12 高分子溶液的相平衡

合集下载

高分子溶液

高分子溶液
合物的溶度参数。但测定的对象不是溶液的粘度(交联聚合物
不溶解),而是聚合物的溶胀度(平衡溶胀比)。当溶剂的δ1 与被测聚合物的δ2越接近时,ΔHm就越小,溶剂就越容易溶胀 扩散进入聚合物,溶胀度就越大。所以可以取平衡溶胀比Q最 大的溶胀体系所用溶剂的δ作为被测交联聚合物的溶解度参数。
Q1
Q2
Q3
Q4
第三章 高分子溶液
聚合物以分子状态溶解在溶剂中所形成的热力学稳定的二 元或多元体系
高分子溶液与低分子溶液的差别:
1)高分子溶液的粘度比低分子溶液的粘度大的多。当浓度 大于5%时即为浓溶液,当浓度小于1%时即为稀溶液。
2)高分子以单个分子状态进入溶液中形成真溶液。但是由 于高分子体积庞大,溶液表现出胶体溶液的特点。
η2
η3
η4
η5
如果溶剂的δ1与被测聚合物的δ2越接近,ΔHm就越小, 高分子的溶解状况就越好,意味着高分子可以充分溶解在溶
剂中。由于大分子链在溶液中充分伸展,使流体力学体积增
大,溶液粘度随之增大。因此可以选取粘度最大的溶液中溶
剂的溶度参数做为被测聚合物的溶度参数。
粘度法测定聚合物溶度参数的原理可以推广到测定交联聚
随着溶剂分子不断向内层扩散,溶剂化程度不断加深, 溶胀不断加剧,最后整个大分子发生松动进入溶剂中,形成 溶解。
当表层大分子脱落后,又形成了新的溶解表面,上述过 程可以继续进行。
根据溶胀程度可将溶胀分成两种情况:
1)无限溶胀 —— 高分子无限度吸收溶剂,直到二者完全均 匀混合,形成高分子溶液。
线型(支化)高分子 + 良溶剂 高分子溶液 2)有限溶胀 —— 聚合物吸收溶剂到达一定程度后就达到平
衡,此后无论再与溶剂接触多久,吸收 的溶剂不会增加,始终保持两相状态。

高分子的溶液性质

高分子的溶液性质
❖ 采用压裂措施,不仅能够解除近井地层或油气井井 壁堵塞,且能将裂缝延伸至数十米、数百米以上, 扩大了泄油面积,提高了导流能力。一次大型压裂, 总用液量达3000m3,砂子500m3以上。这样大量 流体压入裂缝,就要求工作液具有良好的造缝性、 悬砂性、摩擦阻力小、滤失量低,且不伤害地层, 即不乳化不沉淀,对地层不堵塞等性能。
❖ 实际增塑剂大多数兼有以上两种效应。增塑剂不仅 降低了Tg ,从而在室温下得到柔软的制品;增塑剂 还降低了Tf ,从而改善了可加工性。
Logo
选择增塑剂主要应考虑以下几个方面:
(1)互溶性,选择原则与溶剂的选择一样。 (2)增塑效率。能显著降低玻璃化温度Tg和流
动温度Tf,提高产品弹性、耐寒性、抗冲击强 度等。 (3)耐久性。包括耐老化、耐光、耐迁移、耐 抽出等性能。 (4)其他性能(稳定性、安全。无毒。价格合 适等)。
Logo
❖利用外加增塑剂来改进聚合物成型加工及 使用性能的方法通常称为外增塑。对有些 聚合物如一些结晶性聚合物和极性较强的 聚合物,外增塑效果不好,可采用化学的 方法进行增塑,即在高分子链上引入其它 取代基或支链,使结构破坏,链间相互作 用降低,分子链变柔,易于活动,这种方 法称为内增塑。
二、纺丝溶液
2、极性增塑剂─极性聚合物体系
Logo
❖ 主要靠增塑剂的“极性替代作用”:增塑剂利用其 极性基团与聚合物分子中的极性基团的相互作用来 取代原来的聚合物-聚合物间的相互作用,从而破坏 了原极性高分子间的物理交联点,使链段运动得以 实现。因此使高聚物玻璃化温度降低值△Tg 与增塑剂 的摩尔数n成正比,与其体积无关:△Tg =βn。
Logo
➢ 干法:由喷丝头喷出液体细流,进入热空气套筒, 使细流中的溶剂遇热汽化,蒸气被热空气带走,高 聚物凝固成纤维。

高分子溶液与分子量及其分布

高分子溶液与分子量及其分布

F 131.5 2 148.2 32.0 326.6 786.7
d 1.19 V 0.0119 M 0 100.1
786.7 0.0119 9.35
实测值=9.0-9.5 Materials
WHUT
WUHAN UNIVERSITY of TECHNOLOGY
E 1 E 1
q 温度的意义
WUHAN UNIVERSITY of TECHNOLOGY

