数值分析复习题及答案70015
数值分析试题及答案
数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。
下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。
以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。
以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。
根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。
要求精确到小数点后三位。
解:首先需要判断方程在区间[1, 2]上是否存在根。
数值分析试题及答案汇总
数值分析试题一、 填空题2 0×2′1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =是精确值x =的近似值,则x 有 2 位有效数字;2. 若fx =x 7-x 3+1,则f 20,21,22,23,24,25,26,27= 1 , f 20,21,22,23,24,25,26,27,28=0 ;3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __;4. 非线性方程fx =0的迭代函数x =x 在有解区间满足 |’x | <1 ,则使用该迭代函数的迭代解法一定是局部收敛的;5. 区间a ,b 上的三次样条插值函数Sx 在a ,b 上具有直到 2 阶的连续导数;6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 ;7. 拉格朗日插值公式中fx i 的系数a i x 的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i x 满足 a i x >1 ,计算时不会放大fx i 的误差; 8. 要使20的近似值的相对误差小于%,至少要取 4 位有效数字;9. 对任意初始向量X 0及任意向量g ,线性方程组的迭代公式x k +1=Bx k +gk =0,1,…收敛于方程组的精确解x 的充分必要条件是 B<1 ; 10. 由下列数据所确定的插值多项式的次数最高是 5 ;11. 牛顿下山法的下山条件为 |fxn+1|<|fxn| ;12. 线性方程组的松弛迭代法是通过逐渐减少残差r i i =0,1,…,n 来实现的,其中的残差r i= b i -a i1x 1-a i2x 2-…-a in x n /a ii ,i =0,1,…,n ;13. 在非线性方程fx =0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且fx 的二阶导数不变号,则初始点x 0的选取依据为 fx0f ”x0>0 ; 14. 使用迭代计算的步骤为建立迭代函数、 选取初值 、迭代计算; 二、判断题10×1′1、 若A 是n 阶非奇异矩阵,则线性方程组AX =b 一定可以使用高斯消元法求解; ×2、 解非线性方程fx =0的牛顿迭代法在单根x 附近是平方收敛的;3、 若A 为n 阶方阵,且其元素满足不等式则解线性方程组AX =b 的高斯——塞德尔迭代法一定收敛; × 4、 样条插值一种分段插值; 5、 如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的; 6、 从实际问题的精确解到实际的计算结果间的误差有模型误差、观测误差、截断误差及舍入误差; 7、 解线性方程组的的平方根直接解法适用于任何线性方程组AX =b ; × 8、 迭代解法的舍入误差估计要从第一步迭代计算的舍入误差开始估计,直到最后一步迭代计算的舍入误差; × 9、 数值计算中的总误差如果只考虑截断误差和舍入误差,则误差的最佳分配原则是截断误差=舍入误差; 10、插值计算中避免外插是为了减少舍入误差; × 三、计算题5×10′1、用列主元高斯消元法解线性方程组; 解答:1,5,2最大元5在第二行,交换第一与第二行: L 21=1/5=,l 31=2/5= 方程化为: ,最大元在第三行,交换第二与第三行: L32==,方程化为: 回代得:⎪⎩⎪⎨⎧-===00010.1 99999.500005.3321x x x 2、用牛顿——埃尔米特插值法求满足下列表中插值条件的四次插值多项式P 4x ,并写出其截断误差的表达式设fx 在插值区间上具有直到五阶连续导数;解答: 做差商表P4x=1-2x-3xx-1-xx-1x-1x-2 R4x=f5/5xx-1x-1x-2x-23、对下面的线性方程组变化为等价的线性方程组,使之应用雅克比迭代法和高斯——赛德尔迭代法均收敛,写出变化后的线性方程组及雅克比迭代法和高斯——赛德尔迭代法的迭代公式,并简单说明收敛的理由; 解答:交换第二和第四个方程,使系数矩阵为严格对角占优:雅克比迭代公式: 计算机数学基础2数值分析试题 一、单项选择题每小题3分,共15分 1. 已知准确值x 与其有t 位有效数字的近似值x =…a n ×10s a 10的绝对误差x -x .A ×10 s -1-tB ×10 s -tC ×10s +1-tD ×10 s +t 2. 以下矩阵是严格对角占优矩阵的为 .A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------2100121001210012, B ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2100141101410125⎪⎪⎩⎪⎪⎨⎧=+-=-+=-+-=+-65 84 3 3 12431432321421x x x x x x x x x x x xC ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--2100141212410125 D ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-5131141201411124 3. 