中国有色金属学报模板论文模板
东华大学研究生学位论文参考模板
东华大学研究生学位论文参考模板毕业设计(论文)中英文摘要毕业设计(论文)题目,黑二甲醚清洁燃料均质压燃燃烧数值模拟研究体小五号字。
四号黑体摘要前需有论文题目,三号摘要黑体居中,上下各空一行。
空一行均质充量压缩着火(HCCI)燃烧,作为一种能有效实现高效低污染的燃烧方式,能够使发动机同时保持较高的燃油经济性和动力性能,而且能有效降低发动机的NO和碳烟排放。
此外HCCI燃烧的一个显著特点是燃料的着火时刻和燃烧x 过程主要受化学动力学控制,基于这个特点,发动机结构参数和工况的改变将显著地影响着HCCI发动机的着火和燃烧过程。
本文以新型发动机代用燃料二甲醚(DME)为例,对HCCI发动机燃用DME的着火和燃烧过程进行了研究。
研究采用由美国Lawrence Livermore国家实验室提出的DME详细化学动力学反应机理及其开发的HCT化学动力学程序,且DME的详细氧化机理包括399个基元反应,涉及79个组分。
为考虑壁面传热的影响,在HCT程序中增加了壁面传热子模型。
采用该方法研究了压缩比、燃空当量比、进气充量加热、发动机转速、EGR和燃料添加剂等因素对HCCI着火和燃烧的影响。
结果表明,DME的HCCI燃烧过程有明显的低温反应放热和高温反应放热两阶段;增大压缩比、燃空当量比、提高进气充量温度、添加HO、H、CO使着火提前;提高发动机转速、采222用冷却EGR、添加CH、CHOH使着火滞后。
43空一行关键词:均质充量压缩着火,数值模拟,二甲醚,EGR,燃料添加剂小四号黑体摘要正文小四号宋体,首行缩进二个字,字数300小四号宋体,逗号分,500字,1。
5倍行距。
开,最后一个关键字后面无标点符号。
NUMERICAL SIMULATION OF HOMOGENEOUSCHARGE COMPRESSION IGNITION COMBUSTIONFUELED WITH DIMETHYL ETHER四号Times New 三号Times New Roman居中加ABSTRACT Roman居中加黑黑,一律用大写字母,上下各空一行。
中国电机工程学报论文格式模板
第29卷第期中国电机工程学报V ol.29 No.00 . 2009文章编号:0258-8013 (2009) 07-0001-06 中图分类号:TM 85 文献标志码:A 学科分类号:470·40文章编号、中图分类号、文献标识码及学科分类号:中间标点为全角,字号小五号,中文黑体,数字及英文Times New Roman,1.25倍行距,“根据页面设置确定行高线”选项选中(各项目之间空4格,中图分类号的英文字母与数字间留1/4字符空格)标题二号,黑体,英文字体为Arial,希腊字母保持不变,如θωρω∆,1.25倍行距,段前空12pt,2行之间单倍行距,无段前空作者姓名四号仿宋,中间全角逗号隔开,1.25倍行距(1.作者单位、地址五号楷体,标点均为全角,1.25倍行距)空一行,格式同上行英文标题小四号Times New Roman加黑, 实词和4个字母及以上的虚词首字母大写(如With),1.25倍行距英文姓名五号Times New Roman,标点半角,姓大写,名首字母大写两字之间用连字符连接,1.25倍行距(英文单位小五号Times New Roman,标点半角, 实词首字母大写,虚词小写,1.25倍行距,段后空12pt)ABSTRACT:英文摘要为小五号Times New Roman字体,行距为14pt,标点为半角KEY WORDS:英文关键词为小五号Times New Roman字体,小写,行距为14pt,中间标点为半角,段首空6pt摘要:中文摘要为小五号宋体,行距为14pt,中间标点为全角,段首空6pt。
关键词:中文关键词为小五号宋体,行距为14pt,中间标点为全角,段首空6pt1 二级标题为小四黑,英文字体为Arial,换行时悬挂缩进为0,段前段后均空6pt,希腊字母保持不变,如θωρω∆正文字号五号,首行缩进:0.74cm,中文宋体,英文及数字为Times New Roman,行距为单倍行距(“根据页面设置确定行高线”选项选中),段尾不要单字成行。
东北大学学报(自然科学版)排版模板
___________________________ 收稿日期:2007-05-24基金项目:国家自然科学基金资助项目(50704012),辽宁省博士启动基金资助项目(20061017)。
冷轧复合对铝合金复合箔组织与性能的影响祖国胤,李 兵,李 鸿,于九明(东北大学 材料与冶金学院,辽宁 沈阳 110819)摘 要:研究了采用冷轧复合法生产汽车散热器用铝合金复合箔的工艺,主要研究了冷轧首道次压下率、包覆层厚度及成品前退火制度对复合箔组织与性能的影响。
结果表明:皮材A4045和芯材A3003在30%~50%的首道次压下率下可以实现良好的初结合,冷轧工艺生产的复合箔上、下包覆层的厚度基本一致。
最后一道次的精轧压下率在25%~35%左右时,复合箔成品的抗下垂性能最佳。
复合箔成品前的退火温度应控制在320~400℃,退火温度为400℃时,退火时间以不超过80min 为宜。
关键词:冷轧复合;复合箔;压下率;抗下垂性;退火 中图分类号:请查阅中图分类号 文献标志码:AEffect of Cold-Rolling Cladding on Microstructure and Properties of Composite Aluminum Alloy FoilZU Guo-yin, LI Bing, LI Hong, YU Jiu-ming(School of Materials & Metallurgy, Northeastern University, Shenyang 110819, China. Corresponding author: ZU Guo-yin, E-mail: zugy@)Abstract :The cold-rolling cladding process of composite aluminum alloy foil for automobile heat exchanger was investigated, as well as the effects of percentage reduction of first pass, clad sheet thickness and final annealing schedule on the microstructure and properties of the foil. The results showed that bonding the clad sheets A4045 to the core material A3003 on both sides succeeds initially when the percentage reduction is 30%~50% of first pass during cold rolling, and the thickness of both the clad sheets of the composite foil are basically the same. The best sagging resistance is available when the percentage reduction of final pass is 25%~35%. The annealing temperature should be controlled in the range from 320 to 400℃ before finish rolling, and the annealing time should control within 80 minutes when annealed at 400℃.Key words :cold-rolling cladding; composite foil; percentage reduction; sagging resistance; annealing世界汽车工业的发展方向为轻量化[1],其中,铝及铝合金以比强度高、耐腐蚀性佳、热稳定性好、易成型和简化结构等特点成为了最理想的汽车轻量化材料[2-4]。
铝合金连续冷却相变动力学曲线的测定及研究
镇居民人均可支配
收入18866元,同
比增长7.4%;农民
人均纯收入9700元,同比增长12.5%。
预计1-12月,完成地区生产总值24.21亿元(可比价),同比增长8%;财政收入
1.28亿元,同比增
长9%;全社会固定
资产投资36.75亿元,同比增长
25%;社会消费品零售总额3.92亿元,同比增长12.8%;城镇居民人均可支配收入25413元,同比增长10%;农民人均纯收入10123元,同比增长12%。
汇报
(2015年11月
25日)
今年以来,在区委的正确领导和区人大、区政协的监督支持下,全区广大干部群众团结奋斗、辛勤劳动,认真贯彻执行中央、
自治区、XX市稳增长等重大决策和工作部署,扎实开展"三严三实"专题教育活动,以开展"低碳工业发展破题年、城镇化建设攻坚年、法治XX建设年、基层党建创新年"为抓手,全区上下集中精力抓项目,继续
9口。这些项目的
实施,有效地改善区内群众生产生活条件。
二、存在的主要困难和问题
一是项目建设受征地拆迁、资金短缺、前期工作审批流程多等因素影响,推进进度较慢,如XX镇棚户区改造项目、中西汇暨萨马兰奇文化博览园、低碳经济示范园区
等,给全年重点项目推动带来一定压力;二是虽然全区固定资产投资持续较快增长,但从目前项目建设与资金到位情况来看,无新开工的亿元项目,投资增长后劲仍显乏力,完成年度投资任务压力大;三
贫攻坚战,卫生城复审已全面落实迎检要求。
(六)大力实施为民办实事工程,民生事业得到有效改善。
今年,我区承办自治区、桂林市层面为民办实事项目共41件,其中自
治区层面为民办实事项目33件,桂林市层面为民办实事项目8件;此外,从中选择了10件为民办实事项目作为区本级重点实施项目。1-10月,全区新增就业1018人,城乡居民社会养老保险续保2971人,
论文格式模板(现代矿业)
论文格式模板说明:此“论文格式模板”由多篇文章的某些段落及有关资料拼接而成,因此其中多有上下文无逻辑关系之处,仅供作者了解论文格式用。
红色字体为具体要求。
投稿论文一律采用Word文档。
*大掺量铁尾矿高强混凝土材料的制备论文题目尽量不要超过20个字。
不要千篇一律用“……的研究”。
基金项目用星号在文题的右上角标出,并在篇首页下方作相应说明。
张三1,2李四3,4王老五5各作者之间空1字;单名作者在姓与名之间空1字。
(1.中钢集团马鞍山矿山研究院有限公司;2.金属矿山安全与健康国家重点实验室;3.中国科学院武汉岩土力学研究所;4.中国矿业大学环境与测绘学院;5.马钢(集团)控股有限公司南山矿业公司)学校作者录到二级单位(学院);国家、省部重点实验室作为一个独立单位单独列出;研究院所及企业一般只录到一级单位,部、处、科等不再列出;对于集团单位,要录到集团的下一级,如“××集团××矿业公司”。
摘要将首钢密云铁矿尾矿按一定方法分级,取-0.08 mm粒级与水泥熟料、脱硫石膏通过3级混磨形成胶凝材料,然后将胶凝材料与作为骨料的+0.08 mm铁尾矿中的某一粒级混合,并加入减水剂制备成高强混凝土材料。
在其他条件一定的情况下,通过正交试验着重考察了骨料粒度、第3级混磨时间、减水剂用量对制品抗压强度的影响。
试验结果表明:第3级混磨时间是影响制品抗压强度的主要因素;在合适的条件下,制得的铁尾矿混凝土材料28 d抗压强度高达97.63 MPa,制品中铁尾矿掺量达到70%,。
摘要包括目的,方法、结果和结论4个要素,是一篇独立的小短文,与文题和正文没有结构上的逻辑关系,一般100~300字,不分段。
摘要应从第3人称角度撰写,不要以“本文”、“作者”等为主语,并不宜出现引文、公式、图表等,也不要介绍一些知识性和概念性的内容。
关健词铁尾矿高强混凝土材料混磨时间抗压强度应选取3~8个词作为关键词。
纳米级铜粉的制备
表 4 pH 值对铜粉视密度的影响
pH 值
4 . 2!
