河南省新乡市2021版中考数学试卷D卷
河南省2021年中考数学试卷(解析版)
2021年河南省中考数学试卷(解析版)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.﹣【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)河南省人民济困最“给力”!据报道,2020年河南省人民在济困方面捐款达到2.94亿元.数据“2.94亿”用科学记数法表示为()A.2.94×107B.2.94×108C.0.294×108D.0.294×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:2.94亿=294000000=2.94×108,故选:B.【点评】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.3.(3分)如图是由8个相同的小正方体组成的几何体,其主视图是()A.B.C.D.【分析】将图形分成三层,第一层主视图有一个正方形,第二层有两个正方形,第三层有三个正方形,且左边是对齐的.【解答】解:该几何体的主视图有三层,最上面有一个正方形,中间一层有两个正方形,最下面有三个正方形,且左侧是对齐的,故选:A.【点评】本题主要考查三视图的定义,在理解三视图的基础上,还要有较强的空间想象能力.4.(3分)下列运算正确的是()A.(﹣a)2=﹣a2B.2a2﹣a2=2C.a2•a=a3D.(a﹣1)2=a2﹣1【分析】A.根据幂的乘方运算法则判断;B.根据合并同类项法则判断;C.根据同底数幂的乘法法则判断;D.根据完全平方公式判断.【解答】解:A.(﹣a)2=a2,故本选项不符合题意;B.2a2﹣a2=a2,故本选项不符合题意;C.a2•a=a3,故本选项符合题意;D.(a﹣1)2=a2﹣2a+1,故本选项符合题意;故选:C.【点评】本题考查了合并同类项,完全平方公式,合并同类项以及幂的乘方,掌握相关公式与运算法则是解答本题的关键.5.(3分)如图,a∥b,∠1=60°,则∠2的度数为()A.90°B.100°C.110°D.120°【分析】先根据图得出∠2的补角,再由a∥b得出结论即可.【解答】解:由图得∠2的补角和∠1是同位角,∵∠1=60°且a∥b,∴∠1的同位角也是60°,∠2=180°﹣60°=120°,故选:D.【点评】本题主要考查平行线的性质,平行线的性质与判定是中考必考内容,平行线的三个性质一定要牢记.6.(3分)关于菱形的性质,以下说法不正确的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形【分析】根据菱形的性质逐一推理分析即可选出正确答案.【解答】解:A.菱形的四条边相等,正确,不符合题意,B.菱形的对角线互相垂直且平分,对角线不一定相等,不正确,符合题意,C.菱形的对角线互相垂直且平分,正确,不符合题意,D.菱形是轴对称图形,正确,不符合题意,故选:B.【点评】本题考查菱形的性质,熟练掌握菱形的基本性质并能正确分析推理是解题的关键.7.(3分)若方程x2﹣2x+m=0没有实数根,则m的值可以是()A.﹣1 B.0 C.1 D.【分析】根据根的判别式和已知条件得出△=(﹣2)2﹣4×1×m=4﹣4m<0,求出不等式的解集,再得出答案即可.【解答】解:∵关于x的方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m<0,解得:m>1,∴m只能为,故选:D.【点评】本题考查了根的判别式和解一元一次不等式,注意:已知一元二次方程ax2+bx+c =0(a、b、c为常数,a≠0),①当△=b2﹣4ac>0时,方程有两个不相等的实数根,②当△=b2﹣4ac=0时,方程有两个相等的实数根,③当△=b2﹣4ac<0时,方程没有实数根.8.(3分)现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是()A.B.C.D.【分析】画树状图,共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,再由概率公式求解即可.【解答】解:把4张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,∴两张卡片正面图案恰好是“天问”和“九章”的概率为=,故选:A.【点评】此题考查的是列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.9.(3分)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA 交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA 上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)【分析】延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,利用点A的坐标可求得线段AD,OD,OA的长,由题意:△OA′D′≌△OAD,可得对应部分相等;利用OD′⊥A′E,OA平分∠A′OE,可得△A′OE为等腰三角形,可得OE=OA′=,ED′=A′D′=1;利用△OED′∽△CEO,得到比例式可求线段OC,则点C坐标可得.【解答】解:延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,∵A(1,2),∴AD=1,OD=2,∴OA=.由题意:△OA′D′≌△OAD,∴A′D′=AD=1,OA′=OA=,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.则OD′⊥A′E,OA平分∠A′OE,∴△A′OE为等腰三角形.∴OE=OA′=,ED′=A′D′=1.∵EO⊥OC,OD′⊥EC,∴△OED′∽△CEO.∴.∴.∴OC=2.∴C(2,0).故选:B.【点评】本题主要考查了旋转的性质,平行四边形的性质,坐标与图形的性质,三角形相似的判定与性质,利用点的坐标表示出相应线段的长度和利用线段的长度表示相应点的坐标是解题的关键.10.(3分)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,P A﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4 B.5 C.6 D.7【分析】当x=0,即P在B点时,BA﹣BE=1;在△P AE中,根据三角形任意两边之差小于第三边得:P A﹣PE<AE,当且仅当P与E重合时有:P A一PE=AE,得y的最大值为AE=5;在Rt△ABE中,由勾股定理求出BE的长,再根据BC=2BE求出BC的长.【解答】解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.在△P AE中,∵三角形任意两边之差小于第三边,∴P A﹣PE<AE,当且仅当P与E重合时有:P A一PE=AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t﹣12=0,∴(t+4)(t﹣3)=0,由于t>0,∴t+4>0,∴t﹣3=0,∴t=3.∴BC=2BE=2t=2×3=6.故选:C.【点评】本题考查了动点问题的函数图象,根据勾股定理求出BE的长是解题的关键.二、填空题(每小题3分,共15分)11.(3分)若代数式有意义,则实数x的取值范围是x≠1.【分析】分式有意义时,分母x﹣1≠0,据此求得x的取值范围.【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.12.(3分)请写出一个图象经过原点的函数的解析式y=x(答案不唯一).【分析】图象经过原点,要求解析式中,当x=0时,y=0,只要一次函数解析式常数项为0即可.【解答】解:依题意,一次函数的图象经过原点,函数解析式的常数项为0,如y=x(答案不唯一).故答案为:y=x(答案不唯一).【点评】本题考查了正比例函数的性质,正比例函数的图象经过原点.13.(3分)某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙两个厂家提供货源,他们的价格相同,品质也相近.质检员从两厂产品中各随机抽取15盒进行检测,测得它们的平均质量均为200克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是甲(填“甲”或“乙”).【分析】由于平均质量相同,根据图中所示两组数据波动大小可得两组数据的方差,波动越小,方差越小越稳定.【解答】解:从图中折线可知,乙的起伏大,甲的起伏小,所以乙的方差大于甲的方差,因为方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,所以产品更符合规格要求的厂家是甲.故答案为:甲.【点评】本题考查了平均数与方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(3分)如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在上,∠BAC=22.5°,则的长为.【分析】如图,圆心为O,连接OA,OB,OC,OD.利用弧长公式求解即可.【解答】解:如图,圆心为O,连接OA,OB,OC,OD.∵OA=OB=OD=5,∠BOC=2∠BAC=45°,∴的长==.故答案为:.【点评】本题考查弧长公式,解题的关键是正确寻找圆心O的位置,属于中考常考题型.15.(3分)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在直角三角形纸片的边上时,线段A′D′的长为或2﹣.【分析】分两种情形解答:①点D′恰好落在直角三角形纸片的AB边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1;A′C垂直平分线段DD′;利用,可求得CE,则A′E=A′C﹣CE,解直角三角形A′D′E可求线段A′D′;②点D′恰好落在直角三角形纸片的BC边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;在Rt△A′D′C中,利用30°所对的直角边等于斜边的一半可得结论.【解答】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠ACB=90°,∠B=30°,AC=1,∴BC=AC•tan A=1×tan60°=.∵,∴CE=.∴A′E=A′C﹣CE=1﹣.在Rt△A′D′E中,∵cos∠D′A′E=,∴,∴A′D′=2A′E=2﹣.②点D′恰好落在直角三角形纸片的BC边上时,如图,由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠D′A′C=60°,∠A′CD′=30°,∴∠A′D′C=90°,∴A′D′=′C=.综上,线段A′D′的长为:或2﹣.故答案为:或2﹣.【点评】本题主要考查了翻折问题,含30°角的直角三角形,直角三角形的边角关系,特殊角的三角函数值,全等三角形的性质.翻折属于全等变换,对应部分相等,这是解题的关键,当点D′恰好落在直角三角形纸片的边上时,要注意分类讨论.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:3﹣1﹣+(3﹣)0;(2)化简:(1﹣)÷.【分析】(1)直接利用负整数指数幂的性质以及算术平方根、零指数幂的性质分别化简得出答案;(2)将括号里面通分运算,再利用分式的乘除运算法则化简得出答案.【解答】解:(1)原式=﹣+1=1;(2)原式=•=.【点评】此题主要考查了分式的混合运算以及实数运算,正确掌握分式的混合运算法则是解题关键.17.(9分)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.调查问卷1.近两周你平均每天睡眠时间大约是______小时.如果你平均每天睡眠时间不足9小时,请回答第2个问题2.影响你睡眠时间的主要原因是______(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x <10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第③(填序号)组,达到9小时的学生人数占被调查人数的百分比为17%;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.【分析】(1)由中位数的定义即可得出结论;(2)求出每天睡眠时间达到9小时的学生人数,计算即可.【解答】解:(1)由统计图可知,抽取的这500名学生平均每天睡眠时间的中位数为第250个和第251个数据的平均数,故落在第③组;睡眠达到9小时的学生人数占被调查人数的百分比为:×100%=17%,故答案为:③,17%.(2)答案不唯一,言之有理即可.例如:该校大部分学生睡眠时间没有达到通知要求;建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.【点评】本题考查的是频数分布直方图和扇形统计图的知识,读懂频数分布直方图和利用统计图获取正确是解题的关键.18.(9分)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.【分析】(1)根据待定系数法求出k即可得到反比例函数的解析式;(2)先根据反比例函数系数k的几何意义求出小正方形的面积为4m2=8,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积为4×22=16,根据图中阴影部分的面积=大正方形的面积﹣小正方形的面积即可求出结果.