• T > q, 0 ,溶剂分子与链段相互作用,高分 子链舒展,排斥体积u增大,T高于q越多,溶 剂越良; • T < q, 0 ,链段间彼此吸引,排斥体积u可 为负值,T低于q越多,溶剂越劣,直至聚合物 Materials 从溶液中析出。
:体积分数;
下标1, 2, 12:两种溶剂和混合溶剂
WHUT
高分子溶液的热力学理论
• Flory-Huggins似晶格模型(平均场理论)

– –
WUHAN UNIVERSITY of TECHNOLOGY
溶液中分子排列类似晶体,每个溶剂分子占一个格子, 具有x个链段的高分子占有连续的x个格子,链段体积 与溶剂分子体积相等 高分子是柔性的,所有构象能量相等 溶液中高分子链段均匀分布,占有任一格子的机率相 等
WHUT
WUHAN UNIVERSITY of TECHNOLOGY
高分子溶液
Materials
WHUT
引言
• • • • •
WUHAN UNIVERSITY of TECHNOLOGY
• 高聚物以分子状态分散在溶剂中形成的均相混合物称为高分子溶液。 <1%,稀溶液,粘度小且稳定 纺丝液浓度>15%,粘度较大,稳定性较差 油漆、胶浆浓度>60% 冻胶或凝胶,半固体状浓溶液,产生物理交联点,不能流动 增塑的高聚物体系、相容高聚物的共混体系,固体状的浓溶液, 具有机械强度。

第三章高分子的溶液性质

第三章高分子的溶液性质

溶解度与分子量的关系:分子量大的溶解度小,分 子量小的溶解度大。
溶胀度与交联度的关系:交联度大的溶胀度小,交 联度小的溶胀度大。 高聚物的溶胀与溶解行为与聚集态结构有关。
不同类型的高聚物的溶解方式不同: 1. 非晶态高聚物:分子的堆砌密度低,分子间相 互作用较弱,溶剂分子容易渗入高聚物内部使之溶胀 和溶解。 2. 晶态高聚物:分子排列整齐,分子的堆砌密度 高,分子间相互作用较强,溶剂分子渗入高聚物内部 非常困难,其溶胀和溶解困难。

2 2

式中ω是指极性部分的溶度参数;Ω是指非极性部分 的溶度参数。
P d , d d
2
2
(3-8)
P是分子的极性分数,d是分子的非极性分数
对于极性高聚物,既要考虑它与溶剂的溶度参数中 非极性部分接近,还要考虑极性部分也要接近。
选择高聚物的溶剂需要考虑的因素:
⑴ 溶度参数接近 ⑵ 聚合物和溶剂的极性 如果聚合物与溶剂之间形成氢键作用力,则大大有 利于聚合物的溶解。因为氢键的形成是放热反应, 即DHM<0,如尼龙在室温下溶于甲酸、冰醋酸、浓硫 酸和酚类等溶剂。
⑶ 晶态非极性高聚物:选择溶度参数相近溶剂的同 时,又要提高溶解的温度。如PE在120℃以上才能溶 于对二甲苯。
⑷ 晶态极性高聚物:选择溶度参数相近和极性相近 的溶剂。
当使用混合溶剂时: 混合溶剂的溶度参数:
(3-9)
式中φ1和φ2分别表示两种纯溶剂的体积分数。
第二节 高分子溶液的热力学性质
理想溶液:溶液中溶质分子之间、溶剂分子之间和溶 质与溶剂分子之间的相互作用都相等;溶解过程无体 积变化(即△ViM=0)和热焓(即△HiM=0)的变化。理 想溶液的蒸气压服从拉乌尔定律:

高分子溶液

高分子溶液

自学:聚电介质溶液,凝胶和冻胶,沉淀与溶解分级
4
第 九章 高分子溶液polymer solution
9.1 聚合物的溶解
一、溶解过程: 由于聚合物分子量大,具有多分散性,可有线形、支化和 交联等多种分子形态,聚集态又可表现为晶态、非晶态等,因 此聚合物的溶解现象比小分子化合物复杂的多,具有许多与小 分子化合物溶解不同的特性。 1.低分子溶解过程:溶质快速扩散到溶剂中形成均匀溶液
1是高分子 溶剂互相作用参数或者Huggins 参数,
它反映了高分子与溶剂混合过程中的相互作用能的变化。
25
第 九章 高分子溶液polymer solution
G M kT N 1ln 1+N 2 ln 2+ 1 N 1 2 溶液中溶剂和溶质的化学位分别为: G M 1 2 1= =RT ln 1+1 2+ 1 2 x n 1 T , P ,n 2 G M 2 2= = RT ln x 1 + x 2 1 1 1 n 2 T , P , n1
第9章 高分子溶液
Polymer Solution
1
第 九章 高分子溶液polymer solution
严格划分:
稀溶液:分子间有较大的距离,彼此不发生影响。
亚浓溶液:高分子间彼此接触贯穿,但是溶质体积 分数远小于1时。 浓溶液:高分子不但彼此贯穿,且所占体积分数较大时
2
第 九章 高分子溶液polymer solution
聚合物以分子状态分散在溶剂中所形成的均相混合物
称为高分子溶液 根据浓度分为: C<1%-----极稀溶液 1%<C<5%----稀溶液 C>5%----浓溶液 低,稳定性好 高,不稳定性

