实验一:共射极单管放大电路
模电实验(附答案)
实验一 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。
2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。
3.熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。
偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。
三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。
1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。
2)检查接线无误后,接通电源。
3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。
然后测量U B 、U C ,记入表1中。
表1测 量 值计 算 值U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2.627.2600.65.22B2所有测量结果记入表2—1中。
5)根据实验结果可用:I C ≈I E =EER U 或I C =C C CC R U U -U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。
2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。
实验一 晶体管共射极单管放大器
实验一 晶体管共射极单管放大器一、实验原理图+12V二、实验内容及注意要点1、按照原理图连接电路 注意R W 的接法,连接1、3端,或者2、3端2、静态工作点的测量 输入端接地,静态工作点指标包括I b 、I C 、V CE 。
其中,V CE 用万用表测量V C 、V E 对地电压后计算得出;Ib 、Ic 转为测量V B 、V E ,E C E E V I I R ≈=;在使用万用表测量R B2时关闭直流电源,并将其从电路中断开。
注意实验中选取I C =0.2mA ,即V E =2.4V 。
3、测量电压放大倍数 输入信号1KHz 、峰峰值50mV 正弦信号(注意使用信号发生器获得该信号的方法),记录不同Rc 、R L 下的输出Uo ,计算A V 输入、输出信号波形。
计算过程中注意有 效值=峰峰值输入输出统一采用峰峰值或有效值。
4、输入、输出电阻 如下图连接电路,R=2K ,Rc=2.4K ,R L =2.4K ,I C =0.2mA+12V测量输入电阻时,在放大电路的电容C 1前串接电阻R ,测量U S ,U i ,计算ii S iU R R U U =-;测量输出电阻,去除R ,保持U S ,测量接有R L 时电压U L 及不接负载RL 时输出电压Uo ,计算输出电阻1O O L L U R R U ⎛⎫=-⎪⎝⎭。
5、测量幅频特性曲线 采用三点法测量,即选取中频、高频、低频点测量,具体方法为Rc=2.4K ,R L =2.4K ,I C =0.2mA ,选取中频1KHz ,调节信号发生器使输入信号为1KHz ,逐渐加大幅度使U Opp =1V ;幅度固定,调节信号发生器减小输入信号频率,当U Opp =0.707V 时停止,记录此刻输入信号频率即为低频点;同理增大信号频率记录高频点。
A V=U O /U i ,绘制出幅频特性曲线。
三、实验结果1、静态工作点Q2、电压放大倍数 IC=2.0 mA Ui=50mV(峰峰值)3、输入输出电阻32 3.65032i i S i U mV R R K U U mV mV ==≈Ω--; 3.111 2.4 2.51.5O O L L U V R R K K U V ⎛⎫⎛⎫=-=-⨯Ω≈Ω ⎪ ⎪⎝⎭⎝⎭4、幅频特性曲线1V219Hz 2.2MHzUo四、思考题1、电路中C1、C2和C E 有什么作用?C1、C2分别为输入、输出电容,通交流隔直流,C2使得直流电源在集电极回路形成的直流量不影响负载,C1使信号顺利加大放大电路中;C1对电路带宽下限有影响,1μF 左右为宜。
晶体管共射极单管放大电路实验报告
晶体管共射极单管放大电路实验报告一、实验目的1、掌握晶体管共射极单管放大电路的组成及工作原理。
2、学习静态工作点的调试方法,研究静态工作点对放大器性能的影响。
3、掌握放大器电压放大倍数、输入电阻、输出电阻的测量方法。
4、观察放大器输出波形的失真情况,了解产生失真的原因及消除方法。
二、实验原理1、晶体管共射极单管放大电路的组成晶体管共射极单管放大电路由晶体管、基极电阻、集电极电阻、发射极电阻和耦合电容等组成。
输入信号通过耦合电容加到晶体管的基极,经晶体管放大后,从集电极输出,再通过耦合电容加到负载电阻上。
2、静态工作点的设置静态工作点是指在没有输入信号时,晶体管各极的直流电流和电压值。
合适的静态工作点可以保证放大器在输入信号的作用下,输出信号不失真。
静态工作点的设置主要通过调整基极电阻和集电极电阻的阻值来实现。
3、放大器的性能指标(1)电压放大倍数:是指输出电压与输入电压的比值,反映了放大器对信号的放大能力。
