《固体物理》能带理论 - 练习题

合集下载

固体物理题库-zzk-第一至第五章-1

固体物理题库-zzk-第一至第五章-1

第一章 晶体结构和X 射线1、试证体心立方和面心立方各自互为正、倒格子2、如果基矢a,b,c 构成正交关系,证明晶面族(h k l )的面间距满足: 222)()()(1c l b k a hd h k l ++=3、证明以下结构晶面族的面间距:(1) 立方晶系:d hkl =a [h 2+k 2+l 2]-1/2(2) 六角晶系:2/12222])()(34[-+++=c l ahk k h d hkl 4、等体积的硬球堆积成体心立方结构和面心立方结构,试求他们在这两种结构中的致密度分别为0.68和0.74。

5、试证密积六方结构中,c/a=1.633。

6、在立方晶胞中,画出(1 0 1),(0 2 1),(221)和(012)晶面。

7、如下图,B 和C 是面心立方晶胞上的两面心。

(1) 求ABC 面的密勒指数;(2) 求AC 晶列的指数,并求相应原胞坐标系中的指数。

8、六角晶胞的基矢为.,223,223k c c j a i a b j a i a a =+-=+= 求其倒格子基矢。

9、求晶格常数为a 的面心立方和体心立方晶体晶面族(h 1 h 2 h 3)之间的面间距(指导p30,10)。

10、讨论六角密积结构,X 光衍射的消光条件。

11、求出体心立方、面心立方的几何因子和消光条件。

12、原胞和晶胞的区别?13、倒空间的物理意义?14、布拉格衍射方程,原子和几何结构因子在确定晶格结构上分别起何作用?15、什么是布拉格简单格子,什么是复式格子?第二章 自由电子气1、设有一个长度为L 的一维金属线,它有N 个导电电子,若把这些导电电子看成自由电子气,试求:(1) 电子的状态密度(2) 绝对零度下的电子费米能级,以及费米能级随温度的变化关系。

(3) 电子的平均能量。

(4) 电子的比热。

2、二维电子气的能态密度2)( πm E N =,证明费米能 ]1ln[/2-=T m k n B F b eT k E π 3、求出一维金属中自由电子的能态密度、费米能级、电子的平均动能以及一个电子对于比热的贡献。

固体物理习题5

固体物理习题5

M
j1
μΦ ij j,k ki
r
μ δ
ij
k,k ki
1
Ω
ajt
Ω
r Rl
e
i
k
ki
r
Rl

Φ jk
1 N
e ikRl ajt
l
r Rl
对于一维晶体情况下,晶格常数
a , Rl na , Ω a
x
1
Na
ei kki x
M
μΦ
ij j1
宽度。 解:在布里渊区边界上,电子的能量出现禁带,禁带宽度的表示
式为
Eg 2Vn
其中 Vn 是周期势场V(x)付里叶级数的系数,
求得。
Vn
1 a
a2
V
a 2
i 2π nx
x e a dx
第一禁带宽度为
该系数可由式
Eg1 2V1
21 a
a2
V
a 2
i 2π x
x e a dx
2 1
第五章 能带理论
5.1 一维周期场,电子的波函数
ψk x 应当满足布洛赫定理。
若晶格常数为 a ,电子的波函数为
(1)Biblioteka ψkxsin
x a
π;
(2)
ψk
x
icos
x a
π;
(3) ψk x f x la
l
f ( 为某一确定的函数)
试求电子在这些状态的波矢。
解: 由式
ψk
r Rn
在二维晶格下,取
a3
3
ai
2
3 2
aj
k ,可得到倒格基矢
b1
2π Ω

固体物理-第5章-晶体中电子能带理论-5.6

固体物理-第5章-晶体中电子能带理论-5.6

C
D
kz
B
O ky
kx
a (1,1,0) 2
a (1,0,1) 2
a (0,1,1) 2
a (1,1,0) 2
a (1,0,1) 2
a (0,1,1) 2
B
a (1,1,0) C
2
a (1,0,1) D a (0,1,1)
2
2
a (1,1,0) 2
a (1,0,1) 2
a (0,1,1) 2
结果Es
E Emax Emin 12J1
能带宽度由两因素决定:
(1)重叠积分J1的大小;
2)J1 前数字,即最近邻格点数目 (晶体的配位数)
因此,波函数重叠程度越大,配位数越大,能带越宽,反之.
5.6 紧束缚方法 第五章 晶体中电子能带理论
四、原子能级与能带的对应
EkiJ0RsJ最近邻
k
s
J
0
4J
cos
kxa 2
cos
kya 2
cos kxa cos kza
2
2
cos
kya 2
cos
kza 2
5.6 紧束缚方法 第五章 晶体中电子能带理论
适用性
1.前面讨论的是最简单的情况,只适用于s态电子,一个原子能级 i
5.6 紧束缚方法 第五章 晶体中电子能带理论
解:设 J1 J Rs
简立方结构的最近邻格点数为6,位置矢量的坐标: (a,0,0),(0,a,0),(0,0,a) (其中a为晶格常量)
Ek
i
J0
Rs

