数学建模第6讲 非线性规划
数学建模---非线性规划
基础部数学教研室
数学 建模
(3)编写主程序文件如下 [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fu n2')
求得当 x1 值y
10.6511。
0.5522, x2
1.2033, x3
0.9478 时,最小
基础部数学教研室
数学 建模
其中 f ( x ) 是目标函数, A, b, Aeq , beq , lb, ub 是相应维数的 矩阵和向量, c( x ), ceq( x ) 是非线性向量函数。
基础部数学教研室
数学 建模
Matlab 中的命令是 [x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlco n,options) x 的返回值是决策向量 x 的取值,fval 返回的是目标函 数的取值。fun 是用 M 文件定义的函数 f ( x ) ;x0 是 x 的初 始 值 , 可 以 任 意 选 取 ; A,b,Aeq,beq 定 义 了 线 性 约 束 Ax b, Aeq x beq , 如 果 没 有 线 性 约 束 , 则 A=[],b=[],Aeq=[],beq=[];lb 和 ub 是变量 x 的下界和上界, 如果上界和下界没有约束,即 x 无下界也无上界,则 lb=[], ub=[],也可以写成 lb 的各分量都为-inf,ub 的各分量都为 inf ; nonlcon 是 用 M 文 件 定 义 的 非 线 性 向 量 函 数 c( x ), ceq( x ) ;options 定义了优化参数,可以使用 Matlab 缺省的参数设置。
hj ( x ) gi ( x )
非线性规划(数学建模)
1.023
1.031 1.073 1.311 1.080 1.150 1.213 1.156 1.023 1.076 1.142 1.083 1.161 1.076 1.110 0.965
1.048
1.226 0.977 0.981 1.237 1.074 1.562 1.694 1.246 1.283 1.105 0.766 1.121 0.878 1.326 1.078
m ax ( 1)R (X)Q (X), st .. x xn 1 1 x 2 x i 0 i 1 ,2 , ,n
3个模型均为非线性规划模型。
引 例
投资选择问题
某公司在一个时期内可用于投资的总资本为 b万元, 可供选择
的项目有n个。假定对第i个项目的投资总额为ai万元,收益总额为
2.212
1.296 0.688 1.084 0.872 0.825 1.006 1.216 1.244 0.861 0.977 0.922 0.958 0.926 1.146 0.990
引 例
收益和风险
每个投资项目的收益率可以看成一个随机变量,其均值可
以用样本均值(历史均值)来近似.因此, 预计第j种投资的平 均收益率为
0.978
0.947 1.003 1.465 0.985 1.159 1.366 1.309 0.925 1.086 1.212 1.054 1.193 1.079 1.217 0.889
1.184
1.323 0.949 1.215 1.224 1.061 1.316 1.186 1.052 1.165 1.316 0.968 1.304 1.076 1.100 1.012
max s.t.
R( X ) Q( X ) x1 x2 x8 1, xi 0
运筹学——非线性规划
非线性规划
0.618法(近似黄金分割法)
函数 (t ) 称为在[a,b]上是单谷的,如果存在一个t * [a, b] ,使得 (t ) 在[a, t * ] 上严格递减,且在[t * , b] 上严格递增。区间[a,b]称为 (t ) 的单 谷区间。
非线性规划
第 1 步 确定单谷区间[a,b],给定最后区间精度 0 ; 第 2 步 计算最初两个探索点
第3步
计算 t k1
tk
(tk (tk
) )
,如果
t k 1
tk
,停止迭代,输出 t k1 。否则
k : k 1,转第 2 步。
非线性规划
基本思路:迭代
给定初始点x0
根据x0,依次迭代产生点列{xk}
{xk}有限
{xk}无限
{xk}的最后一点为最优解
{xk}收敛于最优解
前一页 后一页 退 出 非线性规划
关于凸函数的一些结论
定理: 设S Rn是非空凸集
(1)若f是S上的凸函数, 0,则f是S上的凸函数;
(2)若f1, f2是S上的凸函数, f1 f2是S上的凸函数。 定理: 设S Rn是非空凸集, f是凸函数,cR1,则集合
HS ( f ,c)xS| f ( x) c 是凸集。
f ( x1 )(f ( x1 ),f ( x1 ))T是函数在点x1处的梯度。
x1
xn
(2)f是S上的严格凸函数的充要条件是
f ( x1 )T ( x2 x1 ) f ( x2 ) f ( x1 ), x1, x2S, x1 x2
n=1时几何意义:可微函数是凸的等价于切线不在函数图 像上方。
前一页 后一页 退 出 非线性规划
数学建模-非线性规划
-32-第三章 非线性规划§1 非线性规划1.1 非线性规划的实例与定义如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。
一般说来,解非线性规划要比解线性规划问题困难得多。
而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。
下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。
例1 (投资决策问题)某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。
已知该企业拥有总资金A 元,投资于第),,1(n i i L =个项目需花资金i a 元,并预计可收益i b 元。
试选择最佳投资方案。
解 设投资决策变量为 ⎩⎨⎧=个项目决定不投资第,个项目决定投资第i i x i 0,1,n i ,,1L =,则投资总额为∑=ni ii xa 1,投资总收益为∑=ni ii xb 1。
因为该公司至少要对一个项目投资,并且总的投资金额不能超过总资金A ,故有限制条件 ∑=≤<ni ii A xa 1另外,由于),,1(n i x i L =只取值0或1,所以还有 .,,1,0)1(n i x x i i L ==−最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。
因此,其数学模型为:∑∑===ni ii ni ii xa xb Q 11maxs.t. ∑=≤<ni ii A xa 1.,,1,0)1(n i x x i i L ==−上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中至少有一个非线性函数,这类问题称之为非线性规划问题。
可概括为一般形式)(min x fq j x h j ,,1,0)(s.t.L =≤ (NP) p i x g i ,,1,0)(L ==-33-其中T n x x x ][1L =称为模型(NP)的决策变量,f 称为目标函数,i g ),,1(p i L =和),,1(q j h j L =称为约束函数。
数学建摸优秀讲座之非线性规划
D X | gi X 0,hj X 0,X En
问题(1)可简记为 min f X . X D
定义2 对于问题(1),设 X * D,若存在 0 ,使得对一切
X D,且 X X * ,都有 f X * f X ,则称X*是f(X)在D上的
局部极小值点(局部最优解).特别地当 X X*时,若 f X * f X ,
函数,简记:
f : E n E l ,gi : E n E l ,hj : E n E l
其它情况: 求目标函数的最大值或约束条件为小于等于零 的情况,都可通过取其相反数化为上述一般形式.
定义1 把满足问题(1)中条件的解 X ( En )称为可行解(或可行
点),所有可行点的集合称为可行集(或可行域).记为D.即
则称X*是f(X)在D上的严格局部极小值点(严格局部最优解).
定义3 对于问题(1),设 X * D ,对任意的X D ,都有 f X * f X
则称X*是f(X)在D上的全局极小值点(全局最优解).特别地当
X X* 时,若f X * f X ,则称X*是f(X)在D上的严格全局极小值点
(1) x=fmincon(@fun,X0,A,b) (2) x=fmincon(‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,lb,ub)
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,lb,ub,’nonlcon’) (5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
.hgji((XX
) )
0 0
i j
1,2,...,m; 1,2,...,l.
数模建模 全部内容讲解 线性非线性
模型假设:
1、椅子四条腿一样长,椅脚与地面接触 、椅子四条腿一样长, 处可视为一个点, 四脚的连线呈正方形。 处可视为一个点 , 四脚的连线呈正方形 。 2、地面高度是连续变化的,沿任何方向 、地面高度是连续变化的, 都不会出现间断( 都不会出现间断 ( 没有象台阶那样的情 即地面可视为数学上的连续曲面。 况 ) , 即地面可视为数学上的连续曲面 。 3、对于椅脚的间距和椅腿的长度而言, 、 对于椅脚的间距和椅腿的长度而言, 地面是相对平坦的, 地面是相对平坦的 , 使椅子在任何位置 至少有三只脚同时着地。 至少有三只脚同时着地。
引 言
本章主要讨论建立数学模型的意义、 本章主要讨论建立数学模型的意义、 方法和步骤, 方法和步骤,给读者以建立数学模型 初步的了解。 初步的了解。
一、从现实对象到数学模型
原型和模型 原型( 原型 ( Prototype) 指人们在现实世界里关 ) 研究或者从事生产、管理的实际对象。 心、研究或者从事生产、管理的实际对象。 模型( 模型(Model)指为了某个特定目的将原型 ) 的某一部分信息简缩、 的某一部分信息简缩、提练而构造的原型替 代物。 代物。 注意:为了某种目的构造模型, 注意:为了某种目的构造模型,模型不是原 型原封不动的复制品, 型原封不动的复制品,原型有各个方面和各 种层次的特征, 种层次的特征,而模型只要求反映与某种目 的有关的那些方面和层次。 的有关的那些方面和层次。
数学国际会议, 年起, 数学国际会议,1983年起,会议录由 年起 Harwood出版 出版 竞赛
国外数学建模情况
2、科研 、
会议 1977数学和计算机建模国际会议 数学和计算机建模国际会议 期刊
《Mathematical and computer Modeling》年刊 》 《Applied Mathematical Modeling》 》 SIAM Review、SIAM News 、 《J. of Mathematical Modeling for Teacher》 》
非线性规划模型
进行分配,因而存在部分 DVD 的两次被租赁,但因为是处理 同一份订单,因而不存在会员的第二次租赁.
