第十讲 非线性规划(一)(运筹学基础-清华大学,王永县)

合集下载

非线性规划高考知识点归纳总结

非线性规划高考知识点归纳总结

非线性规划高考知识点归纳总结非线性规划是运筹学中的一个重要分支,它主要研究在非线性目标函数和非线性约束条件下的优化问题。

在高考数学中,非线性规划通常不会作为主要考点,但了解其基本概念和简单应用对于提高数学素养和解决实际问题具有重要意义。

首先,非线性规划问题可以定义为:给定一个目标函数 \( f(x_1,x_2, ..., x_n) \) 和一组约束条件 \( g_i(x_1, x_2, ..., x_n) \leq 0 \)(对于 \( i = 1, 2, ..., m \)),以及 \( h_j(x_1,x_2, ..., x_n) = 0 \)(对于 \( j = 1, 2, ..., p \)),求 \( x \) 的值,使得目标函数 \( f \) 达到最大值或最小值。

在高考中,非线性规划的知识点通常包括以下几个方面:1. 目标函数与约束条件:理解目标函数和约束条件在非线性规划中的作用,以及它们如何影响问题的解。

2. 可行域:掌握如何根据约束条件确定可行域,这是求解非线性规划问题的基础。

3. 拉格朗日乘数法:了解拉格朗日乘数法的基本原理,以及如何利用它求解带有等式约束的非线性规划问题。

4. KKT条件:掌握KKT(Karush-Kuhn-Tucker)条件,这是求解非线性规划问题的必要条件。

5. 数值方法:了解一些基本的数值方法,如梯度下降法、牛顿法等,这些方法在实际求解非线性规划问题时非常有用。

6. 实际应用:能够将非线性规划的概念应用到实际问题中,如资源分配、成本最小化等。

在复习非线性规划时,建议从以下几个步骤进行:- 理解概念:首先,要理解非线性规划的基本概念,包括目标函数、约束条件、可行域等。

- 掌握方法:其次,要掌握求解非线性规划问题的基本方法,如拉格朗日乘数法和KKT条件。

- 练习题目:通过大量的练习题目来巩固知识点,提高解题能力。

- 实际应用:尝试将非线性规划的概念应用到实际问题中,提高解决实际问题的能力。

非线性规划

非线性规划

非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。

与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。

非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。

非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。

满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。

为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。

这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。

非线性规划的难点在于寻找全局最优解。

由于非线性函数的复杂性,这些问题通常很难解析地求解。

因此,常常使用迭代算法来逼近最优解。

非线性规划的一个重要应用是在经济学中的生产计划问题。

生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。

非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。

另一个应用是在工程学中的优化设计问题。

例如,优化某个结构的形状、尺寸和材料以满足一组要求。

非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。

在管理学中,非线性规划可以用于资源分配和风险管理问题。

例如,优化一个公司的广告预算,以最大程度地提高销售额。

非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。

总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。

它在经济学、工程学和管理学等领域有广泛的应用。

尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。

第十讲非线性规划一运筹学清华大学林谦

第十讲非线性规划一运筹学清华大学林谦

·凸函数:定义在凸集上的函数f(X)称为凸函数,条件是 对于每一对x1,x2及每一个a,0≤a≤1存在:
f(ax1+(1-a)x2)≤a f(x1)+1(1-a)f(x2)
上式中,若≤变为<,则称为严格凸函数。
page 12 3 August 2019
Prof. Wang School of Economics & Management
B) 对于所有d,则dT▽2 f(X*)·d≥0
ii)判断极小点的充分条件
命题(二阶充分条件——无约束):设f(X)C2 是定义在 以X*为内点的一个区域上的函数,若
A) ▽f(X*)=0 B) Hess阵H(X*)正定(或负定)
则X*是f(X)的严格极小点(或极大点)
page 11 3 August 2019
目标函数 约束条件
page 3 3 August 2019
max:f(X) =30x1+450x2
0.5x1+2x2+0.25x22≤800
x1≥0,x2≥0
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§2 非线性规划的数学模型及 特点 (1)
page 15 3 August 2019
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§4 非线性规划求解方法分类(1)
1.一维最优化 ①斐波那契(Fibonacci)法 ②黄金分割法(0.618法) ③牛顿法(切线法) ④抛物线逼近法 ⑤成功和失败法

清华大学_运筹学_教案

清华大学_运筹学_教案

一、课程概述课程名称:运筹学授课对象:清华大学经管学院管理科学与工程专业研究生授课时长:共16周,每周2学时教学目标:1. 理解运筹学的基本概念、原理和方法。

2. 掌握线性规划、整数规划、非线性规划等运筹学的基本模型和求解方法。

3. 培养学生运用运筹学解决实际问题的能力。

4. 提高学生的逻辑思维、分析问题和创新能力。

二、教学内容与安排第1-2周:运筹学的基本概念与数学基础1. 运筹学的基本概念、发展历程及应用领域。

2. 数学基础:线性代数、概率论与数理统计。

第3-4周:线性规划1. 线性规划的基本概念、数学模型与标准形式。

2. 线性规划的求解方法:单纯形法、对偶理论。

3. 线性规划的应用实例。

第5-6周:整数规划1. 整数规划的基本概念、数学模型与标准形式。

2. 整数规划的求解方法:分支定界法、割平面法。

3. 整数规划的应用实例。

第7-8周:非线性规划1. 非线性规划的基本概念、数学模型与标准形式。

2. 非线性规划的求解方法:梯度法、牛顿法、共轭梯度法。

3. 非线性规划的应用实例。

第9-10周:网络优化1. 网络优化的基本概念、数学模型与标准形式。

2. 网络优化的求解方法:最短路径法、最小生成树法、最大流问题。

3. 网络优化的应用实例。

第11-12周:动态规划1. 动态规划的基本概念、数学模型与标准形式。

2. 动态规划的求解方法:动态规划表、状态转移方程。

3. 动态规划的应用实例。

第13-14周:排队论1. 排队论的基本概念、数学模型与标准形式。

2. 排队论的求解方法:泊松过程、排队系统分析。

3. 排队论的应用实例。

第15-16周:案例分析1. 结合实际案例,分析运筹学在各个领域的应用。

2. 学生分组讨论,撰写案例分析报告。

三、教学方法与手段1. 讲授法:系统讲解运筹学的基本概念、原理和方法。

2. 案例分析法:通过实际案例,让学生理解运筹学的应用。

3. 讨论法:鼓励学生积极参与课堂讨论,提高学生的思考能力。

非线性规划知识点讲解总结

非线性规划知识点讲解总结

非线性规划知识点讲解总结1. 非线性规划的基本概念非线性规划是指目标函数和/或约束条件包含非线性项的优化问题。

一般来说,非线性规划问题可以表示为如下形式:\[\min f(x)\]\[s.t. \ g_i(x) \leq 0, \ i=1,2,...,m\]\[h_j(x)=0, \ j=1,2,...,p\]其中,\(x \in R^n\)是优化变量,\(f(x)\)是目标函数,\(g_i(x)\)和\(h_j(x)\)分别表示不等式约束和等式约束。

目标是找到使目标函数取得最小值的\(x\)。

2. 非线性规划的解决方法非线性规划问题的求解是一个复杂的过程,通常需要使用数值优化方法来解决。

目前,常用的非线性规划求解方法主要包括梯度方法、牛顿方法和拟牛顿方法。

(1)梯度方法梯度方法是一种基于目标函数梯度信息的优化方法。

该方法的基本思想是在迭代过程中不断沿着梯度下降的方向更新优化变量,以期望找到最小值点。

梯度方法的优点是简单易实现,但缺点是可能陷入局部最优解,收敛速度慢。

(2)牛顿方法牛顿方法是一种基于目标函数的二阶导数信息的优化方法。

该方法通过构造目标函数的泰勒展开式,并利用二阶导数信息来迭代更新优化变量,以期望找到最小值点。

牛顿方法的优点是收敛速度快,但缺点是计算复杂度高,需要计算目标函数的二阶导数。

(3)拟牛顿方法拟牛顿方法是一种通过近似求解目标函数的Hessian矩阵来更新优化变量的优化方法。

该方法能够克服牛顿方法的计算复杂度高的问题,同时又能保持相对快速的收敛速度。

拟牛顿方法的典型代表包括DFP方法和BFGS方法。

3. 非线性规划的应用非线性规划方法在实际生活和工程问题中都有着广泛的应用。

以下将介绍非线性规划在生产优化、资源分配和风险管理等领域的应用。

(1)生产优化在制造业中,生产线的优化调度问题通常是一个非线性规划问题。

通过对生产线的机器设备、生产工艺和生产速度等因素进行建模,并设置相应的目标函数和约束条件,可以使用非线性规划方法来求解最优的生产调度方案,以最大程度地提高生产效率和减少成本。

运筹学中的非线性规划问题-教案

运筹学中的非线性规划问题-教案

教案运筹学中的非线性规划问题-教案一、引言1.1非线性规划的基本概念1.1.1定义:非线性规划是运筹学的一个分支,研究在一组约束条件下,寻找某个非线性函数的最优解。