J
近邻
Rs
e ikRs
vvvv
k kxi ky j kzk

固体物理第五章习题及答案

固体物理第五章习题及答案

.
从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时, 电子的有效质量 m* 变 为 . 此时电子的加速度
a= 1 F =0
m*
,
即电子的平均速度是一常量. 或者说, 此时外场力与晶格作用力大小相等, 方向相反. 11. 万尼尔函数可用孤立原子波函数来近似的根据是什么?
[解答] 由本教科书的(5.53)式可知, 万尼尔函数可表示为
m* = 1 m 1 + 2Tn
Vn <1.
10. 电子的有效质量 m* 变为 的物理意义是什么?
[解答] 仍然从能量的角度讨论之. 电子能量的变化
(dE)外场力对电子作的功 = (dE)外场力对电子作的功 + (dE)晶格对电子作的功
m*
m
m
=
1 m
(dE ) 外场力对电子作的功
− (dE)电子对晶格作的功
i 2 nx
V (x) = Vne a
n
中, 指数函数的形式是由什么条件决定的?
[解答] 周期势函数 V(x) 付里叶级数的通式为
上式必须满足势场的周期性, 即
V (x) = Vneinx
n
显然
V (x + a) = Vnein (x+a) = Vneinx (eina ) = V (x) = Vneinx
Es (k)
=
E
at s
− Cs

Js
e ik Rn
n
即是例证. 其中孤立原子中电子的能量 Esat 是主项, 是一负值, − Cs和 − J s 是小量, 也是负 值. 13. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么?

(整理)固体物理课后习题与答案

(整理)固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。

在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。

在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。

也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。

2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。

晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。

3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。

除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。

4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。

价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。

在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。

由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。

这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。

电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。

(完整word版)固体的能带理论习题.doc

(完整word版)固体的能带理论习题.doc

第五章固体的能带理论1.布洛赫电子论作了哪些基本近似?它与金属自由电子论相比有哪些改进?解:布洛赫电子论作了 3 条基本假设,即①绝热近似,认为离子实固定在其瞬时位置上,可把电子的运动与离子实的运动分开来处理;②单电子近似,认为一个电子在离子实和其它电子所形成的势场中运动;③周期场近似,假设所有电子及离子实产生的场都具有晶格周期性。

布洛赫电子论相比于金属自由电子论,考虑了电子和离子实之间的相互作用,也考虑了电子与电子的相互作用。

2.周期场对能带形成是必要条件吗?解:周期场对能带的形成是必要条件,这是由于在周期场中运动的电子的波函数是一个周期性调幅的平面波,即是一个布洛赫波。

由此使能量本征值也称为波矢的周期函数,从而形成了一系列的能带。

3.一个能带有N 个准连续能级的物理原因是什么?解:这是由于晶体中含有的总原胞数 N 通常都是很大的,所以 k 的取值是十分密集的,相应的能级也同样十分密集,因而便形成了准连续的能级。

4.禁带形成的原因如何?您能否用一物理图像来描述?解:对于在倒格矢K h中垂面及其附近的波矢k ,即布里渊区界面附近的波矢k ,由于采用简并微扰计算,致使能级间产生排斥作用,从而使E (k)函数在布里渊区界面处“断开”,即发生突变,从而产生了禁带。

可以用下面的图 5.1 来描述禁带形成的原因:E(k)>0<0D BA CO kaa5.近自由电子模型与紧束缚模型各有何特点?它们有相同之处?解:所谓近自由电子模型就是认为电子接近于自由电子状态的情况,而紧束缚模型则认为电子在一个原子附近时, 将主要受到该原子场的作用, 把其它原子场的作用看成微扰作用。

这两种模型的相同之处是: 选取一个适当的具有正交性和完备性的布洛赫波形式的函数 集,然后将电子的波函数在所选取的函数集中展开, 其展开式中有一组特定的展开系数,将展开后的电子的波函数代入薛定谔方程,利用函数集中各基函数间的正交性,可以得到一组各展开系数满足的久期方程。

大学固体物理试题及答案

大学固体物理试题及答案

大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。

答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。

答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。

答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。

答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。

答案:费米能级是指在绝对零度时,电子占据的最高能级。

在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。

2. 解释为什么金属在常温下具有良好的导电性。

答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。

3. 什么是超导现象?请简述其物理机制。

答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。

其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。

四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。

固体物理第四章作业答案

固体物理第四章作业答案


x

na

b



x

na
i 2 n x
b e a dx

Байду номын сангаас
2V0 a
cos
n
2 b a
• 按照近自由电子模型,第一布里渊区边界的能隙
Eg 2 V1
Eg
2 V1
2 2V0 a
cos b
a