高分子溶液与分子量及其分布

高分子溶液与分子量及其分布
u (1 eGa kT )4 a2da 0
高分子链在稀溶液中以一个被溶剂化了的松散的链球散布在溶剂中,每个链 球都占有一定的体积,他不能被其他分子的链段占有,称作“排斥体积”
以“1”表示溶剂分子,“2”表示高分子的链段,[1-2]表示溶剂分子与高分子链段的作用:
[1-2] > [2-2]:高分子被溶剂化,排斥体积u增大; [1-2] = [2-2]:高分子之间与溶剂一样可以互相贯穿,u=0,处于无扰状态; [1-2] <M[2at-e2ri]a:ls 高分子不能自发溶解。
高分子亚浓溶液和浓溶液
WHUT
WUHAN UNIVERSITY of TECHNOLOGY
• 稀溶液中,高分子线团互相分离,链段分布不均一,浓度增大, 高分子线团互相穿插交叠趋于均一,称亚浓溶液。高分子线团 靠近到开始线团密堆积的浓度称临界交叠浓度(c*)。
• 高分子浓溶液
–高聚物增塑体系 –纺丝液 –凝M胶at和eria冻ls 胶
i
ni Mi
ni
i
Ni M i
i
以重量为统计权重,重均分子量
ni
M
2 i
wi M i
M w i
i
niMi
wi
WiMi
i
i
i
以z值为统计权重,z均分子量 zi = wiMi
ziMi
wi
M
2 i
ni
M
3 i
M z i
zi
i
wi M i
i
ni
M
2 i
i
i
i
用稀溶液粘度法测得的分子量,粘均分子量
• 高分子与溶剂小分子尺寸悬殊,运动速度差别 大,溶剂分子能较快地渗入聚合物而高分子向 溶剂的扩散非常慢。

高分子物理知识点总结

高分子物理知识点总结

链结构
1.结构单元的化学组成 2.结构单元的键接方式 3.结构单元的立体构造和空 间排列 4.支化与交联 5.结构单元的键接序列
• 高分子各结构层次之间既有区别又有联系 • 高分子结构是包括各个层次的综合概念,高分子的性能也是各个层次结构对性能贡献的综合表现 • 高分子结构层次繁多、复杂,给其性能调节和改善带来机会 • 合成:一次结构 • 加工:二、三次结构 • 配混:高次结构
到其分子引力范围之外所需要的能量。
克服分子间的 相互作用 ∆E= ∆Hv-RT ∆Hv--摩尔蒸发热 RT--转化为气体所做的膨胀功
高聚物结晶热力学
结晶聚合物的熔融与熔点
结晶聚合物与小分子晶体熔融的相同点:都是热力学平衡一 级相转变过程---自由能对温度和压力的一阶导数(体积 和熵)发生了不连续变化 对许多高聚物精心测量,每 变化一个温度eg:升1℃,维 持恒温,直到体积不再变化 (24hr) 后再测比容,结果过 Tm T 程十分接近跃变过程,在终 点处出现明确的转折——是 只有程度的差别而无本质的差别 热力学的一级相转变
晶核的成长是高分子链扩散到晶核或晶体表面进行生长 , 可 以在原有表面进行扩张生长, 也可以在原有表面形成新核而 生长。 结晶速度应包含成核速度、晶粒的生长速度和由它们两者所 决定的全程结晶速度。
成核速度:偏光显微镜直接观察单位时间内形成晶核的数目
晶粒的生长速度:偏光显微镜法直接测定球晶的线增长速度
淬火通常使熔点低和熔限宽,退火处理则相反
高聚物的结晶动力学
结晶高聚物的结晶范围在Tg与Tm 之间 ;当结晶高聚物从熔 融状态逐渐冷却,或经淬火处理的结晶高聚物升温至玻璃化 温度以上,就可以逐渐结晶而形成晶态高聚物。 聚合物结晶过程分为晶核的形成和晶核的成长两个阶段

