液压伺服控制

合集下载

液压伺服系统的特点及原理

液压伺服系统的特点及原理

液压伺服系统的特点及原理
随着液压伺服控制技术的飞速发展,液压伺服系统的应用越来越广泛,以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。

液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。

液压伺服控制系统原理:
液压伺服控制系统的工作特点:(1)在系统的输出和输入之间存在反馈连接,从而组成闭环控制系统。

反馈介质可以是机械的,电气的、气动的、液压的或它们的组合形式。

(2)系统的主反馈是负反馈,即反馈信号与输入信号相反,两者相比较得偏差信号控制液压能源,输入到液压元件的能量,使其向减小偏差的方向移动,既以偏差来减小偏差。

(3)系统的输入信号的功率很小,而系统的输出功率可以达到很大。

因此它是一个功率放大装置,功率放大所需的能量由液压能源供给,供给能量的控制是根据伺服系统偏差大小自动进行的。

综上所述,液压伺服控制系统的工作原理就是流体动力的反馈控制。

即利用反馈连接得到偏差信号,再利用偏差信号去控制液压能源输入到系统的能量,使系统向着减小偏差的方向变化,从而使系统的实际输出与希望值相符。

液压伺服和比例控制系统ppt

液压伺服和比例控制系统ppt

差) 经放大器放大后,加于电液伺服
阀转换为液压信号(图中A、b),以推
动液压缸活塞,驱动控制对象向消除偏
差方向运动。当偏差为零时,停止驱动,
因而使控制对象的位置总是按指令电位
图 7-9 统
电液伺服系
器给定的规律变化。
1-电位器;2-电液伺服阀;3-
液 压缸;4-负载;5-反 馈;
6-指令电位器;7-放大器
液压伺服和比例控制系统
第一节 液压伺服控制 第二节 电压比例控制
液压伺服阀
液压伺服阀是液压伺服系统中最重要、最基本的组成部分,它 起着信号转换、功率放大及反馈等控制作用。电液伺服阀是应用最广 泛的一种,它在接受电器信号模拟后,相应输出调制的流量和压力控 制信号,控制系统压力、流量、方向的变化。它既是电液转换元件, 也是功率放大元件,它能够将小功率的微弱电器输入信号转换为大功 率的液压能(流量和压力)输出。在电液伺服系统中,它将电气部分 和液压部分连接起来,实现电液信号的转换与液压放大。电液伺服阀 是电液伺服系统控制的核心。
量油增路加关,闭而,滑液阀压开缸x0口不量动逐,渐负减载少停。止当在x一0 增个加新到的
x0
位置

x时i ,则开口量为零,
,达到一个新的平
衡状态。
号继续如向果右继运续动给。控反制之滑,若阀给向控右制的滑输阀入输信入号一个x负i ,位液移压x缸i 就0会(向跟左随为这负个)信
液压伺服阀系统
反液之压缸,若就给会控跟制随滑这阀个输信入号一向个左负运位动移。xi 0 (向左为负)输入信号,则
液压伺服阀
3〕射流管式伺服阀
组成:如图7-3所示,采用衔铁式力矩马达8带动 射流管及其接收口2,两个接收口直接和滑陶阀 芯5两端面连接,控制滑阀阀芯运动。滑阀陶芯 5靠一个板簧定位,其位移与滑阀阅芯两端压力 差成比例。

液压伺服技术完美版.

液压伺服技术完美版.
QL =Q2 ==Cd A(xV) 1(ps pL)=Cd xV 1(ps pL)
当阀芯右移时:
QL =Cd A(-xV) 1(ps pL)=-Cd xV 1(ps pL)
QL =Cd
xV xV
1(ps
xV xV
pL)
QL =Cd xV
1(1
xV xV
pL)...无因次形式
QL
=
QL Qs
Q2 =Cd A2
4、阀各节流口的流量系数相等,
即Cd1=Cd2 =Cd3 =Cd4 = Cd
Q3 =Cd A3
则有:
Q4 =Cd A4
2(p1 po)
2(p
2
p0)
2(ps
p

2
2(ps p1)
*
PL 称为负载压力;QL称为负载流量。 在大多数情况下,阀的窗口都是匹配的和对称
的,则有:A1= A3; A2= A4;而且Q1= Q3; Q2= Q4;
2、流量一压力系数Kc:它是压力一流 量曲线的切线斜率冠以负号。流量一 压力系数表示阀开度一定时,负载压 降变化所引起的负载流量变化大小。
3、压力增益(压力灵敏度) Kp:它是压 力特性曲线的切线斜率。
K
q
=
QL XV
Kc
=
QL pL
Kp
pL XV
Kq Kc
*
应当指出以下几点: (1)阀的三个系数是表征阀静态特性的三个性能参数,这些 系数在确定系统的稳定性、响应特性时是非常重要的。流 量增益直接影响系统的开环放大系数,因而对系统的稳定
*
一、轴向液动力:稳态液动力(好力利于稳定,但加重驱动力); 瞬态液动力(时好时坏)。
*