4.6
5.0
5.4
5.8
铜粉视密度 (/ g / mL)
0 . 40
0 . 38
0 . 36
0 . 42
0 . 48
!不加 NH3·H2O 时 CISO4 溶液的 pH 值。
由表 4 可见,pH 值为 5 . 0 时制得的铜粉具有最 小的颗粒尺寸。除此之外,实验中还用上述方法选 择了分散剂的种类为 OP,其数量为 0 . 6 mL,考虑到 还原剂加入时间的影响,发现加入时间从 1 min 增 加到 3 min 时体积略有增加,但不明显;选择的搅拌 强度为 120 I / min。 2 . 3 X 射线衍射(XRD)检测
(3)XRD 检测结果表明,反应的产物为单质铜。 (4)将原始实验扩大了 40 倍,重现了原来的结 果,铜粉收率可达 90% 以上。
图 2 TEM 测试铜粉的粒径(放大 10 万倍)
3 结论
(1)用铜粉的视密度大小表征其颗粒的相对大 小以选择合适的工艺参数,可大大减少用 TEM 检测 的次数。
参考文献:
取 (! CuSO4)= 1 . 145 mol / L 的溶液 4 mL,含硫 酸铜的物质的量为 4 . 58 > 10 - 3 mol,由反应方程式
(1)可知,NaH2PO2 的理论用量为 2 . 29 > 10 - 3 mol,理 论上得铜粉 0 . 29 g,由于反应时存在以下副反应:
H2PO2 - + OH - !!!HPO32 - + H2$
改变硫酸铜和次亚磷酸钠溶液反应前的温度, 二者体积比为 50 1 20,保持各反应物的物质的量不 变,还原剂加入时间仍为 1 min,结果如表 3 所示。
有色金属工程文稿体例要求
《有色金属工程》文稿体例要求1正文编排序列与格式1.1 正文编排顺序为:题目,作者姓名、单位及其所在地址和邮编,摘要,关键词,正文内容,致谢,符号说明,参考文献1.2 论文题目1.2.1 尽可能简练、醒目,去掉“研究”的字样;1.2.2 一律通栏、左齐(与摘要齐),小二号宋体1.3 作者姓名与单位作者姓名用四号楷体,左对齐,作者之间用“空格”相隔。
单位排在姓名之下,用小四仿宋字体,单位名称后加空格排所在地,空半格排邮编,若作者处于不同单位,可在作者姓名的右上角注明1、2以示区别。
1.4 摘要:所有文章均要求有摘要;“摘要”两字为5号黑体,其后加冒号,排摘要内容,摘要内容为5号宋体。
1.5关键词:“关键词”为5号黑体,其后冒号,排词,各词为5号宋体,以分号分隔;关键词不得少于3个,尽量不使用缩写符号。
2文内层次标题2.1 一级标题:顶格排,四号楷体占一行,标题与上文之间空一行,序号用阿拉伯数字,后不加标点。
2.2 二级标题:顶格排,5号黑体占一行,二级标题与上文之间空一行,序号用2位阿拉伯数字中间加圆点表示(如2.1,2.2,2.3…)。
2.3 三级标题:顶格排,5号黑体占一行,三级标题与上文间不空行,序号用3位阿拉伯数字中间加圆点表示(如2.1.1,2.1.2,2.1.3…),序号为黑体。
3正文文字内容3.1 正文内容排单栏。
3.2 物理量符号若在文中首次出现时未做解释,则要在符号说明中进行解释。
3.3 半字线、一字线的用法:凡2个以上的独立词组成复合词、型号编号间用半字线;凡数字范围、化学键、图注编号与说明间用一字线。
3.4 化合价的正确标注法,如SO42-、Mg2+,不用SO4--、Mg++。
3.5 文字叙述中出现分数时,尽量用斜线平排,如1/3。
3.6 参考文献序号从正文中开始呼应编号,并依次排序,摘要中不出现文献序号。
3.7 在正文中必须有图、表的出处,且叙述应与图、表结果相符。
图、表依次编号。
中国有色金属学报模板论文模板
□□□□□□中文题目(二号)□□□□□□□□作者姓名(小四)□□□□作者单位(小五)□□摘要: □□□□□□□□□□□□□□□□□□□□□□□□□□□□(五号,宋体)关键词:□□□□□;□□□□□;□□□□□(五号,宋体)中图分类号:□□□文献标识码:文章编号:□□□□□□英文文题(二号)□□□□□□□□作者英文名字(eg. WANG Xiao-Bin)(小四)□□□□作者单位□□(小五斜体)□□Abstract:□□□□□□□□□□□□□□□□□□□□□□□□□□□□(五号)Key words:□□□□□;□□□□□□;□□□□□□(五号)□□□□□□□□□□□□□□□□□□□(正文,五号,英文字体为Times New Roman 格式)X□□一级标题□□(四号)X.X□□二级标题□□(五号,粗体)□□□□□□□□□□□□□□□□□□(五号)X.X .X□□三级标题□□(五号)□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□(五号)(图表请插入文中相应位置)Table 1 □□□□□□(五号,粗体)表格为三线格,无竖线,Fig. X □□□□□□(五号,粗体)1: □□□; 2: □□□; 3: □□□; 4: □□□.(五号)References:(请见以下范例,小五号)[1] William G O, Kevin D V, Qing W. Restless legs syndrome in monozygotic twins: clinical correlates[J].Neurology, 2000, 55(9):1404~1406.[2] 吴晓雷,贺超英,王永军, 张志永,东方阳,张劲松,陈受宜,盖钧镒. 大豆遗传图谱的构建和分析[J]. 遗传学报,2001,28(11):1051~1061.WU Xiao-Lei, HE Chao-Ying, WANG Yong-Jun, ZHANG Zhi-Yong, DONGFANG Yang, ZHANG Jin-Song, CHEN Shou-Yi, GAI Jun-Yi. Construction and analysis of a genetic linkage map of soybean[J]. Acta Genetica Sinica, 2001,28(11):1051~1061.收稿日期:0000-00-00;修回日期:0000-00-00基金项目:中文名称(编号:XXXXX)[英文对照]作者简介:第一作者①通讯作者, 姓名,职称,学位;固定电话;电子邮件。
progress in organic coatings的投稿模板
progress in organic coatings的投稿模板
[标题]: Progress in Organic Coatings
[摘要]: 本综述将回顾有机涂层的最新进展,重点关注其在各个应用领域中的应用。
通过分析涂层技术、材料开发和性能评估的最新研究,本综述将提供一个全面的了解有机涂层的发展趋势。
[引言]: 有机涂层是一种应用广泛的保护技术,具有防腐、提高表面硬度和抗磨损等优点。
随着现代科学技术的不断发展,有机涂层的研究也得到了长足的进步。
[方法]: 本文将综合分析近年来有关有机涂层的研究文献,并重点关注涂层技术、材料开发和性能评估方面的进展。
我们将采用文献综述的方法,整理和总结不同领域的研究成果,并提供对未来发展方向的展望。
[结论]: 综合分析表明,在涂层技术方面,近年来有机涂层的研究趋向于发展绿色、可持续的涂层技术,例如水性涂料和UV固化涂层。
在材料开发方面,有机涂层的研究集中在新型合成树脂的开发和改性,以提高涂层的性能和耐久性。
在性能评估方面,有机涂层的研究重点关注涂料的防腐性能、耐磨性和耐候性等方面的改进。
[展望]: 随着科学技术的快速发展,有机涂层的研究将继续向着更环保、高性能的方向发展。
今后的研究将集中于合成新型有机涂层材料、改进涂层技术和开发更有效的性能评估方法。
深入研究有机涂层的性能和应用,将为实现更广泛的应用领域提供可行的解决方案。
[关键词]: 有机涂层;涂层技术;材料开发;性能评估;发展趋势。
《A356铝合金汽车轮毂中富铁相的研究》范文
《A356铝合金汽车轮毂中富铁相的研究》篇一一、引言汽车工业的发展与新材料的应用紧密相连。
铝合金作为一种轻质高强度的金属材料,在汽车制造领域得到广泛应用,尤其体现在汽车轮毂等关键部件的制造上。
A356铝合金因具备出色的铸造性能和力学性能,已成为汽车轮毂制造的首选材料。
然而,其复杂的微观组织和性能,尤其是富铁相的分布和影响,仍需进一步的研究和了解。
本论文主要探讨A356铝合金汽车轮毂中富铁相的研究进展、分析及其在工程实践中的应用。
二、A356铝合金概述A356铝合金是一种典型的铸造铝合金,因其优良的机械性能、可铸性及加工性被广泛应用于汽车轮毂等零部件的制造。
其成分主要包括铝、硅、铁等元素。
其中,铁元素的存在会形成富铁相,对合金的微观结构和性能产生重要影响。
三、富铁相的形成与分布在A356铝合金中,铁元素的存在主要以富铁相的形式存在。
这些富铁相的形成与合金的凝固过程、元素扩散及第二相的析出密切相关。
研究表明,富铁相的分布对合金的机械性能和耐腐蚀性有显著影响。
通过对A356铝合金的微观组织进行观察,可以发现富铁相的形态、大小和分布规律。
四、富铁相的影响分析富铁相的存在对A356铝合金的性能产生多方面的影响。
首先,富铁相的形态和分布对合金的力学性能具有显著影响,如硬度、强度和韧性等。
其次,富铁相还会影响合金的耐腐蚀性,特别是在特定的腐蚀环境中,富铁相可能成为腐蚀的起点。
此外,富铁相还可能影响合金的热稳定性和加工性能。
因此,深入研究富铁相的特性和影响,对于优化A356铝合金的性能具有重要意义。
五、研究方法与实验结果为了深入探讨A356铝合金中富铁相的特性及其对性能的影响,本部分采用多种研究方法进行实验和分析。
包括金相显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等观察手段,以及硬度测试、拉伸试验、腐蚀试验等性能测试方法。
通过这些实验手段,可以观察到富铁相的形态、大小和分布规律,并分析其对A356铝合金性能的影响。
文献综述模板
文献综述模板注:红色字体部分为课题名称,应根据所选课题做相应的改动注:黑色字体部分可根据所选课题做适当的改动,如直接采用…的文献综述等。
楷体,3号 1.5倍行距,台州学院毕业设计(论文)文献综述段前0行,段后0.5行单层膜巨磁阻抗效应的研究现状与进展黑体加粗,5号 1.5倍行距学生姓名:指导教师:楷体,4号单倍行距摘要:本文简要介绍了巨磁阻抗效应及其理论研究概况,阐述单层膜横向各向异性、驱动电流频宋体,5号 1.5倍行距率和外加直流磁场方向对巨磁阻抗效应的影响,并介绍其研究发展趋势。
关键词:巨磁阻抗效应;单层膜;趋肤效应黑体加粗,5号宋体,5号 1.5倍行距段前0行,段后0行段前0行,段后0行 1.课题背景标题1:大纲级别1,黑体,4号,单倍行距,段前1行,段后1行自从1992 年,由日本名古屋大学的Mohri 等人[1]在FeCoSiB 非晶丝中首次发现巨磁阻抗效应以来,巨磁阻抗效应材料受到材料科技工作者的高度重视。
材料的阻抗随外加直流磁场的变化而变化的现象称为巨磁阻抗效应(Gaint magneto -impedance effect),简称GMI效应[1]。
该效应具有高灵敏度、低饱和场、响应快、无磁滞、稳定性好的优点, 在磁记录和磁传感器[1-4]等方面有着巨大的应用前景,成为现代磁电子学领域中的研究热点之一[2]。
………………………………………………………………标题2:正文:首行缩进2字符,宋体,小4号,1.5倍行距,段前0行,段后0行 2. 研究现状大纲级别1,黑体,4号,单倍行距,段前1行,段后1行从理论上讲,薄膜的巨磁阻抗效应可以利用经典电动力学和铁磁学进行解释。
GMI效应是一种经典电磁效应。
在高频下,外加直流磁场通过改变材料的有效磁导率来改变高频电流的趋肤深度,从而间接改变材料的阻抗。
……………………………………………………… ………………………………2.1 感生各向异性对单层膜GMI 效应的影响……………………………… ………………………………大纲级别2 黑体,小4号,1.5倍行距段前0.5行,段后0.5行1台州学院毕业设计(论文)文献综述18161412FZBFZBC3FZBC4??????????1086420-6-4-20246H / kAm-1图1 (Fe88Zr7B5)1-xCux (X=0,3,4)样品纵向磁阻抗比随磁场的变化关系。
中国有色金属学报英文版投稿指南
中国有色金属学报英文版投稿指南Title: Guidelines for Manuscript Submission to the English Edition of the Journal of Chinese Nonferrous Metals Introduction:The Journal of Chinese Nonferrous Metals (JCNM) publishes high-quality research in the field of nonferrous metals. Submission to the English edition of JCNM offers authors the opportunity to disseminate their research findings to an international audience. This document provides comprehensive guidelines for authors intending to submit their manuscripts to the English edition of JCNM.1. Manuscript Preparation:1.1 Title: The title of the manuscript should be concise, informative, and accurately reflect the content of the research.1.2 Abstract: A well-written abstract should summarize the objectives, methods, results, and conclusions of the study in a clear and concise manner.1.3 Keywords: Authors should provide a list of keywords that accurately represent the content of the manuscript, aiding in indexing and searchability.1.4 Text: The main body of the manuscript should be organized into sections such as Introduction, Materials and Methods, Results, Discussion, and Conclusion, as