高分子溶液的相平衡和相分离

高分子溶液的相平衡和相分离

化学位∆u1与浓度的关系为:
Δμ1
=
RT [ln(1 −
φ1)
+
(1 −
1 x
1)φ2
+
χφ22
]
假定x=1000,可得到一系列不同 χ值的∆u1对 φ2的理论曲线
χ12值比较小时,Δμ1随φ2单调下降 χ12值比较大时,Δμ1随φ2有极大值和极小值 当两个极值点重合成为拐点,即临界点
φc
=
1 1+ r1 2
不同的相平衡图
相分离由温度、压力和浓度三个条件控制
UCST- Ultra critical solvency temperature 最高临界共溶温度
LCST- Low critical solvency temperature最低临界共溶温度
3.5 高分子溶液的相平衡和相分离
3.5.1 高分子溶液的相平衡 ( Phase equilibrium of polymer solution )
聚合物能够溶解于溶剂中的必要条件: 吉布斯自由能∆G<0
高分子的溶解过程具有可逆性,一般来说,温度降低, 高分子在溶剂中溶解度减小而使溶液分成两相,温度上 升后又能相互溶解成一相。
∂(Δμ1) = 0
∂φ2

2 (Δμ1
∂φ2 2
)
=
0
χ12c
=
1 2
+
1 r1 2
+
1 2r

1 2
+
1 r1 2
M不太大时,χ12可以超过1/2 M→无穷大时, χ12→ 1/2,体系处于θ状态,也就是M趋于 无穷大时的θ温度就是临界温度Tc 相分离的分子量依赖性,可以用逐步降低温度法把聚合物按分子量大小分离开来

高分子溶液的相平衡

高分子溶液的相平衡
DGM-j2关系曲线与x和c1
的大小有关, 当x一定时:
当c1 < c1C 或 T > TC时 当c1 = c1C 或 T = TC时 当c1 > c1C 或 T < TC时
DGM/RT
0
j’ ja j2 jb j” 1.0
DGM/RT
当c1 > c1C 或 T < TC时
曲率半径大于0
体系为均相
路漫漫其修远兮, 吾将上下而求索
Discussion 1
路漫漫其修远兮, 吾将上下而求索
(1) 从纵轴的截距可求聚合 物的相对分子质量
(2) 从直线的斜率可计算第 二维利系数
c
Discussion 2
The second Virial coefficient
A2与c1相似,也是高分子与溶剂分子间相互作用
的反映,但A2可以直接从实验中得到。它们都与 高分子在溶液中的形态有密切关系。
路漫漫其修远兮, 吾将上下而求索
良溶剂
溶剂
劣溶剂
c
A2 > 0 A2 = 0 A2 < 0
线团扩张 无扰线团 线团紧缩
温度与A2的关系 A2
0
对于同一高分子-溶剂体系, 改变体系的温度, 则有:
T
A2 > 0 A2 = 0 A2 < 0
良溶剂 线团扩张
溶剂 无扰线团
劣溶剂 线团紧缩
路漫漫其修远兮, 吾将上下而求索
3.3.2 相分离
高分子溶液作为由聚合物和溶剂组成的二元体系 , 在一定条件下可分为两相, 其为一相为含聚合物 较少的“稀相”, 另一相为含聚合物较多的“浓相”, 这种现象称之为相分离
对于聚合物和溶剂都确定的体系, 相分离发生与 否同温度有关

第三章 高分子溶液讲解

第三章 高分子溶液讲解
第二个链节:
N-xj
N xj 1 Z ( ) N
Z-配位数
N xj 2 ( Z 1) ( ) N
第三个链节:
第四个链节:
( Z 1) (
N xj 3 ) N
W j 1 Z ( Z 1)
x2
N xj 1 N xj x 1 ( N xj)( )( ) N N
θ状态 溶解过程的自发趋势更强
良溶剂
不良溶剂
3.3 高分子溶液的相平衡
3.3.1 渗透压
Osmotic pressure
Solution
Pure solvent
Semipermeable membrane
渗透压等于单位体积溶剂的化学位,即:
1 1 v1 V1
V1与v1分别为溶剂的偏摩尔体积与摩尔体积。 由于为稀溶液,所以近似相等。
E 内聚能密度 V
E为一个分子的气化能,是该分子从纯态解 离必须破坏的其相邻分子相互作用的能量。 V为分子的体积
内聚能密度可表示分子间作用力
定义溶度参数为内聚能密度的平方根
E V
所以:
(J/cm3)1/2
△Hm=φ 1φ 2[δ 1-δ 2]2Vm
|δ1-δ2|<1.7,大概可以溶解;
分子量50000的聚乙烯,50000 cm3 /mol
内聚能: 13,100,000 J/mol
C-C键能:83kcal/mol = 346,940 J/mol
分子间力远远大于键能,故大分子不能气化
溶度参数的测定方法
溶剂的溶度参数可以通过溶剂的蒸发热直接测定
聚合物不可气化,故采用相对方法
(1) 特性粘度法:
N1 xN2 S M k[ N1 ln N 2 ln ] N N

