有机废水的讲义厌氧生物处理

合集下载

6厌氧生物讲义处理工艺

6厌氧生物讲义处理工艺

产氢产乙酸阶段 产甲烷阶段
H2、CO2、乙酸 CH4、CO2
厌氧生物处理的主要特征 主要优点:
能耗低,且还可回收生物能(沼气); 污泥产量低; 可间歇运行; 负荷高,占地省; 厌氧微生物有可能对好氧微生物不能降解的某些有机
物进行降解或部分降解;
厌氧生物处理的主要特征
主要缺点:
设备启动和处理时间长; 对温度、pH等环境因素较敏感; 出水水质较差,需进一步利用好氧法进行处理; 气味较大; 对氨氮的去除效果不好。
200:5:1 CH4、H2O、CO2 较高 较低、回收能源
厌氧生物处理工艺
早期处理工艺:处理城市污水的化粪池、双层沉淀池等;处 理剩余污泥的各种厌氧消化池等。 现代高速厌氧反应器: 70年代后发展起来的用于处理高浓度 有机废水的厌氧接触法、厌氧滤池、上流式厌氧污泥层(床) 反应器、厌氧流化床、 厌氧附着膜膨胀床、厌氧生物转盘、 挡板式厌氧反应器。
1)进水配水系统
脉冲式布水与连续流布水 底部穿孔管与分枝管 上部一管一孔式配水
UASB反应器的布水装置——脉冲式布水
北京市环科院应用于房亭酒厂的实例
UASB反应器的布水装置——一管多孔配水系

UASB反应器的布水装置——一管多孔配水系

配水系统
三相分离器
进水
UASB反应器的布水装置——分枝式配水系统
10%
AF
UASB
8%
59%
国内厌氧反应器的应用(共219个项目)
AF+UASB 1%
AF
UBF
1%
1%
全混 29%
UASB 58%
其它 10%
上流式厌氧污泥床(UASB)反应器
Upflow Anaerobic Sludge Bed Reactor, 简称 UASB 反应器;

5废水的厌氧生物处理

5废水的厌氧生物处理
无机氮是氨氮、亚硝酸盐氮、硝酸盐氮。部分来自有机氮分解,部分来 自施用氮肥的农田排水、地表径流和某些工业废水(炼焦、化肥厂等)。

废水中常见的磷有磷酸盐、聚磷酸盐和有机磷。生活污水中磷含量 一般在10 mg/L—15mg/L,70%可溶。传统二级处理出水中有90% 左右以磷酸盐形式存在。
磷在生物处理过程中化合价不变。
的工业废水需投加的营养盐少。 有一定杀菌作用(废水、污泥中的寄生虫卵、细菌、病毒等)。 生产灵活、适应性强:可季节性、间歇性运转。 可产生有价值的副产物:如沼气。
缺点
★ 厌氧微生物生长繁殖慢,设备启动、处理时间长。 ★ 出水水质达不到排放标准,需进一步好氧处理。 ★ 操作控制因素比较复杂。 ★ 采用厌氧生物法不能去除水中的氮和磷,含氮和磷的有机物通过厌
沼气 出水
AF
进水
B 厌氧接触反应器(ACP)
基于普通厌氧反应器而发展起来。由消化池排出的混合液首先在沉淀池中进行固、液 分离。污水处理后由沉淀池上部排出,下沉的污泥回流至消化池。在消化池之外增设沉 淀池,从而保证污泥不流失而稳定了工艺流程。回流污泥提高了消化池内的污泥浓度和 在消化他内停留时间,设备的处理能力有所提高,从而提高系统的有机负荷处理能力。
2) 危害
——过量氮、磷导致水体富营养化 ——氨氮消耗溶解氧 ——氨氮会与自来水中用于消毒的余氯发生反应生成氯胺,消耗水体的余氯,使自来水 得不到保证。增加水处理成本 ——氮化合物对人和生物有害。
★亚硝酸盐超过1 mg/L,水生生物血氧结合力下降;3mg/L,可在24-96h内使金 鱼、鳊鱼死亡;
合 并: NH4 2O2 硝化 细菌NO3 2H H2O
好氧过程,每氧化1g的氨氮需要氧4.57 g,放热反应。硝化过程中放出H+,消耗混合液的碱度 (1:7.14)。这使混合液碱度下降,而硝酸细菌和亚硝酸细菌对PH变化很敏感,所以为保持 混合液中较稳定的PH值,需要不断添加碱。