【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴2=,∴k=2,∴反比例函数的解析式为y=;(2)∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,∴设B点的坐标为(m,m),∵反比例函数y=的图象经过B点,∴m=,∴m2=2,∴小正方形的面积为4m2=8,∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(1,2),∴大正方形在第一象限的顶点坐标为(2,2),∴大正方形的面积为4×22=16,∴图中阴影部分的面积=大正方形的面积为﹣小正方形的面积=16﹣8=8.【点评】本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数k的几何意义,正方形的性质,熟练掌握反比例函数系数k的几何意义是解决问题的关键.19.(9分)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).【分析】根据tan∠DAC==tan37.5°≈0.77,列出方程即可解决问题.【解答】解:根据题意可知:∠DAB=45°,∴BD=AD,在Rt△ADC中,DC=BD﹣BC=(AD﹣4)m,∠DAC=37.5°,∵tan∠DAC=,∴tan37.5°=≈0.77,解得AD≈17.4m,答:佛像的高度约为17.4 m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.20.(9分)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲线连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP 的连接点P在⨀O上,当点P在⨀O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⨀O相切时,点B恰好落在⨀O上,如图2.请仅就图2的情形解答下列问题.(1)求证:∠P AO=2∠PBO;(2)若⨀O的半径为5,AP=,求BP的长.【分析】(1)连接切点与圆心,根据角之间的互余关系及等量代换代换求解即可.(2)作出相关辅助线,构造相似三角形Rt△POD与Rt△OAP,利用相似三角形的性质求得PD=3,OD=4,最后根据直角三角形的勾股定理求解即可.【解答】(1)证明:如图1,连接OP,延长BO与圆交于点C,则OP=OB=OC,∵AP与⨀O相切于点P,∴∠APO=90°,∴∠P AO+∠AOP=90°,∵MO⊥CN,∴∠AOP+∠POC═90°,∴∠P AO=∠POC,∵OP=OB,∴∠OPB=∠PBO,∴∠POC═∠OPB=∠PBO═2∠PBO,∴∠AOP=2∠PBO,(2)解:如图2所示,连接OP,延长BO与圆交于点C,连接PC,过点P作PD⊥OC于点D,则有:AO==,由(1)可知∠POC=∠P AO,∴Rt△POD~Rt△OAP,∴,即,解得PD=3,OD=4,∴CD═OC﹣OD=1,在Rt△PDC中,PC ==,∵CB为圆的直径,∴∠BPC=90°,∴BP ===3,故PC长为3.【点评】本题考查切线的性质及圆周角定理,解此类型题目的关键是作出适当的辅助线,比如连接切点与圆心、将直径的两端与圆上某一点连接、过圆上某点作垂直于半径的线段等,根据辅助线构造直角三角形及相似三角形,再根据相关性质进行求解.21.(9分)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)40 30销售价(元/个)56 45 (1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)【分析】(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个,由用1100元购进了A,B两款玩偶建立方程求出其解即可;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元,根据题意可以得到利润与A款玩偶数量的函数关系,然后根据A款玩偶进货数量不得超过B款玩偶进货数量的一半,可以求得A款玩偶数量的取值范围,再根据一次函数的性质,即可求得应如何设计进货方案才能获得最大利润,最大利润元;(3)分别求出两次进货的利润率,比较即可得出结论.【解答】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个,由题意,得40x+30(30﹣x)=1100,解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元,由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a),∴a≤10,∵y=a+450.∴k=1>0,∴y随a的增大而增大.∴a=10时,y最大=460元.∴B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%,第一次的利润率=×100%≈46%,∵46%>42.7%,∴对于小李来说第二次的进货方案更合算.【点评】本题考查了列一元一次方程解实际问题的运用,一次函数的的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.22.(10分)如图,抛物线y=x2+mx与直线y=﹣x+b把交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.【分析】(1)用待定系数法即可求解;(2)求出点B的坐标为(﹣1,3),再观察函数图象即可求解;(3)分类求解确定MN的位置,进而求解.【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;故m=﹣2,b=2;(2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,联立上述两个函数表达式并解得,即点B的坐标为(﹣1,3),从图象看,不等式x2+mx>﹣x+b的解集为x<﹣1或x>2;(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,∵MN的距离为3,而AB的距离为3,故此时只有一个交点,即﹣1≤x M<2;当点M在点B的左侧时,线段MN与抛物线没有公共点;当点M在点A的右侧时,当x M=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即x M=3时,线段MN与抛物线只有一个公共点,综上,﹣1≤x M<2 或x M=3.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.23.(10分)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是⑤(填序号).①SSS②SAS③AAS④ASA⑤HL(2)小军作图得到的射线0P是∠AOB的平分线吗?请判断并说明理由.(3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE =30°时,直接写出线段OC的长.【分析】(1)由作图得,∠PGO=∠PHO=90°,OG=OH,OP=OP,可知Rt△PGO≌Rt△PHO的依据HL;(2)由作图得,OC=OC,OE=OF,再根据对顶角相等、公共角等条件可依次证明△DOE≌△COF、△CPE≌△DPF、△OPE≌△OPF,从而得到∠POE=∠POF,所以OP是∠AOB的平分线;(3)连接OP,由已知条件可证明∠OPC=∠OCP=75°,从而得OP=OC,再过点P作OA的垂线构造含有特殊角的直角三角形,利用其三边的特殊关系求出OC的长.【解答】解:(1)如图1,由作图得,OC=OD,OE=OF,PG垂直平分CE,PH垂直平分DF,∴∠PGO=∠PHO=90°,∵OE﹣OC=OF﹣OD,∴CE=DF,∵CG=CE,DH=DF,∴CG=DH,∴OC+DG=OD+DH,∴OG=OH,∵OP=OP,∴Rt△PGO≌Rt△PHO(HL),故答案为:⑤.(2)射线OP是∠AOB的平分线,理由如下:如图2,∵OC=OD,∠DOE=∠COF,OE=OF,∴△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠CPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,∠PEO=∠PFO,PE=PF,∴△OPE≌△OPF(SAS),∴∠POE=∠POF,即∠POA=∠POB,∴OP是∠AOB的平分线.(3)如图3,OC<OE,连接OP,作PM⊥OA,则∠PMO=∠PME=90°,由(2)得,OP平分∠AOB,∠PEC=∠PFD,∴∠PEC+30°=∠PFD+30°,∵∠AOB=60°,∴∠POE=∠POF=∠AOB=30°,∵∠CPE=30°,∴∠OCP=∠PEC+∠CPE=∠PEC+30°,∠OPC=∠PFD+∠POF=∠PFD+30°,∴∠OCP=∠OPC=(180°﹣∠POE)=×(180°﹣30°)=75°,∴OC=OP,∠OPE=75°+30°=105°,∴∠OPM=90°﹣30°=60°,∴∠MPE=105°﹣60°=45°,∴∠MEP=90°﹣45°=45°,∴MP=ME,设MP=ME=m,则OM=MP•tan60°=m,由OE=+1,得m+m=+1,解得m=1,∴MP=ME=1,∴OP=2MP=2,∴OC=OP=2;如图4,OC>OE,连接OP,作PM⊥OA,则∠PMO=∠PMC=90°,同理可得,∠POE=∠POF=∠AOB=30°,∠OEP=∠OPE=75°,∠OPM=60°,∠MPC =∠MCP=45°,∴OE=OP=+1,∵MC=MP=OP=OE=,∴OM=MP•tan60°=×=,∴OC=OM+MC=+=2+.综上所述,OC的长为2或2+.【点评】此题重点考查角平分线的作法、全等三角形的判定与性质、特殊角的三角函数值、解直角三角形、二次根式的化简等知识与方法,根据三角形全等的判定定理证明三角形全等是解题的关键,解第(3)题需作辅助线构造含特殊角的直角三角形,且需要分类讨论,求出所有符合条件的值.。
河南省新乡市2021版七年级下学期数学期中考试试卷D卷
河南省新乡市2021版七年级下学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八下·淮安月考) 以下问题,最适合用普查的是()A . 了解我国初中学生视力状况的调查B . 对“3·15”晚会收视率的调查C . 对量子通信卫星上某种零部件的检查D . 对一批节能灯使用寿命的调查2. (2分) (2020七下·广陵期中) 如图,下列结论中错误的是()A . 与是同旁内角B . 与是内错角C . 与是内错角D . 与是同位角3. (2分)下列方程组中,不是二元一次方程组的是()A .B .C .D .4. (2分)下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A . 1个B . 2个C . 3个D . 4个5. (2分) (2020八下·无锡期中) 要想了解10万名考生的数学成绩,从中抽取了3000名考生的数学成绩进行统计分析,以下说法正确的是()A . 这3000名考生是总体的一个样本B . 每位考生的数学成绩是个体C . 10万名考生是总体D . 3000名考生是样本的容量6. (2分) (2019九下·常熟月考) 如图是根据某地某段时间的每天最低气温绘成的折线圈,那么这段时间最低气温的中位数、众数、平均数依次是()A . 4℃,5℃,4℃B . 5℃,5℃,4.5℃C . 4.5℃,5℃,4℃D . 4.5C,5℃,4.5℃7. (2分)若二元一次方程式组的解为x=a,y=b,则a+b等于()A .B .C .D .8. (2分)某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰好为女生人数的一半,若设该班男生人数为x ,女生人数为y ,则下列方程组中能正确计算出x、y的是().A .B .C .D .二、填空题 (共6题;共14分)9. (5分) (2018七下·龙岩期中) 如图,为了把河中的水引到处,可过点作于,然后沿开渠,这样做可使所开的渠道最短,这种设计的依据是________.10. (5分) (2018七上·故城期末) 操作:某数学兴趣小组在研究用一副三角板拼角时,小明、小亮分别拼出图1、图2所示的两种图形,如图1,小明把30°和90°的角按如图1方式拼在一起;小亮把30°和90°的角按如图2方式拼在一起,并在各自所拼的图形中分别作出∠AOB、∠COD的平分线OE、OF.小明很容易地计算出图1中∠EOF=60°.计算:请你计算出图2中∠EOF=________度.归纳:通过上面的计算猜一猜,当有公共顶点的两个角∠α、∠β有一条边重合,且这两个角在公共边的异侧时,则这两个角的平分线所夹的角=________.(用含α、β的代数式表示)拓展:小明把图1中的三角板AOB绕点O顺时针旋转90°后得到图3,小亮把图2中的三角板AOB绕点O顺时针旋转90°后得到图4(两图中的点O、B、D在同一条直线上).在图3中,易得到∠EOF=∠DOF﹣∠BOE= ∠COD ﹣∠AOB=45°﹣15°=30°;仿照图3的作法,请你通过计算,求出图4中∠EOF的度数(写出解答过程).反思:通过上面的拓展猜一猜,当有公共顶点的两个角∠α、∠β(∠α>∠β)有一条边重合,且这两个角在公共边的同侧时,则这两个角的平分线所夹的角=________.11. (1分)已知是二元一次方程组的解,则m+3n的值为________12. (1分)一组数据的最大值为60,最小值为48,且以2为组距,则应分________ 组.13. (1分) (2019七下·如皋期中) 已知 x+2y﹣3z=0,2x+3y+5z=0(),则 =________.14. (1分) (2017八上·双柏期末) 方程组的解是________.