appropriate for the research type.1.5 Figures and Tables: All figures and tables should be numbered sequentially and accompanied by clear, descriptive captions. Authors should ensure that figures and tables are of high quality and effectively support the findings.1.6 References: Citations within the text and the reference list should follow a consistent style, preferablyAPA or IEEE format. Authors must ensure the accuracy and completeness of all references cited.2. Manuscript Submission:2.1 Language: Manuscripts must be written in clear, concise English, adhering to grammatical and syntactical conventions.2.2 Formatting: Authors should submit manuscripts in Microsoft Word format (.doc or .docx). Text should be double-spaced, with 1-inch margins and a readable font size (e.g., Times New Roman, 12-point).2.3 Cover Letter: Authors should include a cover letter with their submission, providing essential information such as the title of the manuscript, corresponding author details,a statement of originality, and any conflicts of interest.2.4 Ethical Considerations: Authors must adhere toethical standards in research conduct and manuscriptpreparation, including proper citation practices and avoidance of plagiarism or data fabrication.2.5 Submission Process: Manuscripts should be submitted electronically through the JCNM online submission system. Authors are encouraged to carefully review the submission guidelines and requirements before initiating the submission process.3. Peer Review Process:3.1 Editorial Evaluation: Upon receipt, manuscripts undergo initial screening by the editorial team to assess suitability for peer review.3.2 Peer Review: Submissions deemed suitable are assigned to expert reviewers for thorough evaluation of scientific quality, originality, and significance.3.3 Decision: Based on reviewer feedback, the editorial team makes a decision regarding acceptance, revision, orrejection of the manuscript. Authors will be promptlynotified of the decision along with reviewer comments.3.4 Revision and Resubmission: If revisions are required, authors should address all reviewer comments and suggestionsin a timely manner before resubmitting the revised manuscript.4. Publication Policies:4.1 Copyright: Authors retain copyright of theirpublished work, granting JCNM the right to distribute and disseminate the manuscript.4.2 Open Access: JCNM offers authors the option topublish their work under open access, facilitating broader accessibility and visibility.4.3 Publication Fees: Authors may be required to payarticle processing charges (APCs) upon acceptance for publication, depending on the journal's policies and funding availability.4.4 Corrections and Retractions: In cases of errors or misconduct, JCNM follows established protocols for issuing corrections, retractions, or expressions of concern as necessary.Conclusion:Submission to the English edition of JCNM provides researchers with a platform to showcase their contributions to the field of nonferrous metals on an international scale. By adhering to the guidelines outlined in this document, authors can enhance the quality and impact of their manuscripts, fostering collaboration and knowledge exchange within the scientific community.。
专科生毕业设计论文模板
网络高等教育专科生毕业大作业题目:±12V简易直流稳压电源的设计学习中心:层次:高起专专业:电气工程及其自动化年级:学号:学生:指导教师:完成日期:年月日±12V简易直流稳压电源的设计内容摘要符的中文摘要。
关键词:写作规范;排版格式;毕业大作业目内容摘要引言1 文本格式说明1.1 基本要求1.2 封面格式1.3内容摘要 (2)1.4 目录 (2)1.5 毕业大作业正文 (2)1.6 参考文献 (2)1.7 其它 (2)1.7.1 量和单位的使用: (2)1.7.1 图表及公式的使用: (2)2 毕业大作业的写作规格 (4)2.1 毕业大作业装订要求 (4)2.2 毕业大作业内容简述 (4)参考文献 (5)注意引言内容不要与摘要内容雷同。
引言,或称前言,主要阐述立题的背景与问题的提出。
诸如本课题所及的国内外现状、理论依据、研究的意义,并点出自己要研究的主题和本论文要解决的问题等。
1 文本格式说明1.1 基本要求纸型:A41.2 封面格式按已给封面格式认真填写。
1.3内容摘要对自己所叙述或设计的主要内容进行简要的概括。
1.4 目录目录中要注意整体格式要规范、整齐,大作业整体完成后按模板已给的目录更新整个目录即可。
1.5 毕业大作业正文正文统一要求宋体小四号字体,注意区别章节标题和正文的字体。
1.6 参考文献参考文献字体要求是宋体五号字体,参考文献要求至少三篇以上,注意参考文献格式要规范。
1.7 其它1.7.1 量和单位的使用:必须符合国家标准规定,不得使用已经废弃的单位(如,高斯(G和Gg)、亩、克分子浓度(M)、当量浓度(N)等)。
量和单位不用中文名称,而用法定符号表示。
如,不用6公斤,而用6 kg;不用8分钟,而用8 min 。
1.7.1 图表及公式的使用:插图宽度一般不超过10cm ,图的编号、图名及图的说明置于图的下方。
公式要居中,公式的编号加圆括号,居行尾。
图、表及公式的编号分别按从前至后的顺序编排。
论文引用报告格式
j——期刊文章m——专著(含古籍中的史、志论著)参考文献的类型根据gb3469-83《文献类型与文献载体代码》规定,以单字母标识: m——专著(含古籍中的史、志论著)c——论文集n——报纸文章j——期刊文章d——学位论文r——研究报告s——标准p——专利a——专著、论文集中的析出文献z——其他未说明的文献类型电子文献类型以双字母作为标识:db——数据库cp——计算机程序eb——电子公告非纸张型载体电子文献,在参考文献标识中同时标明其载体类型: db/ol——联机网上的数据库db/mt——磁带数据库m/cd——光盘图书cp/dk——磁盘软件j/ol——网上期刊eb/ol——网上电子公告一、参考文献著录格式1 、期刊作者.题名〔j〕.刊名,出版年,卷(期)∶起止页码2、专著作者.书名〔m〕.版本(第一版不著录).出版地∶出版者,出版年∶起止页码3、论文集作者.题名〔c〕.编者.论文集名,出版地∶出版者,出版年∶起止页码4 、学位论文作者.题名〔d〕.保存地点.保存单位.年份5 、专利文献题名〔p〕.国别.专利文献种类.专利号.出版日期6、标准编号.标准名称〔s〕7、报纸作者.题名〔n〕.报纸名.出版日期(版次)8 、报告作者.题名〔r〕.保存地点.年份9 、电子文献作者.题名〔电子文献及载体类型标识〕.文献出处,日期二、文献类型及其标识1、根据gb3469 规定,各类常用文献标识如下:①期刊〔j〕②专著〔m〕③论文集〔c〕④学位论文〔d〕⑤专利〔p〕⑥标准〔s〕⑦报纸〔n〕⑧技术报告〔r〕2、电子文献载体类型用双字母标识,具体如下:①磁带〔mt〕②磁盘〔dk〕③光盘〔cd〕④联机网络〔ol〕3、电子文献载体类型的参考文献类型标识方法为:识〕。
例如:①联机网上数据库〔db/ol〕②磁带数据库〔db/mt〕③光盘图书〔m/cd〕④磁盘软件〔cp/dk〕⑤网上期刊〔j/ol〕⑥网上电子公告〔eb/ol〕/载体类型标〔文献类型标识篇二:论文收录引用情况报告模板论文收录引用情况被ei收录的情况:1.2.3.被sci收录和引用的情况:1.2.3.被istp收录的情况:1.2.3.导师签字:学院审核人签字:学院(公章)篇三:引用文献格式参考文献的格式:参考文献常见类型有:专著(书籍)[m],期刊文章[j],学位论文[d],会议论文(集)[c],专利文献[p],报告[r],新闻报道[n] 专著(书籍)[m][序号]主要作者. 文献题名[m]. 出版地:出版社,出版年. 参考页码(有些需要,有些不需要标注)例如:[3] 朱敛,曹凯鸣,周润琦等. 生物化学实验. 上海:科学技术出版社,1981. (12-15)[4] 张维杰. 糖复合物生化研究技术. 杭州:浙江大学出版社,1999.期刊文章[j][序号]主要作者. 文献题名[j]. 刊名,年,卷(期):起止页码例如:[3] 郭泽坤,张涌. 一种改进的蛋白质超薄凝胶电泳方法[j]. 生物化学与生物物理进展,2000,27(2):210-211[4] 倪师军,李珊,李泽琴,等. 矿山酸性废水的环境影响及防治研究进展[j],地球科学进展,2008,5(1):23-30[5] battaglia-brunet f, dictor m c, garrido f, et al, an arsenic (iii)-oxidizingbacterial population:selection,characterization,and performance in reactors[j].journal of applued microbiology, 2002, 6: 16-25 学位论文[d]例如:会议论文(集)[c][序号]作者. 文献题名[d]. 会议名称+论文集,年例如:[3] 张子间. 酸性矿山废水处理技术研究进展[c],全国金属矿山采矿学术研讨与技术交流会论文集,2005 报纸文章[n][序号]作者. 新闻[d]. 报纸名,出版日期(版次)注:1、各个出版社、期刊编辑部对于参考文献要求不太一致,具体格式还要参考出版社、编辑部要求,以上仅为一般常用格式,仅作参考。
【精品】计算机学报投稿模板
【关键字】精品计算机学报投稿模板篇一:金属学报投稿模板点击输入标题单击输入作者名,两名字间用空格间隔,不同单位用上标1),2)等区分"点击输入作者单位,如:1)中国科学院金属研究所,沈阳110016"摘要点击输入中文摘要关键词点击输入中文关键词,如:塑性应变,疲劳损伤中图法分类号点击输入分类号文献标识码 A 文章编号0412—1961(200×)×—××—×点击输入英文标题,大写字母"点击输入作者名,格式如:ZHANG Sanwu"点击输入作者单位信息的英文Correspondent:"输入通讯作者,如:ZHANG Sanwu,professor,Tel:,E-mail:" Supported by 输入资助基金的英文名及编号(部分经过校准的基金名称附后)Manuscript received 200*—**—**,in revised form 200*—**—**ABSTRACT 点击输入英文摘要(300字左右,应包括背景介绍,实验研究过程介绍及实验结果三部分)KEY WORDS 点击输入英文关键词点击输入前言(不用标题,注意文献引用的规范)1 实验材料及方法点击输入该节内容(实验材料要给出化学成分,溶液要给出浓度,设备要给出型号)2 实验结果点击输入内容(3级标题用五号黑体)3 分析讨论点击输入内容4 结论点击输入内容参照文献*输入基金中文名称及编号收到初稿日期:200*—**—**,收到修改稿日期:200*—**—**[1] 点击输入参照文献(格式附后)作者简介:输入第一作者信息,如:张三五,男,苗族,1965年生,教授………………………………………………………………………………………………………… (以下内容供作者参照使用,请在论文撰写完成后删除)图、表编排格式要求:图、表中不可使用汉字;要有中、英文对照的图题、表题;有分图时,各分图需要在英文图题中说明。