基于这个假设,为了最小化购买量,我们在允许当 前某些会员无法被满足租赁要求,让其等待,利用部分 会员还回的 DVD 对其进行租赁.
根据问题一,我们认为,一个月中每张 DVD 有 0.6 的概率被租赁两次,0.4 的概率被租赁一次。即在二次 租赁的情况下,每张 DVD 相当于发挥了0.6 2 0.4 1.6张 DVD 的作用.
hi
第i种油的每单位的存储费用
ti
第i种油的每单位的存储空间
T
总存储公式
由历史数据得到的经验公式为 :
min
f
(x1, x2 )
a1b1 x1
h1x1 2
a2b2 x2
h2 x2 2
s.t. g(x1, x2 ) t1x1 t2x2 T
且提供数据如表5所示:
表5 数据表
石油的
例 8.(生产计划问题)某厂生产三种布料 A1, A2, A3, 该厂两班生产,每周生产时间为 80h,能耗不得超过 160t 标准煤,其它数据如下表:
布料 生产数量( m/ h ) 利润( 元 / m)
A1
400
0.15
A2
510
0.13
A3
360
0.20
最大销售量( m / 周) 40000 51000 30000
种类
ai
bi
hi
ti
1
9
3
0.50
2
2
4
5
0.20
4
已知总存储空间 T 24
代入数据后得到的模型为:
min
f
(x1, x2 )
第六章非线性规划(管理运筹学,李军)
2020/7/30
10
1.3 非线性规划问题的图示
x2 6
3 2
0
23
f(X)=4 f(X)=2
x1 6
由左图可见,等值线 f (X)=2和约束条件直 线6-6相切,切点D即
为此问题的最优解, X*=(3, 3),其目标函 数值 f (X*)=2。
2020/7/30
11
1.3 非线性规划问题的图示
在此例中,约束h(X ) x1 x2 6 0 对最优解发生 了影响,若以 h(X ) x1 x2 6 0 代替原约束, 则非线性规划的最优解是X (2,2) ,即图中的 C点,此时 f (X ) 0。由于最优点位于可行域 的内部,故事实上约束 h(X ) x1 x2 6 0 并未 发挥作用,问题相当一个无约束极值问题。
xn2
2020/7/30
22
充分条件
(充分条件)等价于: 如果函数f (X)在X*点的梯度为零且海赛矩 阵正定,则X*为函数f (X)的严格局部极小 点。
2020/7/30
23
2.3 凸函数和凹函数
设 f (X)为定义在En中某一凸集R上的函 数,若对于任何实数(0<<1)以及R中 的任意两点X(1)和X(2) ,恒有:
2020/7/30
38
3.2 下降迭代算法
确定搜索方向P (k)是关键的一步,各种算法的区 别主要在于确定搜索方向P (k)的方法不同。
步长 k 的选定一般都是以使目标函数在搜索方 向上下降最多为依据的,称为最佳步长,即沿 射线 X X (k) P(k) 求目标函数的极小值
k : min f ( X (k) P(k) )
2020/7/30
21
充分条件
数学建模中的非线性问题与求解
智能算法在非线性问题求解中的重要性 智能算法的效率和有效性对非线性问题求解的影响 智能算法在不同非线性问题中的表现和适用性 提高智能算法效率和有效性的方法与策略
数值解法:高 效、精确的数
值计算方法
近似解析解法: 简化问题复杂 度,提高求解
效率
人工智能与机 器学习:用于 求解复杂非线
性问题
混合方法:结 合数值解法和 近似解析解法 的优势,提高 求解精度和效
介绍偏微分方程 的基本概念和分 类
阐述非线性偏微 分方程的求解方 法,如有限元法、 有限差分法等
举例说明非线性 偏微分方程的求 解过程,包括建 立数学模型、选 择合适的求解方 法、进行数值计 算等
总结非线性偏微 分方程求解的难 点和挑战,以及 未来发展的方向
求解方法:梯度下降法、牛顿法、拟牛顿法等 应用场景:机器学习、图像处理、信号处理等领域 实例:最小二乘问题、支持向量机等 注意事项:选择合适的求解方法,避免陷入局部最优解
非线性方程的 求解方法:迭 代法、牛顿法、
二分法等
求解实例:求 解非线性代数 方程的数值解
法
求解过程:迭 代过程、收敛 性判断、误差
估计等
实例:求解非线性常微分方程的数值方法 常用算法:欧拉法、龙格-库塔法等 实例应用:在物理、化学、生物等领域的应用 求解技巧:如何处理非线性项、如何选择合适的初值和步长等
离散问题:非线性离散问题通常涉 及到离散的变量和关系,如图论、 组合优化等问题。
定义:非线性问题是指数学模型中的变量之间存在非线性关系的问题,即变量的输出值与输入 值不成正比例关系。
分类:非线性问题可以分为多种类型,如非线性方程、非线性优化、非线性动力学等。
应用场景:非线性问题在各个领域都有广泛的应用,如物理、化学、工程、经济等。
西北农林科技大学运筹学课件第六章非线性规划
min f (X ) x1 x2 2x12 2x1x2 x22
f (X )
f
(X
)
x1 f (X
)
1 4x1 2x2 1 2x1 2x2
x2
X (1):
f
(
X(1))
1 -1
H
(
X(1))
4 2
2 2
X (1) (0,0)T 4 2
H(X ) 2 2
d(1 ) ( H (X (1 )) )1 f(X (1 )) 2 42 2 1 - 1 1
二、一维搜索
一维搜索方法的斐波那契法与黄金分割法的寻优途 径不是直接找出最优点,而是不断缩小最优点所处区域, 直到符合精度为止。这两种方法的主要特点为:①适于 单峰(谷)函数;②压缩峰(谷)点所处的区域
y
y
0 a a1 X′ b1 b
x
0 a a1 b1 X′ b
x
二、一维搜索
1.0.618法(黄金分割法)
F a )
tn1
a tn1
1 2(an2
bn20)
an2
(1 2
)
(bn2
an2)
k
k1
t1
k1 k1
n t'k11
b0
三、无约束极值问题
1.梯度法(最速下降法)
• 给定初始点X(1),允许误差ε>0,k=1 • 确定有利得搜索方向d(k)为X(k)点的负梯度方向 d(k) f(x(k)) • 判断精度
一、基本概念
2.二维问题的图解
考虑非线性规划问题
min
f (x) (x1 2)2 (x2 1)2 x1 x22 5x2 0
x1 x2 5 0
非线性规划课件
②再固定x₂=x₂ (1): 求以x₁为单变量的目标函数的极值点,
得 X(2)=(x,(2),x₂ (1))T ,S(2)=f(X(2))
此时S(2)优于S(1), 且搜索区间缩短为x₁*∈[x,(2),b,],x₂*∈[x₂ (1),b₂] 第二步:如此交替搜索,直至满足给定精度ε为止
否则,继续缩短区间,
直至满足给定的精度为
①f(x₂)≥f(xq), 取[aq=ao,b,=x,]
X₁ =X2
x'2=b₁-λ(b₁-aq) ②f(x₂)<f(x₁), 取[a=x2,b,=b,]
x=aq+λ(b₁-aq)
10
x₂ =x₁
例 求 解 f(x)=-18x²+72x+28 的极大值点,δ≤0.1,起始搜索区间为[0,3] 解:①用间接法:令 f'(x)=-36x+72=0, 得驻点 x=2
xq*∈[aq,b,],x²*∈[a₂ ,b₂ ],.,x*∈[an,b,]
1、原理: ①从起点 X(0) 出发,沿平行于 x, 轴的方向P(1)进行一维搜索,
求得 f(X) 在该方向P(1)上近似极值点 X(1);
②从点 X(1) 出发,沿平行于 x₂ 轴的方向P(2)进行一维搜索,
求得 f(X) 在该方向P(2)上近似极值点 X(2); ③从点 X(2) 出发,照此交替进行下去,直至满足给定的精度ε为止
六、 寻优方法概述:
1、N.L.P.问题分类
① 无约束条件的NLP问题。 ② 有约束条件的NLP问题。 2、寻优方法
① 间接法(解析法):适应于目标函数有简单明确的数学表达式。
非线性规划
非线性规划非线性规划(Nonlinear Programming ,简记为NP)研究的对象是非线性函数的数值最优化问题,是运筹学的最重要分支之一,20世纪50年代形成一门学科,其理论和应用发展十分迅猛,随着计算机的发展,非线性规划应用越来越广泛,针对不同的问题提出了特别的算法,到目前为止还没有适合于各种非线性规划问题的一般算法,有待人们进一步研究.§1 非线性规划基本概念一、引例例7.1 一容器由圆锥面和圆柱面围成. 表面积为S ,圆锥部分高为h ,h 和圆柱部分高2x 之比为a ,1x 为圆柱底圆半径.求21,x x 使面积最大.解: 由条件 a x h =2/22121231x x x ax V ππ+=21212222112221x x x x a x x S πππ+++⋅⋅=所以,数学模型为:212)311(max x x a V π+=s.t. S x x x x a x x =+++21212222112πππ0,21≥x x例7.2 某高校学生食堂用餐,拟购三种食品,馒头0.3元/个,肉丸子1元/个,青菜0.6/碗.该学生的一顿饭支出不能够超过5元.问如何花费达到最满意?解: 设该学生买入馒头,肉丸子,青菜的数量分别为321,,x x x ; 个人的满意度函数即为效用函数为321321321),,(aaax x Ax x x x u =.于是数学模型为321321321),,(max aaax x Ax x x x u =s.t.56.03.0321≤++x x x 321,,x x x 为非负整数二、数学模型称如下形式的数学模型为数学规划(Mathematical Programming 简称MP ) )(min x f z = (7.1) (MP ) t s . 