1.1.2应用领域:广泛应用于经济学、工程学、管理学等,如资源分配、生产计划、投资组合等。

1.1.3发展历程:从20世纪40年代开始发展,经历了从理论到应用的转变,现在已成为解决实际问题的有效工具。

1.1.4教学目标:使学生理解非线性规划的基本理论和方法,能够解决简单的非线性规划问题。

1.2非线性规划的重要性1.2.1解决实际问题:非线性规划能够处理现实中存在的非线性关系,更贴近实际问题的本质。

1.2.2提高决策效率:通过优化算法,非线性规划可以在较短的时间内找到最优解,提高决策效率。

1.2.3促进学科交叉:非线性规划涉及到数学、计算机科学、经济学等多个学科,促进了学科之间的交叉和融合。

1.2.4教学目标:使学生认识到非线性规划在实际应用中的重要性,激发学生的学习兴趣。

1.3教学方法和手段1.3.1理论教学:通过讲解非线性规划的基本理论和方法,使学生掌握非线性规划的基本概念和解题思路。

1.3.2实践教学:通过案例分析、上机实验等方式,让学生动手解决实际问题,提高学生的实践能力。

1.3.3讨论式教学:鼓励学生提问、发表观点,培养学生的批判性思维和创新能力。

1.3.4教学目标:通过多种教学方法和手段,使学生全面掌握非线性规划的理论和实践,提高学生的综合素质。

二、知识点讲解2.1非线性规划的基本理论2.1.1最优性条件:介绍非线性规划的最优性条件,如一阶必要条件、二阶必要条件等。

2.1.2凸函数和凸集:讲解凸函数和凸集的定义及其在非线性规划中的应用。

2.1.3拉格朗日乘子法:介绍拉格朗日乘子法的原理和步骤,以及其在解决约束非线性规划问题中的应用。

2.1.4教学目标:使学生掌握非线性规划的基本理论,为后续的学习打下坚实的基础。

2.2非线性规划的求解方法2.2.1梯度法:讲解梯度法的原理和步骤,以及其在求解无约束非线性规划问题中的应用。

非线性规划

非线性规划
新生研讨课
非线性规划
组长:马文海 成员:黄羽兰、吴春安、林志铖、汤嘉晨
非线性函数概述:
具有非线性约束条件或目标函数的数学规划,是 运筹学的一个重要分支。非线性规划研究一个n元实函 数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函 数。目标函数和约束条件都是线性函数的情形则属于 线性规划。
f ( x) f1 ( x) f 2 ( x)
2 2 2
数学模型: max f ( x) 20x1 16x2 [2 x1 x2 ( x1 x2 ) ]
max f ( x) 20x1 16x2 [2x x ( x1 x2 ) ]
2 1 2 2 2
x* a b
最优解:
最优值:
z * ab
例2 投资决策问题
某钢铁厂准备用 5000 万用于 A、 B 两个项目技术改造投资,设 x1,x2分别表示分配给项目 A、B的投资。据专家预估投资项目 A、B 的年收益分别为20%和16%,同时投资后的风险损失将随着总投资 2 和单项投资的增长而增加。已知总的风险损失为2x12 x2 ( x1 x2 )2 。问如何分配资金才能使期望的收益最大,同时风险损失为最小。 解 这个问题有两个指标函数: 收益函数和风险损失函数
非线性规划简史:
非线性规划是20世纪50年代才开始形成的一门新兴学 科。1951年H.W.库恩和A.W.塔克发表的关于最优性条件 (后来称为库恩-塔克条件)的论文是非线性规划正式诞 生的一个重要标志。在50年代还得出了可分离规划和二次 规划的n种解法,它们大都是以G.B.丹齐克提出的解线性规 划的单纯形法为基础的。50年代末到60年代末出现了许多 解非线性规划问题的有效的算法,70年代又得到进一步的 发展。非线性规划在工程、管理、经济、科研、军事等方 面都有广泛的应用,为最优设计提供了有力的工具。20世 纪80年代以来,随着计算机技术的快速发展,非线性规划 方法取得了长足进步,在信赖域法、稀疏拟牛顿法、并行 计算、内点法和有限存储法等领域取得了丰硕的成果。

非线性规划——精选推荐

非线性规划——精选推荐

⾮线性规划author: lunardate: Tue 01 Sep 2020 04:31:18 PM CST⾮线性规划如果⽬标函数中包含⾮线性函数, 就称这种规划问题为⾮线性规划问题.⽬前解决⾮线性规划还没有⼀种通⽤⽅法.线性规划和⾮线性规划的区别如果线性规划的最优解存在, 其最优解只能在其可⾏域的边界上达到(特别是可⾏域的顶点上达到); ⽽⾮线性规划的最优解可能在可⾏域的任意⼀点达到.⾮线性规划的MATLAB解法⾸先可以将⾮线性规划表⽰为如下形式:minC(x), Ceq(x)是⾮线性向量函数.MATLAB计算⾮线性规划的函数为x = fmincon(fun, x0, A, B, Aeq, Beq, LB, UB, NONLCON, OPTIONS)fun是⽤.m⽂件定义的⽬标函数; x0表⽰决策变量的初始值; NONLCON是⽤.m⽂件定义的⾮线性向量函数; OPTIONS定义了优化参数; 其余参数与线性规划⼀致.⽰例求解下列⾮线性规划问题\min f(x) = x_1^2 + x_2^2 + x_3^2 + 8\\ \begin{aligned} s.t.\quad &x_1^2 - x_2 + x_3^2 \ge 0\\&x_1 + x_2^2 + x_3^2 \le 20\\ &-x_1 - x_2^2 + 2 = 0\\ &x_2 + 2x_3^2 = 3\\ &x_1, x_2, x_3 \ge 0\end{aligned}⽤MATLAB代码求解为编写⽬标函数的.m⽂件target.mfunction f = target(x);f = sum(x.^2) + 8;编写⾮线性约束条件的.m⽂件nonlinear.mfunction [g,h] = nonlinear(x);g = [-x(1)^2 + x(2) - x(3)^2x(1) + x(2)^2 + x(3)^3 - 20]; %⾮线性不等式约束f = [-x(1) - x(2)^2 + 2x(2) + 2x(3)^2 - 3]; %⾮线性等式约束主程序⽂件main.moptions = optimset('largescale', 'off');[x, y] = fmincon('target', rand(3,1), [], [], [], [], zeros(3,1),[], 'nonlinear', options)求解⾮线性规划的基本迭代格式(难点)由于线性规划的⽬标函数为线性函数, 可⾏域为凸集, 所以求出的最优解就是整个可⾏域上的最优解. ⾮线性规划则不然, 有时求出的解虽然是⼀部分可⾏域上的极值点, 但不⼀定是整个可⾏域上的全局最优解.对于⾮线性规划模型(NP), 可以采⽤迭代⽅法求最优解. 基本思想为: 从⼀个选定的初始点出发, 按照⼀个特定的迭代规则产⽣⼀个点列{x k}; 使得当{x k}是有穷点列时, 其最后⼀个点是(NP)的最优解; 为⽆穷点列时, 它有极限点, 并且极限点是(NP)的最优解;设x^k\in R^n是某迭代⽅法的第k轮迭代点, x^{k+1}\in R^n是第n+1轮迭代点, 记x^{k+1} = x^k + t_kp^k\\ t_k\in R^1, p^k\in R^n, \lvert p^k\rvert = 1通常将基本迭代格式中的p^k称为第k轮搜索⽅向, t_k为沿p^k⽅向的步长. 有机器学习那味⼉了.对于向量p, 如果存在t\in (0, +\infty)使得f(\overline x + tp) < f(\overline x)\\ \overline x + tp \in KK即为可⾏域, 则称p为\overline x关于K的可⾏⽅向.凸函数, 凸规划凸函数的定义为: 若对区间(0,1)内的任何实数\alpha, 恒有f(\alpha x_1 + (1-\alpha)x_2) \le \alpha f(x_1) + (1-\alpha)f(x_2)的函数为定义在R上的严格凸函数.⽬标函数为凸函数, 约束函数也为凸函数的⾮线性规划为凸规划.可以证明, 凸规划的可⾏域为凸集, 其局部最优解即为全局最优解, ⽽且其最优解的集合形成⼀个凸集. 当凸规划的⽬标函数f(x)为严格凸函数时, 其最优解必定唯⼀.⽆约束问题⽆约束问题即没有约束条件的问题, 即求解函数极⼩值的问题⼀维搜索⽅法当⽤迭代法求函数的极⼩点时, 常常⽤到⼀维搜索, 即沿⼀已知⽅向求⽬标函数的极⼩点.⼀种⽐较⼀个区间上两端函数值的⽅法, 原理⾮常简单, 不讲了.但是这种⽅法⼀般只能⽤于单极值区间, 对于⼀个多极值的函数. 可以尝试先画出函数图, 然后找出所有只有单个极值的区间分别求解.斐波那契法上⾯那种⽅法本是随机选取区间的两个点, 斐波那契法能够保证区间按照按照斐波那契数进⾏缩⼩.即t_1 = a + \frac{F_{n-1}}{F_n}(b-a),t_2 = a + \frac{F_{n-2}}{F_n}(b-a)根据需要求解的精度\delta, 确定迭代次数的⽅式\frac{b-a}{F_n} \le \delta也可以⽤黄⾦⽐例数代替斐波那契数列.⼆次插值法对极⼩化问题, 当f(t)在[a,b]上连续时, 可以考虑⽤多项式插值来进⾏⼀维搜索. 基本思想为: 在搜索区间内,不断⽤低次(不超过三次)多项式来近似⽬标函数, 并逐步⽤插值多项式的极⼩点来逼近极⼩化问题的最优解.⽆约束问题的解法梯度下降法总是朝着梯度下降最快的⽅向前进⽜顿法⾸先需要了解⼀下什么是考虑⽬标函数f在x^k处的⼆次逼近式f(x)\approx Q(x) = f(x^k) + \nabla f(x^k)^T(x-x^k) + \frac12(x-x^k)^T\nabla^2f(x^k)(x-x^k)假设⿊塞矩阵\nabla^2 f(x^k) = \begin{bmatrix} \frac{\partial^2 f(x^k)}{\partial x_1^2} & \cdots & \frac{\partial^2f(x^k)}{\partial x_1\partial x_n}\\ \vdots & \cdots & \vdots \\ \frac{\partial f(x^k)}{\partial x_n\partial x_1} & \cdots & \frac{\partial^2 f(x^k)}{\partial x_n^2} \end{bmatrix}正定由于\nabla^2 f(x^k)正定, 函数Q的驻点x^{k+1}是Q(x)的极⼩点. 令\nabla Q(x^{k+1}) = \nabla f(x^k) + \nabla^2 f(x^k)(x^{k+1} - x^k) = 0解得x^{k+1} = x^k - [\nabla^2 f(x^k)]^{-1}\nabla f(x^k)所以从x^k出发的搜索⽅向为p^k = -[\nabla^2 f(x^k)]^{-1}\nabla f(x^k)⽜顿法的优点是收敛速度快; 缺点是有时不好⽤⽽需采取改进措施, 当维度很⾼时, 计算矩阵的逆矩阵计算量将会很⼤.变尺度法变尺度法由于能够避免计算⼆阶导数矩阵及其逆矩阵, 对于⾼纬度问题具有显著的优越性.为了不计算⼆阶导数矩阵[\nabla^2 f(x^k)]及其逆矩阵, 我们设法构造另⼀个矩阵, 来逼近⼆阶导数矩阵, 这⼀类也称为拟⽜顿法(Quasi-Newton Method).当f(x)是⼆次函数时, 任两点x^k和x^{k+1}的梯度之差为\nabla f(x^{k+1}) - \nabla f(x^k) = A(x^{k+1} - x^k)因此, 我们构造⿊塞矩阵的第k+1次近似\overline H^{k+1}满⾜关系式x^{k+1} - x^k = \overline H^{(k+1)}[\nabla f(x^{(k+1)}) - \nabla f(x^k)]这就是拟⽜顿条件.令\begin{cases} \Delta G^{(k)} = \nabla f(x^{k+1}) - \nabla f(x^k)\\ \Delta x^k = x^{k+1} - x^k\end{cases}记\Delta \overline H^{(k)} = \overline H^{(k+1)} - \overline H^{(k)}称为校正矩阵.省略中间过程, 可求得校正矩阵\Delta \overline H^{(k)} = \frac{\Delta x^k(\Delta x^k)^T}{(\Delta G^{(k)})^T\Delta x^k} -\frac{\overline H^{(k)}\Delta G^{(k)}(G^{(k)})^T\Delta H^{(k)}}{(\Delta G^{(k)})^T\overlineH^{(k)}\Delta G^{(k)}} \tag{17}从⽽有\overline H^{(k+1)} = \overline H^{(k)} + \frac{\Delta x^k(\Delta x^k)^T}{(\Delta G^{(k)})^T\Delta x^k} - \frac{\overline H^{(k)}\Delta G^{(k)}(G^{(k)})^T\Delta H^{(k)}}{(\Delta G^{(k)})^T\overlineH^{(k)}\Delta G^{(k)}} \tag{18}以上矩阵称为尺度矩阵, 取第⼀个尺度矩阵\overline H^{(0)}为单位矩阵.由此可得DFP变尺度法的计算步骤为:给定初始点x_0以及梯度允许误差\varepsilon > 0若\lvert\nabla f(x^{(0)})\rvert \le\varepsilon, 则x_0为近似点, 停⽌迭代.否则转下⼀步.令\overline H^{(0)} = I (单位矩阵)\\ p^0 = -\overline H^{(0)}\nabla f(x^0)在p^0⽅向进⾏⼀维搜索, 确定最佳步长\lambda_0\min_\lambda f(x^0+\lambda p^0) = f(x^0 + \lambda_0p^0)于是可以得到下⼀个近似点x^1 = x^0 + \lambda_0p^0对于近似点x^k, 计算其梯度, 若有\lvert\nabla f(x^k)\rvert\le \varepsilon则停⽌迭代, 最终解为x^k; 否则根据式(18)计算\overline H^{(k)}, 令p^k = -\overline H^{(k)}\nablaf(x^k). 在p^k⽅向进⾏⼀维搜索, 得到\lambda_k, 从⽽得到下⼀个近似点x^{k+1} = x^k + \lambda_kp^k不断重复第4步直到满⾜允许误差.约束极值问题带有约束条件的极值问题称为约束极值问题, 也叫规划问题.⼆次规划问题⽬标函数为⾃变量的⼆次函数的问题称为⼆次规划问题.⼆次规划的模型可以表述为\min \frac12x^THx + f^Tx,\\ s.t.\quad \begin{cases} Ax\le b\\Aeq\dot x = beq\\ \end{cases} MATLAB中求解⼆次规划的函数为[x, f] = quadprog(H, f, A, b, Aeq, beq, LB, UB, X0, OPTIONS)罚函数法利⽤罚函数法, 可将⾮线性规划问题转化为⼀系列⽆约束机制问题. 因此也称这种⽅法为序列⽆约束最⼩化技术, SUMT(Sequential Unconstrained Minization Technique).罚函数法的基本思想是利⽤问题中的约束函数作出适当的罚函数, 由此构造出带参数的增⼴⽬标函数, 把问题转化为⽆约束线性规划问题.罚函数法分为外罚函数法和内罚函数法. 现在介绍外罚函数法.对于问题:\min f(x)\\ s.t.\quad \begin{cases} g_i(x)\le 0, i = 1,\dots,r,\\ h_j(x)\ge 0, j = 1,\dots,s,\\ k_m(x) = 0, m = 1,\dots,t \end{cases}取⼀个充分⼤的正数M, 构造函数P(x, M) = f(x) + M\sum_{i=1}^r\max(g_i(x), 0) - M\sum_{i=1}^s\min(h_i(x), 0) +M\sum_{i=1}^t|k_i(x)|MATLAB 求约束极值问题fminbnd 函数求单变量⾮线性函数在区间[x_1, x_2]上的最⼩值语法格式[x, f] = fminbnd(fun, x1, x2, options)fminimax 函数可以⽤来求解带有⾮线性约束条件的问题x = fminimax(fun, x0, A, B, Aeq, Beq, LB, UB, NONLCON) Loading [MathJax]/jax/element/mml/optable/BasicLatin.js。