污水生物处理(好氧、厌氧生物处理)

污水生物处理(好氧、厌氧生物处理)

活性污泥法工艺流程
空气
进水 初次沉 淀池
曝气池
出水
二次沉淀池
回流污泥
污 泥
剩余污泥
氧化沟(OD)
1.概念: 氧化沟是一种改良的活性污泥法,其曝气池 呈封闭的沟渠形,污水和活性污泥混合液在 其中循环流动,因此被称为“氧化沟”,又 称‘‘环形曝气池”。
采用立式表曝机的卡鲁塞尔氧化沟
(英国ASH Vale 污水处理厂)
小结
(厌氧生物处理反应机理图) 不溶性有机物和高分子 溶性有机物
水解阶段 (细菌胞外酶作用)
原酸化阶段和产 乙酸阶段可合并 为一个阶段
小分子溶性有机物
产酸脱氢 (产酸菌作用) 阶段
细菌细胞
挥发酸 (如乙酸)
CO2+H2
其他产物 (如醇类等)
产甲烷阶段 (产甲烷细菌作用)
细菌细胞
CH4+CO2
几种厌氧生物滤池
➢ 要保证污水处理的效果,首先必须有足够数量 的微生物,同时,还必须有足够数量的营养物 质。
好氧生物处理
❖ 传统活性污泥法 ❖ 氧化沟 ❖ 序批式活性污泥法 ❖ 生物滤池、生物转盘 ❖ 流化床
活性污泥法
生物膜法
活性污泥的特征与微生物
①特征 a、形态:在显微镜下呈不规则椭圆状,在水中呈“絮状”。 b、颜色:正常呈黄褐色,但会随进水颜色、曝气程度而变
UASB反应器工作原理
进水 厌氧膨胀床和流化床工艺流程
污水自然生物处理
污水自然生物处理的回顾与前瞻
❖ 污水的自然生物处理已有300多年的历史,但随着经济和社会 的发展,生活污水和工业废水的水质水量发生了很大的变化, “经典式”生态系统的自然净化能力承受不了越来越沉重的 污染负荷。为了解决日益严重的水环境污染问题,出现了以 普通活性污泥法、生物膜法等高效的人工净化技术。但进入 20世纪70年代,严重的世界能源危机,迫使人们又转向研究 节省能源、资源和投资的处理方法。污水的自然生物处理作 为“替代技术”之一受到重视。

第15章污水的厌氧生物处理ppt课件

第15章污水的厌氧生物处理ppt课件
水污染控制工程(下)
2、pH 值每种微生物可在一定的pH值范围内活动,产酸细
菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围 较广,在4.5-8.0之间。
产甲烷菌要求环境介质pH值在中性附近,最适宜 pH值为7.0-7.2,pH6.6-7.4较为适宜。
在厌氧法处理废水的应用中,由于产酸和产甲烷大 多在同一构筑物内进行,故为了维持平衡,避免过多 的酸积累,常保持反应器内的pH值在6.5-7.5(最好 在6.8-7.2)的范围内。
水污染控制工程(下)
§15-2 厌氧生物处理活性污泥法(anaerobic activated 厌slu氧d生ge物) 膜法(anaerobic slime)
厌氧活性污泥法包括:普通消化池、厌氧接触工艺、上流 式厌氧污泥床反应器等。
厌氧生物膜法包括:厌氧生物滤池、厌氧流化床、厌氧生 物转盘等。
§15-1 概述
水污染控制工程(下)
一、厌氧生物处理的对象
1、有机污泥 有机污泥包括废水好氧生物处理过程生成的大量活性污泥
和生物膜,初沉池可沉淀的有机固体,以及人畜的粪便等。
2、有机废水
食品工业,如酒精、味精、制糖、淀粉、屠宰和啤酒等工 业排出的废水,不仅数量多,而且浓度也很高。
3、生物质 以专门利用生物质转化为新能源为主要目的的厌氧发酵法,
温度的急剧变化和上下波动不利于厌氧消化作用。短 时内温度升降5℃,沼气产量明显下降,波动的幅度过 大时,甚至停止产气。
温度的波动,不仅影响沼气产量,还影响沼气中甲烷 的含量,尤其高温消化对温度变化更为敏感。
温度的暂时性突然降低不会使厌氧消化系统遭受根本 性的破坏,温度一经恢复到原来水平时,处理效率和 产气量也随之恢复。
水污染控制工程(下)