(2)输入电阻:是指从放大器输入端看进去的等效电阻,反映了放大器从信号源获取信号的能力。
(3)输出电阻:是指从放大器输出端看进去的等效电阻,反映了放大器带负载的能力。
三、实验仪器及设备1、示波器2、信号发生器3、直流稳压电源4、万用表5、实验电路板6、晶体管、电阻、电容等元件四、实验内容及步骤1、按图连接实验电路仔细对照电路图,在实验电路板上正确连接晶体管共射极单管放大电路,注意元件的极性和引脚的连接。
2、静态工作点的调试(1)接通直流稳压电源,调节电源电压至合适值。
(2)用万用表测量晶体管各极的电压,计算静态工作电流。
(3)通过调整基极电阻的阻值,改变静态工作点,观察输出电压的变化,使输出电压不失真。
3、测量电压放大倍数(1)将信号发生器的输出信号接到放大器的输入端,调节信号发生器的频率和幅度,使输入信号为正弦波。
(2)用示波器分别测量输入信号和输出信号的峰峰值,计算电压放大倍数。
4、测量输入电阻(1)在放大器的输入端串联一个已知电阻。
晶体管共射极单管交流放大电路实验报告
晶体管共射极单管交流放大电路实验报告实验目的:掌握晶体管共射极单管交流放大电路的工作原理,学习测量放大电压增益和频率响应特性。
实验仪器:数字万用表、双踪示波器、信号发生器、电源、电阻、电容、晶体管等。
实验原理:晶体管共射极单管交流放大电路是一种常用的放大电路,其原理如下:电路图如下所示:```—C1,,C2,+6,Vin ,R1,,,,—R3—,B,—R2,,RL—GND```按照通用放大器的放大电流相性,我们可以得到如下结论:1. 当输入信号Vin正半周的上升使基极电压增加,晶体管开始导通,电容C1(输入耦合电容)开始充电,C2(负载耦合电容)不发生变化。
2. 当输入信号Vin正半周的下降使基极电压减小,晶体管开始封断,电容C1开始放电,C2不发生变化。
实验步骤:1. 按照电路图连接电路:将R1与R2串联,组成电压分压网络,接入信号源Vin。
将R3与RL串联连接,终端接地,RL连接至晶体管集电极C2端。
将信号源接地端接地。
2.将电源正极连接至C2,电源负极接地。
3.连接示波器,并调整电源电压至合适的值。
4.打开示波器,调整信号发生器,设置所需的频率和幅度。
5. 测量输入信号Vin和输出信号Vout的峰峰值。
6. 通过计算得出电流放大倍数Av,即Vout/Vin。
实验结果:在实验中,我们设置了信号发生器的频率为f,幅度为Vin。
通过示波器分别测量输入信号Vin和输出信号Vout的峰峰值。
根据实验数据计算得到Av=Vout/Vin的值,并绘制频率响应曲线。
实验结论:1.实验结果表明,晶体管共射极单管交流放大电路具有一定的放大作用,且放大倍数随着频率的增加而逐渐减小。
2. 放大倍数Av与输入信号Vin和输出信号Vout之间的关系为Av=Vout/Vin。
3.频率响应曲线表明,放大电路在一定频率范围内的放大效果较好,但随着频率的增加或减小,放大效果会减弱。
4.实验中可能存在的误差主要来自于电路连接不良、仪器误差等因素。
共射极单管放大电路实验报告
共射极单管放大电路实验报告
共射极单管放大电路是一种常见的放大电路,由一个NPN型晶体管组成。
本实验的目的是通过实验验证共射极单管放大电路的放大特性。
一、实验原理:
共射极单管放大电路是一种常用的放大电路,使用一个NPN型晶体管来放大输入信号。
晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。
在共射极单管放大电路中,输入信号通过耦合电容C1输入到基极,集电极通过负载电阻RC与正电源相连。
输出信号由电容C2耦合到负载电阻RL上。
二、实验仪器:
1. 功率放大器实验箱
2. 万用表
3. 音频信号发生器
三、实验步骤:
1. 连接电路:根据实验箱上的电路图,将电路连接好。
2. 调整电源:根据实验箱上的电源电压要求,调整电源电压。
3. 调节发生器:将发生器的频率调节到所需的数值,信号幅度调节适宜值。
4. 测量电压:用万用表分别测量发射极电压、集电极电压和基极电压。
5. 测量电流:用万用表测量发射极电流、集电极电流和基极电流。
6. 测量电容:用万用表测量输入输出电容。
四、实验结果:
将实验测得的数据填入实验报告中,并绘制相应的图表。
五、实验分析:
根据实验结果分析共射极单管放大电路的放大特性、输入输出电容等参数。
六、实验总结:
总结本实验的目的、步骤、结果以及实验中遇到的问题等。
七、思考题:
进一步思考实验中遇到的问题,并提出解决方案。
单管共发射极放大电路实验报告
单管共发射极放大电路实验报告一、实验目的。
本实验旨在通过搭建单管共发射极放大电路,了解其工作原理和特性,掌握其基本性能参数的测量方法,并通过实验验证理论知识的正确性。
二、实验原理。
单管共发射极放大电路是一种常用的放大电路,其基本原理是利用晶体管的放大作用将输入信号放大,输出一个放大后的信号。
在共发射极放大电路中,输入信号通过电容耦合方式输入到晶体管的基极,晶体管的发射极接地,输出信号则从晶体管的集电极获取。
三、实验仪器和器材。
1. 电源,直流稳压电源。
2. 信号源,正弦波信号源。
3. 示波器,示波器。
4. 元器件,晶体管、电容、电阻等。