过0,1,2,4,3,1点的分段线性插值函数Px =A ⎪⎩⎪⎨⎧≤<+-≤≤+3210320123x x x x B ⎪⎩⎪⎨⎧≤<+-≤≤+32103201232x x x x C ⎪⎩⎪⎨⎧≤<+-≤≤-3210320123x x x x D⎪⎩⎪⎨⎧≤<+-≤≤+32420123x x x x 4. 等距二点的求导公式是A ⎪⎪⎩⎪⎪⎨⎧-='+-='+++)(1)()(1)(111k k k k k k y y h x f y y h x fB ⎪⎪⎩⎪⎪⎨⎧-='-='+++)(1)()(1)(111k k k k k k y y h x f y y h x f C ⎪⎪⎩⎪⎪⎨⎧-='+-='+++)(1)()(1)(111k k k k k k y y h x f y y h x fD5. 解常微分方程初值问题的平均形式的改进欧拉法公式是那么y p ,y c 分别为 .A ⎩⎨⎧+=+=+),(),(1k k k c k k k p y x hf y y y x hf y yB ⎪⎩⎪⎨⎧+=+=+),(),(1p k k c k k k p y x hf y y y x hf y yC ⎪⎩⎪⎨⎧+=+=),(),(p k k c k k k p y x f y y y x f y y D ⎪⎩⎪⎨⎧+=+=+),(),(1p k k c k k k p y x hf y y y x hf y y 二、填空题每小题3分,共15分6. 设近似值x 1,x 2满足x 1=,x 2=,那么x 1x 2= .7. 三次样条函数Sx 满足:Sx 在区间a ,b 内二阶连续可导,Sx k =y k 已知,k =0,1,2,…,n ,且满足Sx 在每个子区间x k ,x k +1上是 .8. 牛顿-科茨求积公式∑⎰=≈n k k k bax f A x x f 0)(d )(,则∑=nk k A 0= .9. 解方程fx =0的简单迭代法的迭代函数x 满足在有根区间内 ,则在有根区间内任意取一点作为初始值,迭代解都收敛.10. 解常微分方程初值问题的改进欧拉法预报――校正公式是预报值:),(1k k k k y x hf y y +=+,校正值:y k +1= . 三、计算题每小题15分,共60分11. 用简单迭代法求线性方程组的X 3.取初始值0,0,0T ,计算过程保留4位小数. 12. 已知函数值f 0=6,f 1=10,f 3=46,f 4=82,f 6=212,求函数的四阶均差f 0,1,3,4,6和二阶均差f 4,1,3.13.将积分区间8等分,用梯形求积公式计算定积分⎰+312d 1x x ,计算过程保留4位小数.14. 用牛顿法求115的近似值,取x =10或11为初始值,计算过程保留4位小数. 四、证明题本题10分 15. 证明求常微分方程初值问题在等距节点a =x 0<x 1<…<x n =b 处的数值解近似值的梯形公式为yx k +1y k +1=y k +2hfx k ,y k +fx k +1,y k +1 其中h =x k +1-x k k =0,1,2,…n -1计算机数学基础2数值分析试题答案一、单项选择题每小题3分,共15分 1. A 2. B 3. A 4. B 5. D 二、填空题每小题3分,共15分 6. x 2+x 1 7. 3次多项式8. b -a 9. xr <1 10. y k +)],(),([211+++k k k k y x f y x f hhfx k +1, 1+k y . 三、计算题每小题15分,共60分 11. 写出迭代格式 X 0=0,0,0T .得到X 1=,3,3T 得到X 2=, 7, 0T 得到X 3= 4, 6, 6T .12.f 0,1,3,4,6=15f 4, 1, 3=6 13. fx =21x +,h =25.082=.分点x 0=,x 1=,x 2=,x 3=,x 4=,x 5=,x 6=,x 7=,x 8=.函数值:f = 2,f = 8,f = 8,f = 6,f = 1,f = 2,f = 6,f = 2,f = 3.))]()()()()()()((27654321x f x f x f x f x f x f x f +++++++ 9分=225.0× 2+ 3+2× 8+ 8+ 6 + 1+ 2+ 6+ 2=× 5+2× 3= 114. 设x 为所求,即求x 2-115=0的正根.fx =x 2-115.因为fx =2x ,fx =2,f 10f 10=100-115×2<0,f 11f 11=121-115×2>0取x 0=11. 有迭代公式x k +1=x k -)()(k k x f x f '=k k k k k x x x x x 2115221152+=--k =0,1,2,… x 1=112115211⨯+= 3x 2=3727.10211523727.10⨯+= 8 x 3=8723.10211528723.10⨯+= 8x 8四、证明题本题10分15. 