非线性规划

非线性规划

·16·第2章 非线性规划在许多实际问题中,所建立的优化模型的目标函数或约束条件(或二者)是非线性的,所以非线性规划也是运筹学中最常用的方法之一,在生产管理和过程控制中有广泛的应用。

2.1 非线性规划问题举例【例2-1】钢铁厂自备发电厂负荷的最优分配问题。

设自备发电厂有3台蒸汽透平发电机,输入燃料,内部有高炉煤气和焦炉煤气,外购的有液化石油气。

设内部煤气不足,需用外购的液化石油气。

由于机组对输入各种燃料的输出特性不同,应如何分配燃料,使自备电厂效益最好?为了确定各种燃料的分配,设y i ,i =1,2,3为各机组的有效电力(MW ),x 1i ,i =1,2,3为各机组输入高炉煤气;x 2i ,i =1,2,3为各机组输入焦炉煤气;x 3i ,i =1,2,3为各机组输入液化石油气。

设电力单价为e c ,液化石油气单价为l c ,则可写出如下模型NP :目标函数 max f(x )=e c (1y +2y +3y )-l c (31x +32x +33x ) 约束条件1)高炉煤气使用量上限B F11x +12x +13x ≤B F2)焦炉煤气使用量上限C F21x +22x +32x ≤C F3)各机组电力上、下限max ,i y 和min ,i ymax ,i y ≤i y ≤min ,i y i =1,2,3其中各机组电力与输入燃料关系如下:i y =a 0i +a 1i 2i p +a 2i i p +a 3i F s i i =1,2,3式中 a ——系数;si F ——抽气流量(t/h);i p ——中间变量。

且 i p =i b 1b q i x 1+i b 2c q i x 2+i b 3l q i x 3式中b 为系数,q 为各燃料热值(103Kcal/Nm 3)。

这一数学模型的约束是线性的,而目标函数是非线性的,构成一个非线性规划问题。

第2章 非线性规划·17·2.2 基础知识非线性规划问题的一般形式是(NP ) min f (x 1,x 2,…,x n )(2-1a ) s.t. i g (1x ,2x ,…n x ) ≤0,i =1,2,…,m (2-1b )j h (1x ,2x ,…n x )≤0,i =1,2,…,s(2-1c ) 写成向量形式,为 (NP ) min ()f x(2-2a ) s.t. i g (x )≤0,i =1,2,…,m(2-2b )j h (x )≤0,i =1,2,…,s(2-2c )定义2-1(全局最优解) 一个定义在X ∈x 上的函数()f x ,如果对X ∈x 的每一点 都有f (x ) ≥f (xˆ) 则称ˆx为全局极小解,ˆ()f x 为全局极小值。

非线性规划

非线性规划

非线性规划(nonlinear programming)1.非线性规划概念非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

2.非线性规划发展史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。

其倒数至今在优选法中仍得到广泛应用。

在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。

例如阿基米德证明:给定周长,圆所包围的面积为最大。

这就是欧洲古代城堡几乎都建成圆形的原因。

但是最优化方法真正形成为科学方法则在17世纪以后。

17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。

以后又进一步讨论具有未知函数的函数极值,从而形成变分法。

这一时期的最优化方法可以称为古典最优化方法。

最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。

反之,某些最优化方法可适用于不同类型的模型。

最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。

(1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。

求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。

(2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。

此时可采用直接搜索的方法经过若干次迭代搜索到最优点。

这种方法常常根据经验或通过试验得到所需结果。

对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。

非线性规划

非线性规划

非线性规划如果目标函数或约束条件中含有一个或多个是变量的非线性函数,我们称这类规划问题为非线性规划(nonlinear programming ,可简记为NP )。

一般地,解非线性规划问题要比解线性规划问题困难的多,因为它不像解线性规划问题有单纯形法这一通用的方法,非线性规划目前还没有适合于各种问题的一般算法,各个方法都有自己特定的应用范围。

非线性规划的基本概念和基本原理第一节 非线性规划的数学模型例:某金属制品厂要加工一批容积为1米3的长方形容器,按规格要求,上下底的材料为25元/m2,侧面的材料为40元/m2,试确定长、宽、高的尺寸,使这个容器的成本最低。

设容器的长为1x ,宽为2x ,则高为211x x 。

根据题意得:⎪⎩⎪⎨⎧≥++=0,)](1[8050),(min 2121212121x x x x x x x x x x f 例:某公司经营两种设备,第一种设备每件售价30元,第二种设备每件售价为450元,根据统计,售出一件第一种设备所需营业时间平均为0.5小时,第二种设备为()225.02x +时,其中2x 是第二种设备的售出数量,已知该公司在这段时间内的总营业时间为800小时,试决定使其营业额最大的营业计划。

解:设该公司计划经营第一种设备为错误!未找到引用源。

件,第二种设备为错误!未找到引用源。

件,根据题意得:⎪⎩⎪⎨⎧≥≤+++=0,800)25.02(5.045030),(max 212212121x x x x x x x x x f 由这两个例子可以看出,这两个例子在高等数学中代表了两类不同类型的极值问题。

例1是无条件极值;例2是有条件极值。

如果令),,,(21n x x x X =是n 维空间)(n E上的点,则一般非线性的数学模型为:⎪⎩⎪⎨⎧=≥==l j X g m i X h X f ji ,,2,1 ,0)(,,2,1 ,0)()(min)(X f 为目标函数,)()(X g X h j i ,为约束条件,X 为自变量。

非线性规划

非线性规划

非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。

与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。

非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。

非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。

以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。

它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。

常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。

2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。

常见的优化软件有MATLAB、GAMS、AMPL等。

3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。

它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。

4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。

它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。

以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。

在实际应用中,选择合适的方法和工具是非常重要的。

非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。

运筹学-非线性规划

运筹学-非线性规划
参考资料: 1.韩伯棠,管理运筹学(第三版),高等教育出版社,2013.12 2. FREDERICK S. HILLIER GERALD J. LIEBERMAN ,INTRODUCTION TO OPERATIONS RESEARCH ,Ninth
Edition,2010 3.吴祈宗,运筹学与最优化方法(第二版),机械工业出版社,
解:显然,目标函数
f
(x)

( x1

3)2 2

( x2

5)2
是凸函数, 且约束条件为线性
函数, 故此规划问题为凸规划.
x2
( 3 ,5)
2
(1, 3)
点x*=(1,3)T是唯一最优解. 由于 f在点(1,3)的梯度为
f (1,3) (1, 4)T ,
从图中可以看出,向量(1, 4)T
1 D1 x x D1是凸集,其中是实数. 2 D1 D2 x y x D1 , y D2 是凸集.D1 D2也是凸集.
3 D1 D2是凸集.
凸函数与凹函数
定义: D为凸集, 若对任意x1,x2D及任意实数a, 0≤a≤1有 f(ax1+(1-a)x2)≤a f(x1)+(1-a)f(x2)
例:投资决策问题
某企业有n个项目可供选择投资, 并且至少要对其中一个项目投资. 已知该企业拥有总资金A元, 投资于第i(i=1,2,…,n)个项目需要花 资金ai 元, 并预计收益为bi元, 试选择最佳投资方案使得总收益和 总投资之比最大.
解:
设投资决策变量为
1, xii 0,
决定投资第 i 个项目 决定不投资第:
f
(
x1
,

非线性规划

非线性规划

1.非线性规划我们讨论过线性规划,其目标函数和约束条件都是自变量的线性函数。

如果目标函数是非线性函数或至少有一个约束条件是非线性等式(不等式),则这一类数学规划就称为非线性规划。

在科学管理和其他领域中,很多实际问题可以归结为线性规划,但还有另一些问题属于非线性规划。

由于非线性规划含有深刻的背景和丰富的内容,已发展为运筹学的重要分支,并且在最优设计,管理科学,风险管理,系统控制,求解均衡模型,以及数据拟合等领域得到越来越广泛的应用。

