正弦 余弦 正切二倍角公式及变形升降幂公式(完全版)

合集下载

(完整版)两角和与差的正弦、余弦、正切公式及变形

(完整版)两角和与差的正弦、余弦、正切公式及变形

两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式 (1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))⑥tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α=2tan α1-tan 2α.(2)公式变形①cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×) (6)存在角α,使得sin 2α=2sin α成立.(√) (7)若α+β=π4,则(1+tan α)(1+tan β)=2.(√)(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×) (9)存在实数α,使tan 2α=2tan α.(√) (10)y =1-2cos 2x 的x 无意义.(×)考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:1+cos 20°2sin 20°-sin 10°)5tan 5tan 1(0-; 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°)5cos 5sin 5sin 5cos (0000- =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. (2)化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β. 解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2α·cos 2β=cos 2β-sin 2α·cos 2β-12cos 2α·cos 2β=cos 2β-cos 2β·)2cos 21(sin 2αα+=1+cos 2β2-cos 2β·⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α) =1+cos 2β2-12cos 2β=12.法三:(从“幂”入手,利用降幂公式先降次) 原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12·cos 2α·cos 2β=12.[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+3tan 10°).解:sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π, 所以A +C =2π3,A +C 2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C2 =tan )22(C A +)2tan 2tan 1(CA -+3tan A 2tan C 2 =3)2tan 2tan1(CA -+3tan A 2tan C 2= 3. 考点二 三角函数式的给值求值[例2] (1)(2016·高考全国丙卷)若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15 D.45解析:法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 法二:由tan θ=-13,可得sin θ=±110,因而cos 2θ=1-2sin 2θ=45.答案:D(2)已知tan )4(πα+=12,且-π2<α<0,则)4cos(2sin sin 22πααα-+等于( )A .-255B .-3510C .-31010 D.255 解析:由tan )4(πα+=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故)4cos(2sin sin 22πααα-+=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.答案:A(3)已知α∈)2,0(π,且2sin 2α-sin α·cos α-3cos 2α=0,则12cos 2sin )4sin(+++ααπα=________.解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0, 由于α∈)2,0(π,sin α+cos α≠0, 则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴12cos 2sin )4sin(+++ααπα=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan )6(θπ+的值.解:tan )6(θπ+=tan π6+tan θ1-tan π6tan θ=33-131+33×13=53-613.2.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值. 解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ=2tan 2θ-tan θ-3tan 2θ+1=2×⎝ ⎛⎭⎪⎫-132+13-3⎝ ⎛⎭⎪⎫-132+1=-115.3.已知cos )2(απ-+sin )32(απ-=235,则cos )32(πα+=________.解析:由cos )2(απ-+sin )32(απ-=235,得sin α+sin 2π3cos α-cos 23πsin α=235∴32sin α+32cos α=235, 即3sin )6(πα+=235,∴sin )6(πα+=25,因此cos )32(πα+=1-2sin 2)6(πα+=1-2×2)52(=1725.答案:1725考点三 已知三角函数式的值求角[例3] (1)已知cos α=17,cos(α-β)=1314,0<β<α<π2,则β=________. 解析:∵cos α=17,0<α<π2.∴sin α=437.又cos(α-β)=1314,且0<β<α<π2.∴0<α-β<π2,则sin(α-β)=3314. 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=497×14=12,由于0<β<π2,所以β=π3.答案:π3(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2)31(1312-⨯=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-34π. 答案:-34π[方法引航] 1.解决给值求角问题应遵循的原则 (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是)2,0(π,选正、余弦皆可;②若角的范围是(0,π),选余弦较好;③若角的范围是)2,2(ππ-,选正弦较好. 2.解给值求角问题的一般步骤 (1)求角的某一个三角函数值. (2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4 解析:选C.∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈)2,23(ππ,∴α+β=7π4. 2.已知tan α=-13,cos β=55,α∈),2(ππ,β∈)2,0(π,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈)2,0(π,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈),2(ππ,β∈)2,0(π,∴π2<α+β<3π2,∴α+β=5π4.[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.[高考真题体验]1.(2016·高考全国甲卷)若cos )4(απ-=35,则sin 2α=( )A.725B.15 C .-15 D .-725解析:选D.因为cos )4(απ-=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D. 2.(2016·高考全国丙卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C .1 D.1625 解析:选A.法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35cos α=45或⎩⎪⎨⎪⎧sin α=-35cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. 3.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.12解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.4.(2014·高考课标全国卷Ⅰ)设α∈)2,0(π,β∈)2,0(π,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选 B.由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin )2(απ-,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-16.(2016·高考四川卷)cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2π8-sin 2π8=cos )82(π⨯=22.答案:22课时规范训练 A 组 基础演练1.tan 15°+1tan 15°=( )A .2B .2+3C .4 D.433 解析:选C.法一:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =1cos 15°sin 15°=2sin 30°=4.法二:tan 15°+1tan 15°=1-cos 30°sin 30°+1sin 30°1+cos 30°=1-cos 30°sin 30°+1+cos 30°sin 30°=2sin 30°=4.2.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32 C. 3 D. 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.3.已知θ∈(0,π),且sin )4(πθ-=210,则tan 2θ=( ) A.43 B.34 C .-247 D.247解析:选C.由sin )4(πθ-=210,得22(sin θ-cos θ)=210,所以sin θ-cos θ=15. 解方程组⎩⎪⎨⎪⎧ sin θ-cos θ=15sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247,故选C. 4.若θ∈]2,4[ππ,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34解析:选D.由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=2)473(+,又θ∈]2,4[ππ,∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34.5.已知sin 2(α+γ)=n sin 2β,则tan (α+β+γ)tan (α-β+γ)的值为( ) A.n -1n +1 B.n n +1 C.n n -1 D.n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以tan (α+β+γ)tan (α-β+γ)=n +1n -1,故选D. 6.若sin )2(θπ+=35,则cos 2θ=________. 解析:∵sin )2(θπ+=cos θ=35,∴cos 2θ=2cos 2θ-1=2×2)53(-1=-725. 答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈),2(ππ,则tan 2α的值是________. 解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈),2(ππ,sin α≠0,∴cos α=-12.又∵α∈),2(ππ,∴α=23π, ∴tan 2α=tan 43π=tan )3(ππ+=tan π3= 3. 答案: 39.化简:(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π). 解:由θ∈(0,π),得0<θ2<π2,∴cos θ2>0, ∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ))2cos 2(sin θθ-=)2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+ =2cos θ2)2cos 2(sin 22θθ- =-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ. 10.已知α∈),2(ππ,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈),2(ππ,求cos β的值. 解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×)53(-=-43+310. B 组 能力突破 1.已知sin α+cos α=22,则1-2sin 2)4(απ-=( )A.12B.32 C .-12 D .-32解析:选C.由sin α+cos α=22,得1+2sin αcos α=12,∴sin 2α=-12.因此1-2sin 2)4(απ-=cos2)4(απ-=sin 2α=-12. 2.已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f )12(π的值为( )A .43 B.833 C .4 D .8解析:选D.∵f (x )=2)sin cos cos sin (2)sin cos (tan xx x x x x x +⨯=+=2×1cos x ·sin x =4sin 2x , ∴f )12(π=4sin π6=8. 3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×)1010(-=22. ∴β=π4.4.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.解析:tan α+tan β=lg(10a )+lg 1a =lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β, ∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或1.答案:110或15.已知tan(π+α)=-13,tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-=sin 2α+4cos2α10cos2α-sin 2α=2sin αcos α+4cos2α10cos2α-2sin αcos α=2cosα(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎪⎫-13=516.(2)tan β=tan[(α+β)-α]=tan(α+β)-tan α1+tan(α+β)tan α=516+131-516×13=3143.。

常用三角函数公式及口诀

常用三角函数公式及口诀

常用三角函数公式及口诀常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。

6.1.3二倍角的正弦、余弦、正切公式

6.1.3二倍角的正弦、余弦、正切公式

C.2
B. −

C.−

D.

A.
B.
C.
D.


例:在△ABC中, = , = ,求( + )的值.




解法一:在△ABC中, 由 = , < < ,得 = − = .

∴ = ( + ) = −
综上:二倍角的正弦、余弦、正切公式如下表
三角函数
正弦
公式
公式的逆用
简记
=
① =

② =

③ =

∴ ( + ) = [( + )] = −(+) =
课后作业:
1.求下列各式的值:


(1)




(2) −


(3)







2.求下列各式的值:
(1)







3.已知( − ) =
(1)若 = 求x的值




.
(2)设函数() = ∙ ,求()的最大值.








11.已知( − ) = ,且是锐角,则( − ) 、 ( − ) 、 ( − )分别等于多少?