在子区间x k +1,x k 上,对微分方程两边关于x 积分,得yx k +1-yx k =⎰+1d ))(,(k kx x x x y x f用求积梯形公式,有yx k +1-yx k =))](,())(,([211+++k k k k x y x f x y x f h将yx k ,yx k +1用y k ,y k +1替代,得到yx k +1y k +1=y k +2hfx k ,y k +fx k +1,y k +1k =0,1,2,…,n -1 数值分析期末试题一、填空题20102=⨯分1设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=283012251A ,则=∞A ______13_______;2对于方程组⎩⎨⎧=-=-34101522121x x x x ,Jacobi 迭代法的迭代矩阵是=JB ⎥⎦⎤⎢⎣⎡05.25.20;33*x 的相对误差约是*x 的相对误差的31倍;4求方程)(x f x =根的牛顿迭代公式是)('1)(1n n n n n x f x f x x x +--=+;5设1)(3-+=x x x f ,则差商=]3,2,1,0[f 1 ;6设n n ⨯矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi ni λ≤≤1max ;7已知⎥⎦⎤⎢⎣⎡=1021A ,则条件数=∞)(A Cond 9 8为了提高数值计算精度,当正数x 充分大时,应将)1ln(2--x x 改写为)1ln(2++-x x ;9n 个求积节点的插值型求积公式的代数精确度至少为1-n 次;10拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3131∑==i i x f y ;二、10分证明:方程组⎪⎩⎪⎨⎧=-+=++=+-12112321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性;证明:Jacobi 迭代法的迭代矩阵为J B 的特征多项式为J B 的特征值为01=λ,i 25.12=λ,i 25.13-=λ,故25.1)(=J B ρ>1,因而迭代法不收敛性;三、10分定义内积试在{}x Span H ,11=中寻求对于x x f =)(的最佳平方逼近元素)(x p ;解:1)(0≡x ϕ,x x ≡)(1ϕ,1),(100==⎰dx ϕϕ,21),(101==⎰xdx ϕϕ,31),(1211==⎰dx x ϕϕ,32),(10==⎰dx x f ϕ,52),(11==⎰dx x x f ϕ; 法方程 解得1540=c ,15121=c ;所求的最佳平方逼近元素为 x x p 1512154)(+=,10≤≤x 四、10试用三次多项式以最小二乘法拟合所给数据;解:332210)(x c x c x c c x y +++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=84211111000111118421A , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=130034003401034010001005A A T 法方程的解为4086.00=c ,39167.01=c ,0857.02=c ,00833.03=c 得到三次多项式误差平方和为000194.03=σ五. 10分 依据如下函数值表建立不超过三次的Lagrange 插值多项式,用它计算)2.2(f ,并在假设1)()4(≤x f 下,估计计算误差;解:先计算插值基函数所求Lagrange 插值多项式为121445411)(3)(23)(9)()()()(233210303+-+-=+++==∑=x x x x l x l x l x l x l x f x L i i i 从而0683.25)2.2()2.2(3=≈L f ;据误差公式))()()((!4)()(3210)4(3x x x x x x x x f x R ----=ξ及假设1)()4(≤x f 得误差估计:六. 10分 用矩阵的直接三角分解法解方程组解 设由矩阵乘法可求出ij u 和ij l 解下三角方程组有51=y ,32=y ,63=y ,44=y ;再解上三角方程组得原方程组的解为11=x ,12=x ,23=x ,24=x ;七. 10分 试用Simpson 公式计算积分 的近似值, 并估计截断误差;解:截断误差为八. 10分 用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求8110--<-kk k x x x ;解:此方程在区间) ,2(∞内只有一个根s ,而且在区间2,4内;设则 x x f 11)('-=, 21)(''xx f = Newton 法迭代公式为1)ln 1(112ln 1-+=----=+k k k kk k k k x x x x x x x x , ,2,1,0=k 取30=x ,得146193221.34=≈x s ;九. 10分 给定数表求次数不高于5的多项式)(5x H ,使其满足条件 其中,1i x i +-= 3 ,2 ,1 ,0=i ;解:先建立满足条件)()(3i x f x p =, 3,2,1,0=i的三次插值多项式)(3x p ;采用Newton 插值多项式[][]))((,,)(,)()(1021001003x x x x x x x f x x x x f x f x p --+-+=+再设 )2)(1()1)(()()(35--+++=x x x x b ax x p x H ,由 得 解得36059-=a ,360161=b ; 故所求的插值多项式。
数值分析试题与答案
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
数值分析期末复习题答案
数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。
例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。
2. 说明数值微分与数值积分的区别。
答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。
三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。
答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。
具体计算过程略。