4V0 a
cos 2b
a

第一布里渊区

a
k
a
, k 的个数为:
• (2)试讨论分别同A、B两种材料组成的一维超晶格量子 阱的能带变化。*(如下图)
ECA A
B
EVA
8a a
ECB
EVB
克朗尼格-朋奈模型 (基泰尔,固体物理导论,P119)
克朗尼格-朋奈模型得到结果:
超晶格得到结果与克朗尼格-朋奈模型类似,但是不同的是上 图中每段红色的能带都会分裂成八条子能带。

r


eik r u k
r

uk r uk r Rl


2
u k
r

2
由此可知,电子密度分布具有周期性。
• 思考题
(1)对有限尺寸晶体(如量子点,量子线或量子井),你 认为其晶体能带相对于理想晶体会有什么变化?
周期性边界条件破坏,边界效应开始变得明显能带不再是准 连续的。
第四章作业
1. (1)能带论的结论是什么?
(2)这个结论是考虑了晶体内部电子运动受到了什么作用后得 出的?
(3)以一维晶体为例, 如果作自由电子近似,把上述作用看作是 微扰, 应用非简并微扰理论得出电子的能量与k的关系是:

固体物理答案第五章1

固体物理答案第五章1
A4 B4
a∗
kx
第二区
作为原点, (2) 取任意倒格点 作为原点,由原点至其最近邻 Ai 、次近邻 ) 取任意倒格点o作为原点 的连线的中垂线可围成第一、第二布里渊区(如上图 如上图), Bi 的连线的中垂线可围成第一、第二布里渊区 如上图 ,这 是布里渊区的广延图。如采用简约形式,将第二区移入第一区, 是布里渊区的广延图。如采用简约形式,将第二区移入第一区, 其结果如图所示。 其结果如图所示。
当每个原胞有两个电子时, 当每个原胞有两个电子时,晶体电子的总数为
r r rr r r 1 ik⋅Rl at at ψ k,r = ∑e ϕα k − Rl N Rl
( )
(
)
r 一维晶体情况下, 一维晶体情况下,晶格常数 a ,Rl = na
所以
r r r 1 ψ k, x = ∑ e ikna ϕat ( x − na ) α n N
r r 1 −α x ϕ (x) = e α at
a i (k x − k y ) i a (k x + k y ) kza kza 2 2 cos cos +e e 2 2 = E sat − A − 2J a i (− k x − k y ) i a (− k x + k y ) kza kza 2 2 cos cos +e + e 2 2
Eg = 2Vn
是周期势场V(x)付里叶级数的系数,该系数可由式 付里叶级数的系数, 其中 Vn 是周期势场 付里叶级数的系数
1 Vn = ∫ V ( x )e a −a 2
a 2
−i
2π nx a
dx
求得。 求得。 第一禁带宽度为
1 E g1 = 2 V1 = 2 ∫ V ( x )e a −a 2