四、实验步骤。
1. 按照电路图搭建单管共发射极放大电路,注意连接的正确性和稳固性。
2. 调节电源,使其输出电压为所需工作电压。
3. 将正弦波信号源连接到输入端,调节信号源的频率和幅度。
4. 连接示波器,观察输入信号和输出信号的波形。
5. 测量输入信号和输出信号的幅度,并计算电压增益。
6. 调节电路参数,如电容、电阻值,观察对电路工作的影响。
五、实验结果与分析。
通过实验观察和测量,我们得到了单管共发射极放大电路的输入输出波形和幅度,并计算出了电压增益。
通过调节电路参数,我们也观察到了电路工作的变化。
实验结果表明,单管共发射极放大电路能够有效放大输入信号,并且其放大倍数与理论计算值基本吻合。
六、实验总结。
本次实验通过搭建单管共发射极放大电路,对其工作原理和特性有了更深入的了解。
同时,我们也掌握了测量电路性能参数的方法,并通过实验验证了理论知识的正确性。
在实验过程中,我们也发现了一些问题和不足之处,为今后的实验和学习提供了一定的参考和借鉴。
七、实验心得。
通过本次实验,我对单管共发射极放大电路有了更深入的了解,也提高了实验操作和数据处理的能力。
在今后的学习和科研工作中,我将继续努力,不断提升自己的实验技能和理论水平。
以上就是本次单管共发射极放大电路实验的报告内容,希望能对大家有所帮助。
单管共射极放大电路实验报告
单管共射极放大电路实验报告一、实验目的:1.了解单管共射极放大电路的基本结构和工作原理;2.掌握单管共射极放大电路的直流工作点的确定方法;3.学习基于单管共射极放大电路设计的放大器;4.通过实验测量并分析单管共射极放大电路的电压增益、输入阻抗和输出阻抗。
二、实验仪器与器件:1.数字万用表;2.函数信号发生器;3.直流稳压电源;4.双踪示波器;5.NPN型晶体管;6.电阻、电容等电子元件。
三、实验原理1.在输出信号的封装之前,输入信号先经过耦合电容CE进入晶体管的基极,经过放大形成输出信号;2.输入信号通过耦合电容CE进入基极后,根据电流放大的原理,使得集电极电流的变化与输入信号在幅度上成正比;3.集电极电流变化引起集电极电压变化,通过电容负载使输出电压变化;4.通过对负载进行选择可以实现不同放大效果,如电阻负载可以使电路具有较好的输出信号功率;电容负载可以实现相位整顿放大等。
四、实验步骤及结果分析1.首先按照实验电路连接图连接实验电路,电源电压选择为12V,电阻和电容的数值按照实验要求选择;2.使用数字万用表测量并记录各个器件正常工作电压,包括集电极电压、基极电压、发射极电压等;3.调节函数信号发生器的输出频率和幅度,通过双踪示波器观察输入电压、输出电压的变化规律,并记录相关数据;4.根据所测得的数据,计算并分析电压增益、输入阻抗和输出阻抗的数值,与理论计算的结果进行对比并给出分析结论。
五、实验结果分析通过实验测量得到的数据,我们可以计算得到单管共射极放大电路的电压增益、输入阻抗和输出阻抗。
其中电压增益可以通过输出电压幅值除以输入电压幅值得到,输入阻抗可以通过理想放大电路的计算公式得到,输出阻抗可以通过输出电压与输出电流的比值得到。
根据实验结果分析,可以得到单管共射极放大电路在一定范围内具有较高的电压增益和较低的输入阻抗,从而可以实现信号的放大和阻抗匹配功能。
同时,在选择合适的负载电阻和负载电容的情况下,还可以实现对输出信号的改变,如形成整流放大等特殊功能。
共射极单管放大电路实验报告
共射极单管放大电路实验报告一、实验目的。
本实验旨在通过搭建共射极单管放大电路,了解其基本工作原理,掌握其特性参数的测试方法,并通过实验验证理论知识。
二、实验原理。
共射极单管放大电路是一种常见的电子放大电路,由一个晶体管和几个无源元件组成。
在该电路中,晶体管的发射极接地,基极通过输入电容与输入信号相连,集电极与负载电阻相连,输出信号由负载电阻取出。
当输入信号加到基极时,晶体管的输出信号将由集电极取出,实现信号的放大。
三、实验器材。
1. 电源。
2. 信号发生器。
3. 示波器。
4. 电阻、电容等无源元件。
5. 直流电压表。
6. 直流电流表。
四、实验步骤。
1. 按照电路图连接好电路,并接通电源。
2. 调节电源电压,使得晶体管工作在正常工作区域。
3. 使用信号发生器输入不同频率的正弦信号,观察输出信号的波形变化。
4. 测量输入输出信号的幅度,并计算电压增益。
5. 测量输入输出信号的相位差。
6. 测量电路的输入、输出阻抗。
五、实验结果与分析。
通过实验,我们得到了不同频率下的输入输出信号波形,并测量了其幅度和相位差。
根据测量数据,我们计算得到了电压增益和输入输出阻抗。
通过对比实验数据和理论值,我们发现实验结果与理论值基本吻合,验证了共射极单管放大电路的基本工作原理。
六、实验总结。
通过本次实验,我们深入了解了共射极单管放大电路的工作原理和特性参数的测试方法,掌握了实际搭建和测试的技能。
通过实验验证了理论知识,加深了对电子放大电路的理解,为今后的学习和研究打下了基础。
七、实验注意事项。
1. 在搭建电路时,注意连接的准确性,避免短路或接反。
2. 调节电源电压时,小心操作,避免电压过高损坏元件。
3. 在测量输入输出信号时,注意示波器的设置和测量方法,确保测量准确。
八、参考文献。
1. 《电子技术基础》。