2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。
答案:首先确定区间划分,然后应用辛普森积分公式进行计算。
具体计算过程略。
四、论述题1. 论述数值分析中误差的来源及其控制方法。
答案:误差主要来源于舍入误差和截断误差。
舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。
控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。
五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。
数值分析期末考试题及答案
数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
数值分析练习题附答案
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
数值分析试题库与答案解析
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,342⎛⎫ ⎪=- ⎪ ⎪⎝⎭x ,则 ∞A = ., 1x = ______.3.已知y =f (x )的均差(差商)01214[,,]3f x x x =,12315[,,] 3f x x x =,23491[,,]15f x x x =,0238[,,] 3f x x x =, 那么均差423[,,]f x x x = .4.已知n =4时Newton -Cotes 求积公式的系数分别是:,152,4516,907)4(2)4(1)4(0===C C C 则)4(3C = .5.解初始值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进的Euler 方法是 阶方法;6.求解线性代数方程组123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩的高斯—塞德尔迭代公式为 ,若取(0)(1,1,1)=-x, 则(1)=x .7.求方程()x f x =根的牛顿迭代格式是 . 8.1(), (),, ()n x x x 是以整数点01, ,, ,n x x x 为节点的Lagrange 插值基函数,则()n kjk k xx =∑= .9.解方程组=Ax b 的简单迭代格式(1)()k k +=+xBx g 收敛的充要条件是 .10.设(-1)1,(0)0,(1)1,(2)5f f f f ====,则()f x 的三次牛顿插值多项式为 ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式()p x 满足:(1)15p =,(1)20p '=,(1)30p ''=(2)57p =,(2)72p '=.2.构造代数精度最高的形式为10101()()(1)2xf x dx A f A f ≈+⎰的求积公式,并求出 其代数精度.3.用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求8110--<-kk k x x x .4.用最小二乘法求形如2y a bx =+的经验公式拟合以下数据:5.用矩阵的直接三角分解法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x .6 试用数值积分法建立求解初值问题0(,)(0)y f x y y y '=⎧⎨=⎩的如下数值求解公式1111(4)3n n n n n hy y f f f +-+-=+++,其中(,),1,,1i i i f f x y i n n n ==-+.三、证明题(10分)设对任意的x ,函数()f x 的导数()f x '都存在且0()m f x M '<≤≤,对于满足20Mλ<<的任意λ,迭代格式1()k k k x x f x λ+=-均收敛于()0f x =的根*x .参考答案一、填空题1.5; 2. 8, 9 ; 3.9115; 4. 1645; 5. 二; 6. (1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩, ,,0.1543)7. 1()1()k k k k k x f x x x f x +-=-'-; 8. j x ; 9. ()1B ρ<; 10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题 1.差商表:233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+ 令(2)57p =,(2)72p '=,求出a 和b. 2.取()1,f x x =,令公式准确成立,得:0112A A +=,011123A A +=, 013A =, 116A =. 2()f x x =时,公式左右14=;3()f x x =时,公式左15=, 公式右524=∴ 公式的代数精度2=.3.此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。
数值分析复习题答案
数值分析复习题答案数值分析复习题答案数值分析是一门研究数值计算方法和数值计算误差的学科。
在实际问题中,我们经常需要通过数值计算方法来求解数学模型,这就需要我们掌握数值分析的基本概念和方法。
下面是一些数值分析复习题的答案,希望能对你的复习有所帮助。
一、差分法与数值微分1. 差分法是一种数值计算方法,通过计算函数在一点的导数来近似计算函数在该点的值。
常用的差分法有前向差分法、后向差分法和中心差分法。
2. 前向差分法的近似公式为:f'(x) ≈ (f(x+h) - f(x))/h,其中h为步长。
3. 后向差分法的近似公式为:f'(x) ≈ (f(x) - f(x-h))/h,其中h为步长。