《中国有色金属报》一般稿费标准
我国有色金属报是我国有色金属工业的权威媒体,从事有色金属行业资讯报道和产业分析,为有色金属行业提供了可靠的信息支持。
在提交稿件时,作者需要了解《我国有色金属报》的一般稿费标准,以便了解自己的稿件能够获得怎样的报酬。
一般稿费标准的制定,是根据稿件的质量、长度、专业性和市场需求等因素进行综合考量而确定的。
一般而言,较长的稿件、专业性较强的稿件、以及对行业发展有重大意义的稿件,都会获得更高的稿费。
我国有色金属报的一般稿费标准可以总结如下:1. 新闻报道类稿件:新闻报道是《我国有色金属报》的主要栏目之一,报道内容包括有色金属市场动态、企业发展动态、政策法规变化等。
一般新闻报道类稿件的稿费标准为每字0.8-1元不等,具体标准取决于报道的新闻价值和独家性等因素。
2. 评论类稿件:评论类稿件对有色金属行业的热点问题进行深度分析和评论,具有一定的专业性和思想性。
一般评论类稿件的稿费标准为每千字300-500元不等,高质量、高热度的评论稿件可能会获得更高的稿费。
3. 专题报道类稿件:专题报道是《我国有色金属报》的特色栏目之一,对有色金属行业的重大事件、企业发展战略等进行多角度、全方位的深度报道。
一般专题报道类稿件的稿费标准为每千字800-1000元不等,因专题报道的工作量和价值较高,所以相应的稿费也会更丰厚。
4. 专题类稿件:专题是《我国有色金属报》的重要栏目之一,一般由有色金属行业的专家学者撰写,对行业关键问题进行深度解析和预测。
一般专题类稿件的稿费标准为每千字1000-1500元不等,并且有可能会享受长期专题作者的待遇,享受更高的稿费和更多的权益。
5. 探讨类稿件:探讨类稿件是对有色金属行业新技术、新理念、新思路等进行深入探讨和研究的学术性稿件。
一般探讨类稿件的稿费标准为每千字800-1500元不等,取决于稿件的研究深度和学术价值。
《我国有色金属报》的一般稿费标准是相对较高的,对于有色金属行业内的专业作者来说,可获得较为可观的稿费收入。
有色金属学报英文版模板
Source and hazard identification of heavy metals in soils of Changsha based onTIN model and direct exposure methodCHEN Jian-qun1, WANG Zhen-xing2, WU Xie3, ZHU Jian-jun1,2, ZHOU Wen-bin11. School of Geosciences and Info-physics, Central South University, Changsha 410083, China;2. School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China;3. Jiangxi Provincial Water Conservancy Planning and Designing Institute, Nanchang 330029, ChinaReceived 26 October 2010; accepted 14 January 2011Abstract: A total of 153 soil samples were collected from Changsha City, China, to analyze the contents of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn. A combination of sampling data, multivariate statistical method, geostatistical analysis, direct exposure method and triangulated irregular network (TIN) model was successfully employed to discriminate sources, simulate spatial distributions and evaluate children’s health risks of heavy metals in soils. The results show that not all sites in Changsha city may be suitable for living without remediation. About 9.0% of the study area provided a hazard index (HI)>1.0, and 1.9% had an HI>2.0. Most high HIs were located in the southern and western areas. The element of arsenic and the pathway of soil ingestion were the largest contribution to potential health risks for children. This study indicates that we should attach great importance to the direct soil heavy metals exposure for children’s health.Key words: soil; heavy metal; geostatistics; health risk; triangulated irregular network (TIN) model; geographic information system (GIS)1 IntroductionChina is the world’s most populous country and its economy is growing at the fastest rate of any major nation. However, its environmental problems are among the most severe of any major country, and are mostly getting worse[1]. In recent years, heavy metal (HM) pollutions in soil have become an important environmental issue in China because of their non-biodegradable nature and long biological half-live for elimination from the body[2]. Excessive accumulation of HMs in soils may pose serious health risks to humans and may exert adverse impacts on the ecosystem itself[3−4].Heavy metal pollutants in soils can enter the human body and pose heath risks through two pathways: 1) soil-food-human body (indirect exposure); and 2) soil-human body (direct exposure). The major public health concern of soil HM exposure for the general population is accumulation over a lifetime and possible renal dysfunction and bone disease through food chain ingestion [5]. Therefore, the indirect soil exposure, including HMs through rice, wheat, vegetable, fruit and other foods, has been given more attention worldwide than the direct soil exposure[6−9]. However, recent studies have shown that the direct soil exposure, including soil ingestion, dermal adsorption and inhalation exposure, is also an important pathway by humans intake HMs and is particularly important for children[10]. Children’s behavior can expose them to more toxic effects of soil HMs. For example, young children prefer to play close to the ground and come into contact with polluted soil outdoors and with contaminated dust on surfaces and carpets indoors. Moreover, the developing structure and function of organs for children may result in higher inhalation rates per unit of body mass than adults[11]. Research has shown that long-term health and development issues can arise from intrauterine and early childhood exposures to HMs, which are often undetectable early on and manifest later in life[12−13].Estimating the source and spatial distribution of pollutants is crucial to quantifying the level of environmental risks[14]. However, due to the high costs and time constraints, the accuracy of the direct analysisFoundation item: Project (50925417) supported by the National Funds for Distinguished Young Scientists, China; Project (50830301) supported by the Key Project of National Natural Science Foundation of ChinaCorresponding author: ZHU Jian-jun; Tel: +86-731-88877024; E-mail: zjj@DOI: 10.1016/S1003-6326(11)60761-9CHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651 643of in situ data in field investigation is often dubious and the observations contain considerable uncertainty[15]. Geostatistical methods provide spatial interpolation and assess uncertainties at unsampled locations, which offer an opportunity to improve the accuracy of estimating spatial distribution of pollutants in a cost-effective manner[16−17]. Previous literature has focused on the identification of sources and human health risk assessment in HM contaminated soils[18−19], but rarely applied the geostatistical simulations. Moreover, previous literature always used the geostatistical methods to draw a 2D map for HM spatial distribution[19−20]. Triangulated irregular network (TIN) model is a popular three-dimensional (3D) model for representing surface models in geographic information system (GIS) because it has a simple data structure and can easily be rendered using common graphics hardware[21]. Hence, combining the geostatistical methods with TIN model may be a better approach to represent the spatial distribution patterns and potential human impacts of HMs in