非线性规划的研究始于三十年代末,是由W.卡鲁什首次进行的,40年代后期进入系统研究,1951年•库恩和.塔克提出带约束条件非线性规划最优化的判别条件,从而奠定了非线性规划的理论基础,后来在理论研究和实用算法方面都有很大的发展。

非线性规划求解方法可分为无约束问题和带约束问题来讨论,前者实际上就是多元函数的极值问题,是后一问题的基础。

无约束问题的求解方法有最陡下降法、共轭梯度法、变尺度法和鲍威尔直接法等。

关于带约束非线性规划的情况比较复杂,因为在迭代过程中除了要使目标函数下降外,还要考虑近似解的可行性。

总的原则是设法将约束问题化为无约束问题;把非线性问题化为线性问题从而使复杂问题简单化。

求解方法有可行方向法、约束集法、制约函数法、简约梯度法、约束变尺度法、二次规划法等。

虽然这些方法都有较好的效果,但是尚未找到可以用于解决所有非线性规划的统一算法。

非线性规划举例[库存管理问题]考虑首都名酒专卖商店关于啤酒库存的年管理策略。

假设该商店啤酒的年销售量为A箱,每箱啤酒的平均库存成本为H元,每次订货成本都为F元。

如果补货方式是可以在瞬间完成的,那么为了降低年库存管理费用,商店必须决定每年需要定多少次货以及每次订货量。

A A我们以Q表示每次定货数量,那么年定货次数可以为 -,年订货成本为F -。

由于平Q Q均库存量为Q,所以,年持有成本为2H Q ,2,年库存成本可以表示为A HC(Q)F QQ2将它表示为数学规划问题:A Hmin C(Q) F QQ 2s.t. Q 0其中Q为决策变量,因为目标函数是非线性的,约束条件是非负约束,所以这是带约束条件的非线性规划问题。

非线性规划的概念和原理

非线性规划的概念和原理

第五章 非线性规划的概念和原理非线性规划的理论是在线性规划的基础上发展起来的。

1951年,库恩(H.W.Kuhn )和塔克(A.W.Tucker )等人提出了非线性规划的最优性条件,为它的发展奠定了基础。

以后随着电子计算机的普遍使用,非线性规划的理论和方法有了很大的发展,其应用的领域也越来越广泛,特别是在军事,经济,管理,生产过程自动化,工程设计和产品优化设计等方面都有着重要的应用。

一般来说,解非线性规划问题要比求解线性规划问题困难得多,而且也不像线性规划那样有统一的数学模型及如单纯形法这一通用解法。

非线性规划的各种算法大都有自己特定的适用范围。

都有一定的局限性,到目前为止还没有适合于各种非线性规划问题的一般算法。

这正是需要人们进一步研究的课题。

5.1 非线性规划的实例及数学模型[例题6.1] 投资问题:假定国家的下一个五年计划内用于发展某种工业的总投资为b 亿元,可供选择兴建的项目共有几个。

已知第j 个项目的投资为j a 亿元,可得收益为j c 亿元,问应如何进行投资,才能使盈利率(即单位投资可得到的收益)为最高?解:令决策变量为j x ,则j x 应满足条件()10j j x x -= 同时j x 应满足约束条件1nj jj a xb =≤∑目标函数是要求盈利率()1121,,,njjj n nj jj c xf x x x a x===∑∑最大。

[例题6.2] 厂址选择问题:设有n 个市场,第j 个市场位置为(),j j p q ,它对某种货物的需要量为j b ()1,2,,j n =。

现计划建立m 个仓库,第i 个仓库的存储容量为i a ()1,2,,i m =。

试确定仓库的位置,使各仓库对各市场的运输量与路程乘积之和为最小。

解:设第i 个仓库的位置为(),i i x y ()1,2,,i m =,第i 个仓库到第j 个市场的货物供应量为i j z ()1,2,,,1,2,,i m j n ==,则第i 个仓库到第j 个市场的距离为i j d =目标函数为1111mnmni ji j i ji j i j zd z =====∑∑∑∑约束条件为:(1) 每个仓库向各市场提供的货物量之和不能超过它的存储容量; (2) 每个市场从各仓库得到的货物量之和应等于它的需要量; (3) 运输量不能为负数。

非线性规划课件

非线性规划课件
得 X(1)=(x₁ (0),x₂ (1))T,S(1)=f(X(1))
②再固定x₂=x₂ (1): 求以x₁为单变量的目标函数的极值点,
得 X(2)=(x,(2),x₂ (1))T ,S(2)=f(X(2))
此时S(2)优于S(1), 且搜索区间缩短为x₁*∈[x,(2),b,],x₂*∈[x₂ (1),b₂] 第二步:如此交替搜索,直至满足给定精度ε为止
否则,继续缩短区间,
直至满足给定的精度为
①f(x₂)≥f(xq), 取[aq=ao,b,=x,]
X₁ =X2
x'2=b₁-λ(b₁-aq) ②f(x₂)<f(x₁), 取[a=x2,b,=b,]
x=aq+λ(b₁-aq)
10
x₂ =x₁
例 求 解 f(x)=-18x²+72x+28 的极大值点,δ≤0.1,起始搜索区间为[0,3] 解:①用间接法:令 f'(x)=-36x+72=0, 得驻点 x=2
xq*∈[aq,b,],x²*∈[a₂ ,b₂ ],.,x*∈[an,b,]
1、原理: ①从起点 X(0) 出发,沿平行于 x, 轴的方向P(1)进行一维搜索,
求得 f(X) 在该方向P(1)上近似极值点 X(1);
②从点 X(1) 出发,沿平行于 x₂ 轴的方向P(2)进行一维搜索,
求得 f(X) 在该方向P(2)上近似极值点 X(2); ③从点 X(2) 出发,照此交替进行下去,直至满足给定的精度ε为止
六、 寻优方法概述:
1、N.L.P.问题分类
① 无约束条件的NLP问题。 ② 有约束条件的NLP问题。 2、寻优方法
① 间接法(解析法):适应于目标函数有简单明确的数学表达式。