第三章_高分子的溶液性质

第三章_高分子的溶液性质

高分子物理 第三章高分子的溶液性质
16
11
多媒体动画应用示例:溶解与溶胀
高分子物理 第三章高分子的溶液性质
17
(二)高聚物溶解过程的热力学解释
溶解过程是溶质和溶剂分子的混合过程,在恒温恒压下, 过程能自发进行的必要条件是混合自由能ΔGm<0,即:
Fm H m TSm 0
(3-1)
⑥高分子溶解过程比小分子缓慢的多。
高分子物理 第三章高分子的溶液性质 9
4. 本章学习的主要内容
一、高分子的溶解和溶胀 二、高分子稀溶液的热力学理论 三、高分子溶液的相平衡和相分离 四、高分子浓溶液的性质
高分子物理 第三章高分子的溶液性质
10
3.1 聚合物的溶解过程和溶剂选择 溶解
溶质分子通过分子扩散与溶剂分子均匀混合成为分子分散 的均相体系。
②高分子溶解—-沉淀是热力学可逆平衡;胶体则为变 相非平衡,不能用热力学平衡,只能用动力学方法进行研究。
③高分子溶液的行为与理想溶液的行为相比有很大偏离。 原因:高分子溶液的混合熵比小分子理想溶液混合熵大 很多。
高分子物理 第三章高分子的溶液性质
8
④高分子溶液的粘度比小分子纯溶液要大得多, 浓度 1%~2%的高分子溶液粘度比纯溶剂大0.25~0.5% 粘度 为纯溶剂的15~20倍。 例5%的NR+苯为冰冻状态 原因:高分子链虽然被大量溶剂包围,但运动仍有相当 大的内摩擦力。 ⑤溶液性质有在分子量依赖性,而高分子的分子量多分 散性,增加了研究的复杂性。
26
3. 广义酸碱作用原则(溶剂化原则)
溶剂化作用: 是指溶质和溶剂分子之间的作用力大于溶质分 子之间的作用力,以致使溶质分子彼此分离而 溶解于溶剂中。 一般来说,溶解度参数相近原则适用于判断非极性或 弱极性非晶态聚合物的溶解性,若溶剂与高分子之间有强 偶极作用或有生成氢键的情况则不适用。例如聚丙烯腈的 δ=31.4,二甲基甲酰胺的δ=24.7,按溶解度参数相近 原则二者似乎不相溶,但实际上聚丙烯腈在室温下就可溶 于二甲基甲酰胺,这是因为二者分子间生成强氢键的缘故。 这种情况下,要考虑广义酸碱作用原则。

第二章:高分子溶液

第二章:高分子溶液

3)交联高聚物的溶胀
交联高聚物只溶胀不溶解,可以吸收一定量的 溶剂而溶胀,形成凝胶。
交联高聚物的溶胀过程实际上是两种相反趋势 的平衡过程:
由于化学位的差异,溶剂 力图渗入高聚物内使体积 膨胀(从而引起三维分 子网的伸展)
交联点之间分子链的伸展 降低了它的构象熵值,引 起分子网的弹性收缩力, 力图使分子网收缩
如:PE,PP非晶部分与溶剂相互作用小,放出的热 量少,不足以使结晶部分发生相变,因而这类高聚 物需要升温才能溶解(通常要升温到熔点附近)。
例如:PP 在十氢萘中要升温到接近135℃(接近熔点)才 能很好的溶解。
对于非晶高聚物,溶解度与分子量有关。对于晶 态聚合物,溶解度不仅依赖于M,更重要的是与 结晶度有关。
高聚物溶解过程的有如下特点:
(1)高聚物的溶解要达到分子分散的均相体系,一 般需要较长时间;
即使是良溶剂也不 能一次完全克服高 分子间的内聚力
(2)溶解过程分两个阶段:先溶胀,后溶解
高聚物分子量巨大,分子的运动比小分子慢的多, 溶剂分子会很快扩散到高聚物内部,引起链段运动 ,高聚物体积膨胀,然后才是高分子均匀分散于溶 剂中,达到完全溶解。
高分子溶液的相分离 重点 难点
第一节:聚合物的溶解和溶剂选择(重点)
一、 聚合物溶解过程及其特点
由于高聚物结构的复杂性:
(1)分子量大而且具有多分散性 (2)分子的形状有线型、支化和交联 (3)高分子的凝聚态存在非晶态结构、 晶态结构、取向态、织态等
因此,高聚物的溶解现象比起小分子物质 的溶解要复杂得多。
亚浓 溶液
较浓 冻 胶 塑化高 高聚
溶液
聚物 物
15% 60% 增塑 本体
半固体 固 体
纺丝液