《固体物理学答案》第五章

《固体物理学答案》第五章

第五章 晶体中电子能带理论 习题1.晶体常数为a 的一维晶体中,电子的波函数为(1)()x ai x k πψ3cos =,(2)()f la x f x k,)(-l ∑∞∞=-=ψ是某一函数,求电子在以上状态中的波矢.[解 答]由《固体物理教程》(5.14)式()()r e R r k R r i n k nψψ∙=+可知,在一维周期势场中运动的电子的波函数满足()()x e a x k ika k ψψ=+由此得(1) ()()()()x e x x ai x a i a x a i a x k ika k k ψψππππψ=-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡+=+3cos 3cos 3cos于是1-=ikae因此得 ,5,3,aa akπππ±±±= 若只取布里渊区内的值:ak aππ<-,则有ak π=(2) ()].)1([)(a l x f la a x f a x l l k ∑∑∞-∞=∞-∞=--=++=+ψ令1+='ll得 ()()()()x e x a l x f a x k ika k k ψψψ==-=+∑'.由上式知 ikae =1所以有 ,6,4,2,0aa a kπππ±±±= 因此得在布里渊区内的值为0=k2.一维周期势场为()()[]()⎪⎩⎪⎨⎧-≤≤+-+≤≤---=.1,0,21222b na x b a n b na x b na na x b mW x V 当当其中b a 4=,W 为常数,试画出此势能曲线,并求出势能的平均值.[解 答]图5.1 一维周期势场如图5.1所示,由于势能具有周期性,因此只能在一个周期内求平均即可,于是得V=a 1 ()dx x V a a ⎰-22=()dx x V b bb ⎰-2241 =dx x b mW b b b ⎰--][2141222 =b b x x b b mW --]31[8322 =2261b mW . 3.用近自由电子模型求解上题,确定晶体的第一及第二个禁带宽度. [解 答]根据教科书(5.35)式知禁带宽度的表示式为 ng V E 2=,其中n V 是周期势场()x V傅里叶级数的系数,该系数可由《固体物理教程》(5.22)式n V = a 1 ()dx e x V nx ai a a π222--⎰求得,第一禁带宽度为112V E g ==2()dxex V a a x ai ⎰--222a 1π=2⎰---b b x ai dxex b mW b π2222][241=2⎰-⎪⎭⎫ ⎝⎛-b b dx x b x b mW b 2cos ][241222π=3228πb mW .第二禁带宽度为222V E g ==2()dxex V a a x ai ⎰--224a 1π=2⎰---b b x bi dx e x b mW b π][241222 =2⎰-⎪⎭⎫ ⎝⎛-b b dx x b x b mW b πcos ][241222=222πb mW4.已知一维晶格中电子的能带可写成()⎪⎭⎫⎝⎛+-=ka ka ma k E 2cos 81cos 8722 , 式中a是晶格常数.m 是电子的质量,求(1)能带宽度,(2)电子的平均速度,(3)在带顶和带底的电子的有效质量. [解 答](1)能带宽度为 .min max E E E -=∆由极值条件 ()0=dkk dE 得上式的唯一解是0sin =ka 的解,此式在第一布里渊区内的解为 ak π,0=.当()k E k ,0时=取极小值min E ,且有 min E =()00=E当()k E ak,时π=,E(k)取极大值max E ,且有.222max ma a E E=⎪⎭⎫ ⎝⎛=π由以上可得能带宽度为.222m i nm a x ma E E E =-=∆(2)由《固体物理教程》(5.81)式,得电子的平均速度为 ().2sin 41sin 1⎪⎭⎫⎝⎛-==ka ka ma dk k dE v(3)由《固体物理教程》(5.87)式得,带顶和带底电子的有效质量分别为.322cos 21cos 1222m ka ka m k E mak ak ak -=⎪⎭⎫⎝⎛-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂=±=-±=*±=πππ.22cos 21cos 012220m ka ka m k E m k k k =⎪⎭⎫ ⎝⎛-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂==-==*5.对简立方结构晶体,其晶格常数为a .(1)用紧束缚方法求出对应非简并s态电子的能带;(2)分别画出第一布里渊区[110]方向的能带﹑电子的平均速度、有效质量以及沿[110]方向有恒定电场时的加速度曲线.[解 答](1)非简并s态电子的能带().e n R k ∑∙--=ns s ats s J C E k E式中n R是晶体参考格点最近邻格矢.对于简单立方晶体,任一格点有6个最近邻.取参考格点的坐标为(0,0,0),则6个最近邻点的坐标为()()().,0,0,0,,0,0,0,a a a ±±±简单立方体非简并s 态电子的能带则为()().cos cos cos 2a k a k a k J C E k E z y x s s at s s ++--=(2)在[110]方向上 ,22,0k k k k y x z === 能带变为(),22cos 40⎪⎪⎭⎫⎝⎛-=ka J E k E s s其中 ,20ss at s J C E E --=在[110]方向上,在第一布里渊区内,电子的能带如图5.2所示.图5.2[110]方向电子的能带电子的平均速度.22sin 221⎪⎪⎭⎫⎝⎛=∂∂=ka a J k E v s 平均速度曲线如图5.3所示.图5.3 平均速度曲线电子的有效质量,22cos 222222⎪⎪⎭⎫ ⎝⎛=∂∂=*ka a J k E m s 有效质量曲线如图5.4所示.图5.4 有效质量曲线 在[110]方向有恒定电场情况下,电子的受力 εe F -=电子的加速度2222cos 2⎪⎪⎭⎫⎝⎛-==*ka a J e m F a s ε.设电场方向与[110]方向相反,加速度曲线则如图5.5所示.图5.5加速度曲线6.用紧束缚方法处理面心立方体晶格的s 态电子,试导出其能带⎥⎦⎤⎢⎣⎡++--=2cos 2cos 2cos 2cos 2cos 2cos 4a k a k a k a k a k a k J C E E x z z y y x s s atss ,并求出能带底的有效质量. [解 答]用紧束缚方法处理晶格的s 态电子,当只计及最近邻格点的相互作用时,根据《固体物理教程》(5.60)式,其能带表示式为()∑∙--=ns s ats s J C E k E n R k e ,n R 是最近邻格矢.