液压伺服、比例控制

液压伺服、比例控制

液压伺服系统工作原理1.1 液压伺服系统工作原理液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。

电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。

液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。

液压伺服系统的工作原理可由图1来说明。

图1所示为一个对管道流量进行连续控制的电液伺服系统。

在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。

阀板转动由液压缸带动齿轮、齿条来实现。

这个系统的输入量是电位器5的给定值x i。

对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。

阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。

液压缸下腔的油液则经伺服阀流回油箱。

液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。

同时,液压缸活塞杆也带动电位器6的触点下移x p。

当x p所对应的电压与x i 所对应的电压相等时,两电压之差为零。

这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。

图1 管道流量(或静压力)的电液伺服系统1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。

反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。

用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。

而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。

液压缸位置伺服控制系统的设计与优化

液压缸位置伺服控制系统的设计与优化

液压缸位置伺服控制系统的设计与优化液压是一种广泛应用于工业领域的技术,而液压缸作为其中的重要组成部分,起到了控制和传动力的关键作用。

液压缸的位置伺服控制系统设计与优化是一个不断发展的领域,本文将从控制原理、设计方法和优化策略三个方面探讨液压缸位置伺服控制系统的发展和应用。

一、控制原理液压缸的位置伺服控制系统是基于反馈控制原理的。

该系统的目标是通过对液压油的控制,使液压缸的位置达到期望值。

控制器根据外部的输入信号和反馈信息,对液压系统进行控制和调节,以实现位置的精确控制。

在液压缸位置伺服控制系统中,主要采用的控制方式有比例控制、积分控制和微分控制。

比例控制通过调节控制信号与反馈信号之间的比例关系,使系统的响应更为迅速。

积分控制通过积分控制器对误差进行积分,以消除系统的稳态误差。

微分控制则通过微分控制器对误差的变化率进行调节,以提高系统的动态响应性能。

二、设计方法液压缸位置伺服控制系统的设计方法主要包括系统分析、参数选取、控制器设计和系统仿真等步骤。

在系统分析中,需要确定系统的目标、输入和输出,并对系统进行建模和分析。

参数选取则是根据系统的要求和性能指标,选择合适的液压元件和参数数值。

控制器设计是根据系统的特点和需求,设计出合适的控制算法和参数。

系统仿真则是通过软件模拟系统的运行和反馈信息,以评估系统的性能和稳定性。

在液压缸位置伺服控制系统的设计中,还需要考虑到系统的非线性和动态特性。

液压系统的非线性主要体现在油液的粘性、压力和温度对系统性能的影响等方面。

为了解决这些非线性问题,可以采用模糊控制、神经网络控制等方法来调节系统的响应。

而系统的动态特性则需要通过对控制系统的参数进行调节和优化,以提高系统的动态性能和稳定性。

三、优化策略液压缸位置伺服控制系统的优化策略主要包括参数优化、结构优化和控制策略优化。

参数优化是根据系统的性能指标和要求,通过试验和仿真等方法对系统的参数进行调整和优化。

结构优化是通过改变系统的结构和组件,以提高系统的性能和效率。

《液压伺服系统控制》课件

《液压伺服系统控制》课件

液压装置
液压装置提供了所需的压力和 流量,确保系统正常运行。
传感器
传感器用于感知系统的状态, 以反馈给控制器,帮助实现精 确控制。
执行器
执行器根据控制信号进行动作, 驱动机械设备实现所需的运动。
液压伺服系统的控制方式
1 基于位置的控制
通过控制液压油的流量和压力来实现位置的精确控制。
2 基于速度的控制
通过控制液压油的流量来实现运动的平滑变化与调节。
3 基于力的控制
通过控制液压油的压力来实现对力的精确控制,适用于需要对外力进行响应的场景。
液压伺服系统的电控系统
电控系统是液压伺服系统中常用的控制方式之一,通过电信号控制液压系统的运行。
电控系统的概述
电控系统通过电信号控制 液压系统的各个部件,实 现对液压系统的控制和调 节。
《液压伺服系统控制》 PPT课件
液压伺服系统控制是一门关于液压伺服系统控制的课程,本课程将液压伺服 系统的基本概念与控制方法进行介绍,以及实际应用案例的分享。
液压伺服系统的概念与组成
液压伺服系统是一种通过控制液压力来实现精确控制的系统。它由液压装置、传感器、执行器等组成, 每个组件的作用都不可或缺。
常见的电控系统
常见的电控系统包括脉宽 调制(PWM)控制系统和 比例控制系统。
电控系统的引导
根据具体应用需求选择合 适的电控系统,并进行必 要的引导和操作。
液压伺服系统的传感器
传感器在液压伺服系统中起着重要作用,用于感知和测量系统的各种参数和状态。
压力传感器
压力传感器用于测量和监测液 压系统中的压力变化,提供反 馈信号给控制器。
2
液压马达
液压马达是将液压油的动能转化为机械能,产生旋转运动的执行器。

液压伺服与比例控制系统课件

液压伺服与比例控制系统课件
• 抗干扰能力强:液压系统具有一定的隔振和抗干 扰能力,能够适应复杂的工作环境。
液压比例控制系统的优缺点
缺点
容易出现泄漏和污染:液压系统存在一定的泄漏和污染问题,需要采取措施进行防护。
对温度和压力变化敏感:液压系统的性能受到温度和压力变化的影响较大,需要进行补偿和 调整。
04
液压伺服与比例控制系统的设计 与应用
缺点
维护成本高、液压油易污染、温 度变化影响大、管道复杂、对油 液清洁度要求高等。
03
液压比例控制系统的工作原理
液压比例控制系统的组成
控制器
用于接收输入信号,并生 成控制指令。
执行器
根据控制器的指令,驱动 液压比例阀,以实现对流 量的控制。
反馈传感器
监测执行器的位置或速度 ,将其转化为电信号反馈 给控制器,以形成闭环控 制。
促进工业技术创新
液压伺服与比例控制系统的发展推动了工业技术的创新, 为工业生产带来了更多的可能性,为工业发展注入了新的 动力。
改变工业生产模式
液压伺服与比例控制系统的应用改变了传统的工业生产模 式,实现了更加智能化、网络化的工业生产,为工业发展 带来了新的机遇和挑战。
THANKS
感谢观看
液压伺服与比例控制系统的安全操作规程
在操作前阅读使用手册,按照手册要 求进行操作。
检查液压系统的各个部件是否正常, 无泄漏和损伤。
在操作过程中,不要在危险的情况下 进行操作,如设备故障、人员伤害等 。
在操作过程中,要注意安全保护措施 ,如佩戴安全帽、安全手套等。
06
液压伺服与比例控制系统的发展 趋势及未来展望
液压比例控制系统的分类
按控制方式
开环控制、闭环控制。
按液压执行元件