soils. Furthermore, previous researches on HMs mostly focused on one pollutant in isolation[22]. However, humans would actually be exposed to a mixture of heavy metals in real environments, which needs to be further studied.Hunan province is regarded as the heartland of Chinese nonferrous mining and is under severe HM pollution stress[23−25]. Changsha City, the capital of Hunan province, is a modern industrial city surrounded by agricultural areas. Some potential HM contamination has accumulated in soils on a large scale because of industrial activities in Changsha, which may greatly exceed accepted standards and may thus pose a severe threat to human health. Moreover, Changsha City is under severe H2SO4-type acid rain pollution[26], which may greatly increase the mobility of HMs and cause groundwater contamination. Thus, it is very necessary to identify the potential pollution sources and to quantify the health risks of soil HMs in Changsha city.Therefore, this study set out to determine spatial patterns in the total concentration of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) at the field-scale and to identify their possible sources using multivariate analysis and geostatistical methods. Then, their health risks in soils were estimated by the direct exposure method. Finally, the spatial distribution and human health risks of the mixture of heavy metals were simulated by a TIN model.2 Materials and methods2.1 Sampling and laboratory analysesChangsha City has a total area of 11 819.5 km2 and is located in the eastern part of Hunan province (111°53′–114°15′E, 27°51′–28°40′N) (Fig.1). About 6.1×106 people inhabit Changsha city and the annual population growth rate is 1.08% and 44.63% of the population live in urban areas. Changsha City has a subtropical monsoon climate with an annual rainfall of 1 483.6 mm and most rainfall occurs between April to July.The surface soil samples (0−20 cm) were collected using a global positioning system (GPS) to identify its locations (Fig.1). Because of the vast area in Changsha city, the sampling density was one sample per 5 to 10 km2. The moisture soil samples were air-dried and sieved (<0.15 mm) to determine the content of HMs including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn. Then, soil samples (0.5 g) were digested with a mixture of HNO3 (5 mL) and H2O2 (2 mL) at about 180 °C for about 20 min in a closed-Tefon vessel in a microwave oven to avoid losses of some metals via volatilization. The total contents of Cd, Cu, Ni and Pb in the digested solution were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Cr, Zn and Mn were analyzedFig.1 Location and distribution of sampling pointsCHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651 644by inductively coupled plasma-optical emission spectrometry (ICP-OES). In addition, the contents of As and Hg were determined by atomic fluorescence spectrophotometry (AFS). All samples were analyzed in three replicates. The quality control of analytical accuracy was performed by reagent blanks and reference soils. Standard reference materials for soil (GBW 07401) obtained from the China National Center for Standard Reference Materials were digested along with the samples and used for the quality assurance control program.2.2 Statistical methods2.2.1 Principal component analysisPrincipal component analysis (PCA) is a useful multivariate statistical method in environmental studies[27]. In this study, the PCA was used to extract latent information from multidimensional data, to gain the observed correlation matrix, to classify the measured elements into fewer groups, to facilitate the interpretation of the results, and to define natural or anthropogenic origin. The PCA was processed with SPSS (version 16.0).2.2.2 Geostatistical analysisKriging has been widely applied in environment science because of its unbiased character and its advantage in geostatistical techniques relative to other methods (such as the inverse distance weighted method, IDW)[28]. Among the numerous kriging techniques, ordinary kriging and log-normal kriging are widely used and can effectively interpolate values at unsampled locations[2]. For this reason, both of the kriging methods were chosen to detect the spatial structure of HMs and to provide unbiased prediction in the study area. Moreover, contour lines were created by kriging for the TIN model. The geostatistical analysis and maps were produced with ArcGIS (version 9.2). Detailed algorithms of geostatistical theory and kriging can be found in many textbooks and monographs[16, 29].2.3 TIN modelThe TIN data structure was based on two basic elements: points and a series of edges. The points have x, y and z values, and the z values represente health risk values in this study. The edges are used to join the points to form triangles. This triangular mosaic forms a continuous faceted surface, much like a jewel. In addition, TIN’s triangulation method satisfies the Delaunay criterion[30]. The first phase of generating a TIN was to extract the skeleton of contour lines (isolines) from the result of previous geostatistical analysis. Then, possible points on the contour lines were identified by a local geometric operator. Subsequently, these points were linked into new contour lines and automatically connected in a Delaunay triangulation. Finally, compared with the original dense grid, additional support points were added to the resulting model at the points of worst fit, which was used to ensure that the maximum discrepancy between the TIN model and the original model was within a pre-specified tolerance[21, 30].In this study, a TIN model was established using contours created by geostatistical analysis to better assess HM health risks. The TIN model was established with the extension module of 3D Analyst in ArcGIS (version 9.2).2.4 Health risk assessment and direct exposuremethodHealth risks for the local population derived from the exposure to HM pollutants were evaluated after understanding the main sources of HMs. Three pathways were considered to estimate the direct exposure to soil metals: 1) incidental ingestion of soil; 2) inhalation of particulates emitted from soil; and 3) dermal contact with soil. The potential health risk of individual soil HM is characterized using a hazard quotient (HQ), which is the ratio of the chronic daily intake (CDI, mg/(kg·d)) to