对面心立方晶格,取参考点的坐标为(0,0,0),则12个最近邻格点的坐标为 (2a ±,2a ±,0),( 2a ±,0, 2a ±),(0, 2a ±,2a±). 将上述12组坐标带入能带的表示式,得()∑∙--=ns s ats s J C E k E n R k es s ats J C E --=()()()()()()()()()()()()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++++⎥⎦⎤⎢⎣⎡++++⎥⎦⎤⎢⎣⎡+++---+-+---+-++---+-z y z y z y z k y k a i z k x k a i z k x k a i z k x k a i z x y x y x y x y x k k a i k k a i k k a i k k a i k k a i k k a i k k a i k k a i e e e e e e e e e e e e 222222222222()()()()()()⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧++++-+++-++--=z y z y z x z x y x y x s s ats k k a k k a k k a k k a k k a k k a J C E 2cos 2cos 2cos 2cos 2cos 2cos⎥⎦⎤⎢⎣⎡++--=2cos 2cos 2cos 2cos 2cos 2cos 4a k a k a k a k a k a k J C E x z z y y x s s ats .能带底即()k E 的最小值对应的k为(0,0,0),有《固体物理教程》(5.87)可得在能带底处电子的有效质量为2202222a J k E m s kxx xx i=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂==*.同理可得222a J m s yy=*,222a J m s zz =*其它交叉项的倒数全为零.7.用紧束缚方法处理体心立方晶体,求出 (1) s 态电子的能带为()2cos 2cos 2cos 8a k a k a k J C E k E z y x s s ats s --= ; (2) 画出第一布里渊区[111]方向的能带曲线;(3) 求出带顶和带底电子的有效质量. 【解 答】(1)用紧束缚方法处理晶格的s 态电子,当只计及最近邻格点的相互作用时,其能带的表示式为().e n R k ∑∙--=ns s ats s J C E k E n R 是最近邻格矢.对体心立方晶格,取参考格点的坐标为(0,0,0),则8个最近邻格点的坐标为 (2,2,2aa a ±±±). 将上述8组坐标代入能带的表示式,的().e n R k ∑∙--=ns s ats s J C E k E()()()()()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++++++--=---+---+---++-+--+++z k y k x k a i z k y k x k a i z k y k x k a i z k y k x k ai z k y k x k a i z k y k x k a i z k y k x k a i z y x e e e e e e e e J C E k k k a i s s ats 22222222()()()()⎥⎦⎤⎢⎣⎡+++--=--+--+2cos 2cos 2cos 2cos 22222a k e a k e a k e a k e J C E z zz z k k a i s s atsy k x k ai y k x k a i y k x k a i y x ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--=-2cos 2cos 422a k a k e e J C E z y k a i s s at s x k ai x 2cos 2cos 2cos 8ak a k a k J C E z y x s s at s --=.(2)在[111]方向上k k k k z y x 33=== , 且第一布里渊区边界在 ak k k z y x π±===,于是能带化成⎪⎪⎭⎫⎝⎛-=ka J E E s 63cos 830,其中s ats C E E -=0.图5.6为第一布里渊区[111]方向的能带曲线.图5.6 [111]方向的能带曲线(3)由能带的表示式及余弦函数的性质可知,当===z y x k k k 时,sE 取最小值,即0===z y x k k k 是能带底,电子的有效质量为2202222a J k E m s kxx xx i=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂==*同理可得222a J m s yy=*,222a J m s zz =*其它交叉项的倒数全为零.而在布里渊区边界上的⎪⎭⎫ ⎝⎛±⎪⎭⎫ ⎝⎛±⎪⎭⎫ ⎝⎛±a a a πππ2,0,0,0,2,0,0,0,2处是能带顶,电子的有效质量为222a J m m m s zzyyxx-===***.其它交叉项的倒数也全为零.8.某晶体电子的等能面是椭球面⎪⎪⎭⎫⎝⎛++=32322212122m k m k m k E ,坐标轴1,2,3相互垂.(1) 求能态密度;(2)今加一磁场B , B与坐标轴的夹角的方向余弦分别为γβα,,,写出电子的运动方程;(3) 证明电子在磁场中的回旋频率*=m eB c ω, 其中2132********⎥⎦⎤⎢⎣⎡++=*m m m m m m m γβα.【解 答】(1) 由已知条件可将波矢空间内电子能带满足的方程化为1222232322222121=++ E m k E m k E m k .将上式与椭球公式1222222=++c z b y a x 比较可知,在波矢空间内电子的等能面是一椭球面.与椭球的体积abc π34比较可得到,能量为E 的等能面围成的椭球体积 2332132234E m m m πτ= 由上式可得dE E m m m d 21321324 πτ=.能量区间内电子的状态数目()dE E m m m V d V dz cc 1321323222πτπ== 是晶体体积.电子的能态密度()21321322E m m m VdE dz E N cπ==(2) 根据《固体物理教程》中(5.86)式得⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂∂+∂∂=331222121212211F k k EF k k E F k E a ,⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂+∂∂∂=332222221122221F k k E F k E F k k E a,⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂∂=323222321132231F k E F k k E F k k E a .