三、解答题 (共11题;共100分)15. (5分) (2019七上·海安期末) 计算或化简求值:(1)(﹣2)2×5﹣(﹣2)3÷4;(2)(﹣10)3+[(﹣4)2﹣(1﹣32)×2];(3)求代数式3a+abc﹣(9a﹣c2)的值,其中a=﹣,b=2,c=﹣3.(4)先化简再求值:,其中x=﹣2,y= .16. (10分)(2018·龙港模拟) 解方程组 .17. (5分)(2020·珠海模拟) 如图,在中,,.(1)请用尺规作图法,作的高(不要求写作法,保留作图痕迹)(2)求的度数.18. (15分) (2017七下·宜城期末) 解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?19. (10分)(2019·锡山模拟) 某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.20. (10分) (2020七下·乌鲁木齐期中) 如图,直线AB,CD,EF相交于点O.(1)请写出的对顶角;(2)若,求的度数.21. (5分)解方程组:.22. (15分)(2017·雁江模拟) “小组合作学习”成为我区推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“小组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:请结合图中信息解答下列问题:(1)小组合作学习前学生学习兴趣为“高”的所占的百分比为________;(2)补全小组合作学习后学生学习兴趣的统计图;(3)通过“小组合作学习”前后学生学习兴趣的对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?23. (15分) (2015七下·杭州期中) 解下列方程组(1)(2).24. (5分) (2019八上·西安月考) 某商场购进甲、乙两种商品后,甲种商品加价50%、乙种商品加价40%作为标价,适逢元旦,商场举办促销活动,甲种商品打八折销售,乙种商品打八五折销售,某顾客购买甲、乙两种商品各1件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价各是多少元?25. (5分)如图,已知OM,ON分别平分∠AOC、∠BOC,若∠MON=45°,则OA⊥OB,你能说明为什么吗?参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共14分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共11题;共100分)15-1、15-2、15-3、15-4、16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、25-1、。
新乡市2021版中考数学试卷(II)卷
新乡市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·通辽) 的相反数是()A . 2019B .C . ﹣2019D .2. (2分) (2018九下·江阴期中) 左下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .3. (2分)(a2)3等于()A . 3a2B . a5D . a84. (2分) (2016八上·平谷期末) 京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A . 1个B . 2个C . 3个D . 4个5. (2分) (2019七下·宿豫期中) 年月,某公司新开发了一款智能手机,该手机的磁卡芯片直径为米,这个数据用科学记数法表示为()A .B .C .D .6. (2分)某商店选用28元/千克的A型糖3千克,20元/千克的B型糖2千克,12元/千克的C型糖5千克混合成杂拌糖后出售,这种杂拌糖平均每千克的售价应为()A . 20元B . 18元C . 19.6元D . 18.4元7. (2分)如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A . 5﹕3B . 4﹕1C . 3﹕18. (2分)直角三角形斜边上的中线与连结两直角边中点的线段的关系是()A . 相等且平分B . 相等且垂直C . 垂直平分D . 垂直平分且相等9. (2分) (2017八上·武城开学考) 若A(2x-5,6-2x)在第四象限,则X的取值范围是()A . x>3B . x>-3C . x<-3D . x<310. (2分)(2017·茂县模拟) 已知:如图为二次函数y=ax2+bx+c的图象,则一次函数y=ax+b的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共6题;共7分)11. (1分)(2012·阜新) 函数中自变量x的取值范围是________.12. (1分) (2019七上·江阴期中) 若则的值是________.13. (1分) (2017八下·宜兴期中) 小芳抛一枚硬币10次,有6次正面朝上,当她抛第11次时,正面朝上的概率为________.14. (1分)(2018·河源模拟) 如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于D ,若AC∶BC=4∶3,AB= 10cm,则OD的长为________ __cm.15. (1分)若x=2是关于x的方程的一个根,则a 的值为________.16. (2分)(2018·青海) 如图,下列图案是由火柴棒按某种规律搭成的,第个图案中有2个正方形,第个图案中有5个正方形,第个图案中有8个正方形,则第个图案中有________个正方形,第n个图案中有________个正方形.三、解答题 (共8题;共83分)17. (10分) (2020八上·襄城期末) 先化简,再求值.(1),其中x=0.5(2),其中x=-3.218. (8分)(2017·襄城模拟) 今年是襄阳“创建文明城市”工作的第二年,为了更好地做好“创建文明城市”工作,市教育局相关部门对某中学学生“创文”的知晓率,采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”,“比校了解”,“基本了解”,和“不了解”四个等级.小辉根据调查结果绘制了如图所示的统计图,请根据提供的信息回答问题:(1)本次调查中,样本容量是________;(2)扇形统计图中“基本了解”部分所对应的圆心角的度数是________;在该校2000名学生中随机提问一名学生,对“创文”不了解的概率估计值为________;(3)请补全频数分布直方图.19. (10分)(2018·拱墅模拟) 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(),反比例函数对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x (min)之间的函数关系().根据图象解答下列问题:(1)求危险检测表在气体泄漏之初显示的数据是多少;(2)求反比例函数的表达式,并确定车间内危险检测表恢复到气体泄漏之初时对应x的值.20. (15分) (2017八下·简阳期中) 4月20日8时2分,四川省雅安市芦山县发生了7.0级地震,当地的部分房屋严重受损,上万灾民无家可归,灾情牵动亿万中国人的心.某市积极筹集救灾物质 260吨物资从该市区运往雅安甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:车型甲地(元/辆)乙地(元/辆)运往地大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.21. (10分)(2017·衡阳模拟) 如图,直线l1:y=x与双曲线y= 相交于点A(a,2),将直线l1向上平移3个单位得到l2 ,直线l2与双曲线相交于B、C两点(点B在第一象限),交y轴于D点.(1)求双曲线y= 的解析式;(2)求tan∠DOB的值.22. (10分)(2018·青岛模拟) 如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)23. (10分) (2019八下·闽侯期中) 如图(1)正方形ABCD,E、F分别在边BC、CD上(不与端点重合),∠EAF=45°,EF与AC交于点G①如图(i),若AC平分∠EAF,直接写出线段EF,BE,DF之间等量关系;②如图(ⅱ),若AC不平分∠EAF,①中线段EF,BE,DF之间等量关系还成立吗?若成立请证明;若不成立请说明理由(2)如图(ⅲ),矩形ABCD,AB=4,AD=8.点M、N分别在边CD、BC上,AN=2 ,∠MAN=45°,求AM 的长度.24. (10分) (2016九上·济源期中) 某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共83分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-2、24-1、24-2、。
2021年河南省中考数学试卷含答案解析
河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(2018.河南.10)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s 的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(2018.河南.1)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S==π.阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的。
河南省2021年中考数学真题试卷(word版+答案+解析)
河南省2021年中考数学试卷一、单选题(共10题;共20分)1.实数-2的绝对值是( )A. -2B. 2C. 12D. −12 2.河南人民济困最“给力!”,据报道,2020年河南人民在济困方面捐款达到 2.94 亿元数据“ 2.94 亿”用科学记数法表示为( )A. 2.94×107B. 2.94×108C. 0.294×106D. 0.294×1093.如图是由8个相同的小正方体组成的几何体,其主视图是( )A. B. C. D.4.下列运算正确的是( )A. (−a)2=−a 2B. 2a 2−a 2=2C. a 2⋅a =a 3D. (a −1)2=a 2−15.如图, a //b , ∠1=60° ,则 ∠2 的度数为( )A. 90°B. 100°C. 110°D. 120° 6.关于菱形的性质,以下说法不正确...的是( )A. 四条边相等B. 对角线相等C. 对角线互相垂直D. 是轴对称图形7.若方程 x 2−2x +m =0 没有实数根,则 m 的值可以是( )A. -1B. 0C. 1D. √38.现有4张卡片,正面图案如图所示,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )A. 16B. 18C. 110D. 1129.如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A. (2√3,0)B. (2√5,0)C. (2√3+1,0)D. (2√5+1,0)10.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA−PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A. 4B. 5C. 6D. 7二、填空题(共5题;共5分)11.若代数式1x−1有意义,则实数x的取值范围是________.12.请写出一个图象经过原点的函数的解析式________.13.某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙两个厂家提供货源,它们的价格相同,品质也相近.质检员从两厂的产品中各随机抽取15盒进行检测,测得它们的平均质量均为200克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是________.(填“甲”或“乙”)14.如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在AD⌢上,∠BAC=22.5°,则BC⌢的长为________.15.小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B= 30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A′处,如图2,第二步,将纸片沿CA′折叠,点D落在D′处,如图3.当点D′恰好在原直角三角形纸片的边上时,线段A′D′的长为________.三、解答题(共8题;共83分)16.(1)计算:3−1−√19+(3−√3)0;(2)化简:(1−1x )÷2x−2x2.17. 2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行卷调查,并将调查结果用统计图描述如下.