12.若( + ) = ( < < ),则 等于多少?
3.升幂和降幂公式:

三角函数及变形公式

三角函数及变形公式

三角函数及变形公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限) ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( )A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247. 所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115, 从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

二倍角的正弦、余弦、正切公式

二倍角的正弦、余弦、正切公式

归纳小结
(1)二倍角公式是和角公式的特例,体现了 二倍角公式是和角公式的特例, 二倍角公式是和角公式的特例 将一般化归为特殊的基本数学思想方法。 将一般化归为特殊的基本数学思想方法。 (2)二倍角公式与和角、差角公式一样,反 二倍角公式与和角、 二倍角公式与和角 差角公式一样, 映的都是如何用单角α的三角函数值表示 映的都是如何用单角 的三角函数值表示 复角( 的三角函数值, 复角(和、差、倍)的三角函数值,结合 前面学习到的同角三角函数关系式和诱导 公式可以解决三角函数中有关的求值、 公式可以解决三角函数中有关的求值、化 简和证明问题。 简和证明问题。
化简 sin 50 (1 + 3 tan10 )
o o
cos10o + 3 sin 10o o 解: 原式 = sin 50 ⋅ o cos10 o o 2 sin 40 = sin 50 ⋅ o cos10 o o 2 sin 40 = cos 40 ⋅ o cos10 o sin 80 = =1 o cos10
[例2]若270°<α<360°, 化简:
1 1 + 2 2
求值
1 1 + cos 2α 2 2
(1)cos80°cos40°cos20° (2)sin10°sin30°sin50°sin70°
例3
1+sin2 −cos2 θ θ 求 : 证 = tanθ 1+sin2 +cos2 θ θ
2
1 + 2 sin θ cos θ − (1 − 2 sin θ ) 证明: 证明:左边 = 2 1 + 2 sin θ cos θ + ( 2 cos θ − 1)
同样对于正切也有这样的结论

高中数学复习:两角和与差的正弦、余弦和正切公式及二倍角公式

高中数学复习:两角和与差的正弦、余弦和正切公式及二倍角公式

1 cos 2α
1 cos 2α
(2)cos2α=⑧
2
,sin2α=⑨
2
;
(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
教材研读 栏目索引
知识拓展
(1)降幂公式:cos2α=1 cos 2α ,sin2α=1 cos 2α .
2
2
(2)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.
(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).
(4)辅助角公式:asin x+bcos x= a2 b2 sin(x+φ)
其中sin
φ
b ,cos φ a2 b2
a a2 b2
.
教材研读 栏目索引
教材研读 栏目索引
1.判断正误(正确的打“√”,错误的打“✕”) (1)存在实数α,β使等式sin(α+β)=sin α+sin β成立. ( √ ) (2)在锐角△ABC中,sin Asin B和cos Acos B的大小不确定. ( ✕ )
1.两角和与差的正弦、余弦、正切公式
sin(α±β)=① sin αcos β±cos αsin β , cos(α±β)=② cos αcos β∓sin αsin β ,
tan α tan β
tan(α±β)=③ 1 tan α tan β .
教材研读 栏目索引
2.二倍角的正弦、余弦、正切公式
tan α tan β
(3)公式tan(α+β)=1 tan α tan β 可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立. ( ✕ ) (4)存在实数α,使tan 2α=2tan α. ( √ ) (5)两角和与差的正弦、余弦公式中的角α,β是任意的. ( √ ) 答案 (1)√ (2)✕ (3)✕ (4)√ (5)√

(完整版)完整三角函数公式表

(完整版)完整三角函数公式表

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=c otαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)2tan(α/2)tanα-tanβtan(α-β)=——————1+tanα ·tanβ tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=—-[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x =2 arc tanx = cos (n arc cos x) =三角形中三角函数基本定理Tag:三角函数点击: 1522 【正弦定理】式中R为ABC的外接圆半径(图1.3).【余弦定理】【勾股定理】在直角三角形(C为直角)中,勾方加股方等于弦方(图1.4),即勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.【正切定理】或【半角与边长的关系公式】式中,r为ABC的内切圆半径,且式中S为ABC的面积.。

三角恒等变换知识点总结

三角恒等变换知识点总结

第三章 三角恒等变换一、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-. 3、⇒(后两个不用判断符号,更加好用)4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

()sin cos αααϕA +B =+,其中tan ϕB=A. 5.(1)积化和差公式sin α·cos β=21[sin(α+β)+sin(α-β)] cos α·sin β=21[sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)] sin α·sin β= -21[cos(α+β)-cos(α-β)](2)和差化积公式 sin α+sin β=2cos2sin2βαβα-+sin α-sin β=2sin2cos2βαβα-+ααααααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos :+-±=-±=+±=2tan 12tan 1 cos ;2tan 12tan2sin :222αααααα万能公式+-=+=cos α+cos β=2cos2cos2βαβα-+ cos α-cos β= -2sin2sin2βαβα-+tan α+ cot α=ααα2sin 2cos sin 1=⋅ tan α- cot α= -2cot2α 1+cos α=2cos 22α 1-cos α=2sin22α1±sin α=(2cos2sinαα±)26。