4. 中心差分法的近似公式为:f'(x) ≈ (f(x+h) - f(x-h))/(2h),其中h为步长。
5. 数值微分是使用差分法来近似计算函数的导数。
通过选取合适的步长,可以使数值微分的误差最小化。
二、插值法与数值积分1. 插值法是一种通过已知数据点来估计未知数据点的方法。
常用的插值方法有拉格朗日插值法和牛顿插值法。
2. 拉格朗日插值法通过构造一个多项式来逼近已知数据点,然后利用该多项式来估计未知数据点的值。
3. 牛顿插值法是利用差商的概念来构造一个多项式,然后利用该多项式来估计未知数据点的值。
4. 数值积分是一种通过数值计算来近似计算函数的定积分。
常用的数值积分方法有梯形法则和辛普森法则。
5. 梯形法则通过将积分区间划分为若干个小区间,然后在每个小区间上使用梯形面积来近似计算积分。
6. 辛普森法则是在梯形法则的基础上进一步改进的方法,它使用抛物线来逼近函数的曲线,从而提高了积分的精度。
三、数值方程求解1. 数值方程求解是通过数值计算方法来求解非线性方程或线性方程组的方法。
2. 常用的数值方程求解方法有二分法、牛顿法和高斯消元法。
3. 二分法是一种通过不断缩小区间范围来逼近方程的根的方法。
数值分析试题及答案
数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。
A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。
A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。
A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。
A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。
A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。
A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。
A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。
数值分析试题及答案
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
数值分析试题答案
数值分析试题答案一、选择题1. 以下哪个数值方法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 欧几里得算法D. 拉格朗日插值法答案:B2. 在数值分析中,舍入误差通常是由什么引起的?A. 人为计算错误B. 计算机表示数字的限制C. 测量误差D. 数据输入错误答案:B3. 插值和拟合的区别在于:A. 插值通过所有数据点,而拟合不通过B. 拟合通过所有数据点,而插值不通过C. 插值是线性的,拟合是非线性的D. 插值是精确的,拟合是近似的答案:A4. 以下哪种方法最适合求解非线性方程?A. 雅可比迭代法B. 牛顿-拉弗森方法C. 托马斯算法D. 布雷尔-史密斯算法答案:B5. 在数值分析中,条件数用于衡量什么?A. 方程组解的存在性B. 方程组解的唯一性C. 方程组解的稳定性D. 方程组解的精确性答案:C二、填空题1. 在数值分析中,__________误差指的是由于计算机舍入而产生的误差,而__________误差指的是由于数据不精确或截断而产生的误差。
答案:截断;舍入2. 线性方程组的矩阵表示为__________,其中A是系数矩阵,x是变量向量,b是常数向量。
答案:Ax = b3. 牛顿法求解非线性方程时,需要计算函数的__________。
答案:导数4. 拉格朗日插值法通过构建一个多项式来近似数据点,该多项式的每一段都与数据点的__________相匹配。
答案:切线5. 为了减少数值分析中的误差,通常采用__________方法来提高计算的精度。
答案:增量三、简答题1. 请简述高斯消元法的基本思想及其在求解线性方程组中的应用。
高斯消元法的基本思想是通过行变换将系数矩阵转化为阶梯形矩阵,进而简化方程组的求解过程。
在求解线性方程组时,首先将增广矩阵进行行变换,使得主元下方的元素为零,然后通过回代过程逐步求解出未知数。
2. 描述牛顿-拉弗森方法求解非线性方程的迭代过程。
牛顿-拉弗森方法是一种迭代求解非线性方程的方法。
数值分析复习题及答案
数值分析复习题及答案数值分析复习题一、选择题1. 3.142和3.141分别作为π的近似数具有()和()位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++?,则A =()A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足()A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x =D . ()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有()敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=??++=??--=? 作第一次消元后得到的第3个方程().A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空 1. 设 2.3149541 (x)*=,取5位有效数字,则所得的近似值 .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===-- 则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X =,=∞||||X 。