2. 《电子电路》。
3. 《电子电路设计手册》。
以上就是本次共射极单管放大电路实验的报告内容,希望能对大家的学习和实践有所帮助。
晶体管共射极单管放大电路实验报告资料
晶体管共射极单管放大电路实验报告资料一、实验目的:1.了解晶体管共射极单管放大电路的原理及其特性;2.掌握晶体管测量方法;4.学会调整单管放大电路的放大倍数。
二、实验原理:1.晶体管的基本特性:1.(1) PN结管的基本特性:PN结管的三个端口分别为E(C)、B、C(E),其中E(C)端称为发射(射极),B端称为基极,C(E)端称为集电(集电极)。
(2) NPN型晶体管的基本特性:PNP型晶体管是在PN结管的电性基础上发展而成,它具有与NPN型管相反的特性。
NPN管通,它的E(C)端与B端呈低电平状态,而C(E)端呈高电平状态。
2.晶体管的工作状态:晶体管可以工作在截止区、放大区和饱和区三种状态。
以NPN 型晶体管为例,当UBY正值较大,虽然UBB是负瞬间电压导致了BE管结截止,但因为U(C)在UCC的反向极限上方,使得CE导通,这时管子就是处在正常放大工作状态。
3.晶体管的电路模型:在电路中引入β系数是为了表示晶体管在放大区的增益,一般在使用晶体管时$\beta$系数是固定的,因此晶体管的放大倍数$A_V$和它的电路分流比$V_{BB}/R_B$之比息息相关,由于$\beta$值不同,同一种管子也会有不同的放大倍数。
当然,对于一对$Q_1$和$Q_2$来说,同样的RK利用$xK=0.5W$公式推算,它们的$\beta$值也应该是较为接近的。
三、实验步骤:1.根据图1连接实验电路,电源电压定为6V;2.调整可变电阻RP为3.3k欧;3.将示波器的触探管头分别接到波形发生器的输出端和晶体管的集电极上;4.调整波形发生器的频率为50Hz,输出峰值电压为0.6V;5.打开电源,调整RP,使得晶体管工作在放大状态;6.调整波形发生器的输出电压,测得晶体管的输入和输出波形,计算晶体管的放大倍数。
四、实验结果:实验得到的输入和输出波形如下图所示:输入波形计算得到的晶体管的放大倍数为:$\left. K_U=\dfrac{u_{O-P}}{u_{i-P}}=-8.2(\text{单次}) \right.$。
晶体管共射极单管放大电路的实验报告
晶体管共射极单管放大电路的实验报告实验名称:晶体管共射极单管放大电路实验报告一、实验目的:1.了解晶体管共射极单管放大电路的基本原理和工作特性;2.学会使用实验仪器测量晶体管共射极单管放大电路的电压放大倍数和频率响应特性;3.分析晶体管共射极单管放大电路的放大性能和实际应用。
二、实验器材和仪器:1. BenchVue软件及相应的计算机;2.直流电源;3.双踪示波器及相应探头;4.功率放大三极管型号:2N3904;5.电阻、电容等电子元器件;6.实验电路板和连接线。
三、实验过程及结果:1.实验电路搭建:根据实验原理,搭建晶体管共射极单管放大电路,连接电源和示波器等仪器,并通过BenchVue软件实现电路参数采集和分析。
2.测试电路的静电工作点:先断开输入信号源,调节控制电位器使电路的电流、电压等参数处于恰当的工作范围,并记录此时的电压和电流值。
3.测试电路的电压放大倍数:连接输入信号源,输入一个特定频率和特定电压的正弦信号,并通过示波器观察输入信号和输出信号的波形。
利用示波器测量并记录输入信号和输出信号的幅度值,计算电压放大倍数。
4.测试电路的频率响应特性:通过BenchVue软件实现交流扫频实验,从低频到高频扫频,并观察输出电压的响应。
测量并记录不同频率下的输出电压值,并绘制频率特性曲线。
5.数据处理和分析:根据实验数据计算电压放大倍数和频率响应特性,并进行相关的数据处理和分析。
四、结果分析:根据实验数据和计算结果,对晶体管共射极单管放大电路的放大性能进行分析和比较。
可以比较不同频率下的输出电压值、电压放大倍数,并分析电路的频率响应特性。
五、实验总结:通过此次实验,我们对晶体管共射极单管放大电路的工作原理和特性有了更深入的了解。
我们学会了如何使用实验仪器测量电路的电压放大倍数和频率响应特性,并对实际应用进行了分析。
此实验对于加深我们对电子电路放大器的认识和理解具有重要意义。
六、存在问题及改进措施:在进行实验过程中,可能会遇到电路连接错误、仪器操作不当等问题。
单管共射极放大电路实验报告
单管共射极放大电路实验报告Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT实验一、单管共射极放大电路实验1. 实验目的(1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。
(2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。
(3) 掌握放大电路的输入和输出电阻的测量方法。
2. 实验仪器① 示波器② 低频模拟电路实验箱 ③ 低频信号发生器 ④ 数字式万用表 3. 实验原理(图)实验原理图如图1所示——共射极放大电路。
4. 实验步骤 (1) 按图1连接共射极放大电路。
(2)测量静态工作点。
② 仔细检查已连接好的电路,确认无误后接通直流电源。
③ 调节RP1使RP1+RB11=30k④ 按表1测量各静态电压值,并将结果记入表1中。