将⎪⎪⎭⎫⎝⎛++=32322212122m k m k m k E代入上述三式得运动方程为 333222111,,m F a m Fa m F a ===.即333222111,,F dtdvm F dt dv m F dt dv m ===. (1)当存在磁场B时,电子受到洛仑兹力B v e F⨯-=.其分量形式为 ()()23323223321v B v B v e B v B v e F ωνωβγ-=--=--=,()()31131331132v B v B v e B v B v e F ωνωγα-=--=--=, ()()12212112213v B v B v e B v B v e F ωνωαβ-=--=--=式中B B=,γωβωαωeB eB eB ===321,,.将上述结果代入运动方程(1)得.,,122133311322233211v v dt dvm v v dt dvm v v dt dv m ωωωωωω-=-=-= (2)(3)上述方程可用不同的方法求解.解法一:对(2)式两边作拉普拉斯变换,并采用如下初始条件 ()1010v v =,()2020v v =,().0303v v =得[]11v pL m +[]23v L ω-[]32v L ω=101v m ,-[]13v L ω+[]22v pL m +[]31v L ω=202v m ,[]12v L ω-[]21v L ω+[]33v pL m =303v m .由此解出[]∆∆=11v L . 其中()()B p Ap m m m p m m m pm p m p m +≡+++=---=∆22332222113321312123231ωωωωωωωωω.321m m m A =,321233222211m m m m m m B ωωω++=.()()322130313202121021120332302323103213130312202231011C p C p C v m v m v m pv m m v m m p v m m m pm v m p m v m v m ++≡+++-+=--=∆ωωωωωωωωωωω()203302322103211,v v m m C v m m m C ωω+==,3031320212102113v m v m v m C ωωωωω++=.因此得[]()Bp A C B p p AB C B C p AB C B p Ap C p C p C v L +++-+=+++=22231323221111.上式两边取逆拉普拉斯变换得t B BA Ct B AB C B C p AB C v sin cos 123131+-+=.同理可得t B B A C t B AB C B C p AB C v sin cos 123132'+'-'+'=.()301103312203211,v v m m C v m m m C ωω+='=', 1021130323202223v m v m v m C ωωωωω++='.及t B B A C t B AB C B C p AB C v sin cos 123133''+''-''+''=.()102201212303211,v v m m C v m m m C ωω+=''=''2032210311302333v m v m v m C ωωωωω++=''.可见电子回旋频率为B .解法二:由于电子作周期运动,将试探解t i c e v v ω101=, t i c e v v ω202=t i c e v v ω303=(这里302010,,v v v 一般为复数,电子的真实速度应为321,,v v v 的实部或虚部.) 代入(2)式得 101v m i c ω+302v ω-203v ω=0,103v ω+202v m i c ω-301v ω=0,102v ω-201v ω+303v m i c ω=0.302010,,v v v 有不全为零的解的充要条件是0312123231=----m i m i m i c c c ωωωωωωωωω. 由此得 ()02332222113321=++-c c m m m m m m ωωωωω.于是B m m m m m m c=++=3212332222112ωωωω.这样,两种方法均给出电子回旋频率为21321233222211⎪⎪⎭⎫ ⎝⎛++==m m m m m m B c ωωωω.再将γωβωαωeB eB eB ===321,,,代入上式即得*=meBc ω, 其中2132********⎪⎪⎭⎫⎝⎛++=*m m m m m m m γβα.9.求出一维、二维金属中自由的能态密度.[解 答](1)一维情况自由电子的色散关系为 mk E 222 =.由此得dk E m dk m kdE 2121222⎪⎪⎭⎫ ⎝⎛== ,即dE E m dk 212122-⎪⎭⎫⎝⎛= . 对应同一个dE ,在k ±方向各有一个dk ,因此空间中dE E E +与之间的区间为dE E m dk d 2121222-⎪⎭⎫⎝⎛== τ,在该范围内的状态数为dE E m L d LdZ 212122-⎪⎭⎫⎝⎛== πτπ,其中L 是晶格长度.于是,态密度()12122-⎪⎭⎫ ⎝⎛==E m L dE dZ E N π.(2)二维情况参照《固体物理教程》(5.102)式可知,二维情况下态密度的一般表示式为()⎰∇=Lk EdLS E N 22π.其中S 是晶格的面积,积分沿能量为E 的等能线进行.由()2222y x k k m E += 得 ()mk k k m E y x k 221222 =+=∇.于是有()21222222 mS k m k S E dL S E N Lk ππππ=⎪⎪⎭⎫ ⎝⎛=∇=-⎰.10.二维金属晶格,晶胞为简单矩形,晶格常数A a2=,A b 4=,原子为单价的.(1) 试画出第一、二布里渊区; (2) 计算自由电子费密半径;(3) 画出费密面在第一、二布里渊区的形状.【解 答】(1) 倒格子原胞基矢j bb i a b ππ2,221==.选定一倒格点为原点,原点的最近邻倒格矢有4个,它们是21,b b ±±这4个倒格矢的中垂线围成的区间即是第一布里渊区.即图5.7中Ⅰ所示区间.原点的次近邻倒格矢有4个,它们是21b b ±±这4个倒格矢的中垂线围成的区间与第一布里渊区边界围成的区间即是第二布里渊区.即图5.7中Ⅱ所示区间.图5.7 二维矩形晶格第一、二布里渊区(2)在绝对零度时,二维金属中导电电子若看成自由电子,电子的能量mk E 222 =,能量dE E E+→区间的电子占据波矢空间dk 的范围.在此范围内的波矢数目为图5.8二维波矢空间kdk S ππ2)2(2∙,其中2)2(πS是二维金属中导电电子的波矢密度,S 是金属面积。

