所成的锐角为α,直线13--=x y 与x 轴正方向所成的锐角为β,则α与β的关系为( ).A .α>βB .α=βC .α<βD .无法确定7.已知一次函数k kx y -=,若y 随x 的增大而减小,则该函数的图象经过( ).A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限8.如图,某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按同样速度注水,水池注满后,停止注水,又立即按同样的速度放完水池的水.若水池的存水量为v (3m ),放水或注水的时间为t (min ),则v 与t 的关系的大致图象只能是( ).A .B .C .D .9.函数3)2(1+-=-m xm y 的图象是一条直线,则=m .10.如果直线2+=kx y ,y 随x 的增大而增大,则直线2--=kx y 不经过第 象限. 11.如果直线x m y )2(-=与直线23+=x y 平行,则=m 12.已知直线b kx y +=过点A (1-,5)且平行于直线x y -=. (1)求这条直线b kx y +=的解析式;(2)若点B (m ,5-)在这条直线b kx y +=上,O 为坐标原点,求m 及AOB ∆的面积.13.如图,直线AB 的解析式为434+-=x y ,直线AB OC ⊥于C . (1)求A 、B 两点的坐标; (2)求直线OC 的解析式;。

一次函数图象课件

一次函数图象课件

股票交易
一次函数可以帮助分析股票的趋势和预测股价的变 化。
建筑工程
一次函数可以用于计算建筑材料的消耗和成本。
汽车竞赛
一次函数可以帮助分析赛车的速度与时间的关系。
一次函数与比例关系
比例关系
一次函数可以表示两个变量之间的比例关系,如牛奶与面包的价格比例。
示例
一次函数 y = 2x 表示两个变量之间的等比例关系,如身高和体重的关系。
具有斜率和截距。
二次函数
二次函数的图象是一个曲线, 具有顶点和开口方向。
比较
一次函数适用于线性关系和比 例关系,二次函数适用于曲线 关系和二次方程。
一次函数的错误与修正
1 截距错误
在求解截距时,除以零或忽略某些特殊情况会导致错误结果。
2 斜率错误
计算斜率时,错误的数值计算或数值解释可能导致斜率错误。
3 修正方法
仔细检查计算步骤,审查数值的合理性,并避免忽视特殊情况。
一次函数图象ppt课件
本PPT课件将详细介绍一次函数的基本概念,并探讨其应用场景、图象绘制、 求解斜率和截距等核心要点,让您轻松掌握一次函数的知识。
一次函数的定义与特点
1 定义
一次函数是指具有形如 y = ax + b 的函数,其中 a 和 b 是常数,且 a ≠ 0。
2 特点
一次函数的图象是一条直线,具有斜率和截距,可以表示线性关系。
一次函数的图象与直线的区别
1 图象
一次函数的图象是连续的曲线,具有斜率和截距特征。
2 直线
直线是由无穷多个点组成的线段,没有曲线的特征。
3 示例
一次函数 y = x + 2 的图象是一条直线,而 y = x^2 的图象是一个曲线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1变量与函数(第二课时)学案【学习目标】(1)借助简单实例,逐渐从两个变量间的特殊对应关系抽象出函数的概念.(2)借助简单实例,逐渐领会函数概念的核心,并能辨别其非本质属性.(3)在概念形成的过程中,体会到“从特殊到一般”的数学方法【学习难点】怎样理解“唯一对应”.【学习过程】一、探索活动活动一、指出下列变化过程中的常量和变量,用适当的形式表达变量间的关系,并填写下表。