厌氧生物处理的基本原理

厌氧生物处理的基本原理

厌氧生物处理的基本原理厌氧生物处理是一种利用厌氧微生物降解有机废水的技术,其基本原理是通过厌氧微生物在缺氧或无氧条件下,利用有机废水中的有机物质作为电子受体,进行氧化还原反应,降解有机废水中的有机物质,最终将有机废水转化为较为稳定的产物,从而达到净化水质的目的。

在厌氧生物处理过程中,厌氧微生物起着至关重要的作用。

这些微生物通常是一些无氧条件下生长的细菌和古细菌,它们能够利用有机废水中的有机物质进行代谢活动,产生甲烷、硫化氢、二氧化碳等产物,将有机废水中的有机物质降解为较为简单的无机物质。

厌氧生物处理的基本原理可以分为以下几个方面:1. 有机物质的降解,厌氧微生物利用有机废水中的有机物质作为电子受体,进行氧化还原反应,将有机物质降解为较为简单的无机物质,如甲烷、硫化氢、二氧化碳等。

2. 微生物的代谢活动,厌氧微生物在缺氧或无氧条件下进行代谢活动,产生能量和细胞物质,维持微生物生长和繁殖。

3. 产物的生成,在厌氧生物处理过程中,产生的产物主要包括甲烷、硫化氢、二氧化碳等,这些产物相对稳定,不会对环境造成污染。

4. 水质的净化,通过厌氧生物处理,有机废水中的有机物质得到有效降解,水质得到净化,达到环保要求。

在实际应用中,厌氧生物处理技术通常需要结合生物反应器等设备进行操作。

生物反应器是一种用于培养和维持微生物生长的设备,通过控制反应器内的温度、pH值、氧气供给等条件,为厌氧微生物的生长和代谢活动提供良好的环境。

总的来说,厌氧生物处理的基本原理是利用厌氧微生物在无氧或缺氧条件下降解有机废水中的有机物质,通过氧化还原反应将有机物质降解为较为简单的无机物质,最终实现对有机废水的净化。

这种技术在环境保护和废水处理方面具有重要的应用价值,对于解决工业废水污染等问题具有重要意义。

废水厌氧处理原理介绍

废水厌氧处理原理介绍

废水厌氧处理原理介绍废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4 和CO2的过程。

一、厌氧生物处理中的基本生物过程1、三阶段理论厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2 等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类。

(1)水解、发酵阶段;(2)产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2;(3) 产甲烷阶段:产甲烷菌利用乙酸和H2、CO2 产生CH4;一般认为,在厌氧生物处理过程中约有70%的CH4 产自乙酸的分解,其余的则产自H2和CO2。

2、四阶段理论:实际上,是在上述三阶段理论的基础上,增加了一类细菌——同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2 合成为乙酸。

但研究表明,实际上这一部分由H2/CO2 合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。

总体来说,“三阶段理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。

二、厌氧消化过程中的主要微生物主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。

1、发酵细菌(产酸细菌):发酵产酸细菌的主要功能有两种:①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等;主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时会成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。