固体物理第5章-能带理论-习题参考答案

固体物理第5章-能带理论-习题参考答案

第六章 能带理论 (习题参考答案)1. 一矩形晶格,原胞长10a 210m -=⨯,10b 410m -=⨯ (1)画出倒格子图(2)以广延图和简约图两种形式,画出第一布里渊区和第二布里渊区(3)画出自由电子的费米面(设每个原胞有2个电子) 解:(1)因为a =a i=20A i b =b j=40A j倒格子基矢为12a i A*=, 014b j A*=以a * b *为基矢构成的倒格子如图。

由图可见,矩形晶格的倒格子也是矩形格子。

(2)取任一倒格子点O 作为原点,由原点以及最近邻点A i ,次近邻点B i 的连线的中垂线可以围成第一,第二布里渊区,上图这就是布里渊区的广延图。

如采用简约形式,将第二区移入第一区,我们得到下图。

(3) 设晶体中共有N 个原胞,计及自旋后,在简约布里渊区中便有2N 个状态。

简约布里渊区的面积021()8A a b A ***-=⨯=而状态密度022()16()Ng K N A A *==当每个原胞中有2个电子时,晶体电子总数为202()216Fk F N g k kdk N k ππ=⨯=⎰所以01/211111()0.2()210()8F k A m π---=≈=⨯这就是费米圆的半径。

费米圆如下图所示2. 已知一维晶体的电子能带可写成()2271cos cos 2,88E k ka ka ma ⎛⎫=-+ ⎪⎝⎭式中a 是晶格常数。

试求: (i )能带的宽度;(ii )电子在波矢k 状态时的速度; (iii )能带底部和顶部电子的有效质量。

()()()()()()()()22222min 2max 22max min 22222min 71cos cos 2,8811cos 24400,2;221sin 24sin 404k i E k ka ka ma ka ma k E k E a maE E E ma maii v E kv ka ka maiiiE k k kE E m π⎛⎫=-+ ⎪⎝⎭⎡⎤=--⎢⎥⎣⎦====∆=-=∴=∇∴=--==+解:当时,当时,能带的宽度为:在能带底部,将在附近用泰勒级数展开,可得:()()()22min 22max 22max 22034223kE m m m E k k E E k mk E m m mππδδδ****=+∴===-=+∴=-在能带顶部,将在附近用泰勒级数展开,令k=+k 可得:aa3. 试证明:如果只计及最近邻的相互作用,用紧束缚方法导出的简单立方晶体中S 态电子的能带为word 格式-可编辑-感谢下载支持()2cos 2cos 2cos 2s x y z E k E A J ak ak ak πππ⎡⎤=--++⎣⎦并求能带的宽度。

黄昆固体物理习题-第四章 能带理论

黄昆固体物理习题-第四章 能带理论

4.4 用紧束缚近似求出面心立方晶格和体心立方晶格s 态原子能级相对应的能带函数)(k E s先求面心立方晶格s 态原子能级相对应的能带E s (k )函数,利用公式:∑=⋅−−−=NearestR R k i s s s s seR J J k E)()(0ε解:0*01()()[()()]()}0s i s i J J R R U V d ϕξξξϕξξ==−−−>∫ 01()s s ik R ss R NearestE k J J eε−⋅==−−∑ s 原子态波函数具有球对称性,则:解:只计入最近邻格点原子的相互作用时,s 态原子能级相对应的能带函数表示为:∑=⋅−−−=NearestR R k i s s ss seR J J k E )()(0ε4.7 有一一维单原子链,原子间距a ,总长度为L =Na 1) 用紧束缚近似方法求出与原子s 态能级相对应的能带函数2) 求出其能带密度函数的表达式3) 如每个原子s 态中只有一个电子,计算T=0K 时的费密能级和处的能态密度0F E 0FE )(E N二价金属每个原子可以提供2个自由电子,内切球内只能装下每原子1.047个电子,余下的0.953个电子可填入其它状态中。

如果布里渊区边界上存在大的能量间隙,则余下的电子只能填满第一区内余下的所有状态(包括B点)。

这样,晶体将只有绝缘体性质。

然而由(2)可知,B点的能量比A点高很多,从能量上看,这种电子排列是不利的。

事实上,对于二价金属,布里渊区边界上的能隙很小,对于三维晶体,可出现一区、二区能带重迭.这样,处于第一区角顶附近的高能态的电子可以“流向”第二区中的能量较低的状态,并形成横跨一、二区的球形Fermi面。