高分子化学与物理

高分子化学与物理

《高分子化学与物理》考试大纲本<<高分子化学与物理>>考试大纲适用于高分子化学与物理专业的硕士研究生入学考试。

高分子化学与物理是化学学科的基础理论课。

高分子化学内容主要包括连锁聚合反应、逐步聚合反应和聚合物的化学反应等聚合反应原理,要求考生熟悉相关高分子化学的基本概念,掌握常用高分子化合物的合成方法、合成机理及大分子化学反应,能够写出主要聚合物的结构式,熟悉其性能并且能够对给出的现象给以正确、合理的解释。

高分子物理内容主要包括高分子的链结构与聚集态结构,聚合物的分子运动,聚合物的溶液性质以及聚合物的流变性能、力学性能、介电性能、导电性能和热性能等,要求考生熟悉相关高分子物理的基本概念,掌握有关聚合物的多层次结构及主要物理、机械性能的基本理论和基本研究方法。

考生应具备运用高分子化学与物理的知识分析问题、解决问题的能力。

一、考试内容高分子化学部分(一)绪论1.高分子的基本概念;2.聚合物的命名及分类;3.分子量;4.大分子微结构;5.聚合物的物理状态;6.聚合物材料和强度。

(二)自由基聚合1.自由基聚合机理;2.链引发反应;3.聚合速率;4.分子量和链转移反应;5.分子量分布6.阻聚与缓聚7.聚合热力学8.可控/活性自由基聚合(三)自由基共聚合1.共聚物的类型和命名2.二元共聚物的组成3.竟聚率的测定和影响因素4.单体和自由基的活性5.Q-e概念(四)聚合方法1.本体聚合2.溶液聚合3.悬浮聚合4.乳液聚合(五)阳离子聚合1.阳离子聚合的单体;2.阳离子引发体系;3.阳离子聚合机理;4.影响阳离子聚合的因素;5.聚异丁烯和丁基橡胶。

(六)阴离子聚合1.阴离子聚合的单体;2.阴离子引发体系和引发;3.阴离子聚合引发剂和单体的匹配4.活性阴离子聚合5.丁基锂的缔合现象和定向聚合作用(七)开环聚合1.环烷烃开环聚合热力学2.杂环开环聚合机理和动力学特征3.环氧烷烃的阴离子开环聚合4.其他环醚的阳离子开环聚合;5.三聚甲醛(三氧六环)的阳离子开环聚合;6.环酰胺开环聚合;7.环硅氧烷的开环聚合8.羰基化合物的聚合(八)配位聚合1. 聚合物的立体异构现象1.配位聚合的基本概念2.Ziegler-Natta引发剂3.丙烯的配位聚合4.乙烯的配位聚合5.极性单体的配位聚合6.茂金属引发剂7.共轭二烯烃的配位聚合(九)逐步聚合反应1.缩聚反应;2.线形缩聚反应机理;3.线形缩聚动力学;4.影响线型缩聚物聚合度的因素及控制方法;5.分子量的分布;6.逐步缩合的实施方法;7.重要线型逐步聚合物;8.体型缩聚。

高分子物理第三章要点

高分子物理第三章要点
+
_
Cl
C
H
O
实际上溶剂的选择相当复杂,除以上原则外,还要考虑 溶剂的挥发性,毒性,溶液的用途,以及溶剂对制品性能的 影响和对环境的影响等。
3.2 高分子稀溶液的热力学分析
小分子的理想溶液:
符合拉乌尔定律:P1=P10x1;△HM=0;△VM=0; △SM=-k[N1lnx1+N2lnx2]=-R[n1lnx1+ n2lnx2] 其中:N1和N2分别为溶剂和溶质的分子数;n1和n2分别 为溶剂和溶质的摩尔数; x1和x2分别为溶剂和溶质的摩尔分数;K为波尔兹曼常数; R为气体常数;
SO2OH COOH C6 H 4OH CHCN
CHNO2 COHNO2 CH 2Cl CHCl
下列基团为亲核基团(按亲合力大小排序):
CH 2 NH 2 C6 H 4OH CON (CH3 )2 CONH PO4
CH 2COCH2 CH 2OCOCH2 CH 2OCH2
π/ c对c作图
渗透压法测得的分子量是数均分子量 M n ,而且是绝对 分子量。这是因为溶液的渗透压是各种不同分子量的大分 子共同贡献的。其测量的分子量上限取决于渗透压计的测 量精度,下限取决于半透膜的大孔尺寸,膜孔大,很小的 分子可能反向渗透。
理想溶液中溶剂化学位:△μ1 =RTlnx1 = - RTx2
高分子溶液中溶剂化学位由两项组成:第一项是理想
溶液的化学位,第二项相当于非理想部分,用符号
△μ1E表示,称为溶剂的超额化学位:
超额化学位△μ
△ μ 1 E = △ H 1 E + △ S1 E 引入两个参数:κ1称为热参数, ψ1称为熵参数。 κ1-ψ1 = x1-1/2 定义参数:Flory温度θ=κ1 T/ψ1;; 高分子链由于溶剂化而扩张,因而还可以用一个参数称为扩张因子(或溶胀因子) 来表示高分子链扩张的程度。 Flory-Krigbaum从理论上导出