表1 静态工作点实验数据Rs 4.7K(1)测量电压放大倍数①将低频信号发生器和万用表接入放大器的输入端Ui,放大电路输出端接入示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生器的频率为1KHZ,输入信号幅度为20mv左右的正弦波,从示波器上观察放大电路的输出电压UO的波形,分别测Ui和UO的值,求出放大电路电压放大倍数AU。
图2 实验电路与所用仪器连接图②保持输入信号大小不变,改变RL,观察负载电阻的改变对电压放大倍数的影响,并将测量结果记入表2中。
表2 电压放大倍数实测数据(保持U I不变)(4)观察工作点变化对输出波形的影响①实验电路为共射极放大电路②调整信号发生器的输出电压幅值(增大放大器的输入电压U i),观察放大电路的输出电压的波形,使放大电路处于最大不失真状态时(同时调节RP1与输入电压使输出电压达到最大又不失真),记录此时的RP1+RB11值,测量此时的静态工作点,保持输入信号不变。
改变RP1使RP1+RB11分别为25KΩ和100K Ω,将所测量的结果记入表3中。
晶体管共射极单管放大电路实验
Ri
Ui Us Ui
Rs
Rs
+
+
信
放
号
Us
源
Ui
Ri 大
器
-
-
图2 换算法测量Ri的电路
二、实验电路与原理
5、输出电阻Ro
反映放大器带负载能力。 输入信号源短路时从输出端看进去的等效电阻。
测量方法:换算法,在放大器输入端加一个固定信号,分别 测量负载RL断开和接上时的输出电压Uo和UL,则输出电阻为
Ui
RL' rbe
式中
rbe
300
(1
)
26mv IE
; RL'
RL// 源自C二、实验电路与原理4、输入电阻Ri
反映放大器消耗前级信号功率的大小。
放大器输入端看进去的等效电阻。
定义为输入电压Ui和输入电流Ii的比值。 测量方法:换算法,在信号源和放大器之间串入一个已知电 阻Rs,只要分别测量出Us和Ui,则输入电阻为
文本举例表并列
锵,形成一种骈散结合的独特风格。如“野芳发而幽香,佳木秀而繁阴”“朝而往,暮而归,四时之景不同,而乐亦无穷也”。(2)文章多用判断句,层次极其分明,抒情淋漓尽致,“也”“而”的反复运用
,形成回环往复的韵律,使读者在诵读中获得美的享受。(3)文章写景优美,又多韵律,使人读来不仅能感受到绘画美,也能感受到韵律美。目标导学七:探索文本虚词,把握文言现象虚词“而”的用法用法
束。如此勾画了游人之乐。4.作者为什么要在第三段写游人之乐?明确:写滁人之游,描绘出一幅太平祥和的百姓游乐图。游乐场景映在太守的眼里,便多了一层政治清明的意味。太守在游人之乐中酒酣
而醉,此醉是为山水之乐而醉,更是为能与百姓同乐而醉。体现太守与百姓关系融洽,“政通人和”才能有这样的乐。5.第四段主要写了什么?明确:写宴会散、众人归的情景。目标导学五:深入解读,
实验一单管共射极放大电路的设计
实验一单管共射极放大电路设计姓名:樊益明学号:20113042单管放大电路设计题目:要求:输入电阻Ri<=3K,输出电阻R0>=5k, 直流电源Vcc=6V,设计一个当输入频率f=20kHz,放大倍数AV=60时稳定放大电路。
一:放大电路的选择(1)共射极放大电路:具有较大的电压放大倍数和电流放大倍数,输入电阻和输出电阻比较适中,一般只要对输入电阻和输出电阻和频率响应没有特殊要求的电路均常采用此电路。
共射极放大电路被广泛地应用于低频电压放大电路的输入级、中间级和输出级。
(2)共集电极放大电路:此电路的主要特点是电压跟随,即电压放大倍数接近1而小于1而且输入电阻很高,接受信号能力强。
输出电阻很低,带负载能力强。
此电路常被用作多级放大电路的输入级和输出级或隔离用的中间级。
首先,可利用此电路作为放大器的输入级,以减小对被测电路的影响,提高测量的精度。
其次,如果放大电路输出端是一个变化的负载,为了在负载变化时保证放大电路的输出电压比较稳定,要求放大电路具有很低的输出电阻,此时可以采用射极输出器作为放大电路的输出级,以提高带负载能力。
最后,共集电极放大电路可以作为中间级,以减小前后两级之间的相互影响,起隔离作用。
(3)共基极放大电路:具有很低的输入电阻,使晶体管结电容的影响不显著,所以频率响应得到很大的改善,这种接法常用于宽频带放大器中。
输出电阻高可以作为恒流源。
二:确定电路根据题目要求:应选择稳定的,输入电阻较大的电路,即采用分压式直流负反馈共射极放大电路。
三:原理分析:⑴元器件的作用:Rb1和Rb2起分压作用,给三极管B极提供偏置电压。
Rc给三极管C极提供偏置电压。
Re为直流负反馈,消除温度对电路的影响。
RL为负载,Cb Cc为交流耦合,Cb将交流信号耦合到三极管,Cc将信号耦合到负载。
Ce为旁路电容,三极管起放大作用。
(2)静态分析:即三极管B的确定,即lb=bmin+lbmax)/2 得对应的lc,所以B =lc/lb. 由AV= - B RL'/rbe 得rbe=-BRL'/AV,又rbe=300+26/lb,得lb,vB=2Vbe,Ve=Vb-Vbe,le=(Vb-Vbe)/Re,Vce=Vcc-lc*( Rc+Re) 动态分析:此电路的微变等效图为输入电阻Ri=Rb1//Rb2//rbe, 输出电阻Ro=Rc(RL"),放大倍数AV=-B RL'/rbe.(3)直流负反馈原理:基极B点电压保持不变当温度T升高c 极电流增大e极电压就降低(Ve=lc*Re)继而VBE降低(VBe=VB-VE从而lb降低导致Ic降低达到反馈的目的。