液压伺服系统控制

液压伺服系统控制
图1.1 液压伺服控制系统方块图
液压伺服控制具有下列之特性
.可多方用于不同控制系统。 .以小能量的输入指令经放大后而得到
大的输出。 .是一种具有反馈(Feed Back)控制。 .可控制受控系统的动作、速度或出力。 .对目标值可作广范的变化。
开回路与闭回路控制
图1.4(a) 传统之开回路液压控制系统
1.4 液压伺服与比例控制系统的发展与应用
液压伺服控制是一 门新兴的科学技术。它不但是液 压技术的一个重要分支.而且也是控制领域中的一个 重要组成部分。
在第一次与第二次世界大战期间及以后,由于军事 工业的刺激,液压伺服控制因响应快、精度高、功 率—重量比大等特点而受到特别的重视,特别是近几 十年,随着整个工业技术的发展,促使液压伺服与比 例控制得到迅速发展,使这门技术元论在元件与系统 分面,还是在评论与应用方面都日趋完善与成熟,形 成一门新兴的科学技术。
图1.19 动力辅助转向系統
1.2 液压伺服与比例控制的分类
一、按系统输入信号的变化规律分类 • 定值控制系统:当系统输入信号为定值时称为定值控
制系统。 • 程序控制系统:系统的输入信号按预先给定的规律变
化时,称为程序控制系统 • 伺服系统:也称随动系统,其输入信号是时间的未知
函数,而输出量能够准确、快速地复现输入量的变化 规律。
传统点到点闭回路液压控制系统
闭回路液压伺服机构
图是泵控式电液速度控制系统的原理图。该
系统的液压动力元件由变量泵和液压马达组 成,变量泵既是液压能源又是液压控制元件。
泵控式电液速度控制系统的工作原理方块图
反馈之形式
输入讯号与输出讯号关系
液压伺服位置控制系统
液压伺服速度控制系统
液压伺服速度控制系统

2 液压伺服系统

2 液压伺服系统

,它可以绕扭轴在a、b、c
、d四个气隙中摆动。
力矩马达 1——放大器; 2——上导磁体; 3——永久磁铁; 4——衔铁; 5——下导磁体; 6——弹簧管; 7——永久磁铁
当线圈控制电流为零时,四个 气隙中均有永久磁铁所产生的固定 磁场的磁通,因此作用在衔铁上的 吸力相等,衔铁处于中位平衡状态 。通入控制电流后,所产生的控制 磁通与固定磁通叠加,在两个气隙 中(例如,气隙a和d)磁通增大, 在另两个气隙中(例如,气隙b和c )磁通减少,因此作用在衔铁上的 电磁力矩与扭轴的弹性变形力矩及 外负载力矩平衡时,衔铁在某一扭 转位置上处于平衡状态。
(5)执行元件(机构)。直接带动控制对象动作 的元件或机构。如上例中的液压缸。
(6)控制对象。如机器的工作台、刀架等。
液压伺服系统的分类(1/2)
3.液压伺服系统的分类
伺服系统可以从不同的角度加以分类。
(1)按输入的信号变化规律分类:有定值控制 系统、程序控制系统和伺服系统三类。
当系统输入信号为定值时,称为定值控制系统, 其基本任务是提高系统的抗干扰能力。当系统的输 入信号按预先给定的规律变化时,称为程序控制系 统。伺服系统也称为随动系统,其输入信号是时间 的未知函数,输出量能够准确、迅速地复现输入量 的变化规律
动圈式力马达的线性行程范 围大(±2~4mm),滞环小, 可动件质量小,工作频率较宽, 结构简单,但如采用湿式方案, 动圈受油的阻尼较大,影响频宽 ,适合作为气压比例元件。
二、力矩马达
由上下两块导磁体、左
右两块永久磁铁、带扭轴
a
b
(弹簧管)的衔铁及套在
c
d
衔铁上的两个控制线圈所
组成。衔铁悬挂在扭轴上
液压伺服系统的分类(2/2)