0)(≥x g i m i ,,1 = (7.2) 0)(=x h j l j ,,1 = (7.3)其中Tn x x x x ),,,(21 =是n 维欧几里得空间nR 中的向量(点),)(x f 为目标函数,0)(,0)(=≥x h x g j i 为约束条件.称满足约束条件的向量x 为(MP )问题的一个可行解,全体可行点组成的集合称为可行域.K ={}l j x h mi x g R x j i n,,2,10)(,,2,10)( ===≤∈如果)(),(),(x h x g x f j i 均为线性函数,就是前面所学的线性规划问题(LP).如果至少有一个为非线性函数称为非线性规划问题.由于等式约束0)(=x h j 等价于下列两个不等式约束 0)(,0)(≥-≥x h x h j j 所以(MP)问题又可表示为 )(min x f z =s.t. 0)(≥x g i m i ,,1 = (7.4) 三、数学基础 1、线性代数知识考虑二次型Az z T ,z 为n 维向量正定的二次型:若对于任意0≠z ,有0>Az z T; 半正定的二次型:若对于任意0≠z ,有0≥Az z T ; 负定的二次型:若对于任意0≠z ,有0<Az z T ; 半负定的二次型:若对于任意0≠z ,有0≤Az z T ;不定二次型:0≠∃z ,有0>Az z T,又0≠∃z ,有0<Az z T.二次型Az z T 为正定的充要条件是它的矩阵A 的左上角各阶主子式都大于零. 二次型Az z T 为负定的充要条件是它的矩阵A 的左上角各阶主子式负正相间.2、分析数学知识(1)方向导数和梯度(二维为例)考虑函数),(21x x f Z =,及方向j i lϕϕsin cos +=梯度:Tx f x f j x f i x f x x f ),(),(212121∂∂∂∂=∂∂+∂∂=∇ ; 方向导数:⎪⎪⎭⎫⎝⎛∂∂∂∂=∂∂+∂∂=∂∂ϕϕϕϕsin cos ),(sin cos 2121x f x f x f x f l f )),,(cos(||),(||),(),(21212121l x x gardf x x gardf lx x gardf lx x f T=⋅=⋅∇=考虑等值线00201),(c x x f =上一点),(0201x x 梯度方向 ),(0201x x gardf 即为法线方向n.如果)(x f 二次可微,称⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()()(212222111211x h x h x h x h x h x h x h x h x h x H nn n n n n为)(x f 在点 x 处的Hesse 矩阵.(2)多元函数泰勒公式:若)(,),(0x f R S x x f u n⊆∈=在点0x 处的某个领域具有二阶连续偏导数,则有x x x f x x x f x f x x f T T∆∆+∇∆+∆∇+=∆+)(21)()()(02000θ 10≤≤θ )||(||)(21)()(||)(||)()(2020000x x x f x x x f x f x x x f x f T TT ∆+∆∇∆+∆∇+=∆+∆∇+=οο 四、最优解的类型定义7.1 (MP)问题的一个可行点*x 被称为整体极小点,如果对于任意的可行点K x ∈,都有不等式)()(*x f x f ≥成立.如果对于任意可行点*,x x K x ≠∈均有)()(*x f x f >,称点*x 是)(x f 的可行解集K上的严格整体极小点.定义7.2 问题(MP)的一个可行点*x 被称为一个局部极小点,如果存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*≥x f x f 成立.如果对任意的可行点K x ∈,*≠x x ,存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*>x f x f 成立.则称*x 是)(x f 在K 上的一个局部严格极小点.显然整体极小点一定是局部极小点,反之不然. 五、凸规划定义7.3 集合K 被称为nR 中的一个凸集,如果对于K 中任意两点21,x x 和任一实数]1,0[∈λ,点K x x ∈-+21)1(λλ.几何解释:当一个集合是凸集时,连接此集合中任意两点的线段也一定包含在此集合内,规定φ空集是凸集.定义7.4 凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x 和任意实数]1,0[∈λ有不等式)()1()())1((2121x f x f x x f λλλλ-+≤-+成立.严格凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x ,21x x ≠和任意实数)1,0(∈λ,有不等式)()1()())1((2121x f x f x x f λλλλ-+<-+成立.定义7.5 )(x f 是定义在凸集K 上的实值函数,如果)(x f -是K 上凸函数,称)(x f 是凹函数.定理7.1 设)(x f 是凸集K 上的凸函数,则)(x f 在K 中的任一局部极小点都是它的整体极小点.证明: 设*x 是一局部极小点而非整体极小点,则必存在可行点K x ∈(可行域))()(*x f x f <∍.对任一]1,0[∈λ,由于)(x f 的凸性,有 )()()1()())1((***x f x f x f x x f ≤-+≤-+λλλλ当0→λ时,*)1(x x λλ-+与*x 充分接近,与*x 是局部极小矛盾. 证毕. 定义7.6 设有(MP)问题)(min x f kx ∈,若可行域K 是凸集,)(x f 是K 上的凸函数,则称此规划问题为凸规划.定理7.2 凸规划的任一局部极小解为整体极小解. 六、非线性规划问题的求解方法 考虑(MP)问题:lj x h m i x g t s x f j i ,,10)(,,10)(.)(min ===≥ (7.5) 一般来说,MP 问题难以求得整体极小点,只能求得局部极小点.以后我们说求(MP)问题,指的是求局部极小点.1、无约束极小化问题(UMP ) )(min x f nRx ∈ (7.6) 这里)(x f 是定义在n R 上的一个实值函数定理7.3(一阶必要条件)如果)(x f 是可微函数.*x 是上述无约束问题(UMP )的一个局部极小点或局部极大点的必要条件是:0)(*=∇x f .满足0)(=∇x f 的点称为平稳点或驻点.定理7.4 设)(x f 为定义在n R 上的二阶连续可微函数,如果*x 是)(x f 的一个局部极小点,必有nT Ry y x H y x f ∈∀≥=∇0)(0)(**这里)(*x H 表示)(x f 在*x 处的Hesse 矩阵.证明:nE y ∈∀,根据)(x f 在点*x 处的展开式有)()(21)()(2*2**λολλ++=+y x H y x f y x f T)0)((*=∇x f若0)(,*<∍∈∃y x H y R y T n ,当λ充分小时,有 )()(21|2*2λολ>y x H y T∴有)()(**x f y x f <+λ.这和*x 是)(x f 的极小矛盾.定理7.5 设)(x f 是定义在nR 上的二阶连续可微函数,如果点*x 满足0)(*=∇x f ,而且存在*x 的一个邻域0)(),(,),(*≥∈∀∈∀∍*y x H y x x R y x T n 有 ,则*x 是)(x f 的一个局部极小点.在高等数学中求解极值点方法先求出满足0)(=∇x f 的点及不可导点.在这些点判断)(x f 是否取得极小值.2、等式约束的极小化问题考虑 )(min x fl j x h t s j ,,10)(. == (7.7)定义7.7 如果)(,),(),(21x h x h x h l ∇∇∇ 在点x 处线性无关,则称点x 是此约束条件的一个正则点.Langrange 乘子法:引进拉格朗日函数 ∑=-=lj jj x h u x f u x L 1)()(),(其中Tl u u u u ),,,(21 =被称为拉格朗日乘子向量.定理7.6 设l j x h x f j ,,1),(),( =是连续可微函数,*x 是)(x f 在可行集中的一个局 部极小点.在*x 是正则点的假定下必存在一个拉格朗日乘子向量u ,使得),(*u x 满足方程组)(0)()(*1**==∇-∇∑=x h x h u x f lj j j对等式约束,用拉格朗日乘子法求解出平稳点,判断是否极值点.用上述解析法求解无约束和等式约束极值问题的平稳点,再判断是否为极值点.该方法有一定的局限性:(1)它们要求函数是连续的,可微的,实际问题中不一定满足这一条件; (2)上述求平稳点的方程组求解比较困难,有些解不出来; (3)实际问题中有大量的不等式约束.因此求解非线性规划应有更好的新方法.实际应用中一般用迭代法来求解非线性规划问题,即求近似最优解的方法.3、非线性规划问题的求解方法—迭代法迭代法一般过程为:在(MP)问题的可行域K 内选择初始点0:,0=k x ,确定某一方向k p ,使目标函数)(x f 从k x 出发,沿k p 方向使目标函数值下降,即)0(,>∈+=λλK p x x k ,有)()(0x f x f <,进一步确定kλ,使)(m i n )(0k k k k k p x f p x f λλλ+=+>,令k k k k p x x λ+=+1.如果1+k x 已满足某终止条件,1+k x 为近似最优解.