10、微专题:二倍角公式及其应用-讲义-2021-2022学年高中数学沪教版(2020)必修第二册

10、微专题:二倍角公式及其应用-讲义-2021-2022学年高中数学沪教版(2020)必修第二册

【学生版】微专题:二倍角公式及其应用二倍角的正弦、余弦、正切公式三角比 公式简记 正弦 sin2sin cos2ααα=2S α 余弦 222cos2cos sin 2cos 1αααα=-=-=212sin α- 2C α正切22tan tan 21tan ααα=-2T α二倍角公式变形(1)升降幂公式:cos 2α=1+cos 2α2;s in 2α=1-cos 2α2;sin αcos α=12sin 2α.(2)配方变形公式:1+cos 2α=2cos 2α;1-cos 2α=2sin 2α;1±2sin αcos α=(sin α±cos α)2;【典例】 题型1、给角求值例1、求值:cos 20°cos 40°cos 80° 【提示】; 【答案】; 【解析】;【说明】 题型2、给值求值例2、(1)已知sin ⎝⎛⎭⎫π4-x =35,则sin 2x 的值等于_______ 【提示】; 【答案】;【解析】方法1、方法2、例2、(2)若sin θ+3cos θ=0,则cos 2θ+sin 2θ=( ) A .2 B .-2 C. 12D .-12【提示】; 【答案】; 【解析】 【说明】题型3、化简与证明例3、(1)化简:sin 2x 2cos x ⎝⎛⎭⎫1+tan x tan x 2; (2)求证:3-4cos 2A +cos 4A3+4cos 2A +cos 4A =tan 4A .题型4、二倍角公式推导思路的拓展┄┄三倍角公式例4、(1)试用sin θ 表示sin3θ;(2)试用cos θ 表示cos3θ;(2)试用sin θ 表示sin3θ;【归纳】1、二倍角的正弦、余弦、正切公式三角比 公式简记 正弦 sin 2α=2sin_α_cos_αS 2α 余弦 cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α C 2α 正切tan 2α=2tan α1-tan 2αT 2α【理解】(1)二倍角的“广义理解”:二倍角是相对的,如4α是2α的二倍角,α是α2的二倍角等,“倍”是描述两个数量之间关系的,这里蕴含着换元思想;(2)对于S 2α和C 2α,α∈R ,但是在使用T 2α时,要保证分母1-tan 2α≠0且tan α有意义,即α≠π4+k π且α≠-π4+k π且α≠π2+k π(k ∈Z).当α=π4+k π及α=-π4+k π(k ∈Z)时,tan 2α的值不存在;当α=π2+k π(k ∈Z)时,tanα的值不存在,故不能用二倍角公式求tan 2α,此时可以利用诱导公式直接求出tan 2α=tan(π+2k π)=0. (3)二倍角的余弦公式的三种形式容易混淆,尤其是后两种.若对后两种形式不确定,可以记住第一种,再结合同角三角函数的平方关系推导出后两种.(4)一般情况下,sin 2α≠2sin α,cos 2α≠2cos α,tan 2α≠2tan α.(5)倍角公式的逆用能开拓思路,我们要熟悉这组公式的逆用形式.例如,sin 3αcos 3α=12sin 6α.(6)和角公式与二倍角公式之间的联系:【即时练习】1、若cos ⎝⎛⎭⎫π4-α=35,则sin 2α=( ) A.725 B. 15 C .-15 D .-7252、若sin α2=33,则cos α=( )A .-23B .-13 C.13 D.233、若1+tan α1-tan α=2 012,则1cos 2α+tan 2α=________.4、等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为________.5、设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 6、sin ⎝⎛⎭⎫π4-x =513,0<x <π4,则cos 2xcos ⎝⎛⎭⎫π4+x 的值为 . 7、sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x =16,x ∈⎝⎛⎭⎫π2,π,则tan 4x 的值为 . 8、已知sin ⎝⎛⎭⎫θ-π12=13,则sin ⎝⎛⎭⎫2θ+π3= 9、已知sin α+cos α=13,且0<α<π,求:sin2α,cos 2α,tan 2α的值.10、求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ.【教师版】微专题:二倍角公式及其应用二倍角的正弦、余弦、正切公式三角比 公式简记 正弦 sin2sin cos2ααα=2S α 余弦 222cos2cos sin 2cos 1αααα=-=-=212sin α- 2C α 正切22tan tan 21tan ααα=-2T α二倍角公式变形(1)升降幂公式:cos 2α=1+cos 2α2;sin 2α=1-cos 2α2;sin αcos α=12sin 2α.(2)配方变形公式:1+cos 2α=2cos 2α;1-cos 2α=2sin 2α;1±2sin αcos α=(sin α±cos α)2;【典例】 题型1、给角求值例1、求值:cos 20°cos 40°cos 80°【提示】注意:角“20°、40°、80°”成“二倍”关系; 【答案】18;【解析】原式=2sin 20°cos 20°cos 40°cos 80°2sin 20°=2sin 40°cos 40°cos 80°4sin 20°=2sin 80°cos 80°8sin 20°=sin 160°8sin 20°=sin 20°8sin 20°=18;【说明】本题属于:给角求值问题;对于给角求值问题,一般有两类:(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角;(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式; 题型2、给值求值例2、(1)已知sin ⎝⎛⎭⎫π4-x =35,则sin 2x 的值等于_______ 【提示】注意:角“⎝⎛⎭⎫π4-x ”与角“2x ”之间关系; 【答案】725;【解析】方法1、因为sin ⎝⎛⎭⎫π4-x =35,所以cos ⎝⎛⎭⎫π2-2x =1-2sin 2⎝⎛⎭⎫π4-x =1-2×⎝⎛⎭⎫352=725, 所以sin 2x =cos ⎝⎛⎭⎫π2-2x =725. 方法2、由sin ⎝⎛⎭⎫π4-x =35,得22(s in x -cos x )=-35,所以sin x -cos x =-325,两边平方得1-sin 2x =1825, 所以sin 2x =725;例2、(2)若sin θ+3cos θ=0,则cos 2θ+sin 2θ=( )A .2B .-2 C. 12D .-12【提示】注意:角“θ”与“2θ”之间二倍关系,以及“齐次”式的特点; 【答案】D ;【解析】由sin θ+3cos θ=0得tan θ=-3,所以cos 2θ+sin 2θ=cos 2θ+sin 2θcos 2θ+sin 2θ=cos 2θ+2sin θcos θcos 2θ+sin 2θ=cos 2θcos 2θ+2sin θcos θcos 2θcos 2θcos 2θ+sin 2θcos 2θ=1+2tan θ1+tan 2θ=-510=-12,故选D ; 【说明】本题属于:给值求值问题;解决给值求值问题的方法:(1)给值求值问题,注意寻找已知式与未知式之间的联系,有两个观察方向:①有方向地将已知式或未知式化简,使关系明朗化;②寻找角之间的关系,看是否适合相关公式的使用,注意常见角的变换和角之间的二倍关系. (2)注意几种公式的灵活应用,如:①sin 2x =cos ⎝⎛⎭⎫π2-2x =cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2cos 2π4-x -1=1-2sin 2⎝⎛⎭⎫π4-x . ②cos 2x =sin ⎝⎛⎭⎫π2-2x =sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2sin π4-x ·cos ⎝⎛⎭⎫π4-x . 题型3、化简与证明例3、(1)化简:sin 2x 2cos x ⎝⎛⎭⎫1+tan x tan x 2; (2)求证:3-4cos 2A +cos 4A3+4cos 2A +cos 4A =tan 4A .【提示】注意:灵活运用与应用公式的变形;【解析】(1)sin 2x 2cos x ⎝⎛⎭⎫1+tan x tan x 2=sin 2x 2cos x ⎝ ⎛⎭⎪⎫1+sin x sinx2cos x cosx 2=2sin x cos x2cos x· cos x cos x 2+sin x sin x 2cos x cos x 2=sin x ·cosx2cos x cosx 2=tan x ;(2)证明:因为左边=3-4cos 2A +2cos 22A -13+4cos 2A +2cos 22A -1=⎝ ⎛⎭⎪⎫1-cos 2A 1+cos 2A 2=⎝⎛⎭⎫2sin 2A 2cos 2A 2=(tan 2A )2 =tan 4A =右边,所以3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4A ;【说明】任意角的三角比的化简方法:三角比的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”“弦化切”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”“遇到根式一般要升幂”等. 题型4、二倍角公式推导思路的拓展┄┄三倍角公式例4、(1)试用sin θ 表示sin3θ;(2)试用cos θ 表示cos3θ;(2)试用sin θ 表示sin3θ; 【解析】(1)3sin33sin 4sin θθθ=-;(2)3cos34cos 3cos θθθ=-;【说明】理解二倍角公式的推导思路;并从推导过程进行拓展(问题:如何记忆三倍角公式) 【归纳】1、二倍角的正弦、余弦、正切公式三角比 公式简记 正弦 sin 2α=2sin_α_cos_αS 2α 余弦 cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α C 2α 正切tan 2α=2tan α1-tan 2αT 2α【理解】(1)二倍角的“广义理解”:二倍角是相对的,如4α是2α的二倍角,α是α2的二倍角等,“倍”是描述两个数量之间关系的,这里蕴含着换元思想;(2)对于S 2α和C 2α,α∈R ,但是在使用T 2α时,要保证分母1-tan 2α≠0且tan α有意义,即α≠π4+k π且α≠-π4+k π且α≠π2+k π(k ∈Z).当α=π4+k π及α=-π4+k π(k ∈Z)时,tan 2α的值不存在;当α=π2+k π(k ∈Z)时,tan α的值不存在,故不能用二倍角公式求tan 2α,此时可以利用诱导公式直接求出tan 2α=tan(π+2k π)=0. (3)二倍角的余弦公式的三种形式容易混淆,尤其是后两种.若对后两种形式不确定,可以记住第一种,再结合同角三角函数的平方关系推导出后两种.(4)一般情况下,sin 2α≠2sin α,cos 2α≠2cos α,tan 2α≠2tan α.(5)倍角公式的逆用能开拓思路,我们要熟悉这组公式的逆用形式.例如,sin 3αcos 3α=12sin 6α.(6)和角公式与二倍角公式之间的联系:【即时练习】1、若cos ⎝⎛⎭⎫π4-α=35,则sin 2α=( ) A.725 B. 15 C .-15 D .-725【答案】D ;【解析】因为cos ⎝⎛⎭⎫π4-α=35,所以sin 2α=cos ⎝⎛⎭⎫π2-2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α =2cos 2⎝⎛⎭⎫π4-α-1=2×925-1=-725. 2、若sin α2=33,则cos α=( )A .-23B .-13 C.13 D.23【答案】C ;【解析】因为sin α2=33,所以cos α=1-2sin 2 α2=1-2×(33)2=13.3、若1+tan α1-tan α=2 012,则1cos 2α+tan 2α=________.【答案】 2 012;【解析】1cos 2α+tan 2α=1cos 2α+sin 2αcos 2α=1+sin 2αcos 2α=(cos α+sin α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 0124、等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为________.【答案】459【解析】设A ,B 分别是等腰△ABC 的顶角和底角,则cos B =23,sin B =1-cos 2B =1-⎝⎛⎭⎫232=53.所以sin A =sin(180°-2B )=sin 2B =2sin B cos B =2×53×23=459. 5、设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 【答案】17250;【解析】∵α为锐角,∴π6<α+π6<2π3.∵cos ⎝⎛⎭⎫α+π6=45,∴sin ⎝⎛⎭⎫α+π6=35,∴sin ⎝⎛⎭⎫2α+π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2×35×45=2425, cos ⎝⎛⎭⎫2α+π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2cos 2⎝⎛⎭⎫α+π6-1=2×⎝⎛⎭⎫452-1=725, ∴sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π4=sin ⎝⎛⎭⎫2α+π3cos π4-cos ⎝⎛⎭⎫2α+π3sin π4=22×⎝⎛⎭⎫2425-725=22×1725=17250. 6、sin ⎝⎛⎭⎫π4-x =513,0<x <π4,则cos 2x cos ⎝⎛⎭⎫π4+x 的值为 .【答案】2413;【解析】0<x <π4,∴π4-x ∈⎝⎛⎭⎫0,π4.又∵sin ⎝⎛⎭⎫π4-x =513,∴cos ⎝⎛⎭⎫π4-x =1213. 又cos 2x =sin ⎝⎛⎭⎫π2-2x =2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x =2×513×1213=120169,cos ⎝⎛⎭⎫π4+x =sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+x =sin ⎝⎛⎭⎫π4-x =513,∴原式=120169513=2413.7、sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x =16,x ∈⎝⎛⎭⎫π2,π,则tan 4x 的值为 . 【答案】427;【解析】∵sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x =sin ⎝⎛⎭⎫π4+x sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+x =sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x =12sin ⎝⎛⎭⎫π2+2x =12cos 2x =16,∴cos 2x =13.∵x ∈⎝⎛⎭⎫π2,π,∴2x ∈(π,2π),∴sin 2x =-223. ∴tan 2x =sin 2x cos 2x =-2 2.∴tan 4x =2tan 2x1-tan 22x =-421-8=427.8、已知sin ⎝⎛⎭⎫θ-π12=13,则sin ⎝⎛⎭⎫2θ+π3= 【答案】79;【解析】sin ⎝⎛⎭⎫2θ+π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ-π12+π2=cos ⎝⎛⎭⎫2θ-π6=1-2sin 2⎝⎛⎭⎫θ-π12=79. 9、已知sin α+cos α=13,且0<α<π,求:sin2α,cos 2α,tan 2α的值.【解析】方法1、由sin α+cos α=13,得(sin α+cos α)2=19,即1+2sin αcos α=19,∴sin 2α=2sin αcos α=-89.∵sin αcos α<0,0<α<π,∴sin α>0,cos α<0.又sin α+cos α=13>0,∴sin α>|cos α|.∴cos 2α=cos 2α-sin 2α<0.∴cos 2α=-1-sin 22α=-179.ta n 2α=sin 2αcos 2α=81717. 方法2、:∵sin α+cos α=13,∴(sin α+cos α)2=19,即1+2sin αc os α=19,∴sin 2α=2sin αcos α=-89.∵0<α<π,∴sin α>0.又sin αcos α=-49<0,∴cos α<0.∴sin α-cos α>0.∴sin α-cos α=(sin α-cos α)2 =1-sin 2α=173. ∴cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=13×(-173)=-179.∴tan 2α=sin 2αcos 2α=81717. 10、求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ.【证明】原式变形为1+sin 4θ-cos 4θ=tan 2θ(1+sin 4θ+cos 4θ),(*) 而(*)式右边=tan 2θ(1+cos 4θ+sin 4θ) =sin 2θcos 2θ(2cos 22θ+2sin 2θcos 2θ)=2sin 2θcos 2θ+2sin 22θ=sin 4θ+1-cos 4θ=左边,∴(*)式成立,即原式得证.。