废水厌氧生物处理的基本原理

废水厌氧生物处理的基本原理

废水厌氧生物处理的基本原理
废水厌氧生物处理是一种利用微生物的生化反应来将有机物质转化为更稳定的化合物的处理方法。

其基本原理包括以下几个方面:
1. 厌氧条件:废水被处理时应为厌氧环境,即供氧非常缺乏或完全没有氧气存在的条件下进行。

这是因为厌氧微生物可以在无氧条件下生存和繁殖。

2. 微生物群落:在废水处理中,选用适宜的微生物菌株是至关重要的。

常见的厌氧微生物包括厌氧菌、酸生成菌、甲烷菌等,它们协同作用,完成对有机物质的分解和转化。

3. 分解有机物质:厌氧微生物通过一系列生化反应,将废水中的有机物质分解为简单的无机物质。

这个过程通常包括酸化、产氢、产酸、产乙酸、产氢气、甲烷发酵等步骤。

4. 产生二次污泥:在废水处理过程中,厌氧微生物会生成一定量的厌氧污泥,包括活性菌芽孢和囊泡。

这些厌氧污泥可以帮助降解有机物,同时可以维持厌氧反应的平衡。

5. 厌氧生物反应器:废水厌氧生物处理一般采用各类反应器,如厌氧发酵池、厌氧曝气池、流态化床等。

这些反应器提供了适宜的环境条件,促进了微生物的生长和代谢过程。

通过废水厌氧生物处理,废水中的有机物质可以被有效地降解
和转化,减少了对环境的污染。

这种处理方法具有技术成熟、处理效果稳定等优点,在实际应用中得到了广泛应用。

污水的厌氧生物处理

污水的厌氧生物处理

污水的厌氧生物处理污水的厌氧生物处理1. 简介污水的处理是保护环境和水资源的重要措施。

厌氧生物处理技术是一种处理高浓度有机废水的方法,通过利用厌氧微生物降解有机物质,达到净化水质的目的。

本文将详细介绍污水的厌氧生物处理技术。

2. 厌氧生物处理原理厌氧生物处理是在缺氧或无氧条件下进行的生物降解过程。

在这种环境下,厌氧微生物利用有机物作为电子受体,将有机物转化为产气、产酸、产醇等中间产物,并最终甲烷、二氧化碳等稳定的无机物质。

污水的厌氧生物处理主要包括两个过程:厌氧消化和厌氧反硝化。

- 厌氧消化:在无氧环境中,厌氧微生物通过酸化和产酸作用,将有机废物分解为氢、二氧化碳和醋酸等中间产物。

在此过程中,产生的氢和挥发性脂肪酸可以被其他厌氧微生物利用。

- 厌氧反硝化:厌氧反硝化是指厌氧微生物在无氧条件下利用硝酸盐作为电子受体,将有机物质转化为沉积物和氮气。

这个过程通常发生在厌氧硝化反硝化的反应器内。

3. 厌氧生物反应器厌氧生物处理系统主要包括三种类型的反应器:厌氧消化池、厌氧滤池和厌氧反硝化反应器。

- 厌氧消化池:厌氧消化池是污水处理系统的第一步,其目的是将有机废物转化为可被厌氧微生物降解的中间产物,如挥发性脂肪酸、氢和二氧化碳等。

该池通常具有较高的生物活性和有机负荷。

- 厌氧滤池:厌氧滤池是在厌氧消化池之后的处理步骤。

在该滤池中,通过过滤媒体(如砂、炭等)来增加生物附着面积,促进厌氧微生物的生长和降解有机物质。

- 厌氧反硝化反应器:厌氧反硝化反应器是在厌氧滤池之后的最后一步处理。

该反应器中的厌氧微生物利用硝酸盐作为电子受体,将有机废物转化为沉积物和氮气。

4. 厌氧生物处理的优势和应用厌氧生物处理技术具有以下优势:- 厌氧生物处理系统对于高浓度有机废水具有较好的适应性;- 操作和管理相对简单,运行成本较低;- 可利用产生的沼气用作能源;- 对于有机物质的降解效率高。

厌氧生物处理技术广泛应用于以下领域:- 工业废水处理:特别是纸浆造纸、制药、食品加工等行业的废水处理;- 城市污水处理:适用于大型污水处理厂和小型污水处理站;- 农田废水处理:可将农田废水中的有机物质转化为肥料;- 养殖废水处理:适用于养殖场的废水处理。