平均每天睡眠时间x(时)分为5组:① 5≤x<6;② 6≤x<7;③ 7≤x<8;④ 8≤x< 9;⑤ 9≤x<10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第________(填序号)组,达到9小时的学生人数占被调查人数的百分比为________;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.18.如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.数y=kx(1)求反比例函数的解析式;(2)求图中阴影部分的面积.19.开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)20.在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆” AP,BP的连接点P在⊙O上,当点P在⊙O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⊙O相切时,点B恰好落在⊙O上,如图2.请仅就图2的情形解答下列问题.(1)求证:∠PAO=2∠PBO;,求BP的长.(2)若⊙O的半径为5,AP=20321.猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个;(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?×100%)(注:利润率=利润成本22.如图,抛物线y=x2+mx与直线y=−x+b交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>−x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.23.下面是某数学兴趣小探究用不同方法作一角的平分线的讨论片段.请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是大麻烦了,可以改进如下,如图2.(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP,射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是________.(填序号)① SSS;② SAS;③ AAS;④ ASA;⑤ HL.(2)小军作图得到的射线OP是∠AOB的平分线吗?请判断并说明理由;(3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=√3+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE=30°时,直接写出线段OC的长.答案解析部分一、单选题1.【答案】B【考点】实数的绝对值【解析】【解答】解:实数-2的绝对值2.故答案为:B.【分析】利用负数的绝对值等于它的相反数,可得答案.2.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:因为1亿= 108,所以2.94亿=2.94× 108;故答案为:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.3.【答案】A【考点】简单组合体的三视图【解析】【解答】解:从正面看第一层是三个小正方形,第二层靠左边两个小正方形,第三层在左边一个小正方形,故答案为:A.【分析】根据主视图的概念可得:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形,据此判断.4.【答案】C【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、(−a)2=a2,原计算错误,不符合题意;B、2a2−a2=a2,原计算错误,不符合题意;C、a2⋅a=a3,正确,符合题意;D、(a−1)2=a2−2a+1,原计算错误,不符合题意;故答案为:C.【分析】根据幂的乘方法则判断A的正误;根据合并同类项法则判断B的正误;根据同底数幂的乘法法则判断C的正误;根据完全平方公式判断D的正误.5.【答案】D【考点】平行线的性质,邻补角【解析】【解答】解:如图,∵a∥b,∴∠1=∠3=60°,∴∠2=180°-∠3=120°,故答案为:D.【分析】首先对图形进行角标注,由平行线的性质可得∠3的度数,然后根据邻补角的性质就可求得∠2的度数.6.【答案】B【考点】菱形的性质【解析】【解答】解:A、菱形的四条边都相等,A选项正确,不符合题意;B、菱形的对角线不一定相等,B选项错误,符合题意;C、菱形的对角线互相垂直,C选项正确,不符合题意;D、菱形是轴对称图形,D选项正确,不符合题意;故答案为:B.【分析】菱形的性质:菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有两条对称轴,据此判断.7.【答案】D【考点】一元二次方程根的判别式及应用【解析】【解答】解:由题可知:“△<0”,∴(−2)2−4m<0,∴m>1,故答案为:D.【分析】根据根的判别式可得:(-2)2-4m<0,求解即可.8.【答案】A【考点】列表法与树状图法【解析】【解答】解:把印有“北斗”、“天问”、“高铁”和“九章”的四张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,所抽中的恰好是B和D的结果有2种,∴所抽取的卡片正面上的图形恰好是“天问”和“九章”的概率为212=16.故答案为:A.【分析】把印有“北斗”、“天问”、“高铁”和“九章”的四张卡片分别记为:A、B、C、D,画出树状图,找出总的情况数以及所抽中的恰好是B和D的情况数,然后根据概率公式进行计算.9.【答案】B【考点】勾股定理,相似三角形的判定与性质,旋转的性质【解析】【解答】如图,连接A′C,因为AD⊥y轴,△ODA绕点O顺时针旋转得到△OD′A′,所以∠CD′O=90°,OD′=OD∵∠DOA+∠D′OC=∠D′CO+∠D′OC∴∠DOA=∠D′CO∴△ADO∽△OD′C∴ADAO=OD′OC ∵A(1,2)∴AD=1,OD=2∴AO=√12+22=√5,OD′=OD=2∴OC=2√5故答案为B.【分析】连接A′C,由旋转的性质可得∠CDO=90°,OD′=OD,然后证明△ADO∽△OD′C,接下来根据相似三角形的性质以及勾股定理求解即可.10.【答案】C【考点】动点问题的函数图象【解析】【解答】解:由图2可知,当P点位于B点时,PA−PE=1,即AB−BE=1,当P点位于E点时,PA−PE=5,即AE−0=5,则AE=5,∵AB2+BE2=AE2,∴(BE+1)2+BE2=AE2,即BE2+BE−12=0,∵BE>0∴BE=3,∵点E为BC的中点,∴BC=6,故答案为:C.【分析】由图2可知,当P点位于B点时,AB-BE=1,当P点位于E点时,AE=5,由勾股定理可得BE的值,然后根据线段中点的概念进行求解.二、填空题11.【答案】x≠1【考点】分式有意义的条件【解析】【解答】解:依题意得:x-1≠0,解得x≠1,故答案为:x≠1.【分析】分式有意义时,分母不能为0,据此求得x的取值范围.12.【答案】y=x(答案不唯一)【考点】待定系数法求一次函数解析式【解析】【解答】解:因为直线y=x经过原点(0,0),故答案为:y=x(本题答案不唯一,只要函数图象经过原点即可).【分析】设y=kx+b,将(0,0)代入可得b=0,则y=kx,任意的k就构成一个函数解析式.13.【答案】甲【考点】方差【解析】【解答】解:由题可知,它们的价格相同,品质也相近,测得它们的平均质量均为200 克,而由图形可知,甲厂的红枣每盒质量相对乙厂更加稳定,因此甲厂产品更符合规格要求.故答案为:甲.【分析】由题意可得:甲、乙两个厂家出口的红枣的平均质量均为200克,然后由折线统计图判断出哪个厂家的比较集中即可.14.【答案】5π4【考点】弧长的计算⌢的圆心O,【解析】【解答】解:连接AD,作线段AB、AD的垂直平分线,交点即为AD⌢的半径为OB=5,从图中可得:AD连接OC,∵∠BAC=22.5°,∴∠BOC=2 ×22.5°=45°,BĈ的长为45×π×5180=5π4.故答案为:5π4.【分析】连接AD,作线段AB、AD的垂直平分线,交点即为AD⌢的圆心O,根据已知条件结合圆周角定理可得∠BOC的度数,然后根据弧长公式计算即可.15.【答案】12或2−√3【考点】含30°角的直角三角形,翻折变换(折叠问题)【解析】【解答】解:当D′落在AB边上时,如图(1):设DD′交AB于点E,由折叠知:∠EA′D=∠A=60°,AD=A′D=A′D′,DD′⊥A′E,A′C=AC∵∠ACB=90°,∠B=30°,AC=1∴AB=2,BC=√3设AD=x,则在Rt△A′ED中,A′E=12x在Rt△ECB中,EC=12BC=√32∵A′C=AC∴12x+√32=1即x=2−√3.当D′落在BC边上时,如图(2)因为折叠, ∠ACD =∠A ′CD =∠A ′CD ′=30°,∴ A ′D ′=12A ′C =12A ′B,A ′C =A ′B =AC =1∴AD =A ′D ′=12 . 故答案为: 12 或 2−√3【分析】当D′落在AB 边上时,设DD′交AB 于点E ,由折叠的性质得∠EA′D=∠A=60°,AD=A′D=A′D′,A′C=AC ,然后在△ABC 中可得AB 、BC 的值,设AD=x ,在Rt △A′ED 中可得A′E ,在Rt △ECB 中,表示出EC ,然后根据A′C=AC 就可求得x ;当D′落在BC 上时,由折叠的性质得∠ACD=∠A′CD=∠A′CD′=30°,然后求出A′D′、A′C ,据此可得AD.三、解答题16.【答案】 (1)解: 3−1−√19+(3−√3)0 =13−13+1=1 .(2)解: (1−1x )÷2x−2x 2 =x−1x×x 22(x−1) =x 2 .【考点】实数的运算,分式的混合运算【解析】【分析】(1)根据0次幂、负整数指数幂以及算术平方根的概念可得:原式=13-13+1,据此计算; (2)根据异分母分式减法法则以及分式的除法法则化简即可.17.【答案】(1)③;17%(2)解:该校学生睡眠情况为:该校学生极少数达到《关于进一步加强中小学生睡眠管理工作的通知》中的初中生每天睡眠时间应达到9 小时的要求,大部分学生睡眠时间都偏少,其中超过一半的学生睡眠时间达不到8小时,约4%的学生睡眠时间不到6小时.建议:①减少校外学习任务时间,将其多出来的时间补充到学生睡眠中去;②减轻校内课业负担,提高学生的学习效率,规定每晚各科作业总时间不超过90分钟等(本题答案不唯一,回答合理即可).【考点】扇形统计图,条形统计图【解析】【解答】解:(1)由于共有500人,因此中位数应为该组数据按从小到大或从大到小排列的第250和251个数据的平均数,由平均每天睡眠时间统计图可知,应位于第③组;∵达到9小时睡眠的人数为85人,∴其所占百分比为:85=17%;500故答案为:③;17%.【分析】(1)根据中位数的概念以及条形统计图可得中位数落在第几组,利用达到9小时睡眠的人数除以总人数可得所占的百分比;(2)根据条形统计图可得:大部分学生睡眠时间都偏少,其中超过一半的学生睡眠时间达不到8小时,约4%的学生睡眠时间不到6小时,据此提出建议.18.【答案】(1)解:由题意,点A(1,2)在反比例函数y= k的图象上,x∴k=1×2=2,∴反比例函数的解析式为y=2;x(2)解:点B是小正方形在第一象限的一个点,由题意知其横纵坐标相等,设B(a,a),则有k=a×a=2,∴a=√2,即B( √2,√2),∴小正方形的边长为2√2,∴小正方形的面积为(2√2)2=8,大正方形经过点A(1,2),则大正方形的边长为4,∴大正方形的面积为42=16,∴图中阴影部分的面积为16-8=8.【考点】待定系数法求反比例函数解析式【解析】【分析】(1)将点A的坐标代入反比例函数解析式中可得k的值,进而得到其解析式;(2)设B(a,a),则有k=a×a=2,据此可得点B的坐标,进而求出小正方形的边长与面积,根据点A 的坐标可得大正方形的边长,求出其面积,接下来根据面积间的和差关系进行求解.19.【答案】解:设佛像BD的高度为xm,∵∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=x,∵佛像头部BC为4m,∴CD=x-4,∵∠DAC=37.5°,∴tan∠DAC= CDAD = x−4x≈0.77,解得:x≈17.4,经检验,该方程有意义,且符合题意,因此x≈17.4是该方程的解,∴求佛像BD的高度约为17.4m.【考点】解直角三角形的应用﹣仰角俯角问题【解析】【分析】设佛像BD的高度为xm,易得AD=BD=x,CD=x-4,然后根据∠DAC的正切函数可得x 的值,最后进行检验即可.20.【答案】(1)证明:连接OP,取y轴正半轴与⊙O交点于点Q,如下图:∵OP=ON,∴∠OPN=∠PBO,∵∠POQ为△PON的外角,∴∠POQ=∠OPN+∠PBO=2∠PBO,∵∠POQ+∠POA=∠POA+∠PAO=90°,∴∠PAO=∠POQ,∴∠PAO=2∠PBO.(2)解:过点Q作PO的垂线,交PO与点C,如下图:由题意:在Rt△APO中,tan∠PAO=OPAP =5203=34,由(1)知:∠QOC=∠OAP,∠APO=∠OCQ,Rt△APO∽Rt△OCQ,∴tan∠COQ=CQCO =34,OQ=5,∴CO=4,CQ=3,∴PC=PO−CO=5−4=1,∴PQ=√PC2+CQ2=√1+9=√10,由圆的性质,直径所对的角为直角;在Rt△QPB中,由勾股定理得:BP=√BQ2−PQ2=√102−10=3√10,即BP=3√10.【考点】三角形的外角性质,等腰三角形的性质,圆周角定理,相似三角形的判定与性质,锐角三角函数的定义【解析】【分析】(1)连接OP,取y轴正半轴与○O交点于点Q,根据等腰三角形的性质以及三角形外角的性质可推出∠POQ=2∠PBO,根据同角的余角相等可得∠PAO=∠POQ,据此证明;(2)过点Q 作PO的垂线,交PO与点C,根据三角函数的概念可得tan∠PAO的值,易证△APO∽△OCQ,根据相似三角形对应角相等可求出CO、CQ的值,进而求出PC、PQ的值,接下来在Rt△QPB中,利用勾股定理求解即可.21.