5.5.1 第3课时 二倍角的正弦、余弦、正切公式(课件)

5.5.1 第3课时 二倍角的正弦、余弦、正切公式(课件)

经典例题
题型二 条件求值
例 2(1)已知 tan α=2,则 tan 2α=________;
(2)已知 0<α<π2,cosπ6+α=13,则 sin3π+2α=________.
解:(1)∵tan α=2, ∴tan 2α=1-2tatnanα2α =12-×222=-43.
(2)∵0<α<π2,∴π6<α+π6<23π.
=cos2( +α)=2cos2( +α)-1=2×( )2-1=- .
经典例题
题型二 条件求值
跟踪训练2 (2)设 α 为锐角,若 cosα+π6=45,则 sin2α+1π2的值为________.
(2)∵α 为锐角,∴α+π6∈π6,23π. 又∵cosα+π6=45,∴sinα+π6=35,
公式
简记
正弦 sin2α= 2sinαcosα
S2α
余弦 cos2α= cos2α-sin2α
C2α
正切 tan2α=
2tan α 1-tan2α
T2α
解读:倍角公式中的“倍角”是相对的,对于两个角的比值等于 2 的情况都 成立,如 4α 是 2α 的二倍,α 是α2的二倍等.
自主学习
二.正弦的二倍角公式的变形 1.sin αcos α=12sin 2α; 2.1±sin 2α=(sin α±cos α)2.
- 解析:因为 tanα=- ,所以 tan2α=

=- .
经典例题
题型一 给角求值
例 1 求下列各式的值:
(1)sin2 π-cos2 π;
(2)sin1π2cos1π2;
(3)

(4)cos20°·cos40°·cos80°.

3.1.3 二倍角的正弦、余弦、正切公式

3.1.3 二倍角的正弦、余弦、正切公式

3.13 二倍角的正弦、余弦、正切公式知识点一 二倍角公式的推导sin2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α;cos2α=cos(α+α)=cos αcos α-sin αsin α=cos 2α-sin 2α;tan2α=tan(α+α)=2tan α1-tan 2α(α≠π2+k π,2α≠π2+k π,k ∈Z ). cos2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1;cos2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二 二倍角公式的变形1.公式的逆用2sin αcos α=sin2α, sin αcos α=12sin2α, cos 2α-sin 2α=cos_2α, 2tan α1-tan 2α=tan2α. 2.二倍角公式的重要变形——升幂公式和降幂公式升幂公式 1+cos2α=2cos 2α,1-cos2α=2sin 2α,1+cos α=2cos 2α2,1-cos α=2sin 2α2.降幂公式 cos 2α=1+cos2α2,sin 2α=1-cos2α2.类型一 给角求值对于给角求值问题,一般有两类(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.1.cos 2π12-sin 2π12;2.1-tan 275°tan75°;3. 12-cos 2π84. sin15°sin75°5. cos20°cos40°cos80° 6.cos π7cos 3π7cos 5π77.sin 4π12-cos 4π12 8.3tan π81-tan 2π8类型二 给值求值(1)条件求值问题常有两种解题途径:①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.1.已知cos x =34,则cos2x 等于( )2、若sin α-cos α=13,则sin2α=________.若改为sin α+cos α=13,求sin2α.3、若tan α=34,则cos 2α+2sin2α等于4、若sin(π-α)=13,且π2≤α≤π,则sin2α的值为( )5、已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________.类型三 利用二倍角公式化简证明三角函数式化简、证明的常用技巧(1)特殊角的三角函数与特殊值的互化.(2)对于分式形式,应分别对分子、分母进行变形处理,有公因式的提取公因式后进行约分.(3)对于二次根式,注意二倍角公式的逆用.(4)利用角与角之间的隐含关系,如互余、互补等.(5)利用“1”的恒等变形,如tan 45°=1,sin 2α+cos 2α=1等.1α为第三象限角,则1+cos2αcos α-1-cos2αsin α=________.2、1+sin2θ-cos2θ1+sin2θ+cos2θ.3、4sin αcos α1+cos2α·cos 2αcos 2α-sin 2α=tan2α.。

3.1.3 二倍角的正弦、余弦、正切公式

3.1.3 二倍角的正弦、余弦、正切公式

3.1.3二倍角的正弦、余弦、正切公式【知识导航】1.会推导二倍角的正弦、余弦、正切公式.2.灵活应用二倍角的正弦、余弦、正切公式解决有关的求值、化简、证明等问题.【知识梳理】【做一做1】已知sin α=3,cos α=4,则sin 2α等于 ()A.7B.12C.12D.24解析:sin2α=2sinαcosα=2425.答案:D【做一做2】已知cos α=13,则cos 2α等于()A.13B.23C.−79D.79解析:cos2α=2cos2α-1=2−1=−7.答案:C【做一做3】已知tan α=3,则tan 2α等于()A.6B.−34C.−38D.98解析:tan2α=2tanα1-tanα=2×31-32=−3.答案:B二倍角公式的变形公式剖析:(1)公式的逆用:2sinαcosα=sin2α;sinαcosα=1sin2α; cosα=sin2α;cos2α-sin2α=cos2α;2tanα1-tan2α=tan2α.(2)公式的有关变形:1±sin2α=sin2α+cos2α±2sinαcosα=(sinα±cosα)2;1+cos2α=2cos2α;1-cos2α=2sin2α.(3)升幂和降幂公式:升幂公式:1+sinα=sinα2+cosα22;1-sinα=sinα2-cosα22;1+cosα=2cos2α2;1−cosα=2sin2α2.降幂公式:cos2α=1+cos2α2;sin2α=1-cos2α2.【典例分析】题型一利用二倍角公式求值【例1】求下列各式的值:(1)co sπcos2π;(2)12−cos2π8;(3)ta nπ−1tanπ12.分析:第(1)题可根据2π5是π5的2倍构造二倍角的公式求值;第(2)(3)题需将所求的式子变形,逆用二倍角公式化简求值.解:(1)原式=2sinπ5cosπ5cos2π52sinπ5=sin2π5cos2π52sinπ5=sin4π54sinπ=sinπ54sinπ=14.(2)原式=1-2cos2π8=−2cos2π8-1=−12cosπ4=−24.(3)原式=tan2π12-1tanπ12=−2×1-tan2π122tanπ12=-2×1tanπ6=33=-2 3.【变式训练1】求下列各式的值:(1)si nπ12cos π12; (2)1-2sin 2750°; (3)1sin10°− 3cos10°. 解:(1)原式=2sin π12cos π122=sin π62=14.(2)原式=cos(2×750°)=cos1500° =cos(4×360°+60°)=cos60°=1.(3)原式=cos10°- 3sin10°=2 12cos10°- 32sin10°=4(sin30°cos10°-cos30°sin10°)=4sin20°=4.题型二知值求值【例2】已知si n π4-x =513,0<x <π4,求cos2xcos π4+x的值. 分析:注意角的关系 π4+x + π4-x =π2,注意诱导公式的应用cos2x=si n π2+2x ,利用倍角公式解题.解:原式=sin π2+2x cos π4+x=2sin π4+x cos π4+xcos π4+x=2si n π+x .∵si n π-x =cos π+x =5,且0<x <π,∴π+x ∈ π,π,sin π+x = 1-cos 2 π+x =12,∴原式=2×12=24.反思已知某角的三角函数值求值,要认真观察已知角与所求的和或差是特殊角或二倍角等,用诱导公式变形后,利用有关公式求值.【变式训练2】(1)已知si n α-π6 =35,且α是锐角,则sin 2α-π3 =__________,cos 2α-π3 =__________,tan 2α-π=__________;(2)若si n π+θ =30<θ<π,则cos 2θ=__________. 解析:(1)由题意知co s α-π6 =45,∴si n 2α-π3 =2sin α-π6 cos α-π6 =2425,cos 2α-π3 =725,tan 2α-π3 =247. (2)∵si n π4+θ =35,0<θ<π4,∴co s π4+θ =45.∴cos2θ=si n π+2θ =sin2 π+θ=2si n π+θ cos π+θ =2×3×4=24. 答案:(1)24724(2)24题型三化简与证明【例3】化简:(1 3tan10cos70° 1+cos40°(2)2cos 2α-12tan π4-α sin π4+α. 分析:先把切化弦,再结合三角函数公式求解。

三角函数公式(最全)

三角函数公式(最全)
1、正弦定理
正弦定理变形可得:
五、其他公式
2、余弦定理
对于如图所示的边长为a、b、c而相应角为α、β、γ的△ABC, 有:
3、降幂公式
sin²α=[1-cos(2α)]/2 cos²α=[1+cos(2α)]/2 tan²α=[1-cos(2α)]/[1+cos(2α)]
4、三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+ cosα·cosβ·sinγ-sinα·sinβ·sinγ
ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)
sin x = x-x3/3!+x5/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R
cos x = 1-x2/2!+x4/4!-…+(-1)kx2k/(2k)!+…, x∈R
arcsin x = x + x3/(2*3) + (1*3)x5/(2*4*5) + (1*3*5)x7/(2* 4*6*7)…+(2k+1)!!*x2k+1/(2k!!*(2k+1))+…, x∈(-1,1)(!!表 示双阶乘)
1
一、定义公式
三角函数公式
锐角三角函数 任意角三角函数
正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc) 正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc)
1、倒数关系
二、函数关系