废水厌氧处理原理介绍

废水厌氧处理原理介绍

废水厌氧处理原理介绍
废水厌氧处理是一种常用的废水处理方法,通过利用厌氧微生物将有机废物进行降解。

其原理是在无氧的条件下,厌氧微生物通过发酵代谢将废水中的有机物质分解为更简单的有机物和气体。

废水厌氧处理的过程一般分为三个阶段:水解酸化阶段、乙酸酸化阶段和甲烷生成阶段。

在水解酸化阶段,厌氧微生物将复杂的有机废物分解为简单的有机酸、醇类物质和氨等。

这些产物可以作为后续阶段的底物。

在乙酸酸化阶段,厌氧微生物进一步将有机酸和醇类物质转化为乙酸,同时产生CO2和H2。

在甲烷生成阶段,乙酸酸化产物进一步被厌氧微生物转化为甲烷和二氧化碳。

甲烷是一种有价值的能源,可以被收集和利用。

废水厌氧处理的关键在于控制好反应系统的操作条件,如温度、PH值、厌氧微生物的浓度和营养物质的供给等。

此外,厌氧
反应器的设计也需要考虑废水的分解速率和废物物质的去除率等因素,以实现高效的废水处理。

总之,废水厌氧处理通过利用厌氧微生物分解有机废物,进而降解废水,达到净化废水的目的。

它是一种经济、高效的废水处理方法,对于有机废物含量较高的废水尤为适用。

有机废水厌氧生物两相厌氧处理系统

有机废水厌氧生物两相厌氧处理系统

谈有机废水厌氧生物两相厌氧处理系统摘要:两相厌氧消化工艺就是把酸化和甲烷化两个阶段分离在两个串联反应器中,使产酸菌和产甲垸菌各自在最佳环境条件下生长,这样不仅有利于充分发挥其各自的活性,而且提高了处理效果,达到了提高容积负荷率,减少反应容积,增加运行稳定性的目的。

关键词:有机废水厌氧生物两相厌氧处理系统两相厌氧消化系统是20世纪70年代初美国戈什和波兰特开发的厌氧生物处理新工艺。

并于1977年在比利时首次应用于生产。

此后德国相继建造了数套生产性两相厌氧消化装置,其最大日处理能力为32t。

它并不着重于反应器结构的改造,而是着重于工艺的变革。

一、两相厌氧消化原理厌氧消化是一个复杂的生物学过程,复杂有机物的厌氧消化一般经历发酵细菌、产氢产乙酸细菌,产甲烷细菌三类细菌群的纵向接替转化以及同型乙酸细菌群的横向转化。

从生物学的角度来看,由于产氢产乙酸细菌和产甲垸细菌是共生互营菌,因而把产氢产乙酸细菌和产甲烷细菌划为一相,即产甲烷相;而把发酵细菌划为另一相,即产酸相。

通过对厌氧消化过程中产酸菌和产甲垸菌的形态特性的研究,人们逐渐发现,产酸菌种类繁多,生长快,对环境条件变化不太敏感。

而产甲烷菌则恰好相反,专一性很强,对环境条件要求苛刻,繁殖缓慢,这也正是人们可以把一个厌氧消化过程分为产酸相和产甲烷相两相工艺的理论依据。

传统的一相厌氧消化是追求厌氧消化的全过程,而酸化和甲烷化阶段的二大类作用细菌,即产酸菌和产甲烷菌对环境条件有着不同的要求。

一般情况下,产甲烷阶段是整个厌氧消化的控制阶段。

为了使厌氧消化过程完整的进行就必须首先满足产甲烷相细菌的生长条件,如维持一定的温度、增加反应时间,特别是对难降解或有毒废水需要长时间的驯化才能适应。

传统的厌氧消化工艺把产酸和产甲烷菌这两大类菌群置于一个反应器内,不利于充分发挥各自的优势。

二、两相厌氧的相分离两相厌氧就是把产酸菌和产甲烷菌分别培养在两个串联的反应器中,分别提供各自的最佳生长环境条件以便发挥各自的最大活性。

污水处理技术中厌氧生物处理技术的基本原理

污水处理技术中厌氧生物处理技术的基本原理

污水处理技术中厌氧生物处理技术的基本原理1.厌氧生物处理过程解说厌氧生物处理又称厌氧消化,是在厌氧条件下由多种微生物共同作用,使有机物分解生成CH4和CO2的过程。

这种过程广泛地存在于自然界中,直到1881年法国报道了Louis Mouras发明的自动净水器,人类才开始利用厌氧消化处理污水,至今已有一百余年了。

20世纪60年代前人们认为厌氧消化的过程为两个阶段。

第一阶段称发酵阶段或产酸阶段,在此阶段中,不溶性的复杂有机物先在微生物作用下得到水解,继而被转化为简单的有机物,如脂肪酸、醇类、CO2和H2等,这一阶段起作用的微生物统称为发酵细菌或产酸细菌。

第二阶段称为产甲烷阶段,在此阶段中由产甲烷菌将第一阶段的产物转化为CH4和CO2。

人们在对厌氧消化过程及厌氧微生物的深入研究中发现,上述两个阶段学说并没有全面反映厌氧生物处理过程的全貌与本质。

研究表明,产甲烷菌能够利用甲酸、乙酸、甲醇、甲基胺类,在厌氧微生物方面的新发现基础上,1979年布利安特等提出了厌氧消化的三阶段理论(图2-1)。

图2-1 三阶段理论三阶段理论认为,厌氧消化过程是按以下步骤进行的。

第一阶段可称为水解发酵阶段,与两阶段理论相同,亦是在微生物的作用下复杂有机物进行水解和发酵的过程,多糖先水解为单糖,再通过酵解途径进一步发酵成乙醇和脂肪酸,如丙酸、丁酸、乳酸等,蛋白质则先水解为氨基酸再经脱氨基酸作用产生脂肪酸和氨。