the reference dose (RfD, mg/(kg·d)). The HQ was calculated using the following equation in the three selected exposure pathways[31].RfDCDICDICDIHQ ingestioninhalationdermal++=××+××××=MPMDPMABSAFSACF(CSRfDATBWEDEFCF)IspCSETIR××××××+×(1) where CS is metal content in soil (mg/kg), which is the analysis result of geostatistical analysis; DPM is the concentration of particulate matter that is respirable in the air (For time spent outdoors, DPM is assumed to be 0.104 mg/m3, which is the annual mean concentration for Changsha City[32]. When indoors, DPM=0.445×0.104 mg/m3 because 44.5% of indoor dust is considered to be derived from outdoor soil[33]); MPM is the HM concentration on airborne particulate matter (assumed equal to CS where dust is derived from the soil[8]. The reference dose (RfD) is an estimate of a daily exposure to the human population. RfDs based on 3×10−4, 1×10−3, 1.5, 4×10−2, 3×10−4, 1.4×10-1 , 2×10−2, 0.035 and 0.3 mg/(kg·d) for As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn, respectively. The RfDs were obtained from Integrated Risk Information System[34], with the exception of lead, in which we used the formula RfD=PTWI/7, where PTWI is provisional tolerable weekly intake (mg/(kg·week))[35−36]. Detailed information of the parameters in Eq.(1) is provided in Table 1.The overall potential risk posed by a mixture of HMs is assessed by the summed HQs calculated for eachCHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651645Table 1 Direct soil exposure parametersParameter Value ReferenceBody mass (BW)/kg 15 [31]Exposure duration (ED)/a 6 [31] Averaging time (AT)/d 2 190 [31]Exposure frequency (EF)/(d·a −1) 350[31] Conversion factor (CF)/(kg·mg −1) 10-6 [31] Exposed skin surface area (SA)/cm 2 2 800 [31] Soil-to-skin adherence factor(AF)/(mg·cm −2)0.2 [31] Inhalation rate (IR)/(m 3·d −1) 10.9 [31]Dermal absorption factor (ABS,unitless) of arsenic 3.2% [31] Dermal absorption factor (ABS, unitless) of other metals 1.0% [31]Exposure time (ET) indoor/(h·d −1) 16 [31] Exposure time (ET) outdoor/(h·d −1) 8 [31] Respirable particulate matter concentration indoor (D PM )/(kg·m −3)0.463×10−7[33] Respirable particulate matter concentration outdoor (D PM )/(kg·m −3)0.104×10−6[33] Ingestion rate of soil particle(I sp )/(mg·d −1) 100 [31]HM, which is expressed as a hazard index (HI):n 21HQ HQ HQ HI ++=L (2)3 Results and discussion 3.1 Heavy metals in soil The mean concentrations of all metals were higher than their background values at Changsha City (Table 2). Although the mean concentrations of Cu and Zn were higher than their local background values, the differences between their concentrations and the backgroundcontents were slight. Moreover, Cu and Zn displayed lowcoefficients of variation (CVs) and fairly homogeneousdistributions across the study area, suggesting that there was a major natural source of Cu and Zn in Changsha City. The average concentrations of Cd, Ni, Pb, Hg, Cr,Mn and As were higher than the background values andhad high CVs, indicating that anthropogenic inputs arethe main sources of these HMs in this area. Moreover, the maximum concentrations of Hg, Cd, As and Ni in thesoils exceeded the critical level of the SecondaryEnvironmental Quality Standards for Soil in China by 1.2, 2.4, 3.2 and 6.8 times, and they were 4.1, 10.4, 6.4and 9.6 times higher, respectively, than local background values at the control site. Thus, these metals requireintensive monitoring and essential measures to preventfurther enrichment.3.2 Data transformation The normality of all HMs was checked before PCA and spatial analyses were conducted. Values of skewnessand kurtosis, and the significance level of the One-Sample Kolmogorov-Smirnov Test for normality(K-S p ) are shown in Table 3. It was found that only Cu, Zn, Cr and Hg were in accordance with normal distribution using K-S p (>0.05) before datatransformation, whereas other variables were allpositively skewed. To make the data more normal, alogarithmic transformation was used [38]. Table 3 shows that a logarithmic transformation can produce smallerskewness and kurtosis values for all HMs except for Cu and Zn. Thus, in the following steps, a logarithmic transformation was applied to all HMs except for Cu and Zn.3.3 Principal component analysis PCA was applied to the transformed data matrices and the results are presented in Table4. As indicated inthe results of the rotated component matrix for data in Table 4, three factors were extracted, and Ni, Cr, As and Mn were strongly associated with the first factor (F 1) with similarly high values. Elements such as Pb, Cd and Hg are associated with the second factor (F 2), while thethird factor (F 3) was mostly associated with Cu and Zn.Table 2 Descriptive statistics for HM concentrations (mg·kg −1) in soilStatistical itemCuPbZnCdNiCrHgAsMnMean 27.56 36.5 94.6 0.11 34.4 74.21 0.113 18.98 477 Median 27.00 28.5 95.0 0.067 27.5 69.00 0.100 15.65 270 Minimum 14.00 14.0 31.9 0.006 8.0 20.00 0.003 5.28 23 Maximum 42.60 234.0 170.0 0.73 270.0 228.00 0.367 96.48 1 700 Skewness 0.32 5.22 0.17 2.93 5.28 2.19 1.415 3.79 2.21 Kurtosis 0.08 34.51 0.02 11.95 28.51 5.61 2.57 17.57 5.75 CV/% 23.58 77.75 30.47 81.48 91.33 57.45 61.61 74.92 68.56 Background value *2530940.0728680.0915459* Data from the report of the key scientific research project of the sixth plans[37].CHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651646Table 3 Skewness, kurtosis, and significance level of Kolmogorov-Smirnov’s test for normality (K-Sp) of raw data (RD) andlog-transformed data (LD) of soil heavy metal concentrationsParameter CuPbZnCdNiCrHgAsMn Skewness 0.32 5.22 0.17 2.93 5.28 2.19 1.42 3.79 2.21Kurtosis 0.08 34.52 0.02 11.95 28.54 5.60 2.57 17.57 5.75 RDK-S p 0.2670.0030.9300.0030.000 0.0670.085 0.003 0.023Skewness −0.44 1.41 −0.83 0.05 1.49 0.44 −1.74 0.77 −0.15Kurtosis 0.50 4.08 0.93 0.03 6.48 0.68 6.35 2.06 0.54 LDK-S p 0.1030.3610.4580.6980.025 0.7790.292 0.690 0.843 Table 4 Component matrix and rotated component matrix for heavy metal contentsComponent matrix Rotated component matrix ElementF1F2F3F1F2F3 Cu 0.378 −0.249 0.708 0.182 −0.146 0.807 Pb 0.002 0.638 0.111 −0.225 0.604 0.062 Zn 0.358 0.373 0.574 0.021 0.444 0.632 Cd 0.401 0.618 −0.215 0.244 0.719 −0.116Ni 0.903 −0.198 −0.267 0.956 0.097 0.051 Cr 0.752 −0.427 0.161 0.749 −0.182 0.423 Hg 0.653 0.513 −0.049 0.447 0.690 