高分子溶液的相平衡课件

高分子溶液的相平衡课件
高分子溶液的相平衡课件
目录
高分子溶液的基本概念高分子溶液的相平衡理论高分子溶液的相分离过程高分子溶液的相平衡应用高分子溶液的相平衡研究展望
01
CHAPTER
高分子溶液的基本概念
高分子化合物是由许多重复单元通过共价键连接形成的长链大分子。
定义
高分子化合物具有相对较高的分子量和分子链的柔韧性,表现出独特的物理和化学性质。
相分离的动力学过程包括形核、生长和粗化三个阶段。在形核阶段,溶液内部的小的不均一区域逐渐扩大形成核;在生长阶段,这些核逐渐长大成为明显的液滴或凝胶颗粒;在粗化阶段,这些液滴或凝胶颗粒的尺寸逐渐增大,直到达到稳定状态。
过程
影响相分离动力学过程的因素包括高分子溶液的浓度、温度、压力、混合速度等。这些因素会影响到形核和生长的速度,从而影响最终的相分离结果。
03
CHAPTER
高分子溶液的相分离过程
原理
高分子溶液的相分离是由于溶液内部的不均一性引发的。这种不均一性可以由多种因素引起,如温度变化、压力改变、混合速度等。当这种不均一性超过某一临界值时,就会发生相分离。
类型
根据相分离的驱动力不同,可以将相分离分为热力学相分离和动力学相分离。热力学相分离是溶液内部的不均一性达到一定程度后,自发形成的相分离;而动力学相分离则是通过外界作用力,如搅拌、混合等,促使溶液发生相分离。
总结词
高分子溶液的相平衡与流变学之间存在密切关系,研究这一关系有助于深入理解高分子溶液的行为和性质。
高分子溶液的相平衡主要表现在溶质分子的溶解、聚集和沉淀等过程,而流变学则关注高分子溶液的流动和变形行为。通过研究这两者之间的关系,可以更好地揭示高分子溶液在加工、应用过程中的性能变化,为优化高分子材料的使用提供指导。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Symmetrical diagram
Slip to B part
高分子的相对分子质量分级
AC
xB xA xB
1C
1 1 1 2 xA xB
2
Dissolution method 溶解法
溶解分级 沉淀分级 冷却分级
Settling method
Cooling method
c
Discussion 2
The second Virial coefficient
1 1 A2 ( 1 ) 2 2 V12
Z 2 W12 1 kT
A2与1相似,也是高分子与溶剂分子间相互作用 的反映,但A2可以直接从实验中得到。它们都与
高分子在溶液中的形态有密切关系。
2 RTV GM 1 ln 1 ln 1 2 2 2 1 2 2 Vu x
2 RTV GM 1 ln 1 ln 1 2 2 2 1 2 2 Vu x 如果溶解过程吸热, 1 0, GM 0 Z 2 W12 1 kT 如果溶解过程放热, 1 0, GM 0
稀溶液 V1 V 1
2 3 c 1 c c p RT 1 2 3 V1 2 3V1 2 M 2 c 2 3 RT A2c A3c M
p
1 2 RT A2c A3c c M
PS/PMMA PS-b-PMMA
PS/Nylon
PE/PP
PS-g-PEO
EPR
Discussion 3 相分离机理
(1) 旋节线机理
1
xN 2 V2 2 c V 2 N1 xN 2 V V 2 2 m2 c V
2
m2 M M V2 V2 xV 1
m2
m2
质量浓度, g/ml
为摩尔体积 M 为高分子的相对分子质量, V
3 2 1 2 2 1 RT 1 2 2 3 x 2 3 1 c 1 c 1 c RT 1 2 2 3 2 x M xV 1 2 3 c 1 V c c 1 RT 1 2 3 V1p 2 3 2 M 2
1 1 2C 1 1 x2C 2 1C 0 1 x
2 2C
2C 1C
1 2C
当x >> 1时
2
0
1 1 x 1 1 1 2 x 2x
2C
1 1 1 , 1C 2 x x
在高分子、溶剂和温度都确定时,体系 发生相分离与否同分子量有关
沉淀法
冷却法
Discussion 2
1C
1 1 1 2 xA xB
2
xA , xB
1C 0
(1) 1C随试样的分子量的增大而减小
(2) 高分子的xA和xB都很大, 1C值很小 (3) 对于大多数高分子共混物, 1 > 1C, 它们是不相容的
A or B
RTV GM V u
A B ln A ln B 1 A B xB xA
GM A 0 A
2 GM 2 A 0 A
在临界点 (Critical Point)时:
总体积为V
RTV GM V u
A B ln A ln B 1 A B xB xA
当1 < 1C 或 T > TC时 当1 = 1C 或 T = TC时 当1 > 1C 或 T < TC时
GM/RT
如果xA≠xB, 图形将出 现不对称的情况, 但讨 论结果不变
确定温度的另一种方法
2 1 2 RT 1 1 2 RT 1 2 T 2
E 1
在相分离的临界状态
1 1 1 1C 1 1 2 x 2x TC
1 TC
1
1 1 2x x
GM/RT
GM-2关系曲线与x和1 的大小有关, 当x一定时: 当1 < 1C 或 T > TC时 当1 = 1C 或 T = TC时 当1 > 1C 或 T < TC时
0