二倍角的正弦余弦正切

二倍角的正弦余弦正切
2
和 积 差 化 化 和 积 差 公 公 式 式
补充公式: 补充公式: 1 + cos α α
cos 2 =± 2 1 − cos α sin = ± 2 2 1 − cos α α tan = ± 2 1 + cos α sin α = 1 + cos α 1 − cos α = sin α
sin α =
θ
3 17 7 练习: π < x < π, 练习:若 cos( + x ) = , 4 5 12 4 2 sin 2 x + 2 sin x 求 的值 . 1 − tan x
π
题型四:倍角公式的应用 题型四:
eg 6.求函数 y = sin x + cos x的最小正周期及最值 .
4 2
练习 .求函数 y = sin 2 x + 2 sin x cos x + 3 cos 2 x − 2 的最小正周期及最值 .
二倍角公式
复习回顾: 复习回顾:
两角和与差的正弦、余弦、正切公式: 两角和与差的正弦、余弦、正切公式:
+ β ) = sin α cos β + sin β cos α (2) sin(α − β ) = sin α cos β − sin β cos α (3) cos(α + β ) = cos α cos β − sin α sin β (4) cos(α − β ) = cos α cos β + sin α sin β tan α + tan β (5) tan(α + β ) = 1 − tan α tan β tan α − tan β (6) tan(α − β ) = 1 + tan α tan β

二倍角的正弦余弦正切公式

二倍角的正弦余弦正切公式

二倍角的正弦余弦正切公式
二倍角的正弦、余弦、正切公式知识点包括倍角公式、条件求值问题常有两种解题途径、证明三角恒等式常用方法、二倍角公式的使用技巧等部分,有关二倍角的正弦、余弦、正切公式的详情如下:
倍角公式
条件求值问题常有两种解题途径
①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;
②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.
证明三角恒等式常用方法
从左边推到右边;
从右边推到左边;
找中间量,常用技巧:切化弦,降次消元,拆项拆角,“1”的代换以及公式变形等.指导思想是统一三角函数名称,统一为相同的角.
二倍角公式的使用技巧
1.正用:从条件出发,顺着问题的线索,以“展开”公式的方式使用.
2.逆用:逆向转换,应用时要求对公式特点有一个整体感知.
主要形式有2sin αcos α=sin 2α,sin αcos α=,cos2α-sin2α=cos 2α,=tan 2α等.
3.变形用:将公式进行简单等价变形后,利用其新形式.主要形式有1+cos 2α=2cos2α,1-cos 2α=2sin2α,
4.三角函数式的化简要注意“三变”:
(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.
(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”“升幂与降幂”等.
(3)变式:根据式子的结构特征进行变形,其手法通常有:“常值代换”“逆用变用公式”“通分约分”“分解与组合”“配方与平方”等.。

三角函数公式大全(很详细)

三角函数公式大全(很详细)

三角函数公式大全(很详细)在三角函数的定义方面,可以通过在直角三角形和直角坐标系中定义六个三角函数来理解。

其中包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。

转化关系方面,倒数关系和平方关系都是常见的转化方式。

此外,还有和角公式、倍角公式、半角公式和万能公式等。

在积化和差、和差化积方面,可以利用正弦和余弦的和角、差角公式来得到“积化和差公式”。

同样地,余弦的和角、差角公式也可以用来得到相应的公式。

需要注意的是,在文章中有明显的格式错误和段落缺失,需要进行删除和修改。

Cosine of the sum and difference of two angles can be expressed as follows using the product-to-sum identities:cos(α + β) = cosα cosβ - sinα sinβcos(α - β) = cosα cosβ + sinα sinβSimilarly。

sine of the sum and difference of two angles can be expressed as follows:sin(α + β) = sinα cosβ + cosα sinβsin(α - β) = sinα cosβ - cosα sinβThese are known as the sum-to-product identities.Another set of identities that relate the sum and difference of two angles to their sines and cosines are the difference-to-product identities:sinα - sinβ = 2 cos((α + β)/2) sin((α - β)/2)sinα + sinβ = 2 sin((α + β)/2) cos((α - β)/2)cosα - cosβ = -2 sin((α + β)/2) sin((α - β)/2)cosα + cosβ = 2 cos((α + β)/2) cos((α - β)/2)These can be derived using the sum-to-product identities and some algebraic n.There are also several trigonometric identities that involve negative angles or angles that differ by π/2.For example:sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = -sin(a)sin(π - a) = sin(a)cos(π - a) = -cos(a)sin(π + a) = -sin(a)cos(π + a) = -cos(a)Finally。

两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳

两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳

两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+ 3 t an 25°·tan 35°= 3 (1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22 (sin 56°-cos 56°)=22 s in 56°-22 c os 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210,∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1.4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1. 12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

专题57 高中数学二倍角的正弦、余弦、正切公式(解析版)

专题57 高中数学二倍角的正弦、余弦、正切公式(解析版)