液压伺服系统的控制算法与性能研究

液压伺服系统的控制算法与性能研究

液压伺服系统的控制算法与性能研究引言液压伺服系统广泛应用于机械控制领域,具有高速、高力和可靠性等突出优点。

然而,由于其本质上是一种非线性、时变的控制系统,液压伺服系统的控制算法和性能一直是研究领域的热点之一。

本文将探讨液压伺服系统的控制算法,以及通过优化控制算法来提高系统性能的方法。

1. 液压伺服系统的基本原理液压伺服系统由液压执行器、液控元件、电控元件和传感器组成。

其基本原理是通过电控系统对液控系统进行反馈控制,实现对液压执行器的精确控制。

在伺服系统中,液压执行器是核心组件,用于产生力和位置的控制。

2. 常见的液压伺服系统控制算法2.1 PID控制算法PID(比例-积分-微分)控制算法是目前应用最广泛的控制算法之一。

它通过调节比例、积分和微分三个参数来实现对系统的控制。

PID控制算法简单易用,但在非线性系统或动态响应要求较高的情况下可能会存在一定的局限性。

2.2 模糊控制算法模糊控制算法是一种基于模糊逻辑的控制方法,适用于非线性、时变系统的控制。

模糊控制算法通过建立模糊规则集来实现对系统的控制,可以更好地处理系统的模糊性和不确定性。

2.3 自适应控制算法自适应控制算法是一种能够根据系统实时状态和参数变化进行调整的控制方法。

自适应控制算法通过反馈机制和参数估计来实现对系统的控制,可以提高系统的稳定性和鲁棒性。

3. 提高液压伺服系统性能的方法3.1 系统建模和参数辨识系统建模和参数辨识是提高液压伺服系统性能的关键步骤。

通过对系统进行建模和参数辨识,可以准确地描述系统的动态特性,为后续的控制算法设计和优化提供基础。

3.2 控制算法优化控制算法优化是提高液压伺服系统性能的有效途径。

基于建模和参数辨识的结果,可以通过优化控制算法来改善系统的动态性能。

常见的优化方法包括遗传算法、粒子群算法和模型预测控制等。

3.3 传感器和执行器的选型和优化传感器和执行器的选型和优化对液压伺服系统的性能影响巨大。

选择合适的传感器可以提高系统的测量精度和稳定性;优化执行器设计可以提高系统的输出能力和响应速度。

伺服控制器与液压控制系统的配合使用方法

伺服控制器与液压控制系统的配合使用方法

伺服控制器与液压控制系统的配合使用方法伺服控制器和液压控制系统是现代工业自动化中常用的两种控制设备,它们各自具有独特的特点和优势,能够在不同的应用场景下发挥重要作用。