0.128 As 0.829 −0.182 −0.346 0.911 0.092 −0.048Mn 0.755 0.035 0.069 0.643 0.262 0.3053.3.1 Ni, Cr, As and MnThe first factor (F1) was mainly associated with Ni, Cr, As and Mn, which can be considered to be an anthropogenic component. These four elements all displayed a high association with the first factor. According to the earlier discussions, the mean concentrations of Ni and As exceeded their local background values and were moderately enriched in surface soil. The major types of industry in Changsha city are mining, machinery, metallurgy, chemical and production of building materials, some of which have backward technology and serious pollution, particularly the non-ferrous mining industry. There are almost 1 000 mining, 200 metal smelting, 700 chemical material and chemical products industries, 340 printeries and 200 paper mills in the study area. It was found that most of the above industries were related to F1. For example, printery and alloy melting factories often cause Mn and Cr contamination. Additionally, coal mining activities contribute greatly to Mn, Ni, Cr and As pollution in the soils of Changsha city.3.3.2 Pb, Cd and HgThe second factor (F2) included Pb, Cd and Hg. Their CVs were high, suggesting that these factors could be a second anthropogenic component. Moreover, there were some samples with very high Cd and Hg contents whose sources could have been attributed to adjacent industry production. The non-ferrous metal mining, mineral processing and smelting along the Xiangjiang River mainly deal with the ore of lead sulfide, accompanied by Cd, Hg and other metal elements, which caused some soil population and health problems according to previous studies[7, 39−40]. Therefore, the enrichment of F2 in soils is likely due to anthropogenic causes.3.3.3 Cu and ZnThe third factor (F3) mainly included Cu and Zn. In contrast with F1 and F2, F3 can be defined as a natural component because it was found that the mean concentrations of these two elements were very close to the local background values and that their CVs were also very low, suggesting that a natural factor controlled their distribution.3.4 Geostatistical analysis3.4.1 Spatial structure analysis of heavy metalsSoil heavy metals are regionalized variables as they are distributed in geographical space. They have spatial structures with spatial autocorrelation. In this study, geostatistics were used to analyze the spatial structure and visualization for interpretation of the results. The parameters of the semivariogram for each HM are summarized in Table 5.The parameters of nugget variance, sill and range have often been ignored in other similar studies. These parameters cannot only be used to characterize the heterogeneity of the environment but can also help to identify their sources [2]. The term ‘nugget’ in geostatistics can describe the apparent discontinuity near the origin and can represent field variation within theCHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651 647Table 5 Best-fitted semivariogram models and parameters of soil heavy metalsElement Model Nugget Partialsill Sill Range/m As Spherical 0.016 0.250 0.2657136 Cd Exponential 0.645 0.237 0.88226497 Cr Exponential0.087 0.193 0.28016576 Cu Spherical 0.018 0.056 0.07532062 Hg Exponential 0.139 0.608 0.747 5436 Mn Spherical 0.360 0.344 0.70428281 Ni Exponential0.132 0.138 0.27011532 Pb Exponential0.052 0.113 0.16514654 Zn Exponential 0.028 0.048 0.07634931minimum sampling spacing[41]. From Table 5, the nugget variances of Cd, Cr, Hg, Mn, Ni and Pb were higher than those of Cu and Zn, suggesting a greater variation for Cd, Cr, Hg, Mn, Ni and Pb at a small-scale. However, the element As revealed a relatively low nugget variance like Cu and Zn, which could be due to the applications of pesticides and phosphate fertilizers in farm land. Furthermore, the sill of As was larger than that of Cu or Zn but was close to that of Cr or Ni (Table 5). The sill indicates the maximum structural variability; thus, a larger sill indicates a higher degree of spatial variance. Therefore, it can be concluded that the spatial variance of As was similar to that of Cr or Ni at a large-scale, and it was similar to that of Cu or Zn at a small-scale, suggesting that both industry and farming could be the source of As in top soil in Changsha city. Although the nugget variance can reflect some information about the spatial variance of environmental variables, this parameter could not be as sensitive or robust as the range value[2]. When comparing the range of nine elements, Cu and Zn are found to have a longer effective range (32 062 m and 34 931 m, respectively) than other HMs, indicating that Cu and Zn have a better spatial structure and less variation caused by extrinsic factors. This is consistent with the earlier discussion of the PCA (Table 4).3.4.2 Spatial distribution of heavy metalsIn order to better understand the distribution patterns of the nine heavy elements, kriging interpolation and TIN models were used to produce 3D maps (Fig.2). The 3D spatial distribution maps of Mn, Ni, Cr and As concentrations show similar distributional trends with high concentrations in the southwest and east areas where the traditional industrial zone is located. This result is consistent with that found in the PCA analysis, indicating that the former discussion on F1 is reasonable.Pb, Cd and Hg also show similar distributional trends and high concentrations of the HMs are mainly found in central and eastern areas. The result is consistent with that observed in the PCA in which Pb, Cd and Hg were associated with the second component (F2). The Xiangjiang River watershed is located in the center area of Changsha city and many non-ferrous metal mining, mineral processing and smelters are located in this region. Moreover, the representative industry cities, Zhuzhou and Xiangtan City, are also located in the upstream portion of the Xiangjiang River. Industrial activities could contribute to the source of Pb, Cd and Hg pollution in the central and southern areas of Changsha city. The eastern area of Changsha City has always been rich in lead, iron, borax, green alum and blue vitriol. In addition, the eastern part of the city also has numerous mining enterprises where the acid mine drainage and flotation wastewater containing Cd, Pb, Al and Hg are the main sources of