否则,从1+k x 出发找一个方向1+k p ,确定步长1+k λ,使K p x x k k k k ∈+=++++1112λ,有)(min )(1102++>++=k k k p x f x f λλ.如此继续,将得到点列{}kx .显然有 >>>>)()()(1kx f x f x f ,即点列{}kx 相对应的目标函数是一个单调下降的数列.当{}kx 是有穷点列时,希望最后一个点是(MP)问题的某种意义下的最优解.当{}kx 为无穷点列时,它有极限点,其极限点是(MP)的某种意义下的最优解(此时称该方法是收敛的).迭代法求解(MP)的注意点:该方法构造的点列{}kx ,其极限点应是近似最优解,即该算法必须是收敛的.迭代法一般步骤:①. 选取初始点0x ,0:=k ②. 构造搜索方向kp ③. 根据kp 方向确定k λ ④. 令k k k k p x xλ+=+1⑤. 若1+k x已满足某终止条件,停止迭代,输出近似最优解1+k x.否则令1:+=k k ,转向第②步.计算终止条件在上述迭代中有:若1+k x满足某终止条件则停止计算,输出近似最优解1+k x.这里满足某终止条件即到达某精确度要求.常用的计算终止条件有以下几个:(1)自变量的改变量充分小时,11||||ε<-+k k x x,或21||||||||ε<-+kk k x x x ,停止计算. (2)当函数值的下降量充分小时,31)()(ε<-+k kx f x f ,或41|)(|)()(ε<-+k k k x f x f x f , 停止计算.(3)在无约束最优化中,当函数梯度的模充分小时51||)(||ε<∇+k x f ,停止计算.迭代法的关键:① 如何构造每一轮的搜索方向kp ② 确定步长k λ关于k λ,前面是以)(min kk p x f λλ+产生的,也有些算法k λ取为一个固定值,这要根据具体问题来确定.关于kp 的选择,在无约束极值问题中只要是使目标函数值下降的方向就可以了,对于约束极值问题则必需为可行下降方向.定义7.8 设0,,:1≠∈→p R x R R f nn,若存在0>δ使),0(δλ∈∀,)()(x f p x f <+λ则称向量p 是函数)(x f 在点x 处的下降方向.定义7.9 设0,,,≠∈∈∈p R p K x R K nn,若存在0>λ使得K p x ∈+λ,称向量p 是点x 处关于K 的可行方向. 若一个向量p 既是目标函数f 在点x 处的下降方向,又是该点处关于可行域K 的可行方向,则称p 为函数f 在点x 处关于区域K 的可行下降方向.根据不同原理产生了不同的kp 和k λ的选择方法,就产生了各种算法. 在以后的讨论中,一维极值的优化问题是讨论求解步长k λ.无约束极值中讨论的最速下降法,共轭方向法,坐标轮换法,牛顿法,变尺度法及有约束极值中讨论的可行方向法都是根据不同的原理选择kp 得到的迭代算法.七、迭代算法的收敛性定义7.10 设有一算法A ,若对任一初始点(可行点),通过A 进行迭代时,或在有限步后停止得到满足要求的点;或得到一个无穷点列,它的任何一个聚点均是满足要求的点,则称此算法A 具有全局收敛性.定义7.11 设(UMP )问题的目标函数Px Qx x x f T+=21)(,Q 为对称半正定矩阵, 若由算法A 进行迭代时,不论初始点0x 如何选择,必能在有限步后停止迭代,得到所要求的点,则称此算法A 有二次有限终止性.定义7.12 设序列{}kr收敛于*r,定义满足∞<=--≤**+∞−→−βhkk k rr r r 1______lim0的非负数h 的上确界为{}k r 的收敛级.若序列的收敛级为h ,就称序列是h 级收敛的.若1=h 且1<β就称序列是以收敛比β线性收敛的. 若1>h 或1=h 且0=β就称序列是超线性收敛的. 如何判别算法的收敛性和收敛速度问题本书不讨论.本书给出的算法中,最速下降法具有全局收敛性、是线性收敛的;改进牛顿法具有全局收敛性、二次有限终止性、是二阶线性收敛的;变尺度法和共轭方向法具有全局收敛性和二次有限终止性、是超线性收敛的;Zoutenddijk 法不具有全局收敛性、改进的T-V 法具有全局收敛性;制约函数法具有全局收敛性.关于这些算法的收敛性的讨论和证明有兴趣的读者可参考其他文献.§2 一维极值问题的优化方法前面讨论迭代算法时,从kx 出发确定沿k p 方向的步长k λ是这样求解的),(min 0k k p x f λλ+>这里k x ,k p 已知.所以,若记)()(λλg p x f k k =+,则为求解)(min 0λλg >的过程.于是我们考虑如下形式的极值问题.)(min x f bx a ≤≤ (7.8)b a R x ,,1∈为任意实数很显然可应用高等数学中学过的解析法,即令0)('=x f 求出平稳点,但如前面所述如果该方程解不出来,怎么办?可用下述迭代算法—0.618法.定义7.13 )(x f 定义在],[b a 上,若存在点∍∈],[*b a x 当*x y x ≤<,有)()(y f x f >,当*x y x ≥>时,)()(y f x f >,称)(x f 在],[b a 中为单峰函数(单谷函数).显然满足定义要求的点*x 是)(x f 在],[b a 中的极小点.在],[b a 中任选两点21,x x ,且b x x a <<<21,根据)(x f 的单峰性,若)()(21x f x f <,则*x 必然位于],[2x a 内,如果)()(21x f x f >,则*x 必然位于],[1b x 内.如果)()(21x f x f =,则*x 必然位于],[21x x ,记此区间为],[11b a .如此继续,得闭区间套⊃⊃⊃⊃],[],[],[11n n b a b a b a .显然 ,1,0],,[*=∈i b a x i i ,又0→-i i a b .由闭区间套性质, *x 为极小值点.闭区间套的选择方法不同,求得的*x 的快慢及求解过程的计算量是不一样的,有一个常用的方法是0.618法.0.618法: 取],[],[b a =βα① 在],[βα中选取1λ和2λ,)(618.0),(382.021αβαλαβαλ-+=-+=,求出)(1λf 和)(2λf 进入②.② 若)()(21λλf f <,取],[],[2λαβα=,若αλ-2已足够小,停止,否则进入③.若)()(21λλf f >,取],[],[1βλβα=,若1λβ-已足够小,停止,否则进入④. 若)()(21λλf f =,取],[],[21λλβα=,若12λλ-已足够小,停止,否则进入①. ③ 取上一步中的1λ为2λ,显然有)(618.02αβαλ-+=,令)(382.01αβαλ-+=,求出)(1λf ,返回②.④ 取上一步的2λ为1λ,则有)(382.01αβαλ-+=,令)(618.02αβαλ-+=,求出)(2λf 返回②.设初始区间为],[b a ,用0.618法,经过k 次迭代后],[βα的长度ka b 618.1)(-=-αβ,只要k 充分大αβ-可以小于任何给定的正数.例7.3 用0.618法求解λλλ2)(min 2+=f单峰区间为[-3,5],2.0=ε解:[α,β]=[-3,5]1λ=-3+0.382×8=0.056 )(1λf =0.1152λ=-3+0.618×8=1.944 )(2λf =7.667由于)(1λf <)(2λf 所以新的不定区间为[α,β] =[-3,1.944] 由于β-α=4.944>0.22λ:=1λ=0.056 )(2λf :=)(1λf =0.115 1λ=-3+0.382×4.944=-1.112 )(1λf =-0.987如此反复得下表7-1:在进行8次迭代后,2.0112.1936.0<+-=-αβ取中间值024.1*-=λ或032.12-=λ作为近似最优解.显然真正极小点是-1.0.一维收索方法很多,如函数逼近法、牛顿法等可参考其他文献.§3 无约束极值的优化方法考虑无约束最优化问题(UMP ))(min x f nR x ∈ (7.9) 前面已经讨论过,求解此无约束优化问题,可以求出平稳点及不可导点的方法.令0)(*=∇x f ,求出平稳点.如果)(*2x f ∇是正定的,则*x 是UMP 的严格局部最优解.若)(x f 在n R 上是凸函数,则是整体最优解.在求解0)(*=∇x f 这n 维方程组比较困难时,就用最优化算法——迭代法.本节将介绍最速下降法,牛顿法,共轭方向法,坐标轮换法,变尺度法.这些算法就是用不同的方法来选择搜索方向k p 而得到的.当然kp 必须是下降方向.定理7.7 设R R f n→:,在点x 处可微,若存在nR p ∈,使0)(<∇p x f T,则向量p是f 在x 处的下降方向.证明:)(x f 可微(在x 处),由泰勒展开式,有 ||)(||)()()(p p x f x f p x f Tλολλ+∇+=+ ,0,0)(><∇λp x f T0)(<∇∴p x f Tλ),(当δλδ0∈∃∴时,有0||)(||)(<+∇p p x f Tλολ),0()()(δλλ∈∀<+∴x f p x fp ∴是)(x f 在点x 的下降方向. 证毕.一、最速下降法最速下降法又称梯度法,选择负梯度方向作为目标函数值下降的方向,是比较古老的一种算法,其它的方法是它的变形或受它的启发而得到的,因此它是最优化方法的基础. 基本思想:迭代法求解无约束最优化(5.9)问题的关键是求下降方向kp .显然最容易想到的是使目标函数值下降速度最快的方向.从当前点kx 出发,什么方向是使)(x f 下降速度最快呢? 由泰勒展开知:||)(||)()()(k k T k k k k p p x f p x f x f λολλ+∇-=+-略去λ的高阶无穷小项,取)(kkx f p -∇=时,函数值下降最多.