变化过程1:一个水滴落到平静的湖面上,所形成的一系列圆的面积s与圆半径r的关系是____________变化过程2:如果锐角α和锐角β互余,则α与β的关系是__________________变化过程3:汽车以60 km/h 的速度匀速行驶时,路程s与时间t的关系是____________变化过程4:购买单价为5元/本的笔记本x本和单价为1元/支的铅笔y支,共花去80元钱,则x与y的关系是__________________活动二、变化过程5:下面是从1984年美国洛杉矶到2012年英国伦敦历届夏季奥运会,我国体育代表团获得金牌数据统计表.把届数和金牌数分别记为两个变量x和y.届数x 23 24 25 26 27 28 29 30金牌数y 15 5 16 17 28 32 51 38变化过程6:下图是某地一天的气温变化图,看图回答:活动三、变化过程7:武汉市2014年12月后,出租车收费标准如下:3公里内,起步价10元;超过3公里部分2元/公里.请你计算如果乘车里程数s 是1(公里)时,所花的乘车费w______ (元)如果乘车里程数s 是3(公里)时,所花的乘车费w______ (元)如果乘车里程数s 是5(公里)时,所花的乘车费w______ (元)如果乘车里程数s 是9(公里)时,所花的乘车费w______ (元)变化过程8:右图是李老师的班上同学一次数学测试中的成绩登记表:这一数学测试中,13号的成绩为______;17号的成绩为______;18号的成绩为______;23号的成绩为______.二、形成概念1、观察以上三个活动中8个变化过程,有什么共同的特征?尝试抽象出函数的概念:_________________________________________________________________________________________________________________________________2、鉴别一个变化过程是函数关键是?三、练习巩固1、下表列出两变量m 、n 之间的对应关系,n 都是m 的函数吗?2、n 边形的内角和s 是边数n 的函数吗?3、如果 ,那么y 是x 的函数吗?为什么?m 1 2 3 4 m 1 2 3 4n 1 2 3 4 n 4 3 2 1m 5 5 5 5 m 1 2 3 4n 1 2 3 4 n 5 5 5 5y x三、加深理解1、等腰△ABC中,AB=AC,则顶角y与底角x之间的等量关系式为_____________.其中变量是______、•______,常量是______.y是x的函数吗?x是y的函数吗?2、下面的图象反映的过程是小张同学星期天上午的行程:先从家去民生甜食馆过早,又去同学家问数学题借参考书,然后回家。

其中x表示时间,y表示小张离家的距离,小张家、民生甜食馆、同学家在同一条直线上。

根据图象回答下列问题:(1)小张离家的距离y是时间x的函数吗?为什么?(2)在这个函数的表达方式中,你还发现了什么信息?3、下图是一只蚂蚁在竖直的墙面上的爬行图,蚂蚁离地高度h 是离起点的水平距离t 的函数吗?为什么?4、你能举一个函数的例子吗?四、精炼————当堂训练、提升能力1、下表列出两变量m、n之间的对应关系,n都是m的函数吗?m 1 2 3 4 m 1 2 3 4n 1 2 3 4 n 4 3 2 1m 5 5 5 5 m 1 2 3 4n 1 2 3 4 n 5 5 5 52、n边形的内角和s是边数n的函数吗?3、下列各图中,表示y是x函数的有_________________(可以多选).4、下表是表示一个工人生产零件的总数和工作天数的关系表工作天数t (天) … 2 5 8 15 20 …生产零件总数m (个) …180 450 720 1350 1800 …通过阅读表格的信息,利用今天所学的知识,你能设计几个问题考考你的同学吗?函数概念的发展简史1、函数概念的萌芽时期(自然函数、代数函数时期)函数思想是随着数学开始研究事物的运动变化而出现的。

而事实上,早期的数学是不研究事物的运动变化的。

古希腊科学家亚里士多德曾经认为,数学研究的是抽象的概念,而抽象的概念来自事物静止不动的属性。

例如,数学中的数、线、形等数学对象都不包括运动,运动变化是物理学研究的对象等等。

受其影响,直至14世纪,数学家们才逐渐开始研究物体的运动问题。

到了16世纪,由于实践的需要,自然科学开始转向对运动的研究,自然中各种变化和各种变化着的物理量之间的关系也就成为数学家关注的对象。

伽利略就是最早开展这方面研究的科学家之一,在他的著作里多处使用比例的语言表达了量与量之间的依赖关系。

例如,从静止状态自由下落的物体所经过的距离与所用时间的平方成正比,这正是函数概念所表达的思想意义。

16世纪法国数学家笛卡尔在研究曲线问题时,发现了量的变化及量与量之间的依赖关系,并在数学中引进了变量思想,在他的《几何学》中指出:所谓变量是指:“不知的和未定的量”,成为数学发展的里程碑,也为函数概念的产生奠定了思想基础。