pollution.In many studies, Pb pollution was primarily related to vehicle sources[42], which were also found in the study area and particularly in the central area. Kriging was further used only in the urban area to better study the relationship between vehicle and Pb distribution for two main reasons: 1) because the smoothing effect of the kriging estimator depends on the local data configuration; and 2) because the inherent smoothing effect tends to overestimate small values and to underestimate large values. Fig.2 also shows that Pb was distributed in the center of the city, mainly in the southern area and along the Xiangjiang River bank, which corresponded well with the spatial distribution of traffic flow. The wider roads along the river and the frequent exchanges of vehicles between both sides of the river lead to a large traffic flow. The southern area had the largest proportion of traffic flow into and out of Changsha city. Therefore, it is reasonable to assume that Pb in the center city comes primarily from vehicles. Furthermore, the distribution map of Pb in the city zone was created only by geostatistical simulation, which was always used by previous studies. By comparing, it was found that the maps created by TIN model not only had better visual effects, but also reflected the characteristics of HM concentration and spatial distribution more clearly.The spatial distribution of Hg represented a litter difference from that of Pb and Cd in F2 and showed a non-point source pollution trend. Hg pollution in urban soils has been found to be universal in China because of the use of coal, which usually causes atmospheric deposition[43−44], over a long time period. Therefore, coal consumption and atmospheric deposition may be the other source of Hg.As shown in Fig.2, the distributional patterns of Cu and Zn were more regular, suggesting that a natural factor plays an important role in controlling their distributions as described in the third component (F3) of the PCA. The location of high Zn concentration isCHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651 648Fig.2 Spatial distribution of soil heavy metals (mg·kg−1)similar to that of Pb, which may be caused by lead-zinc mineral resources in the areas. However, in the whole study area, the mean concentration and CVs of Zn are low, which suggests a major natural source.Integrating the above model analysis and the HM source hypothesis, As, Cd, Cr, Hg, Ni, Pb and Mn should mainly be controlled by anthropogenic factors, whereas Cu and Zn should be controlled by natural factors.3.5 Human health risk assessmentAfter understanding the main sources of HMs in Changsha City, we carried out an evaluation of the risk of direct soil HMs exposure to children (Fig.3). An HI greater than 1.0 suggests that the child may experience adverse health effects during his or her lifetime. Fig.3 shows that about 9.0% of the study area provides an HI>1.0, and 1.9% has an HI>2.0. The average HI is 0.6 and the maximum value reaches 3.0. It was also found that high health risks mainly located in the southern and western locations. Therefore, the direct exposure to soil HMs plays an important role in health risks for children in Changsha city, which should be taken into consideration by some of the decision makers and researchers.With respect to the pathway of soil HM exposure, it was found that soil ingestion was the main route for children. The risk of soil ingestion was more than five times that of inhalation and dermal absorption. In addition, there was a large discrepancy of hazard quotients (HQ) among different HMs (Fig.4). The HQ of。
《有色金属工程》北大核心期刊投稿
《有色金属工程》北大核心期刊投稿
期刊名称:有色金属工程
期刊级别:北大核心
周期:双月刊
国内统一刊号:CN11-1838/TF
国际标准刊号:ISSN1001-0211
主办单位:北京矿冶研究总院
主管单位:中国有色金属工业协会
投稿邮箱:yueqikan@
《有色金属工程》由中国有色金属工业协会主管、北京矿冶研究总院主办的公开刊物(ISSN2095-1744,CN10-1004∕TF),是有色行业权威技术期刊,是涉及有色金属(轻、重、稀、贵)地质、采矿、选矿、冶炼、加工、材料、环保、设备、过程控制等专业的综合性科学技术刊物,《有色金属工程》将继续承载《有色金属》的办刊理念,报道国内外大型有色金属关键技术、设计理念和工程实践,推动行业科技创新和自主创新,关注有色金属行业最新技术研发动态,为行业
科技成果转化提供交流平台,追踪报道有色金属行业和大型企业的发展动态,宣传行业杰出科技人才、企业家和领军人物,为建设资源节约型和环境友好型和谐社会服务,并探索架起科技创新成果与市场结合的桥梁。
《有色金属工程》栏目设置
行业快讯、政策解读、市场动态、热点评论、企业之窗、工程技术、工程应用、工程设计、技术进展等
《有色金属工程》收录情况
CBST科学技术文献速报(日)(2009)、Pж(AJ)文摘杂志(俄)(2011)、中国科学引文数据库(CSCD—2008)、第一届全国优秀科技期刊一等奖,中国知网全文收录期刊,核心期刊:中文核心期刊(2008)、中文核心期刊(2004)、中文核心期刊(1996)、中文核心期刊(1992)
官方网址:月期刊网。
有色金属工程毕业论文
有色金属工程毕业论文标题:有色金属工程在现代工业中的应用与发展摘要:本文主要研究了有色金属工程在现代工业中的应用与发展,并分析了有色金属工程在环境保护、能源开发、新材料制备等方面的重要作用。
通过对有色金属工程的相关理论、技术和应用进行综述和分析,总结了存在的问题和解决方案,并对未来有色金属工程的发展趋势进行了展望。
关键词:有色金属工程;应用;发展;环境保护;能源开发;新材料制备1. 引言有色金属工程是研究和应用有色金属材料及其加工工艺的一门专业。
随着现代工业的发展和技术的进步,有色金属工程在各个领域得到了广泛的应用。
本文将对有色金属工程在现代工业中的应用与发展进行研究,并探讨其重要性和存在的问题。
2. 有色金属工程在环境保护中的应用有色金属工程在环境保护中发挥着重要作用。
例如,通过应用有色金属材料,可以有效减少污染物排放和资源的浪费,提高环境质量。
此外,有色金属材料还可以用于废水处理和固体废弃物处理等环境工程项目,有效地改善环境污染问题。
3. 有色金属工程在能源开发中的应用有色金属工程在能源开发中也具有重要的应用价值。
例如,铝合金材料的应用可以减轻车辆的重量,提高燃油利用率,从而降低能源消耗。
此外,有色金属材料还可以用于太阳能电池板、燃料电池等能源领域,为可再生能源的开发提供支持。
4. 有色金属工程在新材料制备中的应用有色金属工程在新材料制备中也有广泛的应用。
例如,通过合金化处理可以改变金属材料的特性,提高其强度和耐腐蚀性,满足现代工业对材料性能的要求。
此外,有色金属材料还可以用于传感器、电子元件、医疗器械等领域,推动新材料的发展。
5. 存在的问题与解决方案在有色金属工程的应用和发展过程中存在一些问题,如资源短缺、能耗高、污染物排放等。
为了解决这些问题,可以通过提高资源利用率、优化生产工艺、采用清洁生产技术等手段来减少资源消耗和污染物排放。
6. 未来发展趋势随着科学技术的进步和社会经济的发展,有色金属工程在现代工业中的应用前景广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
□□□□□□中文题目(二号)□□□□□□
□□作者姓名(小四)□□
□□作者单位(小五)□□
摘要: □□□□□□□□□□□□□□□□□□□□□□□□□□□□(五号,宋体)
关键词:□□□□□;□□□□□;□□□□□(五号,宋体)
中图分类号:□□□文献标识码:文章编号:
□□□□□□英文文题(二号)□□□□□□□□作者英文名字(eg. WANG Xiao-Bin)(小四)□□
□□作者单位□□(小五斜体)□□
Abstract:□□□□□□□□□□□□□□□□□□□□□□□□□□□□(五号)
Key words:□□□□□;□□□□□□;□□□□□□(五号)
□□□□□□□□□□□□□□□□□□□(正文,五号,英文字体为Times New Roman 格式)
X□□一级标题□□(四号)
X.X□□二级标题□□(五号,粗体)
□□□□□□□□□□□□□□□□□□(五号)
X.X .X□□三级标题□□(五号)
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□(五号)(图表请插入文中相应位置)Table 1 □□□□□□(五号,粗体)
表格为三线格,无竖线,
Fig. X □□□□□□(五号,粗体)
1: □□□; 2: □□□; 3: □□□; 4: □□□.(五号)
References:
(请见以下范例,小五号)
[1] William G O, Kevin D V, Qing W. Restless legs syndrome in monozygotic twins: clinical correlates[J].
Neurology, 2000, 55(9):1404~1406.
[2] 吴晓雷,贺超英,王永军, 张志永,东方阳,张劲松,陈受宜,盖钧镒. 大豆遗传图谱的构建和分
析[J]. 遗传学报,2001,28(11):1051~1061.
WU Xiao-Lei, HE Chao-Ying, WANG Yong-Jun, ZHANG Zhi-Yong, DONGFANG Yang, ZHANG Jin-Song, CHEN Shou-Yi, GAI Jun-Yi. Construction and analysis of a genetic linkage map of soybean[J]. Acta Genetica Sinica, 2001,28(11):1051~1061.
收稿日期:0000-00-00;修回日期:0000-00-00
基金项目:中文名称(编号:XXXXX)[英文对照]
作者简介:第一作者
①通讯作者, 姓名,职称,学位;固定电话;电子邮件。