而)(kx f ∇为)(x f 在kx 处的梯度,所以下降方向kp 取为负梯度方向时,目标函数值下降最快.最速下降法:①. 取初始点0x ,允许误差0>ε,令0:=k ②. 计算)(kkx f p -∇=③. 若ε<||||k p ,停止,点k x 为近似最优解.否则进入④.④. 求 k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥ ⑤. 令kk k k p x xλ+=+1,1:+=k k ,返回②例7.4 用最速下降法求解下列无约束优化问题1222121225),(m in x x x x x f -+=取初始点Tx )2,2(0= 终止误差 610-=ε解:很显然,该问题的整体最优解为Tx )0,1(*=⎪⎪⎭⎫⎝⎛-=∇215022)(x x x f ,令0,10)(21==⇒=∇x x x f易验证)(*2x f ∇是正定的, ∴是整体最优解. 下面用最速下降法求解T T x x x f x f x f )50,22(),()(2121-=∂∂∂∂=∇ T x )2,2(0=T x f )100,2()(0=∇∴取Tp )100,2(0-=由⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+λλλλ10022210022200p x4)22(2)1002(25)22()(2200+---+-=+λλλλp x f得0)1002(5000)22(4=----=λλλd df020007679.0500008100080==⇒λ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+=0007679.0959984642.11002020007679.0220001p x x λ重复上述过程得 Tx )01824717.0,009122542.1(2=789850288.0)(,078282.0)(,100)(21-=-==x f x f x f图7-1从图7-1可知,{}kx 随着迭代次数的增加,越来越接近与最优解)0,1(,同时也看到,随着迭代次数的增加,收敛速度越来越慢.极小点附近沿着一种锯齿形前进,即产生“拉锯”现象:{}kx沿相互正交的方向小步拐进,趋于最优解的过程非常缓慢.这种现象怎样解释?如何克服?在求k λ时,由于)()(kkp x f λλϕ+=,求导得0)('=λϕ,k λ是)(λϕ的极小点.故有0)()('=⋅+∇=k T k k k k p p x f λλϕ,即0)(=⋅+∇kk k k p p x f λ,又)(11++-∇=k k x f p,即0)(1=⋅+k T k p p 或0)()(1=∇⋅∇+k T k x f x f .也就是最速下降法相邻两个搜索方向是彼此正交的.因此最速下降法是局部下降最快,但不一定是整体下降最快的.在实际应用中一般开始几步用最速下降法,后来用下面介绍的牛顿法.这样两个算法结合起来,求解速度较快.二、牛顿法 基本思想:考虑无约束优化问题(5.9))(min x f nRx ∈ 由前面的讨论知,若能解出方程组0)(=∇x f ,求出平稳点*x ,则可验证*x 是否为极值点.由于0)(=∇x f 难以求解.如果)(x f 具有连续的二阶偏导数,则考虑用)(x f 在点*x 二阶泰勒展开式条件替代)(x f ∇,即由22||)(||))(()(21)()()()(k k k T k k T k k x x x x x f x x x x x f x f x f -+-∇-+-∇+=ο))(()(21)()()()()(2kk T k k T k k x x x f x x x x x f x f x g x f -∇-+-∇+=≈⇒令0))(()()()(2=-∇+∇=∇≈∇kk k x x x f x f x g x f)())((121k k k k x f x f x x ∇∇-=⇒-+即从kx 出发,搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为1,得到下一个迭代点1+k x.牛顿法:①. 选取初始点0,0=:k x ,精度0>ε ②. 计算)(kx f ∇,如果ε≤∇||)(||kx f ,计算终止.否则计算)(2kx f ∇,求出搜索方向)())((12kk k x f x f p ∇∇-=-. ③. 令1:,1+=+=+k k p x x k k k ,返回②.例7.5 考虑无约束问题22122214)(m in x x x x x f -+=试分别取初始点(1)T x )1,1(0=,(2)T x )4,3(0=(3)Tx )0,2(0=,取精度要求310-=ε,用牛顿法求解.解:⎪⎪⎭⎫ ⎝⎛--=∇212211228)(x x x x x x f ⎪⎪⎭⎫⎝⎛---=∇22228)(1122x x x x f (1) 取Tx )1,1(0=有Tx f )1,6()(0=∇ ε>=∇0828.6||)(||0x f⎪⎪⎭⎫⎝⎛--=∇2226)(02x fT x f x f p )2500.2,7500.1()())((01020--=∇⋅∇-=-Tp x x )2500.1,7500.0(01--=+= 重复计算结果得表7-2.ε<=0||)(||4x f T x )0,0(4=∴为近似最优解.实际上,该问题最优解为**)0,0(=x(2) 取Tx )4,3(0=,同上计算,得TT x x x )4,8284.2(,)4,8333.2(),4,3(21===有ε<=∇=∇=∇0||)(||,1667.0||)(||,1||)(||210x f x f x f ,这一迭代结果收敛到)(x f 的鞍点T)4,22(.(3) 取Tx )0,2(0=T x f )4,16()(0-=∇ ⎪⎪⎭⎫⎝⎛--=∇2448)(02x f0)(02=∇x f , 即)(02x f ∇不可逆,所以无法求得点1x .牛顿法的主要缺点:(1) 该法的某次迭代反而使目标函数值增大(见上例).(2) 初始点0x 距极小点*x 较远时,产生的点列{}kx可能不收敛,还会出现)(*2x f ∇的奇异情况.(3) )(*2x f ∇的逆矩阵计算量大. 牛顿迭代法的主要优点:当目标函数)(x f 满足一定条件,初始点0x 充分接近极小点*x 时,由牛顿法产生的点列{}kx 不仅能够收敛到*x,而且收敛速度非常快.实际应用中常将最速下降法和牛顿法结合起来使用.牛顿法的改进:上面介绍的牛顿法中,kx 处的搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为 1.若通过一维搜索来取最优步长k λ,可防止在迭代中步长恒为1时标目标函数值增大的可能. 改进的牛顿法:①. 取初始点nR x ∈0,允许误差0:,0=>k ε.②. 检验是否满足ε<∇||)(||kx f ,若是,迭代停止,得到k x 为近似最优解.否则进入③.③. 令)())((12kk k x f x f p ∇∇-=-.④. 求k λ,使)()(min kk k k k p x f p x f λλλ+=+. ⑤. 令k k k k p x x λ+=+1,令1+=k k :转②.三、坐标轮换法既然求解非线性规划问题的迭代法是给出初始点0x ,求出一个方向kp ,根据kp 确定步长k λ,使k k k k p x xλ+=+1,如果1+k x 满足某精度要求则停止,否则继续找方向1+k p .显然构造出搜索方向有一定的困难,能否按既定的搜索方向寻找最优解,省去找搜索方向kp 呢?在最速下降法中我们看到相邻两个搜索方向kp 和1+k p是正交的.我们知道在n 维欧氏空间中坐标轴向量n εεε,,,21 是正交的,可否选坐标轴向量为搜索方向kp 为呢?回答是肯定的,这样我们得到了坐标轮换法.基本思想:从1x 出发,取11ε=p ,沿1p 进行一维搜索得到1112p x x λ+=.若2x 满足精度要求,则停止.否则取22ε=p ,2223p x x λ+=.如此继续,, 取n n n n n n p x x p λε+==+1,,若1+n x 满足精度要求,则停止.否则令11ε=+n p ,1112+++++=n n n n p x x λ,如此反复连续,可以求出近似最优解.坐标轮换法的缺点是收敛速度较慢,搜索效率较低,但基本思想简单,沿坐标轴的方向进行搜索.四、共轭方向法和共轭梯度法共轭方向法是一类方法的总称,它原来是为求解目标函数为二次函数的问题而设计的.这类方法的特点是:方法中的搜索方向是与二次函数的系数矩阵Q 有关的所谓共轭方向,用这类方法求解n 元二次函数的极小化问题最多进行n 次一维搜索便可以得到极小点.由于可微的非二次函数在极小点附近的性态近似于二次函数,因此这类方法也用于求可微的非二次函数的UMP 问题.定义7.14 设Q 为n n ⨯对称正定矩阵,如果0=Qy x T称n 维向量x 和y 关于Q 共轭.定义7.15 设k p p p ,,,21 为nR 中一组向量, Q 是一个n n ⨯对称正定矩阵.如果k j i j i Qp p Qp p i T i j T i ,,2,1,,,0,0 =≠≠=,称k p p p ,,,21 为Q 共轭向量组,也称它们为一组Q 共轭方向.当E Q =(单位矩阵)时,为正交方向.定理7.8 若k p p p ,,,21 为矩阵Q 共轭向量组,则它们必线性无关. 