专题57 二倍角的正弦、余弦、正切公式1.二倍角的正弦、余弦、正切公式记法 公式 S 2α sin 2α=2sin αcos α C 2α cos 2α=cos 2α-sin 2α T 2αtan 2α=2tan α1-tan 2α2.余弦的二倍角公式的变形3.二倍角余弦公式的重要变形——升幂公式和降幂公式(1)升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α,1+cos α=2cos 2α2,1-cos α=2sin 2α2.(2)降幂公式:sin αcos α=12sin 2α,cos 2α=1+cos2α2,sin 2α=1-cos2α2.4.要牢记二倍角公式的几种变形(1)sin2x =cos ⎝⎛⎭⎫π2-2x =cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2cos 2⎝⎛⎭⎫π4-x -1=1-2sin 2⎝⎛⎭⎫π4-x ; (2)cos2x =sin ⎝⎛⎭⎫π2-2x =sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x ; (3)cos2x =sin ⎝⎛⎭⎫π2+2x =sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4+x =2sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x . (4)1±sin 2α=(sin α±cos α)2.5.用正切来表示正弦、余弦的倍角公式,也叫“万能公式”,公式如下:(1)sin2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α,即sin2α=2tan α1+tan 2α. (2)cos2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α,即cos2α=1-tan 2α1+tan 2α.题型一 给角求值1.下列各式中,值为32的是( ) A .2sin 15°cos 15° B .cos 215°-sin 215° C .2sin 215°D .sin 215°+cos 215°[解析]2sin 15°cos 15°=sin 30°=12;cos 215°-sin 215°=cos 30°=32;2sin 215°=1-cos 30°=1-32;sin 215°+cos 215°=1,故选B.2.求下列各式的值:(1)cos 415°-sin 415°;(2)1-2sin 275°;(3)1-tan 275°tan 75°;(4)cos 72°cos 36°;(5)2tan150°1-tan 2150°;[解析] (1)cos 415°-sin 415°=(cos 215°-sin 215°)(cos 215°+sin 215°)=cos 215°-sin 215°=cos 30°=32. (2)1-2sin 275°=1-(1-cos 150°)=cos 150°=-cos 30°=-32. (3)1-tan 275°tan 75°=2×1-tan 275°2tan 75°=2×1tan 150°=-2 3.(4)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14.(5) 原式=tan(2×150°)=tan300°=tan(360°-60°)=-tan60°=- 3. 3.求下列各式的值.(1)sin π8sin 3π8=________;(2)12-cos 215°=________;(3)1-tan 215°tan15°=________.[解析] (1)∵sin 3π8=sin ⎝⎛⎭⎫π2-π8=cos π8,∴sin π8sin 3π8=sin π8cos π8=12·2sin π8cos π8=12sin π4=24. (2)原式=12(1-2cos 215°)=-12cos30°=-34.(3)原式=2tan30°=2 3.4.cos 275°+cos 215°+cos75°cos15°的值等于 [解析]原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=1+14=54.5.sin 4π12-cos 4π12等于[解析] 原式=⎝⎛⎭⎫sin 2π12+cos 2π12⎝⎛⎭⎫sin 2π12-cos 2π12=-⎝⎛⎭⎫cos 2π12-sin 2π12=-cos π6=-32 6.sin 20°cos 20°cos 2155°-sin 2155°的值是 [解析]原式=12sin 40°cos 310°=12sin 40°cos 50°=12sin 40°sin 40°=12.7.求下列各式的值:(1)1sin 10°-3cos 10°;(2)1sin 50°+3cos 50°.[解析] (1)1sin 10°-3cos 10°=cos 10°-3sin 10°sin 10°cos 10°=2⎝⎛⎭⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°=4sin 20°sin 20°=4.(2)原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝⎛⎭⎫12cos 50°+32sin 50°12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4.8.sin65°cos25°+cos65°sin25°-tan 222.5°2tan22.5°=[解析] 原式=sin90°-tan 222.5°2tan22.5°=1-tan 222.5°2tan22.5°=1tan45°=1.9.cos20°cos40°cos80°值为 .[解析]原式=2sin20°·cos20°·cos40°·cos80°2sin20°=2sin40°·cos40°·cos80°4sin20°=2sin80°·cos80°8sin20°=sin160°8sin20°=18.10.cos π7cos 3π7cos 5π7的值为[解析] ∵cos 3π7=-cos 4π7,cos 5π7=-cos 2π7,∴cos π7cos 3π7cos 5π7=cos π7cos 2π7cos 4π7=8sin π7cos π7cos 2π7cos 4π78sin π7=4sin 2π7cos 2π7cos 4π78sin π7=2sin 4π7cos 4π78sin π7=sin8π78sinπ7=-18.11.sin6°sin42°sin66°sin78°=________.[解析] 原式=sin6°cos12°cos24°cos48°=sin6°cos6°cos12°cos24°cos48°cos6°=12sin12°cos12°cos24°cos48°cos6°=14sin24°cos24°cos48°cos6°=18sin48°cos48°cos6°=116sin96°cos6°=116cos6°cos6°=116题型二 给值求值1.设α是第四象限角,已知sin α=-35,则sin2α,cos2α和tan2α的值分别为( )A .-2425,725,-247 B.2425,725,247 C .-2425,-725,247 D.2425,-725,-247[解析]因为α是第四象限角,且sin α=-35,所以cos α=45,所以sin2α=2sin αcos α=-2425,cos2α=2cos 2α-1=725,tan2α=sin2αcos2α=-247.2.已知α是第三象限角,cos α=-513,则sin2α等于[解析] ∵cos α=-513,α是第三象限角,∴sin α=-1-cos 2α=-1213(舍正)因此,sin2α=2sin αcos α=2×⎝⎛⎭⎫-1213×⎝⎛⎭⎫-513=120169. 3.若tan θ=2则tan 2θ=________. [解析]tan 2θ=2tan θ1-tan 2θ=2×21-22=-43.4.已知sin α-cos α=43,则sin 2α=[解析]∵sin α-cos α=43,∴1-2sin αcos α=169,即1-sin 2α=169,∴sin 2α=-79.5.若sin α+cos αsin α-cos α=12,则tan 2α=[解析]因为sin α+cos αsin α-cos α=12,整理得tan α=-3,所以tan 2α=2tan α1-tan 2 α=2×(-3)1-(-3)2=34.6.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.[解析]∵sin 2α=-sin α,∴2sin αcos α=-sin α.由α∈⎝⎛⎭⎫π2,π知sin α≠0, ∴cos α=-12,∴α=2π3,∴tan 2α=tan 4π3=tan π3= 3.7.已知α∈⎝⎛⎭⎫0,π2,2sin2α=cos2α+1,则sin α= [解析]∵2sin2α=cos2α+1,∴4sin α·cos α=2cos 2α.∵α∈⎝⎛⎭⎫0,π2,∴cos α>0,sin α>0,∴2sin α=cos α, 又sin 2α+cos 2α=1,∴5sin 2α=1,sin 2α=15,又sin α>0,∴sin α=558.已知等腰三角形底角的正弦值为53,则顶角的正弦值是 [解析]设底角为θ,则θ∈⎝⎛⎭⎫0,π2,顶角为180°-2θ.∵sin θ=53,∴cos θ=1-sin 2θ=23, ∴sin(180°-2θ)=sin 2θ=2sin θcos θ=2×53×23=459. 9.已知π2<α<π,cos α=-45.(1)求tan α的值;(2)求sin 2α+cos 2α的值.[解析] (1)因为cos α=-45,π2<α<π,所以sin α=35,所以tan α=sin αcos α=-34.(2)因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=725,所以sin 2α+cos 2α=-2425+725=-1725.10.已知π2<α<π,sin α=45.(1)求tan 2α的值;(2)求cos ⎝⎛⎭⎫2α-π4的值. [解析](1)由题意得cos α=-35,所以tan α=-43,所以tan 2α=2tan α1-tan 2α=-831-169=247. (2)因为sin α=45,所以cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫452=-725, sin 2α=2sin α·cos α=2×45×⎝⎛⎭⎫-35=-2425. 所以cos ⎝⎛⎭⎫2α-π4=cos 2α·cos π4+sin 2α·sin π4=⎝⎛⎭⎫-725×22+⎝⎛⎭⎫-2425×22=-31250. 11.已知角α在第一象限且cos α=35,求1+2cos ⎝⎛⎭⎫2α-π4sin ⎝⎛⎭⎫α+π2的值.[解析]∵cos α=35且α在第一象限,∴sin α=45.∴cos2α=cos 2α-sin 2α=-725,sin2α=2sin αcos α=2425,∴原式=1+2⎝⎛⎭⎫cos2αcos π4+sin2αsin π4cos α=1+cos2α+sin2αcos α=145.12.已知cos ⎝⎛⎭⎫x -π4=210,则sin2x =__________. [解析] ∵cos ⎝⎛⎭⎫x -π4=210,∴sin 2⎝⎛⎭⎫x -π4=98100而sin2x =cos ⎝⎛⎭⎫2x -π2=cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4=2100-98100=-96100=-2425. 13.若cos ⎝⎛⎭⎫π4-α=35,则sin2α等于 [解析]因为sin2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,又cos ⎝⎛⎭⎫π4-α=35,所以sin2α=2×925-1=-725 14.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4=________. [解析]cos 2⎝⎛⎭⎫α+π4=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2=1-232=16.15.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.[解析]sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56. 16.已知α是第二象限的角,tan(π+2α)=-43,则tan α=________.[解析]∵tan(π+2α)=tan 2α=2tan α1-tan 2α=-43,∴tan α=-12或tan α=2. ∵α在第二象限,∴tan α=-12.17.已知tan αtan ⎝⎛⎭⎫α+π4=-23,则sin ⎝⎛⎭⎫2α+π4的值是________. [解析]由tan αtan ⎝⎛⎭⎫α+π4=tan αtan α+11-tan α=tan α(1-tan α)tan α+1=-23,得3tan 2α-5tan α-2=0,解得tan α=2,或tan α=-13.sin ⎝⎛⎭⎫2α+π4=sin2αcos π4+cos2αsin π4=22(sin2α+cos2α)=22⎝ ⎛⎭⎪⎫2sin αcos α+cos 2α-sin 2αsin 2α+cos 2α =22⎝ ⎛⎭⎪⎫2tan α+1-tan 2αtan 2α+1, 当tan α=2时,上式=22×⎝ ⎛⎭⎪⎫2×2+1-2222+1=210; 当tan α=-13时,上式=22×⎣⎢⎡⎦⎥⎤2×⎝⎛⎭⎫-13+1-⎝⎛⎭⎫-132⎝⎛⎭⎫-132+1=210. 