单管共射极放大电路实验报告
单管共射极放大电路实验报告单管共射极放大电路实验报告一、引言在电子电路实验中,单管共射极放大电路是一种常见的基础电路。
它具有放大效果好、输入输出阻抗适中等优点,被广泛应用于放大电路设计中。
本实验旨在通过搭建单管共射极放大电路并对其性能进行测试,深入了解该电路的工作原理和特点。
二、实验原理单管共射极放大电路由一个NPN型晶体管、电阻、电容等元器件组成。
其工作原理如下:当输入信号加到基极时,晶体管的集电极电流将随之变化,从而使输出电压发生相应的变化。
通过调整偏置电压和负载电阻,可以使输出信号放大。
三、实验步骤1. 准备实验所需的元器件:NPN型晶体管、电阻、电容等。
2. 按照电路图搭建单管共射极放大电路。
3. 连接信号发生器和示波器,分别将输入信号和输出信号接入示波器。
4. 调整偏置电压和负载电阻,使电路工作在合适的工作点。
5. 通过信号发生器输入不同频率的正弦波信号,观察输出信号的变化情况。
6. 记录实验数据,并进行分析。
四、实验结果与分析通过实验观察和数据记录,我们得到了如下结果和分析:1. 输出电压随输入信号的变化而变化,呈现出放大的效果。
输入信号的幅值越大,输出信号的幅值也越大。
2. 输出信号的相位与输入信号相位一致,没有发生反相变化。
3. 随着输入信号频率的增加,输出信号的幅值逐渐减小,这是由于晶体管的频率响应特性导致的。
4. 在一定范围内,调整偏置电压和负载电阻可以使电路工作在合适的工作点,以获得最佳的放大效果。
五、实验总结通过本次实验,我们深入了解了单管共射极放大电路的工作原理和特点。
该电路具有放大效果好、输入输出阻抗适中等优点,适用于各种放大电路设计。
同时,我们也了解到了电路中各个元器件的作用和调整方法。
通过调整偏置电压和负载电阻,可以使电路工作在合适的工作点,以获得最佳的放大效果。
此外,我们还观察到了输入信号频率对输出信号幅值的影响,这对于电路设计和应用也具有一定的指导意义。
六、展望本次实验只是对单管共射极放大电路进行了初步的实验研究,还有许多其他方面的内容有待进一步探索。
实验一 晶体管共射极单管放大器
实验一 晶体管共射极单管放大器一实验目的1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2.掌握放大器静态工作点、电压放大倍数、最大不失真输出电压的测试方法。
3.熟悉常用电子仪器及模拟电路实验设备的使用。
二实验原理图1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。
图1共射极单管放大器实验电路在图1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算CC B2B1B1B U R R R U +≈U CE =U CC -I C (R C +R E )电压放大倍数beLC V r R R βA // -= 输入电阻R i =R B1//R B2//r be输出电阻R O ≈R CCEBEB E I R U U I ≈-≈三、实验设备与器件1.+12V直流电源2.函数信号发生器3.双踪示波器4.交流毫伏表5.直流电压表6.直流毫安表7.频率计8.万用电表9.晶体三极管3DG6×1(β=50~100)或9011×1(管脚排列如图6所示)电阻器、电容器若干四实验内容1.调试静态工作点接通直流电源前,先将R W调至最大,函数信号发生器输出旋钮旋至零。
接通+12V电源、调节R W,使I C=2mA(即U E=2.0V)。
用直流电压表测量U B、U E、U C的值,记入表1中。
表12.测量电压放大倍数在放大器输入端加入频率为1KHz的正弦信号u S,调节函数信号发生器的输出旋钮使放大器输入电压U5增大,同时用示波器观察放大器输出电压u O波形,在波形将要失真而不失真的临界状态下,在示波器上读取U s和Uo值,并观察u O和u s的相位关系,记入表2中。
晶体管共射极单管放大电路实验报告
晶体管共射极单管放大电路实验报告实验报告的第一部分,我们来聊聊晶体管共射极单管放大电路的基本概念。
晶体管,听起来可能有点复杂,但其实就是一种能放大电信号的电子元件。
共射极电路的特点是输入信号通过基极,而输出信号则从集电极出来。
这种方式放大倍数高,适合多种应用。
1.1 共射极电路的组成想象一下,一个简单的电路就像一个小乐队。
晶体管就是主唱,电阻器和电容器就是乐队的其他成员。
电源提供动力,信号源则是音源。
每一个部分都有自己的角色,缺一不可。
晶体管有三个引脚:基极、集电极和发射极。
基极接收信号,集电极输出放大后的信号,而发射极则是电流的出路。
要让这个乐队发挥出最佳效果,各个组件的参数得搭配得当。
1.2 工作原理咱们接着说工作原理。
电流从电源流过电阻后,进入基极。
这时候,基极电流就像是乐队的节奏,给整个电路带来活力。
基极电流的微小变化,会引起集电极电流的大幅波动,形成放大效应。