证明: 若存在k l l l ,,,21 ,使011=++k k p l p l ,则对任一k j ,,2,1 =,由 0)(11===∑∑==j T j j ki j T j iki iiT jQp p l Qp pl p l Q p又0>j Tj Qp p , 0=∴j l∴ k p p p ,,,21 线性无关. 证毕.由高等代数知识可知, Q 共轭向量组中最多包含n 个向量, n 是向量的维数.反之,可以证明,由n 维空间的任一组基出发可以构造出一组Q 共轭方向11,,,-n pp p .前面我们已经讲述了坐标轮换法,在n 维欧几里德空间中, n εεε,,,21 是一组线性无关的正交向量.从0x 出发,依次使用n εεε,,,21 作为下降方向进行一维精确搜索来确定n x x x ,,,21 ,重复进行得点列{}k x ,最终求得满足精度要求的最优解.刚才我们引进了共轭向量组11,,,-n p p p ,又证明了它们的线性无关性,那么是否可以用这共轭向量组像坐标轮换法一样,从0x 出发依次用11,,,-n pp p 作为下降方向来确定{}kx,最终求得近似最优解?回答是肯定的.这个方法称为共轭方向法.共轭方向法适合任何可微凸函数,且对于二次函数极值)(min x f x p Qx x T T+=21特 别有效.下面的定理告诉我们用共轭方向法求解二次函数的极值,经过n 次迭代就能求得最优解.定理7.9 设Q 为n n ⨯对称正定矩阵,函数x p Qx x x f T T+=21)(,又设 110,,,-n p p p 为一组Q 共轭向量组,且每个i p 是(下面形成的)i x 点处的下降方向.则由任一点0x 出发,按如下迭代至多n 步后收敛,k k k k p x xλ+=+1,这里k λ满足)(m i n )(0k k k k k p x f p x f λλλ+=+>.证明: 欲证至多n 步收敛,即证0)(=∇nx f .下证)(nx f ∇和11,,,-n pp p 正交.p Qx x f +=∇)( p Qx x f kk+=∇∴)( p p x Q p Qx xf k k k k k ++=+=∇++)()(11λkk k k k k Qp x f p Qp Qx λλ+∇=++=)( =+∇=∇---111)()(n n n n Qpx f x f λ 11111)(--++++++∇=n n k k k Qp Qp xf λλQ p Q p x f x f Tn n T k k T k T n )()()()(11111--++++++∇=∇λλkT n n k T k k k T k k T n Qp p Qp p p x f p x f )()()()(11111--++++++∇=∇λλ000+++= )2,,2,1,0(-=n k 又0)(1=∇-n Tn px f0)(=∇∴kT n p x f )1,,1,0(-=n k)(nx f ∇∴和11,,,-n pp p 正交, 又110,,,-n pp p 线性无关.0)(=∇∴nx fnx ∴是问题的最优解. 证毕. 共轭方向法具有二次有限终止性. 由于共轭方向组11,,,-n p p p 的取法有很大的随意性,用不同方式产生一组共轭方向就得到不同的共轭方向法.如果利用迭代点处的负梯度向量为基础产生一组共轭方向,这样的方法叫共轭梯度法.下面对二次函数讨论形成Q 共轭梯度方向的一般方法,然后引到求解无约束化问题上.任取初始点n R x ∈0,若0)(0≠∇x f ,取)(0x f p -∇=,从0x 点沿方向0p 进行一维搜索 ,求得0λ.令0001p x x λ+=,若0)(1=∇x f ,则已获得最优解1*x x =.否则,取0011)(p x f p υ+-∇=,其中0υ的选择要使1p 和0p 关于Q 共轭,由0)(01=Qp p T ,得0100)()()(Qp p x f Q p T T ∇=υ一般地,若已获得Q 共轭方向kp p p ,,,1和依次沿它们进行一维搜索的得到的点列110,,,+k x x x ,若0)(1=∇+k x f ,则最优解为1*+=k x x ,否则∑=+++-∇=ki i i k k p xf p011)(α为使1+k p 和11,,,-k pp p 是共轭,可证0110====-k ααα所以有 k k k k p x f pυ+-∇=++)(11又1+k p和kp 是Q 共轭的.有0)(1=+k Tk Qp p,得kT k k T k k Qpp x f Q p )()()(1+∇=υ 2,,2,1,0-=n k 进一步可得k υ221||)(||||)(||k k x f x f ∇∇=+ 2,,1,0-=n k综合起来得 Fletcher-Reeves 公式2)21110||(||||)(||)()(k k k k k k k x f x f p x f px f p ∇∇=+-∇=-∇=+++υυ 2,,2,1,0-=n k (7.10)共轭梯度法: ①. 选取初始点0x ,给定终止误差0>ε. ②. 计算)(0x f ∇,若ε≤∇||)(||0x f ,停止迭代,输出0x .否则进行③.③. 取)(0x f p -∇=,令0:=k④. 求k λ,)(min )(0kkkk kp x f p x f λλλ+=+≥,令k k k k p x xλ+=+1⑤. 计算)(1+∇k xf ,若ε≤∇+||)(||1k x f ,停止迭代,1*+=k x x 为最优解.否则转⑥.⑥. 若n k =+1,令nx x =:0,转③(已经完成一组共轭方向的迭代,进入下一轮)否则转⑦ ⑦. 取kk k k p xf pυ+-∇=++)(11,其中221||)(||||)(||k k k x f x f ∇∇=+υ,令1:+=k k ,转④当)(x f 是二次函数时上述共轭梯度法至多进行n 步可求得最优解.当)(x f 不是二次函数,共轭梯度法也可以构造11,,,-n p p p ,但已不具有有限步收敛的性质,于是和坐标轮换法一样经过一轮迭代后,采用重新开始的技巧.上述共轭梯度法就是带有再开始技巧的F-R 法.例7.6 用F-R 法求下面问题 2212121252),(m in x x x x x f +-=取初始点T x )2,2(0=,终止误差为610-=ε解:在例7.4中已得Tx f p )100,2()(0-=-∇= Tx )0007679.0,959984642.1(1-= Tx f )038395.0,919969284.1()(1-=∇000368628.010004687756228.3||)(||||)(||20210==∇∇=x f x f υ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=+-∇=0015322.092070654.11002000368628.0038395.0919969284.1)(0011p x f p υ⎪⎪⎭⎫ ⎝⎛+--=+0015322.00007679.092070654.1959984642.111λλλp x0378228399.7687703443.3)(11=+-=+λλλd p x df499808794.01=∴λ⎪⎪⎭⎫ ⎝⎛≈⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⨯+--⨯+=+=010********.0999998622.00015322.0499808794.00007679.0)92070654.1(499808794.0959984642.11112p x x λε<=∇0||)(||2x f , ∴最优解⎪⎪⎭⎫⎝⎛==012*x x .五、变尺度法当初始点为)(x f 的其极值点附近时牛顿法收敛速度很快,但缺点是需计算)(2kx f ∇的逆矩阵,在实际问题中目标函数往往相当复杂,计算二阶导数的工作量或者太大或者不可能,在x 的维数很高时,计算逆矩阵也相当费事.如果能设法构造另一个矩阵kH ,用它来逼近二阶导数矩阵的逆矩阵12))((-∇kx f 则可避免上述问题.下面就来研究如何构造12))((-∇kx f 的近似矩阵kH .我们希望:每一步都能以现有的信息来确定下一个搜索方向,每做一次迭代,目标函数值均有所下降,这些近似矩阵最后应收敛于最优解处的海赛矩阵的逆矩阵12))((-∇kx f .p Qx x f xp Qx x x f T T+=∇+=)(21)(考虑于是 )]()([)()()(11111k k k k k k k k x f x f Q x x x x Q x f xf ∇-∇=-⇒-=∇-∇+-+++当)(x f 是非二次函数时,令)]()([111k k k k k x f x f H x x ∇-∇=-+++ (7.11)称为拟牛顿条件.显然,我们构造出来的近似矩阵k H 必须满足上述拟牛顿条件及递推性:k k k H H H ∆+=+1,这里k H ∆称为矫正矩阵.记 k k k kk k x x x x f x f G -=∆∇-∇=∆++11)()( 有 kk k k k k G H H G H x ∆∆+=∆=∆+)(1 .变尺度法即DEP 法是由Davidon 首先提出,后来又被Fletcher 和Powell 改进的算法.记kk T k kT k k k k T k T k k k k kk T k kT k k k k T k T k k kG H G HG G H x G x x H H G H G H G G H x G x x H ∆∆∆∆-∆∆∆∆+=∆∆∆∆-∆∆∆∆=∆+)()()()()()()()(1 (7.12)容易验证1+k H 满足拟牛顿条件,称上式为DEP 公式.