【答案】(1)解:设A,B两款玩偶分别为x,y个,根据题意得:{x+y=3040x+30x=1100解得:{x=20y=10答:两款玩偶,A款购进20个,B款购进10个.(2)解:设购进A款玩偶a个,则购进B款(30−a)个,设利润为y元则y=(56−40)a+(45−30)(30−a)=16a+15(30−a)=450+a(元)∵A款玩偶进货数量不得超过B款玩偶进货数量的一半∴a≤12(30−a)∴a≤10,又a≥0,∴0≤a≤10,且a为整数,∵−1<0∴当a=10时,y有最大值∴y max=460.(元)∴A款10个,B款20个,最大利润是460元.(3)解:第一次利润20×(56−40)+10×(45−30)=470(元)∴第一次利润率为:4701100×100%=42.7%第二次利润率为:46010×40+20×30×100%=46%∵42.7%<46%∴第二次的利润率大,即第二次更划算.【考点】一次函数的实际应用,二元一次方程组的实际应用-销售问题【解析】【分析】(1)设A,B两款玩偶分别为x、y个,根据题意得:{x+y=3040x+30x=1100,求解即可;(2)设购进A款玩偶a个,利润为y元,由题意可得:y=(56-40)a+(45-30)(30-a)=450+a,根据A款玩偶进货数量不得超过B款玩偶进货数量的一半可求出a的范围,然后结合一次函数的性质解答;(3)首先根据销售价以及进货价求出单个的利润,然后乘以个数求出总利润,接下来利用总利润除以1100就可求出第一次的利润率,同理求出第二次利润率,然后进行比较.22.【答案】(1)解:∵点A(2,0)同时在y=x2+mx与y=−x+b上,∴0=22+2m,0=−2+b,解得:m=−2,b=2;(2)解:由(1)得抛物线的解析式为y=x2−2x,直线的解析式为y=−x+2,解方程x2−2x=−x+2,得:x1=2,x2=−1.∴点B的横坐标为−1,纵坐标为y=−x+2=3,∴点B的坐标为(-1,3),观察图形知,当x<−1或x>2时,抛物线在直线的上方,∴不等式x2+mx> −x+b的解集为x<−1或x>2;(3)解:如图,设A、B向左移3个单位得到A1、B1,∵点A(2,0),点B(-1,3),∴点A1 (-1,0),点B1 (-4,3),∴A A1=BB1=3,且A A1∥BB1,即MN为A A1、BB1相互平行的线段,对于抛物线y=x2−2x=(x−1)2−1,∴顶点为(1,-1),如图,当点M 在线段AB 上时,线段MN 与抛物线 y =x 2−2x 只有一个公共点,此时 −1≤x M <2 ,当线段MN 经过抛物线的顶点(1,-1)时,线段MN 与抛物线 y =x 2−2x 也只有一个公共点, 此时点M 1的纵坐标为-1,则 −1=−x M +2 ,解得 x M =3 ,综上,点M 的横坐标 x M 的取值范围是: −1≤x M <2 或 x M =3 ..【考点】平移的性质,二次函数与一次函数的综合应用,二次函数图象上点的坐标特征【解析】【分析】(1)分别将点A 的坐标代入抛物线以及直线解析式中就可得到m 、b 的值; (2) 由(1)可得抛物线与直线的解析式,联立求解可得点B 的坐标,据此可得不等式的解集; (3)设A 、B 向左移3个单位得到A 1、B 1, 根据平移的性质可得A 1、B 1的坐标,求出AA 1=BB 1=3,且AA 1∥BB 1 , 然后求出抛物线的顶点坐标 ,接下来画出图象,根据图象就可得到x M 的范围.23.【答案】 (1)⑤(2)解:小军作图得到的射线 OP 是 ∠AOB 的平分线,理由为:在△EOD 和△FOC 中,{OD =OC∠EOD =∠FOC OE =OF∴△EOD ≌△FOC (SAS ),∴∠OED=∠OFC ,∵OC=OD ,OE=OF ,∴CE=DF ,在△CEP 和△DFP 中,{∠CEP =∠DFP∠EPC =∠FPD CE =DF,∴△CEP ≌△DFP (AAS ),∴PE=PF ,在△EOP 和△FOP ,{OE =OF PE =PF OP =OP,∴△EOP ≌△FOP (SSS ),∴∠EOP=∠FOP ,即射线 OP 是 ∠AOB 的平分线;(3)解:作射线OP ,由(2)可知OP 是∠AOB 的平分线,∴∠POE= 12∠AOB=30°,∵∠CPE=30°,∴∠FPE=150°∵△EOP≌△FOP,∴∠OPE=∠OPF= 12(360°﹣∠FPE)=105°,∴∠OEP=180°﹣∠POE﹣∠OPE=45°,过P作PH⊥OA于H,则HP=HE,OP=2HP=2HE,∴ PE= √2HE,OH= √OP2−HP2= √3HP= √3HE,∵OE=OH+HE=( √3+1)HE= √3+1,∴HE=1,∴PE= √2,∵∠POE=∠CPE=30°,∠OEP=∠PEC,∴△OEP∽△PEC,∴OEPE =PECE即√3+√2=√2CE,解得:CE=√31√3−1,∴OC=OE﹣CE=2.【考点】三角形全等的判定,相似三角形的判定与性质,角平分线的判定【解析】【解答】解:(1)根据小明作图所阐述的理由,他用到是HL定理证明Rt△PGO≌Rt△PHO,故答案为:⑤.【分析】(1)直接根据全等三角形的判定定理解答;(2)易证△EOD≌△FOC,得到∠OED=∠OFC,然后证明△CEP≌△DFP,得到PE=PF,进而证明△EOP≌△FOP,得到∠EOP=∠FOP,据此证明;(3)作射线OP,由(2)可知OP是∠AOB的平分线,根据△EOP≌△FOP结合等腰三角形的性质可得∠OPE=∠OPF=105°,进而求出∠OEP的度数,过P作PH⊥OA于H,则HP=HE,OP=2HP=2HE,由勾股定理可得OH的值,进而求出OE、HE、PE的值,接下来证明△OEP∽△PEC,由相似三角形的性质解答即可.。
2024年河南新乡中考数学试题及答案
2024年河南新乡中考数学试题及答案注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1. 如图,数轴上点P 表示的数是( )A. 1-B. 0C. 1D. 22. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为()A. 8578410⨯ B. 105.78410⨯ C. 115.78410⨯ D. 120.578410⨯3. 如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A. 60︒B. 50︒C. 40︒D. 30︒4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A. B.C D.5. 下列不等式中,与1x ->组成不等式组无解的是().的A 2x > B. 0x < C. <2x - D. 3x >-6. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A. 12B. 1C. 43D. 27. 计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是( )A. 5a B. 6a C. 3a a + D. 3aa 8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19 B. 16 C. 15 D. 139. 如图,O是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3 B. 4π C. 16π3 D. 16π10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐.患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A ,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项:_______.12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.13. 若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为___________.14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.15. 如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.三、解答题(本大题共8个小题,共75分)16. (1(01-;(2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭.17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.的18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E D C 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈).21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A ,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品?22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B Ð=°,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.2024年河南新乡省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
河南省新乡市2021年八年级上学期数学期中考试试卷D卷
河南省新乡市2021年八年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分) (2020九下·黄石月考) 5的平方根是()A . 25B .C .D .2. (2分)(2020·五峰模拟) 下列运算正确的是()A . m2•m3=m6B . (m4)2=m6C . m3+m3=2m3D . (m﹣n)2=m2﹣n23. (2分) (2020七下·延庆期末) 下列各式计算正确的是()A .B .C .D .4. (2分)下列说法:①过一点有且仅有一条直线与已知直线平行;②经过一点有且只有一条直线与已知直线垂直;③对顶角相等;④直线外一点与直线上各点连接的所有线段中,垂线段最短。
其中错误的有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2018八上·东台期中) 下列说法正确的是()A . =±2B . 0没有平方根C . 一个数的算术平方根一定是正数D . 9的平方根是±36. (2分) (2020七下·顺义期中) 计算的值为()A .B .C .D .7. (2分)下列命题中,是真命题的是()①面积相等的两个直角三角形全等;②对角线互相垂直的四边形是正方形;③将抛物线向左平移4个单位,再向上平移1个单位可得到抛物线④两圆的半径R、r分别是方程的两根,且圆心距,则两圆外切。
A . ①B . ②C . ③D . ④8. (2分) (2018八上·双清月考) 已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A . 1B . ﹣3C . ﹣2D . 39. (2分)(2020·渠县模拟) 数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a>2,那么a2>4.下列命题中,具有以上特征的命题是()A . 两直线平行,同位角相等B . 如果|a|=1,那么a=1C . 全等三角形的对应角相等D . 如果x>y ,那么mx>my10. (2分) (2020九上·重庆开学考) 估计运算结果在哪两个整数之间()A . 0和1B . 1和2C . 2和3D . 3和411. (2分)(2018·扬州模拟) 下列各数中,属于无理数的是()A . 0.010010001B .C . 3.14D .12. (2分) (2018七上·银川期中) 已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A . a>bB . ab<0C . b﹣a>0D . a+b>013. (2分) (2018八上·天台月考) 若9x2+kxy+16y2是一个完全平方式,则实数k的值为()A . 12B . 24C . -24D . ±2414. (2分) (2018七上·武昌期中) 甲数是x,比乙数少y,甲、乙两数之和与两数之差分别是()A . x+y、x﹣yB . 2x﹣y、2xC . 2x+y、﹣yD . 2x+y、x﹣y二、填空题 (共4题;共5分)15. (1分)依法纳税是公民应有的义务,《个人所得税法》规定,每月总收入减去2000元后的余额为应纳税所得额,应纳税所得额不超过500元的部分按5%纳税;超过500元但不超过2000元的部分按10%纳税,若职工小李某月税前总收入3200元,则该月他应纳税________元.16. (1分)立方等于-64的数是________17. (1分) (2016八上·九台期中) 命题“等角的余角相等”写成“如果…,那么…”的形式________.18. (2分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的________ 块带去,就能配一块大小和形状与原来都一样的三角形.三、解答题 (共6题;共52分)19. (15分) (2019七下·福田期末)(1)计算:;(2)计算:20. (10分) (2019八上·双流开学考) 计算:(1) [x(x 2y 2 - xy )- y(x2 - x2 y )]¸ x 2y ;(2)已知:,求和的值。