非线性规划

非线性规划

非线性规划非线性规划(Nonlinear Programming ,简记为NP)研究的对象是非线性函数的数值最优化问题,是运筹学的最重要分支之一,20世纪50年代形成一门学科,其理论和应用发展十分迅猛,随着计算机的发展,非线性规划应用越来越广泛,针对不同的问题提出了特别的算法,到目前为止还没有适合于各种非线性规划问题的一般算法,有待人们进一步研究.§1 非线性规划基本概念一、引例例7.1 一容器由圆锥面和圆柱面围成. 表面积为S ,圆锥部分高为h ,h 和圆柱部分高2x 之比为a ,1x 为圆柱底圆半径.求21,x x 使面积最大.解: 由条件 a x h =2/22121231x x x ax V ππ+=21212222112221x x x x a x x S πππ+++⋅⋅=所以,数学模型为:212)311(max x x a V π+=s.t. S x x x x a x x =+++21212222112πππ0,21≥x x例7.2 某高校学生食堂用餐,拟购三种食品,馒头0.3元/个,肉丸子1元/个,青菜0.6/碗.该学生的一顿饭支出不能够超过5元.问如何花费达到最满意?解: 设该学生买入馒头,肉丸子,青菜的数量分别为321,,x x x ; 个人的满意度函数即为效用函数为321321321),,(aaax x Ax x x x u =.于是数学模型为321321321),,(max aaax x Ax x x x u =s.t.56.03.0321≤++x x x 321,,x x x 为非负整数二、数学模型称如下形式的数学模型为数学规划(Mathematical Programming 简称MP ) )(min x f z = (7.1) (MP ) t s . 0)(≥x g i m i ,,1 = (7.2) 0)(=x h j l j ,,1 = (7.3)其中Tn x x x x ),,,(21 =是n 维欧几里得空间nR 中的向量(点),)(x f 为目标函数,0)(,0)(=≥x h x g j i 为约束条件.称满足约束条件的向量x 为(MP )问题的一个可行解,全体可行点组成的集合称为可行域.K ={}l j x h mi x g R x j i n,,2,10)(,,2,10)( ===≤∈如果)(),(),(x h x g x f j i 均为线性函数,就是前面所学的线性规划问题(LP).如果至少有一个为非线性函数称为非线性规划问题.由于等式约束0)(=x h j 等价于下列两个不等式约束 0)(,0)(≥-≥x h x h j j 所以(MP)问题又可表示为 )(min x f z =s.t. 0)(≥x g i m i ,,1 = (7.4) 三、数学基础 1、线性代数知识考虑二次型Az z T ,z 为n 维向量正定的二次型:若对于任意0≠z ,有0>Az z T; 半正定的二次型:若对于任意0≠z ,有0≥Az z T ; 负定的二次型:若对于任意0≠z ,有0<Az z T ; 半负定的二次型:若对于任意0≠z ,有0≤Az z T ;不定二次型:0≠∃z ,有0>Az z T,又0≠∃z ,有0<Az z T.二次型Az z T 为正定的充要条件是它的矩阵A 的左上角各阶主子式都大于零. 二次型Az z T 为负定的充要条件是它的矩阵A 的左上角各阶主子式负正相间.2、分析数学知识(1)方向导数和梯度(二维为例)考虑函数),(21x x f Z =,及方向j i lϕϕsin cos +=梯度:Tx f x f j x f i x f x x f ),(),(212121∂∂∂∂=∂∂+∂∂=∇ ; 方向导数:⎪⎪⎭⎫⎝⎛∂∂∂∂=∂∂+∂∂=∂∂ϕϕϕϕsin cos ),(sin cos 2121x f x f x f x f l f )),,(cos(||),(||),(),(21212121l x x gardf x x gardf lx x gardf lx x f T=⋅=⋅∇=考虑等值线00201),(c x x f =上一点),(0201x x 梯度方向 ),(0201x x gardf 即为法线方向n.如果)(x f 二次可微,称⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()()(212222111211x h x h x h x h x h x h x h x h x h x H nn n n n n为)(x f 在点 x 处的Hesse 矩阵.(2)多元函数泰勒公式:若)(,),(0x f R S x x f u n⊆∈=在点0x 处的某个领域具有二阶连续偏导数,则有x x x f x x x f x f x x f T T∆∆+∇∆+∆∇+=∆+)(21)()()(02000θ 10≤≤θ )||(||)(21)()(||)(||)()(2020000x x x f x x x f x f x x x f x f T TT ∆+∆∇∆+∆∇+=∆+∆∇+=οο 四、最优解的类型定义7.1 (MP)问题的一个可行点*x 被称为整体极小点,如果对于任意的可行点K x ∈,都有不等式)()(*x f x f ≥成立.如果对于任意可行点*,x x K x ≠∈均有)()(*x f x f >,称点*x 是)(x f 的可行解集K上的严格整体极小点.定义7.2 问题(MP)的一个可行点*x 被称为一个局部极小点,如果存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*≥x f x f 成立.如果对任意的可行点K x ∈,*≠x x ,存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*>x f x f 成立.则称*x 是)(x f 在K 上的一个局部严格极小点.显然整体极小点一定是局部极小点,反之不然. 五、凸规划定义7.3 集合K 被称为nR 中的一个凸集,如果对于K 中任意两点21,x x 和任一实数]1,0[∈λ,点K x x ∈-+21)1(λλ.几何解释:当一个集合是凸集时,连接此集合中任意两点的线段也一定包含在此集合内,规定φ空集是凸集.定义7.4 凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x 和任意实数]1,0[∈λ有不等式)()1()())1((2121x f x f x x f λλλλ-+≤-+成立.严格凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x ,21x x ≠和任意实数)1,0(∈λ,有不等式)()1()())1((2121x f x f x x f λλλλ-+<-+成立.定义7.5 )(x f 是定义在凸集K 上的实值函数,如果)(x f -是K 上凸函数,称)(x f 是凹函数.定理7.1 设)(x f 是凸集K 上的凸函数,则)(x f 在K 中的任一局部极小点都是它的整体极小点.证明: 设*x 是一局部极小点而非整体极小点,则必存在可行点K x ∈(可行域))()(*x f x f <∍.对任一]1,0[∈λ,由于)(x f 的凸性,有 )()()1()())1((***x f x f x f x x f ≤-+≤-+λλλλ当0→λ时,*)1(x x λλ-+与*x 充分接近,与*x 是局部极小矛盾. 证毕. 定义7.6 设有(MP)问题)(min x f kx ∈,若可行域K 是凸集,)(x f 是K 上的凸函数,则称此规划问题为凸规划.定理7.2 凸规划的任一局部极小解为整体极小解. 六、非线性规划问题的求解方法 考虑(MP)问题:lj x h m i x g t s x f j i ,,10)(,,10)(.)(min ===≥ (7.5) 一般来说,MP 问题难以求得整体极小点,只能求得局部极小点.以后我们说求(MP)问题,指的是求局部极小点.1、无约束极小化问题(UMP ) )(min x f nRx ∈ (7.6) 这里)(x f 是定义在n R 上的一个实值函数定理7.3(一阶必要条件)如果)(x f 是可微函数.*x 是上述无约束问题(UMP )的一个局部极小点或局部极大点的必要条件是:0)(*=∇x f .满足0)(=∇x f 的点称为平稳点或驻点.定理7.4 设)(x f 为定义在n R 上的二阶连续可微函数,如果*x 是)(x f 的一个局部极小点,必有nT Ry y x H y x f ∈∀≥=∇0)(0)(**这里)(*x H 表示)(x f 在*x 处的Hesse 矩阵.证明:nE y ∈∀,根据)(x f 在点*x 处的展开式有)()(21)()(2*2**λολλ++=+y x H y x f y x f T)0)((*=∇x f若0)(,*<∍∈∃y x H y R y T n ,当λ充分小时,有 )()(21|2*2λολ>y x H y T∴有)()(**x f y x f <+λ.这和*x 是)(x f 的极小矛盾.定理7.5 设)(x f 是定义在nR 上的二阶连续可微函数,如果点*x 满足0)(*=∇x f ,而且存在*x 的一个邻域0)(),(,),(*≥∈∀∈∀∍*y x H y x x R y x T n 有 ,则*x 是)(x f 的一个局部极小点.在高等数学中求解极值点方法先求出满足0)(=∇x f 的点及不可导点.在这些点判断)(x f 是否取得极小值.2、等式约束的极小化问题考虑 )(min x fl j x h t s j ,,10)(. == (7.7)定义7.7 如果)(,),(),(21x h x h x h l ∇∇∇ 在点x 处线性无关,则称点x 是此约束条件的一个正则点.Langrange 乘子法:引进拉格朗日函数 ∑=-=lj jj x h u x f u x L 1)()(),(其中Tl u u u u ),,,(21 =被称为拉格朗日乘子向量.定理7.6 设l j x h x f j ,,1),(),( =是连续可微函数,*x 是)(x f 在可行集中的一个局 部极小点.在*x 是正则点的假定下必存在一个拉格朗日乘子向量u ,使得),(*u x 满足方程组)(0)()(*1**==∇-∇∑=x h x h u x f lj j j对等式约束,用拉格朗日乘子法求解出平稳点,判断是否极值点.用上述解析法求解无约束和等式约束极值问题的平稳点,再判断是否为极值点.该方法有一定的局限性:(1)它们要求函数是连续的,可微的,实际问题中不一定满足这一条件; (2)上述求平稳点的方程组求解比较困难,有些解不出来; (3)实际问题中有大量的不等式约束.因此求解非线性规划应有更好的新方法.实际应用中一般用迭代法来求解非线性规划问题,即求近似最优解的方法.3、非线性规划问题的求解方法—迭代法迭代法一般过程为:在(MP)问题的可行域K 内选择初始点0:,0=k x ,确定某一方向k p ,使目标函数)(x f 从k x 出发,沿k p 方向使目标函数值下降,即)0(,>∈+=λλK p x x k ,有)()(0x f x f <,进一步确定kλ,使)(m i n )(0k k k k k p x f p x f λλλ+=+>,令k k k k p x x λ+=+1.如果1+k x 已满足某终止条件,1+k x 为近似最优解.否则,从1+k x 出发找一个方向1+k p ,确定步长1+k λ,使K p x x k k k k ∈+=++++1112λ,有)(min )(1102++>++=k k k p x f x f λλ.如此继续,将得到点列{}kx .显然有 >>>>)()()(1kx f x f x f ,即点列{}kx 相对应的目标函数是一个单调下降的数列.当{}kx 是有穷点列时,希望最后一个点是(MP)问题的某种意义下的最优解.当{}kx 为无穷点列时,它有极限点,其极限点是(MP)的某种意义下的最优解(此时称该方法是收敛的).迭代法求解(MP)的注意点:该方法构造的点列{}kx ,其极限点应是近似最优解,即该算法必须是收敛的.迭代法一般步骤:①. 选取初始点0x ,0:=k ②. 构造搜索方向kp ③. 根据kp 方向确定k λ ④. 令k k k k p x xλ+=+1⑤. 若1+k x已满足某终止条件,停止迭代,输出近似最优解1+k x.否则令1:+=k k ,转向第②步.计算终止条件在上述迭代中有:若1+k x满足某终止条件则停止计算,输出近似最优解1+k x.这里满足某终止条件即到达某精确度要求.常用的计算终止条件有以下几个:(1)自变量的改变量充分小时,11||||ε<-+k k x x,或21||||||||ε<-+kk k x x x ,停止计算. (2)当函数值的下降量充分小时,31)()(ε<-+k kx f x f ,或41|)(|)()(ε<-+k k k x f x f x f , 停止计算.(3)在无约束最优化中,当函数梯度的模充分小时51||)(||ε<∇+k x f ,停止计算.迭代法的关键:① 如何构造每一轮的搜索方向kp ② 确定步长k λ关于k λ,前面是以)(min kk p x f λλ+产生的,也有些算法k λ取为一个固定值,这要根据具体问题来确定.关于kp 的选择,在无约束极值问题中只要是使目标函数值下降的方向就可以了,对于约束极值问题则必需为可行下降方向.定义7.8 设0,,:1≠∈→p R x R R f nn,若存在0>δ使),0(δλ∈∀,)()(x f p x f <+λ则称向量p 是函数)(x f 在点x 处的下降方向.定义7.9 设0,,,≠∈∈∈p R p K x R K nn,若存在0>λ使得K p x ∈+λ,称向量p 是点x 处关于K 的可行方向. 若一个向量p 既是目标函数f 在点x 处的下降方向,又是该点处关于可行域K 的可行方向,则称p 为函数f 在点x 处关于区域K 的可行下降方向.根据不同原理产生了不同的kp 和k λ的选择方法,就产生了各种算法. 在以后的讨论中,一维极值的优化问题是讨论求解步长k λ.无约束极值中讨论的最速下降法,共轭方向法,坐标轮换法,牛顿法,变尺度法及有约束极值中讨论的可行方向法都是根据不同的原理选择kp 得到的迭代算法.七、迭代算法的收敛性定义7.10 设有一算法A ,若对任一初始点(可行点),通过A 进行迭代时,或在有限步后停止得到满足要求的点;或得到一个无穷点列,它的任何一个聚点均是满足要求的点,则称此算法A 具有全局收敛性.定义7.11 设(UMP )问题的目标函数Px Qx x x f T+=21)(,Q 为对称半正定矩阵, 若由算法A 进行迭代时,不论初始点0x 如何选择,必能在有限步后停止迭代,得到所要求的点,则称此算法A 有二次有限终止性.定义7.12 设序列{}kr收敛于*r,定义满足∞<=--≤**+∞−→−βhkk k rr r r 1______lim0的非负数h 的上确界为{}k r 的收敛级.若序列的收敛级为h ,就称序列是h 级收敛的.若1=h 且1<β就称序列是以收敛比β线性收敛的. 