但是,如何正确地配合使用伺服控制器和液压控制系统,以达到更高的控制精度和效率,却是一个需要认真思考和解决的问题。

首先,我们需要了解伺服控制器和液压控制系统各自的特点和工作原理。

伺服控制器是一种能够精确控制电机转速和位置的装置,它具有响应快、精度高等特点。

而液压控制系统是通过调节液压油的流量和压力来控制执行器运动的装置,它具有力矩大、调节范围广等特点。

因此,在选择伺服控制器和液压控制系统时,我们需要根据具体的控制需求和应用场景来确定。

其次,合理设计伺服控制器和液压控制系统的配合方式非常重要。

一般情况下,液压控制系统作为主控制系统,负责提供力矩和速度控制;而伺服控制器作为从控制系统,负责提供位置和速度控制。

这种分工合作的方式能够有效提高控制精度和稳定性。

在具体的应用中,我们需要注意以下几个方面的问题。

首先是信号的传递和协调。

伺服控制器和液压控制系统之间的信号传递需要使用合适的接口和协议。

可以使用模拟信号,也可以使用数字信号,根据具体的需求来选择合适的方式。

其次是控制参数的设置和调整。

伺服控制器和液压控制系统都需要调整一些参数来适应具体的应用场景。

我们需要根据实际需求和性能指标来设置和调整这些参数,以达到最佳的控制效果。

另外,控制系统的稳定性也是需要我们重视的问题。

液压控制系统在工作中可能会受到液压油的温度、质量以及阀芯和密封件的磨损等因素的影响,可能引起泄漏、振动等问题。

伺服控制器也可能受到噪声、干扰等因素的影响,可能引起失控、抖动等问题。

因此,在使用伺服控制器和液压控制系统时,我们需要进行合理的故障诊断和预防措施,以保证控制系统的稳定性和可靠性。

此外,为了进一步提高整个控制系统的工作效率,我们还可以采用一些高级控制技术。

比如,可以使用先进的预测控制算法来优化控制器的工作,可以使用智能化的自适应控制方法来提高系统的鲁棒性和自适应性。

液压伺服工作原理

液压伺服工作原理

液压伺服工作原理
液压伺服系统是通过液压原理实现精确控制的一种机电装置。

其工作原理如下:
1. 液压伺服系统由液压泵、液压缸、控制阀和传感器等组成。

液压泵通过机械能输入,将机械能转化为流体能。

2. 液压泵将流体送入控制阀,控制阀通过调节液压流量和压力来控制流体的输出。

控制阀是系统的核心部件,它根据传感器信号和预设的控制要求,将流量和压力分配到液压缸上。

3. 传感器用于感知被控对象的实际状态,并将状态信息反馈给控制阀。

控制阀根据传感器的反馈信号,调整液压流量和压力,使得被控对象达到期望的位置、速度或力。

4. 液压流体进入液压缸,通过液压缸的活塞运动,产生线性位移或输出力。

液压缸的活塞由流体推动,通过活塞杆连接到被控对象,将控制信号转化为机械运动。

5. 当被控对象达到期望状态时,传感器感知到的状态信息与控制阀预设的控制要求相符,控制阀停止调节。

通过以上原理,液压伺服系统实现了对机械运动的精确控制。

其优点包括高承载能力、动态响应快、可靠性高、结构简单等。

在工业自动化领域广泛应用,例如数控机床、起重设备、注塑机等。

液压控制系统

液压控制系统
液压控制系统 Hydraulic Control System
1-1 液压控制定义
液压伺服控制
液压伺服控制系统是以液压动力元件作驱动装置所组 成的反馈控制系统。在这种系统中,输出量(位移、速度、 力等)能够自动地、快速而准确地复现输入量的变化规律。 同时。还对输入信号进行功率放大,因此也是一个功率放 大装置。
泵控式电液速度控制系统的工作原理方块图
反馈之形式
输入讯号与输出讯号关系
液压伺服位置控制系统
液压伺服速度控制系统
液压伺服速度控制系统
微机液压伺服控制系统
液压伺服系统组成
• • • • • •
输入元件 反馈测量元件 比较元件 放大转换元件 执行元件 控制对象
伺服控制应用实例
图1.15 液压伺服控制之车床靠模加工系统
二、按被控物理量的名称分类 位置伺服控制系统、速度伺服控制系统、其它物 理量的控制系统。 三、按液压动力元件的控制方式或液压控制元件的形 式分类 节流式控制(阀控式)系统:阀控液压缸系统与阀 控液压马达系统 容积式控制系统:伺服变量泵系统与伺服变量马 达系统。 四、按信号传递介质的形式分类 机械液压伺服系统、电气液压伺服系统与气动 液压伺服系统等。
.可多方用于不同控制系统。 .以小能量的输入指令经放大后而得到 大的输出。 .是一种具有反馈(Feed Back)控制。 .可控制受控系统的动作、速度或出力。 .对目标值可作广范的变化。
开回路与闭回路控制
传统之开回路液压控制系统
传统点到点闭回路液压控制系统
闭回路液压伺服机构
图是泵控式电液速度控制系统的原理图。该 系统的液压动力元件由变量泵和液压马达组 成,变量泵既是液压能源又是液压控制元件。
滑阀是转换放大元件,它将输入的机械信号(阀芯位 移)转换成液压信号(流量、压力)输出,并加以功率放 大。液压缸是执行元件,输入是压力油的流量,输出 是运动速度(或位移)。滑阀阀体与液压缸体刚性连结 在一起,构成反馈回路。因此,这是个闭环控制系统 。

液压伺服控制系统

液压伺服控制系统
假设节流阀开口量由人来控制,当液压缸运动 速度由于某种原因升高,人通过观察液压缸测量装 置所测量的实际速度,判断出实际速度高于系统所 要求的运动速度,人会通过减小节流阀开口量的方 法,逐步降低液压缸活塞杆的运动速度,即减小实 际速度与所要求速度的差值(偏差),从而使液压 缸以所要求的运动速度运行。
当液压缸运动速度降低时,调节过程相反。
1.2 伺服阀
1.2.1液压伺服阀
1.滑阀 根据滑阀的工作边数不同,有单边滑阀、双边滑阀和四边滑阀。
其中,四边滑阀有四个可控节流口,控制性能最好;双边滑阀有两 个可控节流口,控制性能一般;单边滑阀有一个可控节流口,控制 性能最差。四边滑阀性能虽好,但结构工艺复杂,生产成本较高; 单边滑阀容易加工,生产成本较低。
图10.6-10.8分别为单边滑阀,双边滑阀和四边滑阀控制液压 缸的原理图。
四边滑阀在平衡状态下,根据初始开口量的不同,有负开口 (图10.9(a))、零开口(图10.9(b))和正开口(图10.9 (c))之分。
2.喷嘴挡板阀 如图1.10所示为双喷嘴挡板阀由两个单喷嘴挡板阀组成,可
以控制双作用液压缸。它由挡板、左右喷嘴、固定节流孔组成。 挡板与左右喷嘴的环形面积形成两个可变节流孔,分别为δ1和δ2, 挡板绕轴旋转,可以改变两个可变节流孔的大小。挡板处于图中 所示位置时,即δ1=δ2。此时两节流口的节流阻力相同,使左右 喷嘴的压力相同,即p1= p2,液压缸两腔受力平衡,保持原来位 置不动。
3
1.1.3 液压伺服控制系统的分类
1.按系统输入信号的变化规律分类 液压伺服控制系统按输入信号的变化规律不同可分为:定值控
制系统、程序控制系统和伺服控制系统。 2.按被控物理量的名称分类 按被控物理量的名称不同,可分为:位置伺服控制系统、速度