变尺度方法计算步骤:(1) 给出初始点nR x ∈0,允许误差0>ε.(2) 若ε<∇||)(||0x f ,停止,0x 为近似最优解;否则转下一步.(3) 取I H =0(单位矩阵),0=:k . (4) )(kk k x f H p ∇-=(5) 求k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥. (6) 令kk k k p x xλ+=+1(7) 若ε<∇+||)(||1k xf ,1+k x 为最优解,停止;否则当1-=n k 时,令n x x =:0转(3).(即迭代一轮n 次仍没求得最优解,以新的0x 为起点重新开始一轮新的迭代).k k k k k kx x x x f xf G n k -=∆∇-∇=∆-<++11),()(1时,令当.计算kk T k kT k k k k T k T k k kk G H G H G G H x G x x H H∆∆∆∆-∆∆∆∆+=+)()()()(1,令1+=k k :,转(4). §4 约束极值的最优化方法考虑(MP)问题:0)(0)(..)(min =≥x H x g t s x f (7.13)其中Tl T m x h x h x h x g x g x g ))(,),(()(,))(,),(()(11 ==是向量函数.显然 0)(0)(0)(≥-≥⇔=x h x h x h , 于是(MP )问题可以写为:Tm x g x g x g x g t s x f ))(,),(()(0)(..)(min 1 =≥ (7.14)一、积极约束设0x 是(MP )问题(5.14)的一个可行解.对0)(0≥x g i 来说,在点0x 有两种情况:或者0)(0>x g i ,或者0)(0=x g i .0)(0>x g i 时,则0x 不在0)(0=x g i 形成的边界上,称这一约束为0x 的非积极约束;0)(0=x g i 时,0x 处于由0)(0≥x g i 这个约束条件形成的可行域边界上,当0x 有变化时就不满足0)(0=x g i 的条件,所以称为积极约束,记为:{}()|()0,1i I x i g x i m ==≤≤.定义7.16 设x 满足约束条件0)(0≥x g i ),,1(m i =,0)(|{)(==x g i x I i ,}m i ≤≤1,如果)(x g i ∇,)(x I i ∈线性无关,则称点x 是约束条件的一个正则点.二、可行方向、下降方向的代数条件前面我们已经给出可行方向和下降方向的定义,下面给出其代数条件.可行方向:设K 是(MP )问题(5.14)的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时有K p x ∈+λ,称p 为x 点处的一个可行方向.由泰勒公式:||)(||)()()(p p x g x g p x g T i i i λολλ+∇+=+当x 为)(x g i 的积极约束时,有0)(=x g i .只要0>λ足够小,)(p x g i λ+和p x g T i )(∇λ同号,于是当0)(>∇p x g T i 时有0)(≥+p x g i λ )(x I i ∈.当x 为)(x g i 的非积极约束时,有0)(>x g i .由)(x g i 的连续性,当0>λ足够小时,由保号性知 0)(≥+p x g i λ )(x I i ∉.所以只要 0)(>∇p x g T i ,)(x I i ∈就可保证0)(≥+p x g i λ,于是p 为x 点处的一个可行方向.称0)(>∇p x g T i ,)(x I i ∈ 为p 在点x 处是可行方向的代数条件.下降方向:设K 是(MP )问题的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时,有)()(x f p x f <+λ,称p 为x 点处的一个下降方向.由泰勒公式:||)(||)()()(p p x f x f p x f Tλολλ+∇+=+.当λ足够小时,只要0)(<∇p x f T,有)()(x f p x f <+λ. 称0)(<∇p x f T为p 在x 点处的一个下降方向的代数条件.三、可行下降方向设K 为(MP )问题(5.14)的可行域,K x ∈,若存在0,≠∈p R p n,p 既是x 点处的下降方向又是可行方向,则称p 为点x 处的可行下降方向.定理7.10 考虑非线性规划问题(5.14),K x ∈,),,1)()(m i x g x f i =(和在x点处可微,若*x 是局部极小点,则x 点处必不存在可行下降方向,即不存在p 同时满足:⎪⎩⎪⎨⎧∈>∇<∇)(0)(0)(x I i p x g p x f Ti T证明:反证法,设局部极小点x 处存在可行下降方向p ,于是1λ∃,当],0[1λλ∈时有)()(x f p x f <+λ,又p 为可行方向.2λ∃∴当],0[2λλ∈时K p x ∈+λ,这与x 是。
运筹学―第六章非线性规划精品PPT课件
F1 1 Fn1 Fn2
, n 2,3,
n 0 1 2 3 4 5 6 7 8 9 10 11 12 …
Fn 1 1 2 3 5 8 13 21 34 55 89 144
23 3
…
Fn1
1 2 3 5 8 13 21 34 55 89 144
Fn
1
2
3
5
8
13
21
34
55
89
144
… 233
hj (x) 0, j 1,...q
(NLP)
X
x
Rn
gi (x) hj (x)
0, i 1,..., p 0, j 1,..., q
约束集
如果(NLP)的约束集X是凸集,目标函数f是 X上的凸函数,则(NLP)叫做非线性凸规划, 或简称为凸规划。
凸规划的性质
定理 6.3 对于非线性规划(NLP),若 gi ( x), i 1,..., p 皆为 Rn 上的凸函数, h j ( x), j 1,..., q 皆为线性函数, 并且 f 是 X 上的凸函数,则 NLP 是凸规划。
性质 6.2 设 S Rn 是非空凸集, f : Rn R 是凸函数, c R ,则集合
H S ( f , c) x S f ( x) c
是凸集。
凸函数的判 定
定理 6.1 设 S Rn 是非空开凸集, f : S R 可微,则
(1) f 是 S 上的凸函数的充要条件是
f ( x1 )T ( x 2 x1 ) f ( x 2 ) f ( x1 ) , x1 , x 2 S
试获得 n 组 与 t 之间的实验数据 (ti , i ) ,
i=1,2,…,n。试确定参数 c1 , c 2 , c 3 ,
《非线性规划模型》课件
一般形式的非线性规划
一般形式的非线性规划同时包含等式约束和不等式约束,目标函数和约束条 件均为非线性。
非线性规划的求解方法
1
牛顿法
通过使用二阶导数信息ቤተ መጻሕፍቲ ባይዱ迭代逼近最优解。
2
梯度下降法
利用目标函数梯度方向确定下降方向,逐步逼近最优解。
3
共轭梯度法
结合梯度信息,迭代快速逼近最优解。
粒子群算法及其应用
多解性
非线性规划模型可能存在多 个最优解,需要综合考虑问 题的不同方面。
计算复杂度
非线性规划求解过程通常需 要使用迭代算法,计算时间 较长。
不等式约束的非线性规划
当目标函数和约束条件都包含不等式关系时,我们称之为不等式约束的非线 性规划。
等式约束的非线性规划
当约束条件中包含等式关系,但目标函数仍为非线性函数时,我们称之为等 式约束的非线性规划。
《非线性规划模型》PPT 课件
非线性规划是一种优化问题求解方法,本课件将介绍非线性规划的定义、特 点以及不同约束形式下的求解方法,展示非线性规划在各个领域中的应用案 例。
什么是非线性规划
非线性规划是一种优化问题的求解方法,它考虑目标函数和约束条件为非线 性的情况。
非线性规划的特点
复杂性
非线性规划模型通常比线性 规划更加复杂,涉及更多变 量和限制条件。
粒子群算法模拟群体行为,通过协作和随机搜索找到最优解,广泛应用于非 线性规划问题。
遗传算法及其应用
遗传算法模拟生物进化过程,通过选择、交叉和变异等操作找到最优解,在非线性规划中有着广泛的应用。
运筹学课件第六章 非线性规划
或 x
k 1
x tk p , tk 0
k k
称p k 为 第k轮 搜 索 方 向 , 为 第k轮 沿 搜 索 方 向 tk p k的 步 长 。
第11页
n n n 定义3 设f : R R, x R , p R , p 0, 0,使得 若
f ( x tp) f ( x ), t (0, )
2 1
令 0 得: f ( x1 )T ( x 2 x1 ) f ( x 2 ) f ( x1 )
f ( x 2 ) f ( x1 )
第23页
x1 , x 2 S f ( x ) ( x x ) f ( x ) f ( x )
1 T 2 1 2 1
1 T 2 1 2 1
证 (1) 必要性.设f是S上的凸函数,则对 (0,1), 有
f ( x 2 (1 ) x1 ) f ( x 2 ) (1 ) f ( x1 )
x1 , x 2 S
f ( x 1 ( x 2 x 1 )) f ( x1 )
第14页
全局优化算法概述
全局优化方法可分为随机性方法和确定性方法. 确定性方法充分利用了问题的解析性质, 如函数的 凸性、单调性、稠密性等, 产生一个确定性的有限 或无限点序列, 使得该点序列收敛于全局最优解. 包 括分枝定界算法、区间算法、填充函数法、割平面 法、顶点枚举法等,这类算法在理论上有较强的可行 性, 但对较为复杂的大型优化问题却难于应用.