这个放大倍数,通常是基极电流的几十倍到几百倍,真是个令人惊叹的现象!第二部分,我们进入实验步骤。
动手实验,往往是最让人兴奋的环节。
2.1 实验器材准备在这个过程中,我们需要准备一些器材:晶体管、电阻、电容、信号源和万用表。
这些材料都是基础但至关重要的。
挑选晶体管时,注意型号。
不同的型号,特性也不同。
2.2 搭建电路搭建电路时,像搭积木一样简单又有趣。
把电源、电阻、晶体管按照电路图连接好。
每个连接点都得确保牢固,别让它们“脱队”。
这时候,眼睛得睁得大大的,避免搞错了正负极,万一搞错了,就像乐队的节奏乱了,那可就麻烦了。
2.3 测试和数据记录完成后,开始测试。
将信号源接入基极,万用表接到集电极,记录下电流和电压。
小心别让电流过载,这样会损坏设备。
每一次测量,都是在记录乐队演出的表现,心里那个激动啊,真是数不胜数的期待!第三部分,结果分析。
数据出来了,心里那个美呀,简直就像收到了惊喜的礼物。
3.1 数据对比把实验数据和理论计算的数据进行对比。
晶体管共射极单管放大电路实验报告
晶体管共射极单管放大电路实验报告一、实验目的1.理解晶体管共射极单管放大电路的工作原理;2.掌握晶体管共射极单管放大电路的输入输出特性;3.测量与分析晶体管共射极单管放大电路的直流工作点。
二、实验原理(插入晶体管共射极单管放大电路图)晶体管放大电路的工作原理是:当输入信号加到基极时,引起晶体管基极电流的变化,从而引起发射极电流的变化,使得集电极电流的变化,将输入信号放大。
三、实验器材1.功放实验板;2.电源;3.被测晶体管;4.电阻;5.示波器;6.信号发生器;7.万用表。
四、实验步骤1.按照实验电路连接图搭建电路;2.将电源接入电路,调节电压值为所需电压;3.连接示波器和信号发生器,调节信号发生器产生所需的输入信号;4.测量电路的直流工作点,记录基极电压、发射极电压、集电极电压和输出电压值;5.测量电路的交流特性,记录输入信号与输出信号的波形,并测量增益和频率响应。
五、实验结果与分析1.直流工作点测量结果如下:(插入直流工作点测量结果表格)2.交流特性测量结果如下:(插入交流特性测量结果表格)根据实验结果,可以得出晶体管共射极单管放大电路的放大倍数、输入输出特性和频率响应等。
六、实验讨论1.整个实验过程中是否有误差或问题?导致误差或问题的原因是什么?2.如果要改善电路的性能,有哪些方法可以进行改进?七、实验总结通过本实验,我对晶体管共射极单管放大电路的工作原理、特性和参数有了更深入的了解。
同时,我也学会了使用示波器、信号发生器等仪器进行测量和分析,提高了实验操作能力。
在今后的学习和工作中,我将更加熟练地运用这些知识和技能。
晶体管共射极单管放大电路实验报告
晶体管共射极单管放大电路实验报告实验目的:通过搭建晶体管共射极单管放大电路,了解晶体管的工作原理和放大特性,并通过实验验证晶体管的放大效果。
实验原理:晶体管共射极单管放大电路是一种常用的放大电路,它可以将输入信号进行放大,并输出到负载电阻上。
该电路由一个晶体管和负载电阻组成。
晶体管的基极接收输入信号,发射极连接到地线,而集电极接在负载电阻上。
当输入信号作用在基极上时,晶体管的电流和电压都会发生变化。
通过调节偏置电阻的大小,可以使得晶体管进入放大工作区。
当输入信号的幅度足够小,使得晶体管工作在线性放大区域,此时,输出信号的幅度将是输入信号的若干倍。
实验步骤:1.将NPN型晶体管插入实验板上的晶体管座子中,并连接好各个电子元件,注意极性的正确连接。
2.用万用表测量负载电阻的阻值,并连接到晶体管的集电极处。
3.通过调节偏置电阻的阻值,使得晶体管进入放大工作区。
4.施加输入信号,观察电路输出信号的变化。
可以使用信号发生器提供正弦波信号作为输入信号。
5.测量输入和输出信号的电压幅度,并计算出放大倍数。
6.尝试改变输入信号的频率,观察输出信号的变化情况。
实验结果与分析:在实验中,通过调节偏置电阻的大小,可以使得晶体管进入放大工作区。
观察输出信号的幅度变化,可以发现晶体管放大效果的实验验证。
随着输入信号的幅度增加,输出信号的幅度也相应增加。
通过测量输入和输出信号的幅度,可以计算出放大倍数。
实验还可以通过改变输入信号的频率,观察输出信号的变化情况,验证晶体管放大电路的频率特性。
实验总结:通过这次实验,我对晶体管共射极单管放大电路的工作原理和放大特性有了更深入的了解。
通过实验验证,我成功搭建并调试了该电路,观察到了输入信号经过放大后的输出信号。
在实验过程中,我也学到了使用信号发生器、万用表等实验仪器的方法和技巧。
这次实验对于我的电子电路实验能力的提高有很大的帮助,也使我对晶体管的应用有了更深刻的理解。
在以后的学习中,我将继续加深对晶体管和其他电子元件的认识和理解,提高自己的实验能力和电路设计能力。
单管共发射极放大电路实验报告
单管共发射极放大电路实验报告单管共发射极放大电路实验报告引言:单管共发射极放大电路是一种常见的电子电路,用于放大信号。
本实验旨在通过实际操作,验证该电路的放大性能,并探究其工作原理和特点。
一、实验目的本实验的主要目的有以下几点:1. 了解单管共发射极放大电路的基本原理和工作方式;2. 掌握实验中所使用的电路元件的特性和使用方法;3. 验证单管共发射极放大电路的放大性能,并分析其特点。