液压伺服系统稳定性分析与控制策略研究

液压伺服系统稳定性分析与控制策略研究

液压伺服系统稳定性分析与控制策略研究一、引言液压伺服系统作为一种广泛应用于工程、机械等领域的控制系统,在实现精确运动控制方面具有重要意义。

然而,由于复杂的动力学特性和非线性特点,液压伺服系统在运行过程中常常面临稳定性问题。

本文将探讨液压伺服系统的稳定性分析方法以及相应的控制策略研究。

二、液压伺服系统的动力学特性分析液压伺服系统由液压执行器、控制阀和传感器等组成,它的动力学特性包括惯性、弹性、摩擦等因素的影响。

针对这些因素,可以使用数学模型进行系统的动力学分析。

1. 惯性分析液压伺服系统的惯性是指系统中涉及质量和惯性力的动力学特性。

惯性对系统的稳定性有重要影响。

在分析液压伺服系统的稳定性时,需要考虑液压执行器的质量、运动状态以及液体的压力和流动等因素。

2. 弹性分析液压伺服系统的弹性是指系统中涉及弹性元件(如弹簧、缸盖等)的动力学特性。

弹性会引起系统中的振动和共振现象,从而影响系统的稳定性。

在进行稳定性分析时,需要考虑液压执行器和控制阀中的弹性元件影响。

3. 摩擦分析液压伺服系统中的摩擦是指系统中涉及的摩擦力和摩擦力矩等动力学特性。

摩擦会导致系统中的能量损失和运动不平稳现象,对系统的稳定性影响显著。

因此,在稳定性分析中,需要考虑液压执行器和控制阀中的摩擦因素。

三、液压伺服系统的稳定性分析方法液压伺服系统的稳定性分析方法主要包括传递函数法、状态空间法和频域法。

这些方法可以用来分析系统的稳定性,并得到系统稳定的条件和边界。

1. 传递函数法传递函数法是一种通过建立系统的传递函数模型来进行稳定性分析的方法。

通过分析传递函数的特征根和极点位置,可以评估系统的稳定性。

传递函数法可以用于分析一阶、二阶以及高阶液压伺服系统的稳定性。

2. 状态空间法状态空间法是一种基于状态方程的分析方法,它可以更全面地描述液压伺服系统的动力学特性和稳定性。

通过建立系统的状态空间模型,可以分析系统的可控性、可观测性以及稳定性等问题。

液压伺服控制笔记

液压伺服控制笔记

液压伺服控制笔记【最新版】目录一、液压伺服控制的概述二、液压伺服控制的原理三、液压伺服控制的组成部件四、液压伺服控制的应用实例五、液压伺服控制的优点与局限性正文一、液压伺服控制的概述液压伺服控制是一种以液压作为动力来源,通过电气信号来实现对液压执行元件运动速度、位置和力的控制的技术。

它广泛应用于各种工业设备、机床和自动化生产线等领域,以实现高精度、高速度和高效率的生产过程。

二、液压伺服控制的原理液压伺服控制的原理主要基于液压传动与电气信号的结合。

通过电气信号的变化,调节液压油的流量、压力和流向,从而实现对液压执行元件的运动速度、位置和力的控制。

其控制过程主要分为以下几个步骤:1.根据控制需求,发出电气信号;2.电气信号经过控制器处理,转换为液压系统的控制信号;3.控制信号作用在液压元件上,改变液压油的流量、压力和流向;4.液压油的变化使得液压执行元件实现预期的运动速度、位置和力。

三、液压伺服控制的组成部件液压伺服控制系统主要由以下几个部分组成:1.控制器:负责接收电气信号,并转换为液压系统的控制信号;2.伺服阀:负责根据控制信号,调节液压油的流量、压力和流向;3.液压油缸或马达:负责将液压油的能量转换为机械能,实现对执行元件的运动控制;4.传感器:负责检测液压执行元件的位置、速度等信息,并将其反馈给控制器;5.执行元件:负责根据液压油的控制,实现预期的运动速度、位置和力。

四、液压伺服控制的应用实例液压伺服控制在各种工业设备、机床和自动化生产线等领域有广泛的应用。

例如,在数控机床上,液压伺服控制可以实现对刀具的精确快速定位,提高加工精度和效率;在自动化生产线上,液压伺服控制可以实现对机器人的精确控制,提高生产过程的自动化程度。

五、液压伺服控制的优点与局限性液压伺服控制的优点主要体现在以下几个方面:1.控制精度高:液压伺服控制系统能够实现微米级的控制精度,满足高精度加工的需求;2.响应速度快:液压伺服控制系统的响应速度较快,能够实现高速、高加速度的运动;3.结构简单:液压伺服控制系统的结构相对简单,易于维护和调试;4.适应性强:液压伺服控制系统能够适应各种恶劣的工作环境,具有较强的抗干扰能力。