综上,sin ⎝⎛⎭⎫2α+π4=210. 18.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为 [解析]cos 2α=sin ⎝⎛⎭⎫π2-2α=sin 2⎝⎛⎭⎫π4-α=2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α,代入原式, 得6sin ⎝⎛⎭⎫π4-α·cos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α.因为α∈⎝⎛⎭⎫π2,π,所以cos ⎝⎛⎭⎫π4-α=16, 所以sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1=-1718. 19.若tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2,则sin ⎝⎛⎭⎫2α+π4+2cos π4cos 2α=________. [解析]由tan α+1tan α=103,得tan α=13或tan α=3.又∵α∈⎝⎛⎭⎫π4,π2,∴tan α=3.∴sin α=310,cos α=110. ∴sin ⎝⎛⎭⎫2α+π4+2cos π4cos 2α=sin2αcos π4+cos2αsin π4+2cos π4cos 2α=22×2sin αcos α+22(2cos 2α-1)+2cos 2α=2sin αcos α+22cos 2α-22=2×310×110+22×⎝⎛⎭⎫1102-22=5210-22=0.20.已知cos ⎝⎛⎭⎫α-π4=-13,则sin(-3π+2α)= [解析]易得cos ⎝⎛⎭⎫2α-π2=2cos 2⎝⎛⎭⎫α-π4-1=2×⎝⎛⎭⎫-132-1=-79. 又cos ⎝⎛⎭⎫2α-π2=cos ⎝⎛⎭⎫π2-2α=sin 2α,所以sin(-3π+2α)=sin(π+2α)=-sin 2α=-⎝⎛⎭⎫-79=79. 21.若1+tan α1-tan α=2019,则1cos 2α+tan 2α=________.[解析]1cos 2α+tan 2α=1cos 2α+sin 2αcos 2α=1+sin 2αcos 2α=(cos α+sin α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 019.22.已知θ为锐角,cos(θ+15°)=35,则cos(2θ-15°)=________.[解析]∵θ为锐角,cos(θ+15°)=35,∴sin(θ+15°)=45,∴sin(2θ+30°)=2sin(θ+15°)cos(θ+15°)=2425, cos(2θ+30°)=2cos 2(θ+15°)-1=2×925-1=-725.∴cos(2θ-15°)=cos(2θ+30°-45°)=cos(2θ+30°)cos45°+sin(2θ+30°)sin45°=-725×22+2425×22=17250. 23.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则sin ⎝⎛⎭⎫2θ+π3=________. [解析]1sin θ+1cos θ=22⇒sin θ+cos θsin θcos θ=22⇒sin θ+cos θ=22sin θcos θ⇒1+sin 2θ=2sin 22θ,因为θ∈⎝⎛⎭⎫π2,π,所以2θ∈(π,2π),所以sin 2θ=-12,所以sin θ+cos θ<0, 所以θ∈⎝⎛⎭⎫3π4,π,所以2θ∈⎝⎛⎭⎫3π2,2π, 所以cos 2θ=32,所以sin ⎝⎛⎭⎫2θ+π3=sin 2θ·cos π3+sin π3cos 2θ=12. 24.已知cos x =1010,且x ∈⎝⎛⎭⎫-π2,0,求22cos ⎝⎛⎭⎫2x +π4+sin 2x 的值. [解析]∵cos x =1010,x ∈⎝⎛⎭⎫-π2,0,∴sin x =-1-cos 2x =-31010, ∴sin 2x =2sin x cos x =-35,∴22cos ⎝⎛⎭⎫2x +π4+sin 2x =22⎝⎛⎭⎫cos 2x cos π4-sin 2x sin π4+1-cos 2x 2=12-12sin 2x =12-12×⎝⎛⎭⎫-35=45. 25.已知sin x 2-2cos x2=0.(1)求tan x 的值; (2)求cos2xcos ⎝⎛⎭⎫5π4+x sin (π+x )的值.[解析] (1)由sin x 2-2cos x 2=0,知cos x 2≠0,∴tan x2=2,∴tan x =2tanx21-tan 2x 2=2×21-22=-43. (2)由(1),知tan x =-43,∴cos2xcos ⎝⎛⎭⎫5π4+x sin (π+x )=cos2x-cos ⎝⎛⎭⎫π4+x (-sin x )=cos 2x -sin 2x ⎝⎛⎭⎫22cos x -22sin x sin x=(cos x -sin x )(cos x +sin x )22(cos x -sin x )sin x =2×cos x +sin x sin x =2×1+tan x tan x =24.26.已知0<x <π2,sin 2x 2+3sin x 2cos ⎝⎛⎭⎫π+x 2=-110,求tan ⎝⎛⎭⎫2x +π3的值. [解析]∵sin 2x 2+3sin x 2cos ⎝⎛⎭⎫π+x 2=1-cos x 2-3sin x 2cos x 2=12-⎝⎛⎭⎫32sin x +12cos x =12-sin ⎝⎛⎭⎫x +π6, ∴由已知得12-sin ⎝⎛⎭⎫x +π6=-110,∴sin ⎝⎛⎭⎫x +π6=35.∵0<x <π2, 结合sin ⎝⎛⎭⎫x +π6=35<32,易知π6<x +π6<π2.∴cos ⎝⎛⎭⎫x +π6=45,∴tan ⎝⎛⎭⎫x +π6=34. ∴tan ⎝⎛⎭⎫2x +π3=2tan ⎝⎛⎭⎫x +π61-tan 2⎝⎛⎭⎫x +π6=2×341-916=247. 27.已知函数f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x -cos 2x +23sin x cos x . (1)化简f (x );(2)若f (α)=17,2α是第一象限角,求sin2α.[解析] (1)f (x )=12cos2x -32sin2x -cos2x +3sin2x =32sin2x -12cos2x =sin ⎝⎛⎭⎫2x -π6.(2)f (α)=sin ⎝⎛⎭⎫2α-π6=17,2α是第一象限角,即2k π<2α<π2+2k π(k ∈Z), ∴2k π-π6<2α-π6<π3+2k π,k ∈Z ,∴cos ⎝⎛⎭⎫2α-π6=437, ∴sin2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α-π6+π6=sin ⎝⎛⎭⎫2α-π6cos π6+cos ⎝⎛⎭⎫2α-π6sin π6=17×32+437×12=5314. 28.已知sin 2θ=34,则cos 2⎝⎛⎭⎫θ-π4=________. [解析]cos 2⎝⎛⎭⎫θ-π4=1+cos ⎣⎡⎦⎤2⎝⎛⎭⎫θ-π42=1+cos ⎝⎛⎭⎫2θ-π22=1+sin 2θ2,∵sin 2θ=34, ∴cos 2⎝⎛⎭⎫θ-π4=1+342=78. 29.已知cos ⎝⎛⎭⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎫2α+π4的值; [解析]∵π2≤α<3π2,∴3π4≤α+π4<7π4.∵cos ⎝⎛⎭⎫α+π4>0,∴3π2<α+π4<7π4, ∴sin ⎝⎛⎭⎫α+π4=-1-cos 2⎝⎛⎭⎫α+π4=-1-⎝⎛⎭⎫352=-45, ∴cos 2α=sin ⎝⎛⎭⎫2α+π2=2sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4=2×⎝⎛⎭⎫-45×35=-2425, sin 2α=-cos ⎝⎛⎭⎫2α+π2=1-2cos 2⎝⎛⎭⎫α+π4=1-2×⎝⎛⎭⎫352=725, ∴cos ⎝⎛⎭⎫2α+π4=22cos 2α-22sin 2α=22×⎝⎛⎭⎫-2425-22×725=-31250. 30.已知sin ⎝⎛⎭⎫π6+α=13,则cos ⎝⎛⎭⎫2π3-2α的值等于 [解析]因为cos ⎝⎛⎭⎫π3-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin ⎝⎛⎭⎫π6+α=13, 所以cos ⎝⎛⎭⎫2π3-2α=2cos 2⎝⎛⎭⎫π3-α-1=2×⎝⎛⎭⎫132-1=-79. 31.设sin ⎝⎛⎭⎫π6+θ=23,则sin ⎝⎛⎭⎫2θ-π6= [解析]因为sin ⎝⎛⎭⎫π6+θ=23,所以sin ⎝⎛⎭⎫2θ-π6=sin ⎣⎡⎦⎤⎝⎛⎭⎫2θ+π3-π2=-cos ⎝⎛⎭⎫2θ+π3=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π6+θ=-59. 32.已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值. [解析] (1)因为tan α =sin α cos α =43,所以sin α=43cos α .因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.33.已知sin α+cos α=15,且α∈(0,π).(1)求tan 2α的值;(2)求2sin 2⎝⎛⎭⎫α2+π6-sin ⎝⎛⎭⎫α+π6. [解析] (1)由sin α+cos α=15,得sin αcos α=-1225,因为α∈(0,π),所以α∈⎝⎛⎭⎫π2,π, 所以sin α-cos α=2-(sin α+cos α)2=75,解得sin α=45,cos α=-35,故tan α=-43,所以tan 2α=2tan α1-tan 2α=247. (2)2sin 2⎝⎛⎭⎫α2+π6-sin ⎝⎛⎭⎫α+π6=1-cos ⎝⎛⎭⎫α+π3-sin ⎝⎛⎭⎫α+π6 =1-12cos α+32sin α-32sin α-12cos α=1-cos α=85.34.如图所示,在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿由点B 到点E 的方向前进30 m 至点C ,测得顶端A 的仰角为2θ,再沿刚才的方向继续前进10 3 m 到点D ,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高.[解析]∵∠ACD =θ+∠BAC =2θ,∴∠BAC =θ,∴AC =BC =30 m. 又∠ADE =2θ+∠CAD =4θ,∴∠CAD =2θ,∴AD =CD =10 3 m. ∴在Rt △ADE 中,AE =AD ·sin 4θ=103sin 4θ(m),在Rt △ACE 中,AE =AC ·sin 2θ=30sin 2θ(m),∴103sin 4θ=30sin 2θ, 即203sin 2θcos 2θ=30sin 2θ,∴cos 2θ=32,又2θ∈⎝⎛⎭⎫0,π2,∴2θ=π6,∴θ=π12, ∴AE =30sin π6=15(m),∴θ=π12,建筑物AE 的高为15 m.题型三 给值求角1.已知sin 22α+sin 2αcos α-cos 2α=1,则锐角α=________.[解析]由原式,得sin 22α+sin 2αcos α-2cos 2α=0,∴(2sin αcos α)2+2sin αcos 2α-2cos 2α=0,∴2cos 2α(2sin 2α+sin α-1)=0,∴2cos 2α(2sin α-1)(sin α+1)=0.∵α为锐角,∴cos 2α≠0,sin α+1≠0,∴2sin α-1=0,∴sin α=12,∴α=π6. 2.已知α,β均为锐角,且3sin α=2sin β,3cos α+2cos β=3,则α+2β的值为[解析]由题意得⎩⎨⎧ sin α=23sin β, ①cos α=1-23cos β, ②,①2+②2得cos β=13,cos α=79, 由α,β均为锐角知,sin β=223,sin α=429, ∴tan β=22,tan α=427,∴tan 2β=-427, ∴tan(α+2β)=0.又α+2β∈⎝⎛⎭⎫0,3π2,∴α+2β=π. 3.已知α∈⎝⎛⎭⎫-π2,π2,且sin 2α=sin ⎝⎛⎭⎫α-π4,则α= . [解析]∵sin 2α=-cos ⎝⎛⎭⎫2α+π2=-⎣⎡⎦⎤2cos 2⎝⎛⎭⎫α+π4-1=1-2cos 2⎝⎛⎭⎫α+π4, sin ⎝⎛⎭⎫α-π4=-sin ⎝⎛⎭⎫π4-α=-cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=-cos ⎝⎛⎭⎫π4+α, ∴原式可化为1-2cos 2⎝⎛⎭⎫α+π4=-cos ⎝⎛⎭⎫α+π4,解得cos ⎝⎛⎭⎫α+π4=1或cos ⎝⎛⎭⎫α+π4=-12. ∵α∈⎝⎛⎭⎫-π2,π2,∴α+π4∈⎝⎛⎭⎫-π4,3π4,故α+π4=0或α+π4=2π3,即α=-π4或α=5π12. 