二、实验原理单管共发射极放大电路是一种基于晶体管的放大电路。
其基本原理是利用晶体管的放大特性,将输入信号的小幅变化转化为输出信号的大幅变化。
在单管共发射极放大电路中,晶体管的发射极作为输入端,基极作为输出端,集电极作为共用端。
三、实验器材和元件1. 电源:提供所需的直流电源;2. 晶体管:选择适合的晶体管,如2N3904;3. 电阻:用于构建电路的电阻,如1kΩ、10kΩ等;4. 电容:用于构建电路的电容,如10uF、100uF等;5. 示波器:用于观测电路的输入输出信号。
四、实验步骤1. 按照电路图连接电路,确保连接正确无误;2. 调整电源电压,使其符合晶体管的额定工作电压;3. 接入示波器,观测输入信号和输出信号的波形;4. 调节输入信号的幅度,记录相应的输出信号幅度;5. 改变输入信号频率,观察输出信号的变化;6. 尝试改变电阻和电容的数值,观察电路的放大性能变化。
五、实验结果与分析通过实验观察和记录,我们得到了一系列输入信号和输出信号的数据。
根据这些数据,我们可以计算放大倍数,并绘制输入输出特性曲线和频率响应曲线。
根据计算和实验结果,我们可以得出以下结论:1. 单管共发射极放大电路具有较好的放大性能,输入信号的小幅变化可以得到相应的大幅输出变化;2. 放大倍数与输入信号的幅度呈线性关系,且与电路中的电阻和电容数值有关;3. 频率响应曲线显示出电路对不同频率信号的放大程度不同,存在一定的频率选择性。
六、实验总结通过本次实验,我们深入了解了单管共发射极放大电路的工作原理和特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
失真波形
严重截止失真波形
失真波形
饱和失真波形
返回
实验内容
最佳静态工作点的调试
初调静点(空载)第2步:
调节RB1使VC=7V左右。 由低信输出f=1kHZ的正弦信号至Vi,慢慢加大信号幅度, 用示波器观察输出波形Vo,如出现单边失真,调节RB1使之 消除。
再加大Vi,若还出现比较明显的单边失真,则调 节RB1消除之。
返回
饱和区
Ic
为方便演示,假定三极管空载且e级到地电阻为0,此时交直流负 载线重合。 红色的圆表示静 请注意,由于集 基极直流电位下 此时应当降低基极 当输入信号过大 此时应当升高基极 基极直流电位升 态工作点的位置; 电极和基极反相, 降时,静态工作 直流电位,使静态 时,将使动态工 电位,使静态工作 高时,静态工作 红色水平线用于 因此在集电极输 点将下移,在输 工作点下移。 点上移。 作点的范围同时 点将上移,在输 标出叠加图示正 出的波形上,饱 入信号不变时, 进入截止和饱和 入信号不变时, 弦信号时,动态 和失真出现在下 动态工作点将进 区,出现双向失 动态工作点将进 工作点的运动范 半周期,截止失 入截止区,引起 真。此时应减小 入饱和区,引起 围 截止失真 真出现在上半周 输入信号幅度。 饱和失真 期
直至加大Vi出现双向对称失真,此时减小V静态工作点的调试
关断低信,测量最佳静点,完成表2.2的测试内容。
实验内容
测量电压增益
在输出波形为最大不失真波形时用示波器观察放大 器输出电压Uo的波形。 用交流毫伏表测量此种情况下的 Uo1 、 Ui1,计算放 大倍数 加2K负载电阻,用交流毫伏表测试此种情况下的 Uo2 、Ui2值,计算放大倍数。 根据P33公式计算整个电路的输出电阻
实验内容
观察静态工作点对输出波形失真的影响
调节RB1电位器的阻值,使输出波形分别产生饱和失 真、截止失真 用万用表分别两种情况下的三极管静点 填入表2.5 返回
单管共射极放大电路
单管共射极放大电路
仪器介绍
电路分析 实验内容 结束语
电路图分析
上偏电阻
旁路电容。由于 发射极电阻,可 集电极电阻,在交 RE 的引入会降低 以提高E点的直 流通路中相当于接 电路的放大倍数, 流电位,引入负 在集电极和地之间, 下偏电阻 , 加入旁路电容后 电容 C1 和 C2 是耦合 反馈,有稳定三 可以将集电极电流 与上偏电 电容,作用是隔直对交流通路来说 极管静点的作用 转换为输出电压。 RE不再起作用。 阻一起起 通交,起隔断直流, 到确定B 传送交流的作用. 极电位的 作用
截止区
Vce
信号测试
实验当中, 是通过改变 上偏电阻即 调节100K电 位器的阻值 来改变三极 管的静点的。
信号测试
输入Vi, 来自信号 ~ 源1kHz毫 伏级正弦 信号
Vb --
Ve --
Vc 三极 管静 点测 -量
输出交流 信号Vo, ~ 送示波器 显示
实验内容
最佳静态工作点的调试
初调静点(空载,即去除负载电阻 RL ,使输出端开 路)第1步: 调节RB1使VC=7V左右。 由低信输出f=1kHZ的正弦信号至Vi,慢慢加大信 号幅度,用示波器观察输出波形Vo,如出现单边 失真,调节RB1使之消除。
失真波形
较明显饱和失真波形
失真波形
双向对称失真波形
失真波形
较明显截止失真波形
返回
实验内容
最佳静态工作点的调试
初调静点(空载)第3步:
调节RB1使VC=7V左右。 由低信输出f=1kHZ的正弦信号至Vi,慢慢加大信号幅度, 用示波器观察输出波形Vo,如出现单边失真,调节RB1使之 消除。 再加大Vi,若还出现比较明显的单边失真,则调节RB1消除 之。