伺服控制器与液压控制系统的配合使用方法

伺服控制器与液压控制系统的配合使用方法

伺服控制器与液压控制系统的配合使用方法伺服控制器和液压控制系统是工业自动化领域中常见的两种控制设备,它们在不同的工作环境和场景中有着各自的优势和特点。

为了更好地发挥它们的作用,我们需要合理地配合使用这两种控制设备。

本文将介绍伺服控制器与液压控制系统的配合使用方法,包括选择合适的设备、搭建系统框架、调试和优化等方面。

首先,在配合使用伺服控制器和液压控制系统之前,我们需要了解它们各自的特点和适用范围。

伺服控制器是一种通过位置、速度和力等信号来控制电机运动的设备,它能够实现精准的运动控制和位置定位。

而液压控制系统则是通过控制液压执行器的液压压力和流量来实现负载的控制和运动。

它具有承载能力强、高速高力等特点。

因此,当工作需要精准位置控制和快速高力运动时,可以考虑使用伺服控制器;而当工作需要大承载能力和高速高力时,可以选择液压控制系统。

选择合适的设备是配合使用伺服控制器和液压控制系统的第一步。

在选择伺服控制器时,需要考虑工作负载的特点和运动要求,确定所需的控制精度、速度和扭矩等参数。

同时,还需考虑电机的型号和功率等因素。

对于液压控制系统,则需要根据工作负载的特点和要求,选择合适的液压执行器、泵和阀等元件。

在选择设备时,可以咨询专业的技术人员或厂家,以确保选择的设备能够满足工作需求。

搭建系统框架是配合使用伺服控制器和液压控制系统的关键步骤。

在搭建系统框架时,需要将伺服控制器与液压控制系统紧密结合,使其能够协同工作。

首先,需要将伺服控制器与电机连接,并设置合适的运动参数和控制模式。

然后,将液压执行器与液压控制系统连接,确保液压控制系统能够正常工作。

最后,通过电气和液压连接,将伺服控制器和液压控制系统整合在一起,形成完整的控制系统。

在搭建系统框架时,需要注意各个部件之间的连接正确可靠,并确保电气和液压系统的安全。

调试和优化是配合使用伺服控制器和液压控制系统的重要环节。

在调试时,首先需要对伺服控制器和液压控制系统进行独立的测试,确保其正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1液压传动系统与液压控制系统的异同:
同:液压控制技术是在液压传动技术的基础上发展起来的(介质相同、元件大部分相同、遵循的物理规律相同、融合了控制理论) 异:①目的不同(传递动力;对运动量进行精确的控制) ②组成不同(5个组成部分、开环;7个组成部分、闭环)
③设计理念不同(以静态参数设计为主;静动态结合,动为主) ④特点不同(有的缺点被放大(对污染的敏感度),有点缺点被消除(传动比))
2液压控制系统的工作原理
3液压控制系统的组成及作用: ①输入元件:(指令元件)给出输入信号(指令信号)加于系统的输入端。

②反馈测量元件:测量系统的输出并转换为反馈信号。

③比较元件:将反馈信号与输入信号进行比较,给出偏差信号。

④放大转换元件(中枢元件):将偏差信号故大、转换成液压信号(流量或压力)。

⑤执行元件:产生调节动作加于控制对象上,实现调节任务。

⑥控制对象:被控制的机器设备或物体,即负载。

⑦液压能源装置:定压源
4液压控制系统的特点 具有负反馈的闭环控制系统
优:(1)液压元件的功率—重量比和力矩-惯量比大 可以组成结构紧凑、体积小、重量轻、加速性好的控制系统。

(2)液压动力元件快速性好,系统响应快。

(3)液压控制系统抗负载的刚度大,即输出位移受负载变化的影响小,定位准确,控制精度高。

缺:(1) 液压元件,特别是精密的液压控制元件(如电液伺服阀)抗污染能力差,对工作油液的清洁度要求高。

(2) 油温变化时对系统的性能有很大的影响。

(3) 当液压元件的密封设计、制造相使用维护不当时.容易引起外漏,造成环境污染。

(4) 液压元件制造精度要求高,成本高。

(5) 液压能源的获得和远距离传输都不如电气系统方便。

22 控制系统的分类:
⑴按系统输入信号的变化规律:定值,程序,伺服(随动),比例; ⑵按被控物理量的名称:位置,速度,力;
⑶按液压动力元件的控制方式或液压控制元件的形式:节流式(阀控),容积式(变量泵控或变量马达控),阀控系统根据液压能源型式的不同可分为恒压控制系统和恒流控制系统; ⑷按信号传递的介质的形式:机械,电液,气动。

5液压放大元件的功能(液压放大元件考了定义) 也称液压放大器,是一种以机械运动控制流体动力的元件。

将输入的机械信号(位移或转角)转换为液压信号(流量,压力)输出,并进行功率放大
6液压放大元件分为:滑阀,喷嘴挡板阀和射流管阀等 7滑阀
⑴结构分类及其特点
通道数(4、3、2)工作边数(4、2、1)凸肩数(2、3、4)预开口型式(+、0、-) ⑵滑阀的P-Q 特性方程 ⑶滑阀的静态特性曲线
流量特性曲线 压力特性曲线 压力-流量特性曲线
⑷滑阀的三个阀系数
①流量增益:定义为 ,是流量特性曲线在某一点的切线斜率,表示负载压降一定时,阀单位输入位移所引起的负载流量变化的大小,其值越大,阀对负载流量的控制就越灵敏。

直接影响系统的开环增益,对系统的稳定性,响应特性,稳态误差有直接影响。

②流量-压力系数:定义为 ,是压力-流量曲线的切线斜率冠以负号,流量-压力系数表示阀开度一定时,负载压降所引起的负载流量变化。

K 值小,阀抵抗负载变化的能力大,即阀的刚度大。

直接影响阀空执行元件的阻尼比和速度刚度。

③压力增益:定义为 ,是压力特性曲线的切线斜率,通常压力增益是指q =0时阀单位输入位移所引起的负载压力变化的大小。

此值大,阀对负载压力的控制灵敏度高。

表示阀控执行元件组合启动大惯量或大摩擦力负载的能力。

8三种液压放大元件的性能特点及适用场合比较 圆柱滑阀 双喷嘴挡板阀 射流管阀
①工作原理:前两者流量特性,后者能量转换和守恒定理; ②输入量:阀芯位移,挡板位移,射流管摆角; ③输出量:负载流量和压力,皆为负载压力 ④运动惯量:滑阀>射流管阀>双; ⑤响应速度:双>射流管阀>滑阀; ⑥功放系数:滑阀>射流管阀>双; ⑦抗污染能力:射流管阀>双>滑阀; ⑧适用场合:
9液压动力元件的基本概念及其分类
液压动力元件(或称液压动力机构)是由液压放大元件(液压比控制元件)、液压执行元件以及负载组成。

四种基本型式的液压动力元件:阀控液压缸、阀控液压马达、泵控液压缸、泵控液压马达。

10阀控液压缸
⑴模型组成:比例环节,积分换节,二阶振荡环节
⑵阀控缸动力机构主要性能参数为阀控液压缸的增益Kq/Ap 、液压固有频率 、液压阻尼比
①动力机构的增益速度放大系数Kq/Ap :直接影响系统的稳定性、响应速度和精度。