若1>h 或1=h 且0=β就称序列是超线性收敛的. 如何判别算法的收敛性和收敛速度问题本书不讨论.本书给出的算法中,最速下降法具有全局收敛性、是线性收敛的;改进牛顿法具有全局收敛性、二次有限终止性、是二阶线性收敛的;变尺度法和共轭方向法具有全局收敛性和二次有限终止性、是超线性收敛的;Zoutenddijk 法不具有全局收敛性、改进的T-V 法具有全局收敛性;制约函数法具有全局收敛性.关于这些算法的收敛性的讨论和证明有兴趣的读者可参考其他文献.§2 一维极值问题的优化方法前面讨论迭代算法时,从kx 出发确定沿k p 方向的步长k λ是这样求解的),(min 0k k p x f λλ+>这里k x ,k p 已知.所以,若记)()(λλg p x f k k =+,则为求解)(min 0λλg >的过程.于是我们考虑如下形式的极值问题.)(min x f bx a ≤≤ (7.8)b a R x ,,1∈为任意实数很显然可应用高等数学中学过的解析法,即令0)('=x f 求出平稳点,但如前面所述如果该方程解不出来,怎么办?可用下述迭代算法—0.618法.定义7.13 )(x f 定义在],[b a 上,若存在点∍∈],[*b a x 当*x y x ≤<,有)()(y f x f >,当*x y x ≥>时,)()(y f x f >,称)(x f 在],[b a 中为单峰函数(单谷函数).显然满足定义要求的点*x 是)(x f 在],[b a 中的极小点.在],[b a 中任选两点21,x x ,且b x x a <<<21,根据)(x f 的单峰性,若)()(21x f x f <,则*x 必然位于],[2x a 内,如果)()(21x f x f >,则*x 必然位于],[1b x 内.如果)()(21x f x f =,则*x 必然位于],[21x x ,记此区间为],[11b a .如此继续,得闭区间套⊃⊃⊃⊃],[],[],[11n n b a b a b a .显然 ,1,0],,[*=∈i b a x i i ,又0→-i i a b .由闭区间套性质, *x 为极小值点.闭区间套的选择方法不同,求得的*x 的快慢及求解过程的计算量是不一样的,有一个常用的方法是0.618法.0.618法: 取],[],[b a =βα① 在],[βα中选取1λ和2λ,)(618.0),(382.021αβαλαβαλ-+=-+=,求出)(1λf 和)(2λf 进入②.② 若)()(21λλf f <,取],[],[2λαβα=,若αλ-2已足够小,停止,否则进入③.若)()(21λλf f >,取],[],[1βλβα=,若1λβ-已足够小,停止,否则进入④. 若)()(21λλf f =,取],[],[21λλβα=,若12λλ-已足够小,停止,否则进入①. ③ 取上一步中的1λ为2λ,显然有)(618.02αβαλ-+=,令)(382.01αβαλ-+=,求出)(1λf ,返回②.④ 取上一步的2λ为1λ,则有)(382.01αβαλ-+=,令)(618.02αβαλ-+=,求出)(2λf 返回②.设初始区间为],[b a ,用0.618法,经过k 次迭代后],[βα的长度ka b 618.1)(-=-αβ,只要k 充分大αβ-可以小于任何给定的正数.例7.3 用0.618法求解λλλ2)(min 2+=f单峰区间为[-3,5],2.0=ε解:[α,β]=[-3,5]1λ=-3+0.382×8=0.056 )(1λf =0.1152λ=-3+0.618×8=1.944 )(2λf =7.667由于)(1λf <)(2λf 所以新的不定区间为[α,β] =[-3,1.944] 由于β-α=4.944>0.22λ:=1λ=0.056 )(2λf :=)(1λf =0.115 1λ=-3+0.382×4.944=-1.112 )(1λf =-0.987如此反复得下表7-1:在进行8次迭代后,2.0112.1936.0<+-=-αβ取中间值024.1*-=λ或032.12-=λ作为近似最优解.显然真正极小点是-1.0.一维收索方法很多,如函数逼近法、牛顿法等可参考其他文献.§3 无约束极值的优化方法考虑无约束最优化问题(UMP ))(min x f nR x ∈ (7.9) 前面已经讨论过,求解此无约束优化问题,可以求出平稳点及不可导点的方法.令0)(*=∇x f ,求出平稳点.如果)(*2x f ∇是正定的,则*x 是UMP 的严格局部最优解.若)(x f 在n R 上是凸函数,则是整体最优解.在求解0)(*=∇x f 这n 维方程组比较困难时,就用最优化算法——迭代法.本节将介绍最速下降法,牛顿法,共轭方向法,坐标轮换法,变尺度法.这些算法就是用不同的方法来选择搜索方向k p 而得到的.当然kp 必须是下降方向.定理7.7 设R R f n→:,在点x 处可微,若存在nR p ∈,使0)(<∇p x f T,则向量p是f 在x 处的下降方向.证明:)(x f 可微(在x 处),由泰勒展开式,有 ||)(||)()()(p p x f x f p x f Tλολλ+∇+=+ ,0,0)(><∇λp x f T0)(<∇∴p x f Tλ),(当δλδ0∈∃∴时,有0||)(||)(<+∇p p x f Tλολ),0()()(δλλ∈∀<+∴x f p x fp ∴是)(x f 在点x 的下降方向. 证毕.一、最速下降法最速下降法又称梯度法,选择负梯度方向作为目标函数值下降的方向,是比较古老的一种算法,其它的方法是它的变形或受它的启发而得到的,因此它是最优化方法的基础. 基本思想:迭代法求解无约束最优化(5.9)问题的关键是求下降方向kp .显然最容易想到的是使目标函数值下降速度最快的方向.从当前点kx 出发,什么方向是使)(x f 下降速度最快呢? 由泰勒展开知:||)(||)()()(k k T k k k k p p x f p x f x f λολλ+∇-=+-略去λ的高阶无穷小项,取)(kkx f p -∇=时,函数值下降最多.而)(kx f ∇为)(x f 在kx 处的梯度,所以下降方向kp 取为负梯度方向时,目标函数值下降最快.最速下降法:①. 取初始点0x ,允许误差0>ε,令0:=k ②. 计算)(kkx f p -∇=③. 若ε<||||k p ,停止,点k x 为近似最优解.否则进入④.④. 求 k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥ ⑤. 令kk k k p x xλ+=+1,1:+=k k ,返回②例7.4 用最速下降法求解下列无约束优化问题1222121225),(m in x x x x x f -+=取初始点Tx )2,2(0= 终止误差 610-=ε解:很显然,该问题的整体最优解为Tx )0,1(*=⎪⎪⎭⎫⎝⎛-=∇215022)(x x x f ,令0,10)(21==⇒=∇x x x f易验证)(*2x f ∇是正定的, ∴是整体最优解. 下面用最速下降法求解T T x x x f x f x f )50,22(),()(2121-=∂∂∂∂=∇ T x )2,2(0=T x f )100,2()(0=∇∴取Tp )100,2(0-=由⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+λλλλ10022210022200p x4)22(2)1002(25)22()(2200+---+-=+λλλλp x f得0)1002(5000)22(4=----=λλλd df020007679.0500008100080==⇒λ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+=0007679.0959984642.11002020007679.0220001p x x λ重复上述过程得 Tx )01824717.0,009122542.1(2=789850288.0)(,078282.0)(,100)(21-=-==x f x f x f图7-1从图7-1可知,{}kx 随着迭代次数的增加,越来越接近与最优解)0,1(,同时也看到,随着迭代次数的增加,收敛速度越来越慢.极小点附近沿着一种锯齿形前进,即产生“拉锯”现象:{}kx沿相互正交的方向小步拐进,趋于最优解的过程非常缓慢.这种现象怎样解释?如何克服?在求k λ时,由于)()(kkp x f λλϕ+=,求导得0)('=λϕ,k λ是)(λϕ的极小点.故有0)()('=⋅+∇=k T k k k k p p x f λλϕ,即0)(=⋅+∇kk k k p p x f λ,又)(11++-∇=k k x f p,即0)(1=⋅+k T k p p 或0)()(1=∇⋅∇+k T k x f x f .也就是最速下降法相邻两个搜索方向是彼此正交的.因此最速下降法是局部下降最快,但不一定是整体下降最快的.在实际应用中一般开始几步用最速下降法,后来用下面介绍的牛顿法.这样两个算法结合起来,求解速度较快.二、牛顿法 基本思想:考虑无约束优化问题(5.9))(min x f nRx ∈ 由前面的讨论知,若能解出方程组0)(=∇x f ,求出平稳点*x ,则可验证*x 是否为极值点.由于0)(=∇x f 难以求解.如果)(x f 具有连续的二阶偏导数,则考虑用)(x f 在点*x 二阶泰勒展开式条件替代)(x f ∇,即由22||)(||))(()(21)()()()(k k k T k k T k k x x x x x f x x x x x f x f x f -+-∇-+-∇+=ο))(()(21)()()()()(2kk T k k T k k x x x f x x x x x f x f x g x f -∇-+-∇+=≈⇒令0))(()()()(2=-∇+∇=∇≈∇kk k x x x f x f x g x f)())((121k k k k x f x f x x ∇∇-=⇒-+即从kx 出发,搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为1,得到下一个迭代点1+k x.牛顿法:①. 选取初始点0,0=:k x ,精度0>ε ②. 计算)(kx f ∇,如果ε≤∇||)(||kx f ,计算终止.否则计算)(2kx f ∇,求出搜索方向)())((12kk k x f x f p ∇∇-=-. ③. 令1:,1+=+=+k k p x x k k k ,返回②.例7.5 考虑无约束问题22122214)(m in x x x x x f -+=试分别取初始点(1)T x )1,1(0=,(2)T x )4,3(0=(3)Tx )0,2(0=,取精度要求310-=ε,用牛顿法求解.解:⎪⎪⎭⎫ ⎝⎛--=∇212211228)(x x x x x x f ⎪⎪⎭⎫⎝⎛---=∇22228)(1122x x x x f (1) 取Tx )1,1(0=有Tx f )1,6()(0=∇ ε>=∇0828.6||)(||0x f⎪⎪⎭⎫⎝⎛--=∇2226)(02x fT x f x f p )2500.2,7500.1()())((01020--=∇⋅∇-=-Tp x x )2500.1,7500.0(01--=+= 重复计算结果得表7-2.ε<=0||)(||4x f T x )0,0(4=∴为近似最优解.实际上,该问题最优解为**)0,0(=x(2) 取Tx )4,3(0=,同上计算,得TT x x x )4,8284.2(,)4,8333.2(),4,3(21===有ε<=∇=∇=∇0||)(||,1667.0||)(||,1||)(||210x f x f x f ,这一迭代结果收敛到)(x f 的鞍点T)4,22(.(3) 取Tx )0,2(0=T x f )4,16()(0-=∇ ⎪⎪⎭⎫⎝⎛--=∇2448)(02x f0)(02=∇x f , 即)(02x f ∇不可逆,所以无法求得点1x .牛顿法的主要缺点:(1) 该法的某次迭代反而使目标函数值增大(见上例).(2) 初始点0x 距极小点*x 较远时,产生的点列{}kx可能不收敛,还会出现)(*2x f ∇的奇异情况.(3) )(*2x f ∇的逆矩阵计算量大. 牛顿迭代法的主要优点:当目标函数)(x f 满足一定条件,初始点0x 充分接近极小点*x 时,由牛顿法产生的点列{}kx 不仅能够收敛到*x,而且收敛速度非常快.实际应用中常将最速下降法和牛顿法结合起来使用.牛顿法的改进:上面介绍的牛顿法中,kx 处的搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为 1.若通过一维搜索来取最优步长k λ,可防止在迭代中步长恒为1时标目标函数值增大的可能. 改进的牛顿法:①. 取初始点nR x ∈0,允许误差0:,0=>k ε.②. 检验是否满足ε<∇||)(||kx f ,若是,迭代停止,得到k x 为近似最优解.否则进入③.③. 令)())((12kk k x f x f p ∇∇-=-.④. 求k λ,使)()(min kk k k k p x f p x f λλλ+=+. ⑤. 令k k k k p x x λ+=+1,令1+=k k :转②.三、坐标轮换法既然求解非线性规划问题的迭代法是给出初始点0x ,求出一个方向kp ,根据kp 确定步长k λ,使k k k k p x xλ+=+1,如果1+k x 满足某精度要求则停止,否则继续找方向1+k p .显然构造出搜索方向有一定的困难,能否按既定的搜索方向寻找最优解,省去找搜索方向kp 呢?在最速下降法中我们看到相邻两个搜索方向kp 和1+k p是正交的.我们知道在n 维欧氏空间中坐标轴向量n εεε,,,21 是正交的,可否选坐标轴向量为搜索方向kp 为呢?回答是肯定的,这样我们得到了坐标轮换法.基本思想:从1x 出发,取11ε=p ,沿1p 进行一维搜索得到1112p x x λ+=.若2x 满足精度要求,则停止.否则取22ε=p ,2223p x x λ+=.如此继续,, 取n n n n n n p x x p λε+==+1,,若1+n x 满足精度要求,则停止.否则令11ε=+n p ,1112+++++=n n n n p x x λ,如此反复连续,可以求出近似最优解.坐标轮换法的缺点是收敛速度较慢,搜索效率较低,但基本思想简单,沿坐标轴的方向进行搜索.四、共轭方向法和共轭梯度法共轭方向法是一类方法的总称,它原来是为求解目标函数为二次函数的问题而设计的.这类方法的特点是:方法中的搜索方向是与二次函数的系数矩阵Q 有关的所谓共轭方向,用这类方法求解n 元二次函数的极小化问题最多进行n 次一维搜索便可以得到极小点.由于可微的非二次函数在极小点附近的性态近似于二次函数,因此这类方法也用于求可微的非二次函数的UMP 问题.定义7.14 设Q 为n n ⨯对称正定矩阵,如果0=Qy x T称n 维向量x 和y 关于Q 共轭.定义7.15 设k p p p ,,,21 为nR 中一组向量, Q 是一个n n ⨯对称正定矩阵.