新乡市2021版九年级上学期数学期中考试试卷D卷
新乡市2021版九年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·通州期末) 二次函数的图象如图所示,,则下列四个选项正确的是()A . ,,B . ,,C . ,,D . ,,2. (2分) (2020九上·郑州期末) “从布袋中取出一个红球的概率为0”,这句话的含义是()A . 布袋中红球很少B . 布袋中全是红球C . 布袋中没有红球D . 不能确定3. (2分) (2018九上·硚口月考) 已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A . 点P在⊙O外B . 点P在⊙O上C . 点P在⊙O内D . 不能确定4. (2分)将抛物线y=x2向右平移1个单位,所得新抛物线的函数解析式是()A . y=(x+1)2B . y=(x-1)2C . y=x2+1D . y=x2-15. (2分) (2019九上·德清期末) 如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于().A .B .C .D .6. (2分)如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC 区域(包括边界),则a的取值范围是()A . a≤-1或a≥2B . ≤a≤2C . -1≤a<0或1<a≤D . -1≤a<0或0<a≤27. (2分)(2017·枝江模拟) 同时抛掷A,B两个均匀的小正方体(每个面上分别标有数字1、2、3、4、5、6),设两个正方体朝上的数字分别是x,y,并以此确定点P(x,y),那么点P落在抛物线y=﹣x2+3x上的概率是()A .B .C .D .8. (2分)(2017·洪山模拟) 如图,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()A .B . 2C .D . 39. (2分) (2019八下·嵊州期末) 在平面直角坐标系中,二次函数y=x2+2x-3的图象如图所示,点A(x1 ,y1),B(x2 , y2)是该二次函数图象上的两点,其中-3≤x1<x2≤0,则下列结论正确的是()A . y1<y2B . y1>y2C . 函数y的最小值是-3D . 函数y的最小值是-410. (2分) (2018九上·洛阳期中) 如图,一块三角尺ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是46°,则∠ACD的度数为()A . 46°B . 23°C . 44°D . 67°二、填空题 (共6题;共6分)11. (1分)抛物线y=2(x+2)2+4的顶点坐标为________.12. (1分)(2018·江苏模拟) 如图,的直径AB与弦CD相交于点,则________.13. (1分)一条弦把圆分为2:3两部分,那么这条弦所对的圆周角的度数为________.14. (1分)从同一高度落下的图钉,落地后可能钉尖着地,也可能钉帽着地,通过试验发现:钉尖着地的概率________钉帽着地的概率.(填“>”、“<”或“=”)15. (1分) (2019九上·江都月考) 如图,已知的半径为5,弦AB长度为8,则上到弦AB所在直线的距离为2的点有________个16. (1分) (2019九上·秀洲期中) 在直角坐标系中,抛物线交轴于点,点是点关于对称轴的对称点,点是抛物线的顶点,若的外接圆经过原点,则的值为________.三、解答题 (共8题;共83分)17. (5分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1 .(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.18. (10分)(2018·贵阳) 六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s0123…滑行距离y/cm041224…(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.19. (5分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.20. (13分)(2017·乐山) 为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:组别分数段(分)频数频率A组60≤x<70300.1B组70≤x<8090nC组80≤x<90m0.4D组90≤x<100600.2(1)在表中:m=________,n=________;(2)补全频数分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在________组;(4) 4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.21. (15分) (2020九上·南昌期末) 如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x轴与y轴上,D为OA上一点,且CD=AD.(1)求点D的坐标;(2)若经过B、C、D三点的抛物线与x轴的另一个交点为E,写出点E的坐标;(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使△PBC的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.22. (10分) (2020八下·温州月考) 如图,AB是⊙O的直径,CD切⊙O于点C,BE上CD于E,连接AC,BC。
河南省新乡市2021版八年级上学期数学期中考试试卷D卷
河南省新乡市2021版八年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·罗山期中) 如图,▱ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取值范围是()A . 1<m<11B . 2<m<22C . 10<m<12D . 5<m<62. (2分) (2017八上·西湖期中) 下列各组数中,不可能成为一个三角形三边长的是().A . ,,B . ,,C . ,,D . ,,3. (2分) (2019八上·新昌期中) 下列命题是假命题的是()A . 有两个角为60°的三角形是等边三角形B . 等角的补角相等C . 角平分线上的点到角两边的距离相等D . 同位角相等4. (2分) (2019九上·许昌期末) 点P(3,5)关于原点对称的点的坐标是()A . (﹣3,5)B . (3,﹣5)C . (5,3)D . (﹣3,﹣5)5. (2分) (2016八上·靖江期末) 如图所示4个汉字中,可以看作是轴对称图形的是()A .B .C .D .6. (2分) (2019七下·哈尔滨期中) 下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是().A . 13,12,20B . 8,7,15C . 3,4,8D . 5,5,117. (2分)(2016·益阳) 将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A . 360°B . 540°C . 720°D . 900°8. (2分) (2018八上·望谟月考) 图中能表示的BC边上的高的是A .B .C .D .9. (2分) (2016七上·龙口期末) 如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,可以证明△EDC≌△ABC,得到ED=AB,因此测得ED的长就是AB的长(如图),判定△EDC≌△ABC的理由是()A . SASB . ASA;C . SSSD . HL10. (2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a 与b的数量关系为A . 2a-b=-1B . 2a+b=﹣1C . 2a﹣b=1D . 2a+b=1二、填空题 (共10题;共18分)11. (1分)(2019·福州模拟) 正n边形的一个内角为120°,则n的值为________.12. (1分)如图,D、E、F分别是△ABC三边延长线上的点,则∠D+∠E+∠F+∠1+∠2+∠3=________度.13. (1分) (2017八上·杭州月考) 已知△ABC中,AB=BC≠AC,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出________个.14. (1分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的长为________.15. (5分) (2016八上·鄱阳期中) 已知A(1,﹣2)与点B关于y轴对称.则点B的坐标是________.16. (1分)如图,在△ABC中,BD是高,BE是角平分线,BF是中线,则图中相等的角有________对,相等的线段有________对.17. (1分) (2018七上·平顶山期末) 9时45分时,时钟的时针与分针的夹角是________.18. (5分) (2019八上·陇西期中) 如图,小明上午在理发店理发时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时时间是________.19. (1分) (2016八上·肇庆期末) 如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC= ________度.20. (1分) (2016九下·邵阳开学考) 如图,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD、BC于M、N两点,与DC切于点P,则图中阴影部分的面积是________。
新乡市2021年九年级下学期数学第一次月考试卷D卷
新乡市2021年九年级下学期数学第一次月考试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·荆州) 有理数的相反数是()A . 2B .C . -2D .2. (2分) (2019八上·恩施期中) 下列图形中,轴对称图形的个数为()A . 2个B . 3个C . 4个D . 5个3. (2分) (2019七上·永定月考) 首届全国青运会于2015年10月18日在福州举行,据统计,共有28600名志愿者,将负责赛会服务、城市宣传、交通指引等工作,将这个数字用科学记数法表示为().A . 286×B . 28.6×C . 2.86×D . 2.86×4. (2分) (2020八下·邵阳期中) 已知,则的值是()A .B .C .D .5. (2分)已知关于x的不等式2x-a>-3的解集如图所示,则a的值是()A . 0B . 1C . -1D . 26. (2分) (2019七下·绍兴月考) 如图,a∥b,将一块三角板的直角顶点放在直线a上,∠1=42°,则∠2的度数为()A . 46°B . 48°C . 56°D . 72°7. (2分)(2017·邵阳模拟) 小王班的同学去年6﹣12月区孔子学堂听中国传统文化讲座的人数如下表:月份6789101112人数46324232273242则该班去年6﹣12月去孔子学堂听中国传统文化讲座的人数的众数是()A . 46B . 42C . 32D . 278. (2分) (2019九上·瑞安月考) 如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A .B .C .D .9. (2分)(2018·平房模拟) 将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线解析式是()A .B .C .D .10. (2分)(2016·宜宾) 半径为6,圆心角为120°的扇形的面积是()A . 3πB . 6πC . 9πD . 12π11. (2分) (2019八下·蚌埠期末) 为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动.已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x折,则有()A . 500(1-2x)=320B . 500(1-x)2=320C . 500 =320D . 500 =32012. (2分)小明准备测量一段河水的深度,他把一根竹竿直插到离岸边6米远的水底,竹竿高出水面2米,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A . 7mB . 8mC . 9mD . 10m二、填空题 (共7题;共10分)13. (1分) (2018七上·太原期末) 当 x= ,y=10 时,代数式(3xy+5x)-3(xy+x)的值为________.14. (1分)(2019·龙湾模拟) 因式分解: ________.15. (2分) (2019八上·法库期末) 数据:9,8,9,7,8,9,7的众数和中位数分别是________.16. (2分) (2019九下·长兴月考) 如图,是小明荡秋千的侧面示意图,秋千链长AB=5m(秋千踏板视作一个点),静止时秋千位于铅垂线BC上,此时秋千踏板A到地面的距离为0.5m.当秋千踏板摆动到点D时,点D到BC 的距离DE=4m.若他从D处摆动到D'处时,恰好D'B⊥DB,则D'到地面的距离为________ m.17. (1分)已知某人的身份证号是:320821************,那么他出生的月份是________ 月.18. (1分) (2017八下·老河口期末) 一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=________.19. (2分) (2019九上·巴南期末) 在数-1,0,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数图像上的概率是________.三、解答题 (共6题;共26分)20. (5分)(1)计算:;(2)解方程.21. (10分)(2020·乾县模拟) 解分式方程:22. (2分) (2019九上·慈溪期中) 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)将△ABC绕点A顺时针旋转90°,画出相应的△AB1C1;(2)将△AB1C1沿射线AA1平移到△A1B2C2处,画出△A1B2C2;(3)点C在两次变换过程中所经过的路径长为________.23. (5分)(2020·牡丹江) 在中,,,.以为边作周长为18的矩形,M,N分别为,的中点,连接.请你画出图形,并直接写出线段的长.24. (2分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.25. (2分)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB于点D,取AC的中点E,连接DE.(1)求证:DE是⊙O的切线;(2)若tanB= ,DE=5,求BD的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共6题;共26分)20-1、21-1、22-1、22-2、22-3、24-1、24-2、25-1、25-2、。