4.求方程2 1.250x x --= 的近似根,用迭代公式 1.25x x =+,取初始值 01x =,那么 1______x =。
5.解初始值问题 00'(,)()y f x y y x y =??=?近似解的梯形公式是1______k y +≈。
数值分析整理版试题及答案
数值分析整理版试题及答案例1、已知函数表求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。
解:((例2、设2()32f x xx =++,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有所以,法方程为01123126119234a a =,经过消元得01231162110123a a= 再回代解该方程,得到14a =,0116a =故,所求最佳平方逼近多项式为*111()46S x x =+例3、设()xf x e=,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若Φ=例4解:(1由于h (2由于h 例5解:例6解:设则由A LU =的对应元素相等,有1114u =,1215u =,1316u =, 2111211433l u l =?=,3111311 22l u l =?=,2112222211460l u u u +=?=-,2113232311545l u u u +=?=-,3112322232136l u l u l +=?=-,31133223333313215 l u l u u u ++=?=因此,解Ly b =,即12310094108382361y y y ??=-?,得19y =,24y =-,3154y =- 解Ux=11114569x ??LU 唯一)35∞?)()67 )2、((Ⅹ )一、判断题(10×1′)1、若A 是n 阶非奇异矩阵,则线性方程组AX =b 一定可以使用高斯消元法求解。
(×)2、解非线性方程f (x )=0的牛顿迭代法在单根x *附近是平方收敛的。
(?)3、若A 为n 阶方阵,且其元素满足不等式则解线性方程组AX =b 的高斯——塞德尔迭代法一定收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析复习题一、选择题1. 和分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足()A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+= C .2323x x -+= D .230.5 1.5x x -=-二、填空1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。
4.求方程 21.250x x --= 的近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么1______x =。
5.解初始值问题 00'(,)()y f x y y x y =⎧⎨=⎩近似解的梯形公式是 1______k y +≈。
6、1151A ⎛⎫= ⎪-⎝⎭,则A 的谱半径 = 。
7、设2()35, , 0,1,2,... ,k f x x x kh k =+== ,则[]12,,n n n f x x x ++=和[]123,,,n n n n f x x x x +++=。
8、若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都 。
9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为 。
10、为了使计算23123101(1)(1)y x x x =++----的乘除法运算次数尽量的少,应将表达式改写成 。
11. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .12. 一阶均差()01,f x x =13. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 14. 因为方程()420x f x x =-+=在区间[]1,2上满足,所以()0f x =在区间内有根。
15. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .16.设*2.40315x =是真值 2.40194x =的近似值,则*x 有 位有效数字。
17. 对1)(3++=x x x f , 差商=]3,2,1,0[f ( )。
18. 设(2,3,7)TX =-, 则||||X ∞= 。
19.牛顿—柯特斯求积公式的系数和()nn k k C ==∑ 。
20. 若a =是的近似值,则a 有( )位有效数字.21. )(,),(),(10x l x l x l n Λ是以n ,,1,0Λ为插值节点的Lagrange 插值基函数,则=∑=ni i x il 0)(( ).22. 设f (x )可微,则求方程)(x f x =的牛顿迭代格式是( ).23. 迭代公式f BX X k k +=+)()1(收敛的充要条件是 。
24. 解线性方程组A x =b (其中A 非奇异,b 不为0) 的迭代格式f x x+=+)()1(k k B 中的B 称为( ). 给定方程组⎩⎨⎧-=-=-45892121x x x x ,解此方程组的雅可比迭代格式为()。
25、数值计算中主要研究的误差有 和 。
26、设()(0,1,2)j l x j n =L 是n 次拉格朗日插值多项式的插值基函数,则()j i l x =(,0,1,2)i j n =L ;()nj j l x ==∑ 。
27、设()(0,1,2)j l x j n =L 是区间[,]a b 上的一组n 次插值基函数。