如果k j i j i Qp p Qp p i T i j T i ,,2,1,,,0,0 =≠≠=,称k p p p ,,,21 为Q 共轭向量组,也称它们为一组Q 共轭方向.当E Q =(单位矩阵)时,为正交方向.定理7.8 若k p p p ,,,21 为矩阵Q 共轭向量组,则它们必线性无关. 证明: 若存在k l l l ,,,21 ,使011=++k k p l p l ,则对任一k j ,,2,1 =,由 0)(11===∑∑==j T j j ki j T j iki iiT jQp p l Qp pl p l Q p又0>j Tj Qp p , 0=∴j l∴ k p p p ,,,21 线性无关. 证毕.由高等代数知识可知, Q 共轭向量组中最多包含n 个向量, n 是向量的维数.反之,可以证明,由n 维空间的任一组基出发可以构造出一组Q 共轭方向11,,,-n pp p .前面我们已经讲述了坐标轮换法,在n 维欧几里德空间中, n εεε,,,21 是一组线性无关的正交向量.从0x 出发,依次使用n εεε,,,21 作为下降方向进行一维精确搜索来确定n x x x ,,,21 ,重复进行得点列{}k x ,最终求得满足精度要求的最优解.刚才我们引进了共轭向量组11,,,-n p p p ,又证明了它们的线性无关性,那么是否可以用这共轭向量组像坐标轮换法一样,从0x 出发依次用11,,,-n pp p 作为下降方向来确定{}kx,最终求得近似最优解?回答是肯定的.这个方法称为共轭方向法.共轭方向法适合任何可微凸函数,且对于二次函数极值)(min x f x p Qx x T T+=21特 别有效.下面的定理告诉我们用共轭方向法求解二次函数的极值,经过n 次迭代就能求得最优解.定理7.9 设Q 为n n ⨯对称正定矩阵,函数x p Qx x x f T T+=21)(,又设 110,,,-n p p p 为一组Q 共轭向量组,且每个i p 是(下面形成的)i x 点处的下降方向.则由任一点0x 出发,按如下迭代至多n 步后收敛,k k k k p x xλ+=+1,这里k λ满足)(m i n )(0k k k k k p x f p x f λλλ+=+>.证明: 欲证至多n 步收敛,即证0)(=∇nx f .下证)(nx f ∇和11,,,-n pp p 正交.p Qx x f +=∇)( p Qx x f kk+=∇∴)( p p x Q p Qx xf k k k k k ++=+=∇++)()(11λkk k k k k Qp x f p Qp Qx λλ+∇=++=)( =+∇=∇---111)()(n n n n Qpx f x f λ 11111)(--++++++∇=n n k k k Qp Qp xf λλQ p Q p x f x f Tn n T k k T k T n )()()()(11111--++++++∇=∇λλkT n n k T k k k T k k T n Qp p Qp p p x f p x f )()()()(11111--++++++∇=∇λλ000+++= )2,,2,1,0(-=n k 又0)(1=∇-n Tn px f0)(=∇∴kT n p x f )1,,1,0(-=n k)(nx f ∇∴和11,,,-n pp p 正交, 又110,,,-n pp p 线性无关.0)(=∇∴nx fnx ∴是问题的最优解. 证毕. 共轭方向法具有二次有限终止性. 由于共轭方向组11,,,-n p p p 的取法有很大的随意性,用不同方式产生一组共轭方向就得到不同的共轭方向法.如果利用迭代点处的负梯度向量为基础产生一组共轭方向,这样的方法叫共轭梯度法.下面对二次函数讨论形成Q 共轭梯度方向的一般方法,然后引到求解无约束化问题上.任取初始点n R x ∈0,若0)(0≠∇x f ,取)(0x f p -∇=,从0x 点沿方向0p 进行一维搜索 ,求得0λ.令0001p x x λ+=,若0)(1=∇x f ,则已获得最优解1*x x =.否则,取0011)(p x f p υ+-∇=,其中0υ的选择要使1p 和0p 关于Q 共轭,由0)(01=Qp p T ,得0100)()()(Qp p x f Q p T T ∇=υ一般地,若已获得Q 共轭方向kp p p ,,,1和依次沿它们进行一维搜索的得到的点列110,,,+k x x x ,若0)(1=∇+k x f ,则最优解为1*+=k x x ,否则∑=+++-∇=ki i i k k p xf p011)(α为使1+k p 和11,,,-k pp p 是共轭,可证0110====-k ααα所以有 k k k k p x f pυ+-∇=++)(11又1+k p和kp 是Q 共轭的.有0)(1=+k Tk Qp p,得kT k k T k k Qpp x f Q p )()()(1+∇=υ 2,,2,1,0-=n k 进一步可得k υ221||)(||||)(||k k x f x f ∇∇=+ 2,,1,0-=n k综合起来得 Fletcher-Reeves 公式2)21110||(||||)(||)()(k k k k k k k x f x f p x f px f p ∇∇=+-∇=-∇=+++υυ 2,,2,1,0-=n k (7.10)共轭梯度法: ①. 选取初始点0x ,给定终止误差0>ε. ②. 计算)(0x f ∇,若ε≤∇||)(||0x f ,停止迭代,输出0x .否则进行③.③. 取)(0x f p -∇=,令0:=k④. 求k λ,)(min )(0kkkk kp x f p x f λλλ+=+≥,令k k k k p x xλ+=+1⑤. 计算)(1+∇k xf ,若ε≤∇+||)(||1k x f ,停止迭代,1*+=k x x 为最优解.否则转⑥.⑥. 若n k =+1,令nx x =:0,转③(已经完成一组共轭方向的迭代,进入下一轮)否则转⑦ ⑦. 取kk k k p xf pυ+-∇=++)(11,其中221||)(||||)(||k k k x f x f ∇∇=+υ,令1:+=k k ,转④当)(x f 是二次函数时上述共轭梯度法至多进行n 步可求得最优解.当)(x f 不是二次函数,共轭梯度法也可以构造11,,,-n p p p ,但已不具有有限步收敛的性质,于是和坐标轮换法一样经过一轮迭代后,采用重新开始的技巧.上述共轭梯度法就是带有再开始技巧的F-R 法.例7.6 用F-R 法求下面问题 2212121252),(m in x x x x x f +-=取初始点T x )2,2(0=,终止误差为610-=ε解:在例7.4中已得Tx f p )100,2()(0-=-∇= Tx )0007679.0,959984642.1(1-= Tx f )038395.0,919969284.1()(1-=∇000368628.010004687756228.3||)(||||)(||20210==∇∇=x f x f υ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=+-∇=0015322.092070654.11002000368628.0038395.0919969284.1)(0011p x f p υ⎪⎪⎭⎫ ⎝⎛+--=+0015322.00007679.092070654.1959984642.111λλλp x0378228399.7687703443.3)(11=+-=+λλλd p x df499808794.01=∴λ⎪⎪⎭⎫ ⎝⎛≈⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⨯+--⨯+=+=010********.0999998622.00015322.0499808794.00007679.0)92070654.1(499808794.0959984642.11112p x x λε<=∇0||)(||2x f , ∴最优解⎪⎪⎭⎫⎝⎛==012*x x .五、变尺度法当初始点为)(x f 的其极值点附近时牛顿法收敛速度很快,但缺点是需计算)(2kx f ∇的逆矩阵,在实际问题中目标函数往往相当复杂,计算二阶导数的工作量或者太大或者不可能,在x 的维数很高时,计算逆矩阵也相当费事.如果能设法构造另一个矩阵kH ,用它来逼近二阶导数矩阵的逆矩阵12))((-∇kx f 则可避免上述问题.下面就来研究如何构造12))((-∇kx f 的近似矩阵kH .我们希望:每一步都能以现有的信息来确定下一个搜索方向,每做一次迭代,目标函数值均有所下降,这些近似矩阵最后应收敛于最优解处的海赛矩阵的逆矩阵12))((-∇kx f .p Qx x f xp Qx x x f T T+=∇+=)(21)(考虑于是 )]()([)()()(11111k k k k k k k k x f x f Q x x x x Q x f xf ∇-∇=-⇒-=∇-∇+-+++当)(x f 是非二次函数时,令)]()([111k k k k k x f x f H x x ∇-∇=-+++ (7.11)称为拟牛顿条件.显然,我们构造出来的近似矩阵k H 必须满足上述拟牛顿条件及递推性:k k k H H H ∆+=+1,这里k H ∆称为矫正矩阵.记 k k k kk k x x x x f x f G -=∆∇-∇=∆++11)()( 有 kk k k k k G H H G H x ∆∆+=∆=∆+)(1 .变尺度法即DEP 法是由Davidon 首先提出,后来又被Fletcher 和Powell 改进的算法.记kk T k kT k k k k T k T k k k k kk T k kT k k k k T k T k k kG H G HG G H x G x x H H G H G H G G H x G x x H ∆∆∆∆-∆∆∆∆+=∆∆∆∆-∆∆∆∆=∆+)()()()()()()()(1 (7.12)容易验证1+k H 满足拟牛顿条件,称上式为DEP 公式.变尺度方法计算步骤:(1) 给出初始点nR x ∈0,允许误差0>ε.(2) 若ε<∇||)(||0x f ,停止,0x 为近似最优解;否则转下一步.(3) 取I H =0(单位矩阵),0=:k . (4) )(kk k x f H p ∇-=(5) 求k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥. (6) 令kk k k p x xλ+=+1(7) 若ε<∇+||)(||1k xf ,1+k x 为最优解,停止;否则当1-=n k 时,令n x x =:0转(3).(即迭代一轮n 次仍没求得最优解,以新的0x 为起点重新开始一轮新的迭代).k k k k k kx x x x f xf G n k -=∆∇-∇=∆-<++11),()(1时,令当.计算kk T k kT k k k k T k T k k kk G H G H G G H x G x x H H∆∆∆∆-∆∆∆∆+=+)()()()(1,令1+=k k :,转(4). §4 约束极值的最优化方法考虑(MP)问题:0)(0)(..)(min =≥x H x g t s x f (7.13)其中Tl T m x h x h x h x g x g x g ))(,),(()(,))(,),(()(11 ==是向量函数.显然 0)(0)(0)(≥-≥⇔=x h x h x h , 于是(MP )问题可以写为:Tm x g x g x g x g t s x f ))(,),(()(0)(..)(min 1 =≥ (7.14)一、积极约束设0x 是(MP )问题(5.14)的一个可行解.对0)(0≥x g i 来说,在点0x 有两种情况:或者0)(0>x g i ,或者0)(0=x g i .0)(0>x g i 时,则0x 不在0)(0=x g i 形成的边界上,称这一约束为0x 的非积极约束;0)(0=x g i 时,0x 处于由0)(0≥x g i 这个约束条件形成的可行域边界上,当0x 有变化时就不满足0)(0=x g i 的条件,所以称为积极约束,记为:{}()|()0,1i I x i g x i m ==≤≤.定义7.16 设x 满足约束条件0)(0≥x g i ),,1(m i =,0)(|{)(==x g i x I i ,}m i ≤≤1,如果)(x g i ∇,)(x I i ∈线性无关,则称点x 是约束条件的一个正则点.二、可行方向、下降方向的代数条件前面我们已经给出可行方向和下降方向的定义,下面给出其代数条件.可行方向:设K 是(MP )问题(5.14)的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时有K p x ∈+λ,称p 为x 点处的一个可行方向.由泰勒公式:||)(||)()()(p p x g x g p x g T i i i λολλ+∇+=+当x 为)(x g i 的积极约束时,有0)(=x g i .只要0>λ足够小,)(p x g i λ+和p x g T i )(∇λ同号,于是当0)(>∇p x g T i 时有0)(≥+p x g i λ )(x I i ∈.当x 为)(x g i 的非积极约束时,有0)(>x g i .由)(x g i 的连续性,当0>λ足够小时,由保号性知 0)(≥+p x g i λ )(x I i ∉.所以只要 0)(>∇p x g T i ,)(x I i ∈就可保证0)(≥+p x g i λ,于是p 为x 点处的一个可行方向.称0)(>∇p x g T i ,)(x I i ∈ 为p 在点x 处是可行方向的代数条件.下降方向:设K 是(MP )问题的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时,有)()(x f p x f <+λ,称p 为x 点处的一个下降方向.由泰勒公式:||)(||)()()(p p x f x f p x f Tλολλ+∇+=+.当λ足够小时,只要0)(<∇p x f T,有)()(x f p x f <+λ. 称0)(<∇p x f T为p 在x 点处的一个下降方向的代数条件.三、可行下降方向设K 为(MP )问题(5.14)的可行域,K x ∈,若存在0,≠∈p R p n,p 既是x 点处的下降方向又是可行方向,则称p 为点x 处的可行下降方向.定理7.10 考虑非线性规划问题(5.14),K x ∈,),,1)()(m i x g x f i =(和在x点处可微,若*x 是局部极小点,则x 点处必不存在可行下降方向,即不存在p 同时满足:⎪⎩⎪⎨⎧∈>∇<∇)(0)(0)(x I i p x g p x f Ti T证明:反证法,设局部极小点x 处存在可行下降方向p ,于是1λ∃,当],0[1λλ∈时有)()(x f p x f <+λ,又p 为可行方向.2λ∃∴当],0[2λλ∈时K p x ∈+λ,这与x 是。