直到17世纪下半期,牛顿—莱布尼兹的微积分问世时,数学上还没有明确的函数概念。

把“函数”(function)一词最早用作数学术语的是莱布尼兹,当时,莱布尼兹用“函数”(function)一词表示幂,如都叫函数。

后来又用函数表示任何一个随着曲线上的点变动而变动的量。

例如曲线上的点的横坐标、纵坐标、切线的长度、垂线的长度等等。

从这个定义看出,莱布尼兹利用几何概念,在几何的范围内揭示了某些量之间的依存关系。

可以说出现了函数概念的一点端倪,但函数的一般定义仍没有诞生。

原因在于:数学家们一直在同具体的函数打交道,对具体函数或求导,或积分,讨论各种各样的具体问题,并没有感到有定义一般函数概念的需要。

2、函数概念的初步形成(解析函数时期)18世纪微积分的发展促进了函数概念“解析定义”的发展。

瑞士著名数学家约翰·贝努利在研究积分计算问题时,提出:积分工作的目的是在给定变量的微分中,找出变量本身之间的关系。

而在对待“找出变量本身之间的关系”的表示上,显然用莱布尼兹定义的函数表示是很困难的。

于是,在1718年约翰·贝努利从解析的角度,把函数定义为:“变量的函数就是由某个变量及任意一个常数结合而成的量。

”意思是凡变量和常量构成的式子都叫做的函数。

贝努利所强调的函数要用公式来表示。

后来,数学家觉得不应该把函数概念局限在只能用公式来表达上,只要一些变量变化,另一些变量能随之而变化就可以,至于这两个变量的关系是否要用公式来表示,则不作为判别函数的标准。

18世纪,瑞士数学家欧拉在他的《无穷小分析引论》中进一步推广了他老师约翰·贝努利的定义:“一个变量的函数是由变量和一些数或常量以任何一种方式构造的解析式”。

并且早在1734年欧拉就已经用表示的函数,这个函数符号至今仍在沿用。

1755年,欧拉又在他的《微积分原理》的序言中把函数定义为:“如果某些变量以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。

”在欧拉的这个定义中,已经不强调函数要用公式表示了。

由于函数不一定用公式来表示,欧拉曾把画在坐标系上的曲线也叫函数。

他认为:“函数是随意画出的一条曲线。

”欧拉用“解析表达式”代替了约翰的“任意形式”,明确地表达了变量之间相互依赖的变化关系,这促进我们对函数概念的认识在严密性上前进了一大步。

但是,当时有些数学家对于不用公式来表示函数感到很不习惯,有的数学家甚至抱着怀疑的态度。

他们把能用公式表示的函数叫“真函数”,把不能用公式表示的函数叫“假函数”。

3、函数概念的确立(变量函数)在对前人函数概念的认识与发展的基础上,1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其它变数的值也可以随着确定时,则将最初的变数叫做自变量,其它各变数叫做函数”。

在柯西的函数定义中,首先引入了“自变量”一词。

按照这个定义,只要有自变量的一个值可以确定的相应值,则就是的函数。

显然,这个函数定义比以往的要广泛的多。

1834年,德国数学家罗巴切夫斯基进一步提出函数定义:“x的函数是这样一个数,它对于每一个x都有确定的值并且随着x一起变化。

函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法。

函数的这种依赖关系可以存在,但仍然是未知的。

”这个定义指出了对应关系的必要性,利用这个关系可以求出每一个的对应值。

后来,德国数学家狄利克雷也注意到,重要的不是“自变”所引起的因变,应该是变量之间的“对应”关系。

1837年,狄利克雷给出了意义更为广泛的函数概念:“如果对于的每一个x值,总有一个完全确定的y值与之对应,则是的函数。

”这个定义成功的引进了“单值对应”这个概念,巧妙地避免了过去函数定义中的不确定的“依赖关系”的描述,以清晰完美的方式表达了变量间的依赖关系,被19世纪的数学家普遍接受,成为传统函数定义的原型。

4、函数概念的再次发展(集合、映射函数)19世纪末20世纪初,把函数看作一种对应或者映射的思想已经成形。

如果说前面两个世纪的人们把注意力更多的投放在函数的解析式上,那么20世纪的数学家开始关注自变量的取值范围,这不仅仅是因为实际问题给数学提出了相应的课题,更主要的是德国数学家康托尔开创了一个全新的数学分支——集合论。

由此,集合论的思想与方法很快就渗透到了数学的各个领域,著名数学家庞加莱曾经说过:“由于有了集合论,现在我们可以说,数学的完全严格性已经达到了。

”所以,用集合的语言重新叙述函数的定义,成了进一步严格函数概念的最好途径。

20世纪,美国数学家使用集合与对应的语言这样定义函数:“在变量的集合与另一个变量的集合之间,如果存在着对于x的每一个值,有确定的值y与之对应这样的关系,那么,变量y就叫做变量x的函数”。

这个函数概念就是现在高中课本所采用的了。

相关文档
最新文档