如果有 f ( x* ) f ( x), x D, x x* 则称 x * 是(P)的严格全局最优解或严格全局极小点, 称 f ( x * ) 是(P)的严格全局最优值或严格全局极小值。
数学建模非线性规划模型
0 0.216 0.009 5
0 0.23 0.40 0.108 0.22 0.202 0.006
表1
售价(元)
2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00
表2
预期销售量(桶)
41000 38000 34000 32000 29000 28000 25000 22000 20000
广告费(元) 销售增长因子
0
1.00
10000
1.40
20000
1.70
干种资产时,总体风险可用所投资的Si中最大的一 个风险来度量。购买Si要付交易费,费率为pi,并且 当购买额不超过给定值ui时,交易费按购买ui计算 (不买当然无须付费)。另外,假定同期银行存款
利率是r0,且既无交易费又无风险(r0=5%)。 (1)已知n=4时的相关数据如下:
Si
ri(%) qi(%) pi(%) ui(元)
6.4.3 问题的分析
设购买Si的金额为xi,所付的交易费为ci(xi);c0(x0)=0
0 xi 0
ci
(
xi
)
pi
ui
0 xi ui
(i 1 ~ n) (1)
pi
xi
xi ui
因为投资额M相当大,所以总可以假定对每个Si的投
资 xi ≥ ui,这时(1)式可简化为
ci (xi ) pi xi (i 0 ~ n)
n
R(x) Ri (xi )
i0
整体风险:
(6)
Q(x)
max
1i n
Qi
(
xi
)
资金约束:
n
F(x) fi (xi ) M
数学建模线性和非线性规划
George B. Dantzig
• George B. Dantzig(19142005),美国人,线性规划单 纯形法的创始人,被誉为” 线性规划之父”.美国科学 院三院院士,美国军方数学 顾问,教授.并以其名字设立 Dantzig奖.数学规划的三大 创始人之一.
• 目的是什么? • 有哪些重要的因素? • 这些因素和你的目标之间有什么样的关系?
二,优化问题的表述
• 目标函数 对应决策者而言,对其有利的程度必须定量的测度, 在
商业应用中,有效性的测度经常是利润或者成本, 但对于 政府,更经常的使用投入产出率来测度.
表示有效性测度的经常称为目标函数.目标函数要表出 测度的有效性, 必须说明测度和导致测度改变的变量之间 的关系. 系统变量分为决策变量和参数.决策变量是指能由 决策者直接控制的变量. 而参数是指不能由决策者决定的 量.实际上,数学模型很少有能表达变量和有效性测度之 间的精确关系的. 实际上,运筹学分析者的任务就是找出 对测度有最重要影响的变量 然后找出这些变量和测度之间 的数学关系.这个数学关系也就是目标函数.
a 1.25 8.75 0.5 5.75 3 7.25
b 1.25 0.75 4.75 5
6.5 7.75
d
3
5
4
7
6
11
二,优化问题建模的基本步骤介绍
在我们的生活中,始终有这样的问题:为 了一定的目的做一些事情,我们可能要考虑 有哪些重要的因素,这些因素和要完成的目 标之间有什么样的关系.也就是说,我们在做 一个决定时,
建立数学模型
① 决策变量:在混合饲料中,每天所需第j种饲料的 磅数xj,j = 1,2,3,4,5;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其它情况: 求目标函数的最大值,或约束条件小于等于零 两种情况,都可通过取其相反数化为上述一般形式.
2020/1/23
数学建模
3
定义1 把满足问题(1)中条件的解 X ( Rn )称为可行解(或可行
点),所有可行点的集合称为可行集(或可行域).记为D.即
性约束条件.因为线性近似通常只在展开点附近近似程度较
高,故需要对变量的取值范围加以限制,所增加的约束条件是:
xj
x
k j
k j
j = 1,L, n
求解该线性规划问题,得到最优解X k1 ;
(4) 检验 X k1对原约束是否可行.若 X k1对原约束可行,则转
步骤(5);否则,缩小步长限制,令
k j
=
k j
j = 1,L, n,返
回步骤(3),重解当前的线性规划问题;
5)
判断精度:若
k j
j =1,L,n,则点 X k1为近似最优解;
否则,令
k 1 j
=
k j
j =1,L,n,k=k+1,返回步骤(2). 返回
2020/1/23
数学建模
13
标准型为:
gi hj
X X
=
0 0
i = 1,2,...,m; j = 1, 2,...,l.
(1)
m
l
可设:TX , M = f X M min0, gi X 2 M hj X 2 (2)
i=1
j =1
将问题(1)转化为无约束问题: minT X , M
14
例1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22
s.t. x1+x2≤2
-x1+2x2≤2
x1≥0, x2≥0
1.写成标准形式:
1
min
z
=
(
x1,
x2
)
1
-1
2
x1 x2
2 6
T
x1 x2
(3)
X R n
其中T(X,M)称为罚函数,M称为罚因子,带M的项称为罚项,
这里的罚函数只对不满足约束条件的点实行惩罚:当X D 时,满足
各 gi X 0,hi X = 0 ,故罚项为0,不受惩罚.当X D 时,必
有约束条件 gi X 0或hi X 0 ,故罚项大于0,要受惩罚.
返回(3).
2020/1/23
数学建模
10
近似规划法
近似规划法的基本思想:将问题(3)中的目标函数 f X 和约束条件 gi X 0 (i =1,...,m); hj X = 0 (j =1, ,l)
近似为线性函数,并对变量的取值范围加以限制,从 而得到一个近似线性规划问题,再用单纯形法求解之, 把其符合原始条件的最优解作为(3)的解的近似.
数学建模
返回 2
非现性规划的基本概念
定义 如果目标函数或约束条件中至少有一个是非线性函数, 则最优化问题就叫做非线性规划问题.
一般形式:
min f X
s.t.gi h j
X X
=
0 0
i = 1,2,..., m; j = 1,2,...,l.
(1)
其中 X = x1, x2,L, xn T Rn,f , gi , hj 是定义在 Rn 上的实值函
X X* 时,若 f X * f X ,则称X*是f(X)在D上的严格全局极小值
点(严格全局最优解).
2020/1/23
数学建模
返回 4
非线性规划的基本解法
1. 罚函数法
SUTM外点法 SUTM内点法(障碍罚函数法)
2. 近似规划法
2020/1/23
数学建模
返回 5
罚函数法
(3)
以
X
k 1
D0为初始点,求解min X D 0
I
X
,
rk
,其中
X
D0的
最优解设为 X k = X rk D0;
(4)
检验是否满足
r
m
ln
i=1
gi
Xk
或
rk
m
i=1gi
1
X
Байду номын сангаас
,若满
足,停止迭代,令 X * X k ;否则取rk1 = rk ,令k = k 1,
Ceq(X)=0 VLB X VUB
其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成
的向量,其他变量的含义与线性规划、二次规划中相同.用 MATLAB求解上述问题,基本步骤分三步:
1. 首先建立M文件fun.m,用来定义目标函数F(X):
function f=fun(X);
f=F(X);
r 为障碍因子.
这样问题(1)就转化为求一系列极值问题:
min I X , r 得 X(k r).
k
k
0
202X0/1D/23
数学建模
9
内点法的迭代步骤
(1) 给定允许误差 0,取r1 0,0 1;
(2) 求出约束集合 D 的一个内点 X 0 D0,令k = 1;
1.二次规划
min Z= 1 XTHX+cTX
2
s.t. AX≤b
Aeq X = beq
VLB≤X≤VUB
用MATLAB软件求解,其输入格式如下:
1.x=quadprog(H,C,A,b);
2.x=quadprog(H,C,A,b,Aeq,beq);
3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);
s.t.
2.输入命令:
H=[1 -1; -1 2];
1
1
1
2
x1 x2
2 2
0 0
x1 x2
c=[-2 ;-6];A=[1 1; -1 2];b=[2;2];
Aeq=[];beq=[]; VLB=[0;0];VUB=[];
[x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
3.运算结果为: x 2020/1/23 =0.6667 1.数学3建3模33
MATLAB(youh1)
z = -8.222125
标准型为:
2.一般非线性规划
min F(X)
s.t. AX b
Aeq X = beq G(X) 0
4.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0);
5.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0,options);
6.[x,fval]=quaprog(…);
7.[x,fval,exitflag]=quaprog(…);
8.[x20,20f/1v/23al,exitflag,outp数u学t建]模=quaprog(…);
每得到一个近似解,都从这点出发,重复以上步骤.
这样,通过求解一系列线性规划问题,产生一个 由线性规划最优解组成的序列,经验表明,这样的序 列往往收敛于非线性规划问题的解.
2020/1/23
数学建模
11
近似规划法的算法步骤如下:
{ } (1) 给定初始可行点 X 1 =
x11, x12 ,L, x1n
2. 若约束条件中有非线性约束:G(X) 0 或Ceq(X)=0,
则建立M文件nonlcon.m定义函数G(X)与Ceq(X):
function [G,Ceq]=nonlcon(X)
G=…
Ceq=…
2020/1/23
数学建模
16
3. 建立主程序.求解非线性规划的函数是fmincon,命令的基本 格式如下:
2020/1/23
数学建模
17
注意:
[1] fmincon函数提供了大型优化算法和中型优化算法.默认 时: 若在fun函数中提供了梯度(options参数的GradObj设置 为’on’),并且只有上下界存在或只有等式约束,fmincon 函数将选择大型算法.当既有等式约束又有梯度约束时,使用中 型算法.
2020/1/23
数学建模
7
SUTM外点法(罚函数法)的迭代步骤
1.任意给定初始点 X0,取M1>1,给定允许误差 0,令k=1;
2.求无约束极值问题 min
minT
X R n
X,M
=
T
(
X
k
,
X Rn
Mk )
T
;
X
,
M
的最优解,设Xk=X(Mk),即
3.若存在 i 1 i m ,使 gi X k ,则取Mk>M(Mk1 = M, = 10),
(1) x=fmincon(‘fun’,X0,A,b) (2) x=fmincon(‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,VLB,VUB) (4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’)