非线性规划基础PPT课件

非线性规划基础PPT课件

f
(
xk
tkdk
)
min t 0
f(xk
tdk
),
令 xk 1 xk tk dk ;k=k+1,转第1步。
第32页/共35页
• 一维搜索的方法很多,归纳起来,可分为试探 法和函数逼近法。试探法中包括如黄金分割法、 Fibonacci法等;函数逼近法中包括如牛顿法、 割线法等。
第33页/共35页
x (3,1)T
• 例13.6:
是下列优化问题的最优解,验
证x满足Fmrixitnzf-(Jxo) h(nx1定 7理)2 。 (x2 3)2
s.t.gg12((xx))
x12 x1
x22 x2
10 0, 4 0,
g
3
(
x)
x2
0,
第23页/共35页
紧指标集 I={1,2}
f(x)
-
• 在x点取到局部最优值的条件为:F0 G0
g f
i (x)T (x)T
d d
0 0
无解
第21页/共35页
• 定理13.11(Gorden):
设 A (A1,, Am ), Ai Rn ,i 1,, m ,则Ax<0有解
y( Rm ) 0
的充A分T y必 0要(i 条 1件,为, m:) 不存在非零向量
G {d | d 0, x D, 0, (0, ), x d D}
定理13.6 若f(x)在点 x 可微,如果存在方向d,
使 f (x)T d 0 ,则 0 使 (0, ) 有
f (x d) f (x)
第17页/共35页
一、无约束优化的最优性条件
• 在无约束规划问题中,由于不涉及到可行域的 问题,因此,只涉及下降方向。不涉及可行方 向的问题。

非线性规划

非线性规划
标函数曲线上的3点 (x1 f1) (x2 f2) (x3 f3) 作为二次插值
多项式 p(x) ax2 bx c 的插值结点。 这里a b c为待定系数.可用下述线形方程组确定.
p(x1 ) ax12 bx1 c f1
p(x2 )

axBiblioteka 2 2 bx2c

f2
p(x3 ) ax32 bx3 c f3
x1 a
计算函数值
x3 x3 b
x2

1 2
( x1

x3 )
f1 f (x1) f2 f (x2 ) f3 f (x3 )
ⅲ插值计算
x
* p
(a)若分母为零即 (x2 x3 ) f1 (x3 x1) f2 (x1 x2 ) f3 0 即
f2 f1 f3 f1 则说明三个插值点(x1, f1) (x2, f2 ) (x3, f3)在同一
向量化表示

g( x) ( g1 ( x),..., g p ( x))T
h( x) (h1 ( x),..., hp ( x))T ,
其中, g : R n R p , h : R n Rq ,那么(MP)可简记为
min f ( x)

s.t .

g(x) 0 或者min f ( x) x X
x b 2a
x*p

1 2
(x22 x32 ) f1 (x32 x12 ) f2 (x12 x22 ) f3 (x2 x3 ) f1 (x3 x1 ) f2 (x1 x2 ) f3
c1

f3 x3
f1 x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Operations Research
第二十一讲
§2 非线性规划的数学模型及 特点 (3)
[例4-4]非线性规划为
min f(X)=(x1-2)2+(x2-2)2 h(X)=x1+x2-6≤0
显然,此时的最优解为C点(x1*=x2*=2 ,f(X*)=0),该点落在可 行或内部,其边界约束失去作用。
从前面例中看出,非线性规划的最优解(如果存在)可在其 可行域上任一点达到。因而,非线性规划数学模型可以没有 约束条件,即存在无约束最优化问题。
page 6 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
Operations Research
第二十一讲
§1 非线性规划问题的现实来 源-问题的提出 (1)
在规划模型中,如果在目标函数或在约束条件中有一个或 多个是自变量的非线性函数,则称这种规划为非线性规划 问题。
就现实问题,严格讲来,基本属于非线性规划模型。
现举例说明非线性规划的现实背景。
[例4-1]某公司经营两种设备。第一种设备每件售价为30元, 第二种设备每件售价为450元。且知,售出第一、二种设 备分别需时为每件约0.5小时和(2+0.25x2)小时,其中x2 为第二种设备售出数量。公司的总营业时间为800小时。
显然,与直线AB相切的点必 为最优解。
图 4-1(a) 中 的 D 点 即 为 最 优 点,此时目标函数值为:
f(X*)=2,x1*=x*2=3
x1 6
A
f(X)=4

3
D
2C
f(X)=2
B
0 23
6 x2
图4-1 (a)
page 5 22 January 2020
Prof. Wang School of Economics & Management
极小点,则对于任一X*的可行方向dEn必有▽f(X*)·d≥0。 (其中,▽f(X*)表示函数f( X)的一阶梯度或导数)
f(X)>f(X*),则称X*为f在Q上的一个严格相对极小点。
page 7 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§3 解和算法的基本性质 (2)
ii)点X* Q,如果对于所有X Q成立f(X)≥f(X*),则称X* 为f在Q上的全局极小点。同样,若对于所有X Q, X≠X*时,存在f(X)>f(X*),则称X*为f在Q上的严格全局极 小点。
Operations Research
第二十一讲
第十讲 非线性规划(一)
§1 非线性规划问题的现实来源-问题的提出 §2 非线性规划的数学模型及特点 §3 解和算法的基本性质 §4 非线性规划求解方法分类
page 1 22 January 2020
Prof. Wang School of Economics & Management
目标函数f(X)=30x1+450x2取极大 由于营业时间有限,必须满足:0.5x1+(2+0.25x2)x2≤800 当然,销售设备数不会为负数,即:x1≥0,x2≥0 综合得出该问题数学模型为:
目标函数 约束条件
page 3 22 January 2020
max:f(X) =30x1+450x2
尽管问题的提法往往求全局极小点,然而,无论从 理论上或从计算观点看,实践现实性表明我们必须以很 多情形上满足一个相对极小点。当然,对于凸规划,这 二者是统一的。
page 8 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
[例4-3]求解下述非线性规划 min f(X)=(x1-2)2+(x2-2)2 h(X)=x1+x2-6=0
page 4 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§2 非线性规划的数学模型及 特点 (2)
第二十一讲
§3 解和算法的基本性质 (1)
1.极小点、凸集及其关系 ①极小点定义
i) 对于X* Q,如果存在一个 >0,使所有与X*的距离 小于 的X Q(即X Q,且|X-X*|<)都满足不等式
f(X)≥f(X*),则称X*为f在Q上的一个相对极小点或局部极
小点。若对于所有X Q,X≠X*且与X*距离小于 ,有
第二十一讲
§3 解和算法的基本性质 (3)
②相对极小点的判定
可行方向概念:沿给定方向作离开该点运动,若运动轨迹 在可行域内,则称该运动方向为可行方向(通常用d表 示)。
若从某点开始,沿任一可行方向运动(运动距离很小)都 不能使目标函数减少,则据定义,知该点即为相对极小点。
i) 判定极小点的必要条件(证明从略)
0.5x1+2x2+0.25x22≤800
x1≥0,x2≥0
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§2 非线性规划的数学模型及 特点 (1)
非线性规划的数学模型通常表示成以下形式。
min f(X) hi(X)=0 i=1,2,…,m gj(X)≥0 j=1,2,…,l
page 9 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§3 解和算法的基本性质 (4)
命题1 (一阶必要条件):设是En子集,f(X) C1(C1表 明存在一阶导数)是上函数,若X*是f( X)在上一个相对
求:公司为获取最大营业额(销售额)的最优营业计划。
page 2 22 January 2020
Prof. Wang School of Economics & Management
Operations Research
第二十一讲
§1 非线性规划问题的现实来 源-问题的提出 (2)
[解]设公司应经营销售第一、二种设备数额分别为x1件和x2 件,追求的目标为最大销售额,即:
相关文档
最新文档