4.已知角α,β为锐角,且1-cos2α=sin αcos α,tan(β-α)=13,则β=________. [解析]由1-cos2α=sin αcos α,得1-(1-2sin 2α)=sin αcos α,即2sin 2α=sin αcos α.∵α为锐角,∴sin α≠0,∴2sin α=cos α,即tan α=12. 解法一:由tan(β-α)=tan β-tan α1+tan βtan α=tan β-121+12tan β=13,得tan β=1.∵β为锐角,∴β=π4. 解法二:tan β=tan(β-α+α)=tan (β-α)+tan α1-tan (β-α)tan α=13+121-13×12=1.∵β为锐角,∴β=π4. 5.已知tan α=17,sin β=1010,且α,β为锐角,求α+2β的值. [解析]∵tan α=17<1,且α为锐角,∴0<α<π4, 又∵sin β=1010<22,且β为锐角,∴0<β<π4,∴0<α+2β<3π4. 由sin β=1010,β为锐角,得cos β=31010,∴tan β=13, ∴tan(α+β)=tan α+tan β1-tan αtan β=12,∴tan(α+2β)=tan (α+β)+tan β1-tan (α+β)tan β=12+131-12×13=1,故α+2β=π4. 6.已知tan α=13,tan β=-17,且α,β∈(0,π),求2α-β的值. [解析]∵tan α=13>0,α∈(0,π),∴α∈⎝⎛⎭⎫0,π2,2α∈(0,π), ∴tan2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0,∴2α∈⎝⎛⎭⎫0,π2. 又∵tan β=-17<0,β∈(0,π),∴β∈⎝⎛⎭⎫π2,π, ∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34-⎝⎛⎭⎫-171+34×⎝⎛⎭⎫-17=1 又∵2α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π,∴2α-β∈(-π,0),∴2α-β=-3π4. 题型四 化简问题1.2sin2α1+cos2α·cos 2αcos2α等于 [解析]原式=4sin αcos α1+2cos 2α-1·cos 2αcos2α=2sin αcos αcos2α=sin2αcos2α=tan2α. 2.化简:sin 235°-12sin10°cos10°=________. [解析]原式=2sin 235°-12sin10°cos10°=-cos70°sin20°=-cos70°sin (90°-70°)=-13.化简2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α= . [解析]解法一:原式=2cos 2α-12·sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=2cos 2α-12·sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α=2cos 2α-1sin ⎝⎛⎭⎫π2-2α=cos2αcos2α=1. 解法二:原式=cos2α2·1-tan α1+tan α⎝⎛⎭⎫22sin α+22cos α2=cos2αcos α-sin αcos α+sin α(sin α+cos α)2 =cos2α(cos α-sin α)(cos α+sin α)=cos2αcos 2α-sin 2α=1. 4.化简:1tan θ+1+1tan θ-1=________. [解析]原式=tan θ-1+tan θ+1(tan θ+1)(tan θ-1)=2tan θtan 2θ-1=-2tan θ1-tan 2θ=-tan 2θ. 5.化简:tan 70°cos 10°(3tan 20°-1)=________.[解析]原式=sin 70°cos 70°·cos 10°·⎝⎛⎭⎫3sin 20°cos 20°-1=sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20°=sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°=-sin 70°cos 70°·sin 20°cos 20°=-1. 6.化简cos10°+3sin10°1-cos80°=________; [解析]cos10°+3sin10°1-cos80°=2(sin30°cos10°+cos30°sin10°)2sin 240°=2sin40°2sin40°= 2. 7.在△ABC 中,若sin B sin C =cos 2A 2,则△ABC 是( ) A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形 [解析]由sin B sin C =cos 2A 2得sin B sin C =1+cos A 2,∴2sin B sin C =1+cos A , ∴2sin B sin C =1+cos[π-(B +C )]=1-cos(B +C ),∴2sin B sin C =1-cos B cos C +sin B sin C ,∴cos B cos C +sin B sin C =1,∴cos(B -C )=1,又∵-180°<B -C <180°,∴B -C =0°,∴B =C ,∴△ABC 是等腰三角形.8.1+cos100°-1-cos100°=( )A .-2cos5°B .2cos5°C .-2sin5°D .2sin5°[解析] 原式=2cos 250°-2sin 250°=2(cos50°-sin50°)=2⎝⎛⎭⎫22cos50°-22sin50° =2sin(45°-50°)=-2sin5°.[答案] C9.若α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α=________. [解析] 因为α为第三象限角,所以cos α<0,sin α<0, 所以1+cos 2αcos α-1-cos 2αsin α=2cos 2αcos α-2sin 2αsin α=-2cos αcos α--2sin αsin α=0. 10.设-3π<α<-5π2,化简 1-cos (α-π)2的结果是( ) A .sin α2B .cos α2C .-cos α2D .-sin α2 [解析] 因为-3π<α<-5π2,-3π2<α2<-5π4,所以1-cos (α-π)2=1+cos α2=⎪⎪⎪⎪cos α2=-cos α2. 11.化简tan 14°1-tan 214°·cos 28°的结果为( ) A.sin 28°2B .sin 28°C .2sin 28°D .sin 14°cos 28° [解析]tan 14°1-tan 214°·cos 28°=12×2tan 14°1-tan 214°·cos 28°=12tan 28°·cos 28°=sin 28°2,故选A. 12.1-2sin 20°cos 20°2cos 210°-1-cos 2160°-1=________. [解析] 1-2sin 20°cos 20°2cos 210°-1-cos 2160°-1=(cos 20°-sin 20°)2cos 20°-sin 20°=cos 20°-sin 20°cos 20°-sin 20°=1. 13.化简:(1)1+sin20°+1-sin20°;(2)1+sin4α+cos4α1+sin4α-cos4α. [解析] (1)原式=sin 210°+cos 210°+2sin10°cos10°+sin 210°+cos 210°-2sin10°cos10° =(sin10°+cos10°)2+(sin10°-cos10°)2=|sin10°+cos10°|+|sin10°-cos10°|=sin10°+cos10°+cos10°-sin10°=2cos10°.(2)原式=1+2sin2αcos2α+2cos 22α-11+2sin2αcos2α+2sin 22α-1=2cos 22α+2cos2αsin2α2sin 22α+2sin2αcos2α=2cos2α(cos2α+sin2α)2sin2α(sin2α+cos2α)=1tan2α. 14.求值:sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°. [解析] ∵sin 50°(1+3tan 10°)=sin 50°·cos 10°+3sin 10°cos 10°=sin 50°·2sin 40°cos 10°=1, cos 80°1-cos 20°=sin 10°2sin 210°=2sin 210°, ∴sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2. 题型五 证明问题1.证明:3tan 12°-3sin 12°(4cos 212°-2)=-4 3. [解析] 左边=3sin 12°-3cos 12°cos 12°2sin 12°(2cos 212°-1)=23⎝⎛⎭⎫12sin 12°-32cos 12°2sin 12°cos 12°cos 24°=23sin (12°-60°)sin 24°cos 24°=-23sin 48°12sin 48° =-43=右边,所以原等式成立.2.求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ;(2)cos 2θ(1-tan 2θ)=cos 2θ.[解析] (1)左边=1+cos (2A +2B )2-1-cos (2A -2B )2=cos (2A +2B )+cos (2A -2B )2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B )=cos 2A cos 2B =右边,∴等式成立. (2)法一:左边=cos 2θ⎝⎛⎭⎫1-sin2θcos 2θ=cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ=cos 2θ⎝⎛⎭⎫1-sin2θcos 2θ=cos 2θ(1-tan 2θ)=左边. 3.求证:1-cos θ+sin θ1+cos θ+sin θ=tan θ2. [解析] 1-cos θ+sin θ1+cos θ+sin θ=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2=2sin θ2⎝⎛⎭⎫sin θ2+cos θ22cos θ2⎝⎛⎭⎫cos θ2+sin θ2=tan θ2.4.求证:(sin2x +cos2x -1)(sin2x -cos2x +1)sin4x=tan x . [解析] 证法一:左边=(2sin x cos x -2sin 2x )(2sin x cos x +2sin 2x )sin4x =4sin 2x (cos 2x -sin 2x )sin4x =4sin 2x cos2x 2sin2x cos2x=4sin 2x 2×2sin x cos x=tan x =右边.故原等式成立.证法二:左边=(sin2x +cos2x -1)(sin2x -cos2x +1)(sin2x +cos2x )2-1=(sin2x +cos2x -1)(sin2x -cos2x +1)(sin2x +cos2x -1)(sin2x +cos2x +1) =sin2x +1-cos2x sin2x +1+cos2x =2sin x cos x +2sin 2x 2sin x cos x +2cos 2x =2sin x (cos x +sin x )2cos x (sin x +cos x )=tan x =右边. 故原等式成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1.3二倍角的正弦、余弦和正切公式
一、教学目标
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.
二、教学重、难点
教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用.
三、学法与教学用具
学法:研讨式教学
四、教学设想:
(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,
()sin sin cos cos sin αβαβαβ+=+;
()cos cos cos sin sin αβαβαβ+=-;
()tan tan tan 1tan tan αβ
αβαβ++=-.
(二)公式推导:
()sin 2sin sin cos cos sin 2sin cos ααααααααα
=+=+=; ()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-;
22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-. ()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+=
=--.
升降幂公式
2
)cos (sin 2sin 1ααα±=±
αα2cos 22cos 1=+αα2sin 22cos 1=-2
2cos 1cos 2α
α+=22cos 1sin 2α
α-=}}升幂降角公式 降幂升角公式。

相关文档
最新文档