第二阶段称为产氢、产乙酸阶段,是由一类专门的细菌称之产氢、产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇转化为CH3COOH、H2和CO2。

第三阶段称为产甲烷阶段,由产甲烷菌利用乙酸和H2、CO2产生甲烷(CH4)。

研究表明,厌氧生物处理过程中约有20%CH4来自乙酸的分解,其余少量则产自H2和CO2的合成。

至今三阶段理论已被公认,是对厌氧生物处理过程较全面和较正确的描述。

厌氧废水处理是将环境保护、能源回收与生态良性循环结合起来的综合系统的核心技术,是具有较好环境效益和经济效益的污水处理技术。

污水生物处理-厌氧UASB

污水生物处理-厌氧UASB

(一) 概述
4、厌氧生物的分类
(5)两相厌氧法 将水解酸化过程和甲烷 化过程分开在两个反 应器内进行,从而使 两类微生物都各自在 最佳的条件下繁殖, 进行厌氧消化。
(一)概述
4、厌氧生物的分类
(6)水解(酸化)法 水解是生物胞外分子的 生物催化反应,大分 子物质的锻炼和水溶。 酸化是一种发酵过程。
(一) 概述
4、厌氧生物的分类
(2)厌氧生物滤池
同好氧生物滤池,池内放 填料,池顶密封,滤料 一般粒径在40mm左右, 有碎石、卵石,也可以 用塑料填料。
沼气
填料
出 水
布水系统
进水
升流式厌氧生物滤池
沼气 进水 布水系统
填料
出水
降流式厌氧生物滤池
(一) 概述
4、厌氧生物的分类
(3)上流式厌氧污泥床(UASB)
(一) 概述
4、厌氧生物的分类
(3)上流式厌氧污泥床(UASB)
颗粒污泥的扫描电镜照片(运行180天)—— 产甲烷丝菌
(一) 概述
4、厌氧生物的分类
(4)厌氧流化床
反应器内填充细小的固 体颗粒载体。载体宜 采用轻质粗细的,常 用的有石英砂、无烟 没煤、活性碳、聚氯 乙烯颗粒、陶粒、沸 石等。粒径一般为 200~1000um。
pH:5.5~6.5;水温:10~20℃;底物的种类和形态;污泥 生物固体停留时间;水力停留时间。
(二)上流式厌氧污泥床反应器
1、UASB的结构
UASB反应器主要包括厌氧污泥床、 悬浮污泥层,三相分离器和配水 系统组成。污泥浓度达到 40000~80000mg/L。 污泥床的溶剂一般占整个UASB反应 区的30%左右。SVI10~20mL/g. 污泥悬浮层占整个UASB反应区的70%,污泥浓度15000~ 30000mg/L。

废水的厌氧生物处理(污水、污泥)

废水的厌氧生物处理(污水、污泥)





③当有机负荷率小,供给养料不足,产酸量偏少,pH>7.5是碱性发 酵状态,是低效发酵状态。 Ⅲ、温度控制——发酵要求较高的温度,每去除8000mg/L的COD 所产沼气,能使水温升高10℃,一般工艺设计中温消化30~35℃。 Ⅳ、pH的控制——当液料pH<6.5或高于8.0,则要调整液料pH。 pH<6.8~7,应减少有机负荷率, pH<6.5,应停止加料,必要时加入石灰中和。
二、 厌氧反应器
厌氧活性污泥法包括普通消化池、厌氧接触工艺、 上流式厌氧污泥床反应器等。 厌氧生物膜法包括厌氧生物滤池、厌氧流化床、 厌氧生物转盘等。

1、普通厌氧消化池

普通消化池又称传统或常规消化池。 消化池常用密闭的圆柱形池,废水定期或连续进 入池中,经消化的污泥和废水分别由消化池底和 上部排出,所产沼气从顶部排出。 池径从几米至三、四十米,柱体部分的高度约为 直径的1/2,池底呈圆锥形,以利排泥。 为使进水与微生物尽快接触,需要一定的搅拌。 常用搅拌方式有三种:池内机械搅拌;沼气搅拌; 循环消化液搅拌。