河南省新乡市2021版九年级上学期数学期末考试试卷D卷
河南省新乡市2021版九年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共10分)1. (1分) (2016九上·河西期中) 二次函数y=x(x﹣6)的图象的对称轴是________.2. (1分) (2016九上·桑植期中) 已知:一元二次方程ax2+bx+c=0的一个根为1,且满足 b=+3,则a=________,b=________,c=________.3. (1分) (2017八下·金华期中) 把一元二次方程(x﹣3)2=4化为一般形式为:________.4. (1分)(2017·西安模拟) 如图所示,直线y=kx(k<0)与双曲线y=﹣交于M(x1 , y1),N(x2 ,y2)两点,则 x1y2﹣3x2y1的值为________.5. (1分) (2018九上·渭滨期末) 某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为________.6. (1分)如图,在圆的内接五边形ABCDE中,∠B+∠E=220°,则∠CAD=________.7. (1分) (2017九上·东台月考) 如图,⊙O直径AB=8,∠CBD=30°,则CD=________ .8. (1分)(2018·黄冈模拟) 已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是________cm2(结果保留π).9. (1分)(2018·东莞模拟) 在一个不透明的布袋中装有5个红球,2个白球,3个黄球,它们除了颜色外其余都相同,从袋中任意摸出一个球,是黄球的概率为________.10. (1分) (2016九上·宁海月考) 如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为________.二、选择题 (共10题;共10分)11. (1分)既是轴对称,又是中心对称图形的是()A . 矩形B . 平行四边形C . 正三角形D . 等腰梯形12. (1分) (2019九上·凤山期中) 下列方程中,关于x的一元二次方程是()A .B .C .D .13. (1分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A . a>0B . 当-1<x<3时,y>0C . c<0D . 当x≥1时,y随x的增大而增大14. (1分)如图,双曲线y=与正比例函数y=kx的图象交于A,B两点,过点A作AC⊥y轴于点C,连接BC,则△ABC的面积为()A . 2B .C . 4D .15. (1分)若二次函数y=x2-2x+k的图象经过点(-1,y1),(3,y2),则y1与y2的大小关系为()A . y1>y2B . y1=y2C . y1<y2D . 不能确定16. (1分)若用一张直径为20cm的半圆形铁片做一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为()A . cmB . cmC . cmD . 10cm17. (1分)若六边形的边心距为2,则这个正六边形的半径为()A . 1B . 2C . 4D . 218. (1分)(2018·大连) 如图,一次函数y=k1x+b的图象与反比例函数y= 的图象相交于A(2,3),B (6,1)两点,当k1x+b<时,x的取值范围为()A . x<2B . 2<x<6C . x>6D . 0<x<2或x>619. (1分)(2017·竞秀模拟) 如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠ADE=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A . 由小变大B . 由大变小C . 不变D . 先由小变大,后由大变小20. (1分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A . 图象关于直线x=1对称B . 函数y=ax2+bx+c(a≠0)的最小值是﹣4C . ﹣1和3是方程ax2+bx+c(a≠0)=0的两个根D . 当x<1时,y随x的增大而增大三、解答题 (共8题;共21分)21. (2分)如图,在长方形ABCD中,边AB、BC的长(AB<BC)是方程x2﹣7x+12=0的两个根.点P从点A 出发,以每秒1个单位的速度沿△ABC边A→B→C→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)当点P运动到边BC上时,试求出使AP长为时运动时间t的值;(3)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.22. (4分) (2017七下·蒙阴期末) 如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC;(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化位置,并写出A′、B′、C′的坐标.23. (2分)(2019·北部湾模拟) 如图,已知抛物线y=ax2+bx经过点A(4,0),点B是其顶点,∠AOB=45°,OC⊥OB交此抛物线于点C,动直线y=kx与抛物线交于点D,分别过点B、C作BE、CF垂直动直线y=kx于点E、F.(1)求此抛物线的解析式;(2)当直线y=kx把∠AOC分成的两个角的度数之比恰好为1:2时,求k的值;(3) BE+CF是否存在最大值?若存在,请直接写出此最大值和此时k的值;若不存在,请说明理由.24. (2分)关于x的一元二次方程2x2﹣4x+(2m﹣1)=0有两个不相等的实数根,(1)求m的取值范围;(2)若方程有一个根为x=2,求m的值和另一根.25. (2分) (2016九下·大庆期末) 某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有________人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).26. (2分) (2016九上·沙坪坝期中) 在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.(1)如图1,若AB=AC,∠DBA=60°,AD=7 ,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP;(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD 之间的关系(不需要证明).27. (3分) (2017九上·抚宁期末) 某商场将进价为30元的台灯以40元售出,平均每月能售出600个,调查表明:这种台灯的售价每上涨1元,其销售量就减少10个.(1)为了实现平均每月10000元的销售利润,商场决定采取调控价格的措施,扩大销售量,减少库存,这种台灯的售价应定为多少?这时应进台灯多少个?(2)如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多少个?28. (4分) (2017九上·余姚期中) 如图,在平面直角坐标系中.直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A,连结AC,A(-1,0)(1)求抛物线的解析式;(2)点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;(3)若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.参考答案一、填空题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、选择题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共8题;共21分) 21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、。
河南省新乡市2021年八年级上学期数学期末考试试卷D卷
河南省新乡市2021年八年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2015八上·丰都期末) 下列各图形都是轴对称图形,其中对称轴最多的是()A . 等腰直角三角形B . 直线C . 等边三角形D . 正方形2. (2分)在–2,+3.8,0,-,–0.7,15中.分数有()A . l个B . 2个C . 3个D . 4个3. (2分) (2019七上·剑河期中) 四舍五入得到的近似数 ,下列说法正确的是()A . 精确到万位B . 精确到万分位C . 精确到千分位D . 精确到十万分位4. (2分) (2018八上·临河期中) 如图,△ABC与△A1B1C1关于直线l对称,将△A1B1C1向右平移得到△A2B2C2 ,由此得出下列判断:①∠A=∠A2;②A1B1=A2B2;③AB∥A2B2.其中正确的是()A . ①②B . ②③C . ①③D . ①②③5. (2分)有一对角线长为200cm的长方形黑板,小明测得长为160cm,那么这块黑板的宽为()A . 180cmB . 120cmC . 160cmD . 64cm6. (2分) (2018八上·建湖月考) 点A(1,y1)、B(2,y2)都在一次函数y=-2x+3的图象上,则y1、y2的大小关系是()A . y1>y2B . y1=y2C . y1<y2D . 不确定7. (2分) (2019八下·香洲期末) 如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是()A .B .C .D .8. (2分)如图,在△ABC中,∠ABC=60°,∠C=45°,AD是BC边上的高,∠ABC的角平分线BE交AD于点F ,则图中共有等腰三角形()A . 2个B . 3个C . 4个D . 5个二、填空题 (共10题;共10分)9. (1分),的最简公分母是________.10. (1分) (2017九下·张掖期中) 函数y= 中自变量x的取值范围是________.11. (1分)如图,∠1=∠2,要使△ABD≌△AC D,需添加的一个条件是________ (只添一个条件即可).12. (1分) (2019八上·丹徒月考) 小于的正整数是________.13. (1分) (2018九上·顺义期末) 在中,,,,则AC的长为________.14. (1分)﹣27的立方根与的平方根的和是________15. (1分) (2017八上·深圳月考) 已知方程组的解为,则一次函数y=﹣x+1和y=2x ﹣2的图象的交点坐标为________.16. (1分)(2018·吉林模拟) 如图,在 ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2 ,S△BQC=25cm2 ,则图中阴影部分的面积为________cm2 .17. (1分) (2017八上·安庆期末) 如图,在△ABC中,∠ABC=48°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠ABE=________°.18. (1分)(2017·槐荫模拟) 如图所示,四边形ABCD的四个顶点A、B、C、D的坐标分别为(﹣1,1)、(﹣1,﹣3)、(5,3)、(1,3),则其对称轴的函数表达式为________.三、解答题 (共10题;共84分)19. (10分) (2018九上·长春开学考) 解分式方程(1)(2)20. (5分) (2015九下·武平期中) 先化简,再求值:÷ ﹣,其中a=tan60°.21. (11分) (2019八上·金水月考) 周未,小丽骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小丽离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小丽离家时间x(h)的函数图象.