提高增益可以提高系统的响应速度和精度,但使系统的稳定性变坏。

②液压固有频率 表示液压动力元件的响应速度。

③液压阻尼比表示系统的相对稳定性。

⑶提高“阀控缸”动力机构的液压固有频率 ①提高油液的体积弹性模量 ;(可通过提高供油压力来实现)②增大液压缸活塞面积③减小总压缩容积 ,主要是减小液压缸的无效容积和连接管道的容积
④减小折算到活塞上的总质量
⑷提高阻尼比(因素:总流量-压力系数K ,负载的粘性阻尼洗漱B )①设置旁通泄漏通道②采用正开口阀,正开口阀的K 值大,可以增加阻尼③增加负载的粘性阻尼
11阀控马达动力机构数学模型(化解为最简单) 12泵控马达动力机构数学模型(化解为最简单) 13三种动力机构的性能特点比较
控制元件相同,执行元件不同(阀控缸与阀控马达)时的比较:两者的动态特性完全相同(只需做变量替换,数学模型即完全一致) 控制元件不同,执行元件相同(阀控马达与泵控马达)时的比较:两者的动态特性类似(数学模型结构一致,但参数特征不同) 阀控响应速度高于泵控(80%-90%),但能量损失大(至少三分之一),效率低;泵控工作效率高,最大效益可达90%,适应于大功率,对响应速度要求不高的系统。

14电液伺服阀的组成及个部分功能 ⑴力矩马达(或力马达)即电机转换元件—把输入的电气控制信号转换为力矩或力控制液压放大器运动; ⑵液压放大器(先导级和功率级)即机液转换元件—控制液压能源流向液压执行机构的流量或压力;
⑶反馈机构(平衡机构)--将输出级(功率级)的阀芯位移,或输出流量,或输出压力以位移,力或电信号的形式反馈到第一级或第二级的输入端,也有反馈到力矩马达衔铁组件力矩马达输入端的。

15采用反馈机构是为了使伺服阀的输出流量或输出压力获得与输入电气控制信号成比例的特性。

由于反馈机构的存在,使伺服阀本身成为一个闭环控制系统,提高了伺服阀的控制性能。

16按反馈形式可分为:
滑阀位置反馈 负载流量反馈 负载压力反馈 17典型电液伺服阀的结构及工作原理 ⑴力矩马达
⑵力反馈两级电液伺服阀(闭环)考了工作原理 (不能直接控制负载信号,因为反馈信号不是力,是滑阀的位移) 第一级液压放大器为双喷嘴挡板阀,由永磁动铁式力矩马达控制,第二级液压放大器为四通滑阀,阀芯位移通过反馈杆与衔铁挡板组件相连,构成滑阀位移力反馈回路。

⑶直接反馈两级电液伺服阀(闭环)前置级是带两个固定节流孔的四通阀(双边滑阀),功率级是零开口四边滑阀,功率级阀芯也是前置级的阀套,构成直接位置反馈
⑷弹簧对中型两极(开环)第一级是双喷嘴,第二级是滑阀,阀芯两端各有一根对中弹簧,当有控制电流输入时,对中弹簧力与喷嘴挡板阀输出的也压力相平衡,使阀芯取得一个相应的位移,输出相应流量
18电液伺服阀的性能参数(电液伺服阀考了定义)
⑴静态特性
1、压力-流量特性
2、空载流量特性
流量曲线非常有用,它不仅给出阀的极性、额定空载流量、名义流量增益,而且从中还可以得到阀的线件度、对称度、滞环、分辨率,并揭示阀的零区特性。

3、压力特性:压力特性曲线是输出流量为零(两个负载油门关闭)时,负载压降与输入电流呈回环状的函数曲线。

4、内泄漏特性
5、零漂
⑵动态特性主要是用频率响应和瞬态响应表示。

19电液比例阀的种类:根据用途分为:电液比例压力阀,流量阀,方向阀,复合阀,复合阀的功能与伺服阀类似,可以控制流量和方向,进而控制执行元件的速度。

未经改良的比例阀动特性不如伺服阀:①有死区②不带内部反馈通道,内开环,无法对阀芯位移精确控制。

20电液控制系统的设计
⑴明确设计要求。

⑵拟定控制方案,画出系统图。

⑶静态计算,确定动力元件参数,选择系统的组成元件。

⑷动态计算,确定系统组成元件的动态参数,画出方框图,计算系统的稳定性、快速性和精度。

⑸校验系统的动、静态品质,如需要,对系统进行校正。

(6)伺服油源设计。

设计开始时需要明确以下要求:
①明确被控制的物理量是什么,控制规律是恒值还是随动;②明确负载特性,即负载的类型,大小和负载的运动规律,确定负载的最大位移,最大速度,最大加速度,最大消耗功率及控制范围;③控制精度的要求;④动态品质的要求;⑤明确工作环境;⑥其他要求:如尺寸质量,可靠性,寿命及成本。

21液压伺服系统的油源与普通液压系统相比有哪些不同
⑴液压伺服油源要求是恒压源,可采用定量泵+溢流阀或恒压变量泵两种形式。

⑵液压伺服油源在泵出口油路上要设置精密滤油器。

⑶液压伺服油源需要设置专门的冷却回路,对油液的温度进行控制。

相关文档
最新文档