二、厌氧消化原理




1、厌氧消化的生化阶段 第Ⅰ阶段——水解产酸阶段 污水中不溶性大分子有机物,如多糖、淀粉、纤维素、烃类(烷、烯、 炔等)水解,主要产物为甲、乙、丙、丁酸、乳酸;紧接着氨基酸、蛋白质、 脂肪水解生成氨和胺,多肽等(所以有的书又把水解产酸分为二个阶段)。 第Ⅱ阶段——厌氧发酵产气阶段 第(1)阶段产物甲酸、乙酸、甲胺、甲醇和等小分子有机物在产甲烷 菌的作用下,通过甲烷菌的发酵过程将这些小分子有机物转化为甲烷。所以 在水解酸化阶段COD、BOD值变化不很大,仅在产气阶段由于构成COD或 BOD 的有机物多以CO2和H4的形式逸出,才使废水中COD、BOD明显下降。

污水的厌氧生物处理

污水的厌氧生物处理

污水的厌氧生物处理污水的处理是保护环境和保障人类健康的重要工作之一。

在污水处理过程中,厌氧生物处理是一种重要的方法,具有高效、经济和环保等优点。

1. 厌氧生物处理的基本原理厌氧生物处理是指在缺氧或没有氧气存在的条件下,利用厌氧微生物对有机废水进行处理的过程。

其基本原理是通过厌氧微生物的代谢活动,将有机废水中的有机物质转化为沼气和水。

2. 厌氧生物处理的工艺流程厌氧生物处理的工艺流程包括进水处理、反应器设计、微生物菌群培养和沼气收集等步骤。

2.1 进水处理进水处理是指对进入处理系统的废水进行预处理,主要包括除沉淀、除磷和除氮等工艺。

这些工艺的目的是降低进水中的悬浮物、有机物和营养物质的浓度,以减轻后续处理过程的负荷。

2.2 反应器设计反应器设计是厌氧生物处理的关键环节,主要包括反应器类型、体积和混合方式等。

常见的反应器类型有厌氧池、厌氧滤池和厌氧反应器等。

反应器的体积和混合方式的选择取决于处理规模和废水的特性。

2.3 微生物菌群培养微生物菌群培养是指在反应器内培养适宜的厌氧微生物,以促进有机物质的降解和沼气的。

菌群培养需要注意维持适宜的温度、pH值和营养物质等条件,以提高厌氧处理效果。

2.4 沼气收集沼气是厌氧生物处理的产物之一,该过程需要收集和利用沼气。

沼气中主要成分为甲烷和二氧化碳,可以作为能源利用或其他用途,如发电、供暖和热水等。

3. 厌氧生物处理的优势和应用3.1 优势厌氧生物处理具有以下优势:高效:厌氧微生物对有机废水具有较强的降解能力,可以高效处理高浓度有机废水。

经济:厌氧生物处理过程中产生的沼气可以用作能源,降低能源消耗和处理成本。

环保:厌氧生物处理过程中产生的沼气是一种清洁能源,减少了温室气体排放。

3.2 应用厌氧生物处理广泛应用于各类生活污水、工业废水和农业废水等领域。

在城市污水处理厂和工业废水处理厂中,厌氧生物处理已成为常见的处理技术。

4. 厌氧生物处理的挑战和发展趋势4.1 挑战厌氧生物处理面临以下挑战:技术难题:厌氧生物处理的反应器设计和微生物菌群培养等环节仍存在一定的技术难题,需要进一步研究和探索。

废水的厌氧生物处理(污水、污泥)

废水的厌氧生物处理(污水、污泥)

废水的厌氧生物处理(污水、污泥)废水的厌氧生物处理(污水、污泥)1. 引言废水处理是一项重要的环境保护任务,而其中的厌氧生物处理技术在去除废水中有机物的过程中起到了关键作用。