(1)小丽骑车的速度为________km/h,H点坐标为________;(2)求小丽游玩一段时间后前往乙地的过程中y与x的函数关系;(3)小丽从家出发多少小时后被妈妈追上?此时距家的路程多远.22. (5分)解方程与计算(1)利用平方根解方程:2(x﹣1)2﹣6=0(2)计算:• ﹣ +()2.23. (6分) (2018八上·无锡期中) 画图或计算:(1)如图1,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在何处?请在图2中,用尺规作出猫所蹲守的位置点P.(不写作法,保留作图痕迹).(2)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线l成轴对称的△AB′C′;________②线段CC′被直线l________;③在直线l上找一点P,使PB+PC的长最短.________24. (10分) (2019八下·余杭期末) 如图,在菱形ABCD中,AE⊥BC于点E.(1)若∠BAE=30°,AE=3,求菱形ABCD的周长.(2)作AF⊥CD于点F,连结EF,BD,求证:EF∥BD.(3)设AE与对角线BD相交于点G,若CE=4,BE=8,四边形CDGE和△AGD的面积分别是S1和S2,求S1-S2是的值.25. (10分) (2018九上·长春开学考) 如图,在平面直角坐标系中,一次函数的图象经过点,且与正比例函数的图象相交于点,与x轴相交于点(1)求m的值及一次函数的表达式.(2)求△BOC的面积.26. (5分)如图,线段AB,CD分别是一辆轿车和一辆客车在行驶过程中油箱内的剩余油量y1(升)、y2(升)关于行驶时间x(小时)的函数图象.(1)分别求y1、y2关于x的函数解析式,并写出定义域;(2)如果两车同时从相距300千米的甲、乙两地出发,相向而行,匀速行驶,已知轿车的行驶速度比客车的行驶速度快30千米/小时,且当两车在途中相遇时,它们油箱中所剩余的油量恰好相等,求两车的行驶速度.27. (7分) (2018九上·富顺期中) 如图,已知△ABC的三个顶点坐标为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)将△ABC绕坐标原点O旋转180°,画出图形,并写出点A的对应点P的坐标________.(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点A的对应点Q的坐标________.(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标________.28. (15分)(2018·潮阳模拟) 在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA= ,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为________度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为________;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3) PA、PB、PC满足的等量关系为________.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共84分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、27-1、27-2、27-3、28-1、28-2、28-3、。
河南省新乡市2021年八年级上学期期末数学试卷D卷(模拟)
河南省新乡市2021年八年级上学期期末数学试卷D卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共10题;共20分)1. (2分) (2019八上·临洮期末) 在式子,,,,,中,分式的个数是()A . 2B . 3C . 4D . 52. (2分)下列几何图形中,是中心对称图形而不是轴对称图形的是()A . 线段B . 平行四边形C . 矩形D . 圆3. (2分)(2017·玉林) 下列运算正确的是()A . (a3)2=a5B . a2•a3=a5C . a6÷a2=a3D . 3a2﹣2a2=14. (2分)下列图形中具有不稳定性的是()A . 长方形B . 等腰三角形C . 直角三角形D . 锐角三角形5. (2分)若多项式x2+ax+b分解因式的结果为a(x﹣2)(x+3),则a,b的值分别是()A . a=1,b=﹣6B . a=5,b=6C . a=1,b=6D . a=5,b=﹣66. (2分) (2017八上·梁子湖期末) 如图,点B,F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A . BF=ECB . AC=DFC . ∠B=∠ED . BF=FC7. (2分) (2017七下·罗平期末) 一个多边形的每一个外角都是45°,那么这个多边形是()A . 八边形B . 九边形C . 十边形D . 十二边形8. (2分) (2017九下·沂源开学考) 下列运算错误的是()A . =1B . x2+x2=2x4C . |a|=|﹣a|D . =9. (2分) (2018七上·从化期末) 下列说法正确的是()A . 两点的所有连线中,直线最短B . 连接两点之间的线段,叫做这两点之间的距离C . 锐角的补角一定是钝角D . 一个角的补角一定大于这个角10. (2分)下列各式,能用平方差公式计算的是()A . (a﹣1)(﹣a﹣1)B . (a﹣3)(﹣a+3)C . (a+2b)(2a﹣b)D . (﹣a﹣3)2二、细心填一填 (共10题;共10分)11. (1分) (2020八上·龙岩期末) 计算: ________;12. (1分) (2019八上·安顺期末) 当x________时,分式有意义.13. (1分)(2011·绍兴) 因式分解:x2+x=________.14. (1分)(2014·泰州) 点P(﹣2,3)关于x轴的对称点P′的坐标为________.15. (1分) (2017八上·江海月考) 如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为________°.16. (1分) (2018八上·东台月考) 写出一个你熟悉的轴对称图形的名称:________.17. (1分)如图,CD与BE互相垂直平分,AD⊥DB,交BE延长线于点A,连接AC,已知∠BDE=70°,则∠CAD=________°18. (1分) (2016八上·临泽开学考) 如果x2﹣mx+121是一个完全平方式,则m=________.19. (1分) (2019七下·翁牛特旗期中) 如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是________.20. (1分) (2019九下·江苏月考) 如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为________.三、耐心解一解 (共6题;共55分)21. (10分) (2015八下·开平期中) 解下列分式方程:(1)(2).22. (10分)综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省新乡市2021版中考数学试卷D卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2019七上·吉隆期中) ﹣ + =()
A .
B . ﹣
C .
D . ﹣
2. (2分)(2017·沭阳模拟) 将如图所示的Rt△ABC绕直角边AB旋转一周,则所得几何体的主视图为()
A .
B .
C .
D .
3. (2分) (2019七上·川汇期中) “壮丽70年,数字看中国”.1952年我国国内生产总值仅为679亿元,2018年达到90万亿元,是世界第二大经济体.90万亿元这个数据用科学记数法表示为()
A . 亿元
B . 亿元
C . 亿元
D . 亿元
4. (2分) (2019七下·金坛期中) 已知x﹣y=3,y﹣z=2,x+z=4,则代数式x2﹣z2的值是()
A . 9
B . 18
C . 20
D . 24
5. (2分)(2019·台州模拟) 正十二边形的内角和为()
A . 360°
B . 1800°
C . 1440°
D . 1080°
6. (2分)(2017·含山模拟) (﹣3a3)2的计算结果是()
A . ﹣9a5
B . 6a6
C . 9a6
D . 6a5
7. (2分) (2019九上·辽阳期末) 下列命题正确的是()
A . 一组对边相等,另一组对边平行的四边形是平行四边形
B . 对角线相互垂直的四边形是菱形
C . 对角线相等的四边形是矩形
D . 对角线相互垂直平分且相等的四边形是正方形
8. (2分) (2020八下·温州期末) 校田径队有9名同学,他们的100米跑步成绩各不相同,现要从中选4名参加运动会米接力项目.若他们只知道自己的成绩,要判断自己是否入选,教练只需公布他们成绩的()
A . 平均数
B . 中位数
C . 众数
D . 方差
9. (2分)如图,一直线与坐标轴的正半轴分别交于A, B两点, P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的长方形的周长为8,则该直线的函数表达式是().
A .
B .
C .
D .
10. (2分)(2020·乐东模拟) 如图,AB是⊙O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则OD=()
A . 2
B . 4
C .
D . 2
11. (2分) (2018九上·信阳月考) 如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()
A .
B .
C .
D .
12. (2分)观察如下数阵,请问位于第9行第10列的数是()
1﹣29﹣1025…
﹣43﹣811﹣24…
5﹣67﹣1223…
﹣1615﹣1413﹣22…
17﹣1819﹣2021…
………………
A . -74
B . 90
C . -90
D . 74
二、填空题 (共6题;共6分)
13. (1分) (2019八下·安庆期中) 若在实数范围内有意义,则 x 的取值范围是________.
14. (1分)分式方程去分母时,两边都乘以________.
15. (1分) (2017九上·巫山期中) 计算: ________.
16. (1分) (2017七下·福建期中) 如图,有一块含有60°角的直角三角板的两个顶点放在长方形的对边上.如果∠1=18°,那么∠2的度数是________.
17. (1分) (2020九上·绍兴月考) 汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=12t﹣4t2 ,汽车从刹车后到停下来前进了________米.
18. (1分) (2019七下·枣庄期中) 如图,某专业合作社计划将长2x米,宽x米的长方形草莓种植大棚进行扩建,阴影部分表示扩建的区域,其余部分为原种植区域,则扩建后的大棚面积增加________米2.
三、解答题 (共7题;共50分)
19. (5分) (2017九上·夏津开学考) 解下列不等式组,并把解集在数轴上表示出来
20. (5分) (2019八上·涵江月考) 如图,AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF,求证:EB∥CF.
21. (5分)(2012·常州) 在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其它区别,从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二只球并记录颜色,求两次都摸出白球的概率.
22. (5分)如图,在斜坡AB上有一棵树BD,由于受台风影响而倾斜,恰好与坡面垂直,在地面上C点处测得树顶部D的仰角为60°,测得坡角∠BAE=30°,AB=6米,AC=4米.求树高BD的长是多少米?(结果保留根号)
23. (5分) (2017九上·钦州月考) 如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?
24. (10分)(2018·枣庄) 如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.
(1)求线段AD的长度;
(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.
25. (15分)(2020·天台模拟) 如图1,抛物线过点,,点为直线下方抛物线上一动点,为抛物线顶点,抛物线对称轴与直线交于点 .
(1)求抛物线的表达式与顶点的坐标;
(2)在直线上是否存在点,使得,,,为顶点的四边形是平行四边形,若存在,请求出点坐标;
(3)在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共6分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共7题;共50分)
19-1、
20-1、
21-1、
22-1、
23-1、24-1、24-2、25-1、
25-2、
25-3、
第11 页共11 页。