a
2
b ”
1.0
当1 > 1C 或 T < TC时
0 2 曲率半径大于0 2 1
+
SO3-Na+ N+ ClR R R
SO3+ NR3
(CH2)5
C O H
O
CH2 CH2 O CH2 CH2 O H O C C H CH2 O O C C H H O
CH2
H2C
C Cl
CH2
增容的方法
(1) 原位增容
Nylon/PP MAH grafted into PP
(2) 加入第三组分
第 3章 高分子溶液
相平衡 Phase equilibrium of polymer solution
3.3 相平衡
渗透平衡
交联聚合物的溶胀平衡
高分子溶液的相分离 高分子共混物的相分离
3.3.1 渗透平衡
1* T , p 10 T g RT ln p10 1 T , p 10 T g RT ln p1
p10 p1 , 1* T , p 1 T , p
p 渗透压
solution
solvent
Semipermeable membrane 半透膜
在恒温的条件下, 压力的微小变化引起的溶液化学位 的变化如下:
G 1 G p p n1 T , P ,n n p T ,n1 ,n2 1 T , P ,n2 2 T ,n ,n 1 2 V V1 n1
GM/RT
2 GM 3GM 0, 0 2 3 2 2
0

a

1.0
2
2 RTV GM 1 2 ln 1 2 ln 2 12 1 2 Vu x
2 GM 3GM 0, 0 2 3 2 2
1 A3 3 3V 1 2
1 1 第二、第三 2 A 2 Virial系数 2 V 1 2
Discussion 1
p
1 2 RT A2c A3c c M
(1) 从纵轴的截距可求聚合 物的相对分子质量
p
c
slope = RTA2
RT M
(2) 从直线的斜率可计算第 二维利系数
2 GM 0 2 2
体系为均相
’ a
GM/RT
0 2 a 2 GM 0 体系可能分相 2 b 2 2
2
b ”
1.0
处于亚稳态
a 2 b
2 GM 0 体系自发相分离 2 2
当1 = 1C 或 T = TC时, 曲线的极小值点与拐点都 恰好趋于一点, 此时:
1 1 1 1 1 1 TC 1 2 x x
3.3.3 聚合物共混物的相分离
设A、B两种高分子链中分别含有xA和xB个链段,高分子的 物质的量分别为nA和nB
SM R nA ln A nB ln B H M RT 1xAnAB RT 1xB nB A GM RT nA ln A nB ln B 1xAnAB ,体系的 设A、B两种高分子链段的摩尔体积相等,均为 V u
A2
0

良溶剂 线团扩张 无扰线团
T
T T T
1
1 2 1 1 2 1 1 2
A2 > 0 A2 = 0
溶剂
劣溶剂
A2 < 0
线团紧缩
3.3.2 相分离
高分子溶液作为由聚合物和溶剂组成的二元体系 ,
在一定条件下可分为两相, 其为一相为含聚合物 较少的“稀相”, 另一相为含聚合物较多的“浓 相”, 这种现象称之为相分离 对于聚合物和溶剂都确定的体系, 相分离发生与 否同温度有关
2
T
One phase
LCST One phase
Two phase UCST
2
2
热力学分析 GM RT n1 ln 1 n2 ln 2 1n12
当ΔGM 0时,体系是否在任何比例下皆为均匀的一相呢?
假设体系的总体积为V, 格子的摩尔体积为 V u
V1 n1V V2 xn2V u u 1 , 2 V V V V V V n1 1 2 , n2 2 Vu xVu
双节线 Binodal curve
GM 0 2
旋节线 Spinodal curve
2 GM 0 2 2
0

a
b ”
1.0
A或B
Two phase Non-stable region
பைடு நூலகம்
GM or 双节线 旋节线
1
Metastable region
One phase Critical point Stable region
(1) 双节线的导数为0 (2) 旋节线的导数为0
AC
xB xA xB
1C
1 1 1 2 xA xB
2
Discussion 1
AC
xB xA xB
相关文档
最新文档