本文将介绍废水的厌氧生物处理技术,重点关注污水和污泥的处理过程。

2. 厌氧生物处理的原理厌氧生物处理是指在缺氧或无氧条件下,利用厌氧细菌将有机物降解为无机物的过程。

该过程分为三步:酸化、产气和甲烷化。

2.1 酸化在厌氧条件下,厌氧细菌将有机物分解为低分子有机物,如醇、酸和醛。

这些有机物反应性较高,可进一步参与产气和甲烷化反应。

2.2 产气酸化产生的低分子有机物经过厌氧发酵反应,进一步分解为二氧化碳、甲酸、乙酸、氢气、乙醇等可溶解气体和胞外多聚物。

其中,氢气和二氧化碳是产气的关键产物。

2.3 甲烷化产气过程中的氢气和二氧化碳被甲烷菌利用,通过甲烷发酵反应甲烷,产生水和二氧化碳。

“丙烷”和“丁烷”等较长链烷烃也可,但产率较低。

3. 废水的厌氧生物处理技术废水的厌氧生物处理技术主要包括厌氧池处理和厌氧滤池处理两种形式。

3.1 厌氧池处理厌氧池处理通常通过在封闭池中收集并处理废水,以便在无氧环境下进行厌氧生物降解过程。

该技术适用于有机物含量较高的废水处理,具有处理效果好、占地面积小等优点。

3.2 厌氧滤池处理厌氧滤池处理是通过在滤料上生长固定化的厌氧细菌来处理废水。

滤料中的微生物能够在滤料表面形成生物膜,提供了厌氧菌的附着点和底物供给。

这种处理方法适用于高悬浮物废水或高有机物浓度的处理。

4. 污泥的厌氧处理废水处理过程中产生的污泥也需要进行处理,以减少对环境的影响。

污泥厌氧处理主要有两种方法:厌氧消化和厌氧堆肥。

4.1 厌氧消化厌氧消化是将污泥在无氧条件下通过微生物降解,产生可用于生物肥料或能源的沼气和液体肥料。

厌氧消化可以有效地减少污泥的体积和质量,回收能源。

4.2 厌氧堆肥厌氧堆肥是将污泥与废弃物一起进行堆肥的过程。

通过堆肥过程中的厌氧发酵,可以降解有机物质,减少污泥的体积和对环境的影响。

厌氧生物处理的原理和应用

厌氧生物处理的原理和应用

厌氧生物处理的原理和应用1. 厌氧生物处理的原理厌氧生物处理是一种利用厌氧微生物进行有机废水、污泥和有机固废的降解的处理技术。

其原理基于厌氧微生物的特性和代谢方式。

1.1 厌氧微生物特性厌氧微生物与需氧微生物相比具有以下特性:•对氧气不敏感:厌氧微生物生活在缺氧或微氧的环境中,对氧气不耐受。

这使得厌氧生物处理在无氧条件下进行,减少了能源消耗和反应器维护成本。

•较低生长速率:与需氧微生物相比,厌氧微生物的生长速率较慢。

这在一定程度上降低了处理过程中的污泥生成量。

•产生少量污泥:厌氧微生物的产生少量污泥是由于其在代谢过程中产生的有机物主要以气体形式产生,如甲烷气体。

•容忍性强:厌氧微生物对于某些抗生素、重金属离子和其他抑制因子较为容忍,使得厌氧生物处理对废水中的毒性物质具有很好的处理效果。

1.2 厌氧生物代谢方式厌氧微生物的代谢方式主要有以下几种:•酸化发酵:厌氧微生物通过酸化发酵作用将有机物转化为低分子有机酸和其他溶解物质,如乙酸、丙酸等。

这是厌氧生物处理中的第一步,为后续产甲烷菌提供底物。

•产甲烷:在酸化发酵的基础上,产甲烷菌将低分子有机物进一步转化为甲烷气体和二氧化碳。

甲烷气体作为一种可燃气体,可以用于能源回收或发电。

•同化作用:厌氧微生物通过同化作用将废水中的无机氮、磷等元素转化为细胞质和细胞内物质。

2. 厌氧生物处理的应用厌氧生物处理由于其特有的处理方式和优势,被广泛应用于以下领域:2.1 工业废水处理厌氧生物处理在工业废水处理中具有广泛的应用前景。

相比传统的好氧生物处理方法,厌氧生物处理更适用于含有高浓度有机物和毒性物质的废水。

厌氧处理可以降低废水处理过程中的能耗和化学品使用,并且可以产生可用的甲烷气体作为能源。

2.2 有机固废处理厌氧生物处理也可以用于有机固废的处理,如农业废弃物、城市垃圾等。

通过利用厌氧微生物降解有机物,可以将有机固废转化为有机肥料或甲烷气体,实现有机固废的资源化利用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档