则插值型求积公式的代数精度为 ;插值型求积公式中求积系数j A =;且njj A==∑ 。
28、辛普生求积公式具有 次代数精度,其余项表达式为 。
29、2()1,f x x =+则[1,2,3]_________,[1,2,3,4]_________f f ==。
30.设x * = 是真值x = 的近似值,则x *有 位有效数字。
31.3()1,[0,1,2,3]f x x x f =+-=设 则差商(均差) ,[0,1,2,3,4]f =。
32.求方程()x f x =根的牛顿迭代格式是 。
33.已知1234A ⎛⎫= ⎪⎝⎭,则A ∞= , 1A = 。
34. 方程求根的二分法的局限性是 。
三、计算题1.设3201219(), , 1, 44f x x x x x ====(1)试求 ()f x 在 19,44⎡⎤⎢⎥⎣⎦上的三次Hermite 插值多项式()x H 使满足''11()(), 0,1,2,... ()()j j H x f x j H x f x ===,()x H 以升幂形式给出。
(2)写出余项 ()()()R x f x H x =-的表达式2.已知 的 满足 ,试问如何利用 构造一个收敛的简单迭代函数 ,使0,1…收敛3. 推导常微分方程的初值问题 00'(,)()y f x y y x y =⎧⎨=⎩的数值解公式:'''1111(4)3n n n n n h y y y y y +-+-=+++(提示: 利用Simpson 求积公式。
)4. 利用矩阵的LU 分解法解方程 组 1231231232314252183520x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩5. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.6. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1)写出雅可比迭代公式、高斯-塞德尔迭代公式;(2)于初始值()()0,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).7. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2(2)请用牛顿法求出近似根,精确到.8. 写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.9.用二次拉格朗日插值多项式2()sin 0.34L x 计算的值。
插值节点和相应的函数值是(0,0),(,),(,)。
10.用二分法求方程3()10[1.0,1.5]f x x x =--=在 区间内的一个根,误差限210ε-=。
11.用高斯-塞德尔方法解方程组 ⎪⎩⎪⎨⎧=++=++=++225218241124321321321x x x x x x x x x ,取T )0,0,0()0(=x,迭代三次(要求按五位有效数字计算).。
12.求系数123,,A A A 和使求积公式1123111()(1)()()233f x dx A f A f A f -≈-+-+≤⎰对于次数的一切多项式都精确成立13. 对方程组 ⎪⎩⎪⎨⎧=-+=--=++841025410151023321321321x x x x x x x x x 试建立一种收敛的Seidel 迭代公式,说明理由14. 确定求积公式 )5.0()()5.0()(111Cf x Bf Af dx x f ++-≈⎰- 的待定参数,使其代数精度尽量高,并确定其代数精度.15. 设初值问题 101)0(23<<⎩⎨⎧=+='x y y x y . (1) 写出用Euler 方法、步长h =解上述初值问题数值解的公式;(2)写出用改进的Euler 法(梯形法)、步长h =解上述初值问题数值解的公式,并求解21,y y ,保留两位小数。
16.取节点1,5.0,0210===x x x ,求函数xe y -=在区间]1,0[上的二次插值多项式)(2x P ,并估计误差。
17、已知函数()y f x =的相关数据由牛顿插值公式求三次插值多项式3()P x 13()2P =的近似值。
18、利用尤拉公式求解初值问题,其中步长0.1h =,1,(0,0.6)(0) 1.y y x x y '=-++⎧∈⎨=⎩。
19.确定求积公式012()()(0)()hhf x dx A f h A f A f h -≈-++⎰。
中待定参数iA 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积公式的代数精度20、已知一组试验数据如下 :求它的拟合曲线(直线)。
用列主元消去法解线性方程组1231231232346,3525,433032.x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩22. 已知(1)用拉格朗日插法求()f x 的三次插值多项式;(2)求x , 使()0f x =。
确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度24、用Gauss 消去法求解下列方程组. 试求12, x x 使求积公式11211()[(1)2()3()]3f x f f x f x -≈-++⎰的代数精度尽量高,并求其代数精度。
. 取步长h =, 用梯形法解常微分方程初值问题 '25 (12)(1)1y x yx y =-⎧≤≤⎨=⎩. 用列主元消去法求解方程组1231231231233151833156x x x x x x x x x -+=⎧⎪-++=-⎨⎪++=⎩并求出系数矩阵A 的行列式detA 的值.用牛顿(切线)法求3的近似值。
取x 0=, 计算三次,保留五位小数。
29、已知数据如下:求形如bx a y +=1拟合函数。
30、用二次拉格朗日插值多项式2()L x 计算sin0.34。