因此,一区中有空态存在,而二区中有电子存在,从而具有导电功能。

实际上,多数的二价金属具有六角密堆和面心立方结构,能带出现重达,所以可以导电。

4.8题解答完毕。

固体第五章 - 习题

固体第五章 - 习题

6.本征半导体的能带与绝缘ቤተ መጻሕፍቲ ባይዱ的能带有何异同?
在低温下, 本征半导体的能带与绝缘体的能带结构 相同. 但本征半导体的禁带较窄, 禁带宽度通常在2 个电子伏特以下. 由于禁带窄, 本征半导体禁带下 满带顶的电子可以借助热激发, 跃迁到禁带上面空 带的底部, 使得满带不满, 空带不空, 二者都对导电 有贡献.

a
ika

a
x ) sin

a x

a
x
sin
( x a) e sin
e
ika
1

ka
k

a
3 3 3 i cos x a i cos x 3 i cos x a a a
e
ika
1

a
4.当有电场后, 满带中的电子能永远漂移下去吗?
当有电场后, 满带中的电子在波矢空间内将 永远循环漂移下去, 即当电子漂移到布里渊 区边界时, 它会立即跳到相对的布里渊区边 界, 始终保持整体能态分布不变.
5.一维简单晶格中一个能级包含几个电子?
设晶格是由N个格点组成, 则一个能带有N 个不同的波矢状态, 能容纳2N个电子. 由于 电子的能带是波矢的偶函数, 所以能级有 (N/2)个. 可见一个能级上包含4个电子.
2.在布里渊区边界上电子的能带有何特点?
电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般会出 现禁带. 若电子所处的边界与倒格矢正交, 则禁 带的宽度 Eg 2V ( K n )
V (K n ) 是周期势场的付里叶级数的系数.
不论何种电子, 在布里渊区边界上, 其等能面在 垂直于布里渊区边界的方向上的斜率为零, 即电 子的等能面与布里渊区边界正交.

《固体物理》能带理论-练习题

《固体物理》能带理论-练习题

《固体物理》能带理论-练习题能带理论 - 练习题袁建勇:1.布洛赫函数满足)()(r e R r n R ik n =+,何以见得上式中k 具有波矢的意义?[解答] 人们总可以把布洛赫函数)(r ?展成傅里叶级数∑?++=hrK Ki h h e K K a r )(//)()(? ,其中/K 是电子的波矢。

将)(r ?代入 )()(r e R r nR ik n =+得到 n nR ik R ik e e=/其中利用了p p R K n h (2π=?是整数),由上式可知,/k k =,即 k 具有波矢的意义。

2.波矢空间与倒格空间有何关系?为什么说波矢空间内的状态点是准连续的?[解答] 波矢空间与倒格空间处于统一空间,倒格空间的基矢分别为1b ,2b ,3b ,而波矢空间的基矢分别为11/N b ,22/N b ,33/N b ;1N ,2N ,3N 分别是沿正格基矢1a ,2a ,3a 方向晶体的原胞数目。

倒格空间中一个倒格点对应的体积为 *321)(Ω=??b b b ,波矢空间中一个波矢点对应的体积为 NN b N b N b *332211)(Ω=即波矢空间中一个波矢点对应的体积,是倒格空间中一个倒格点对应的体积的N /1 。

由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的。

也就是说,波矢点在倒格空间看是极其稠密的。

因此,在波矢空间内作求和处理时,可把波矢空间内的状态点看成是准连续的。

3.一维周期势函数的傅里叶级数∑=nnx ain eV x V π2)(中,指数函数的形式是由什么条件决定的?[解答] 周期势函数)(x V 傅里叶级数的通式为∑=nxi n n e V x V λ)(。

上式必须满足势场的周期性,即()()()n n n n i x a i x i a i x n n n nnnV x a V e V e e V x V e λλλλ++==?==∑∑∑显然 1=ai n eλ 。

《固体物理学》房晓勇主编教材-习题解答参考06第六章 能带理论基础

《固体物理学》房晓勇主编教材-习题解答参考06第六章 能带理论基础

2
⎜ ⎝
⎟ a ⎠
= u ( x)
6.4 在一维周期势场中,电子的波函数ψ k ( x ) 应满足布洛赫定理。若晶格常数时 a,电子的波函数为
x π a 3x (2)ψ k ( x ) = i cos π a
(1)ψ k ( x ) = sin (3) (1)ψ k ( x ) =
∑ f ( x − la )
(1)ψ k ( x + a ) = sin
( x + a ) π = sin ⎛ x + 1⎞ π = − sin x π = −ψ
a ⎜ ⎝a ⎟ ⎠ a
2
k
( x)
第六章 能带理论基础 结合(b)式有
eika = −1
因此得
ka = ( 2m + 1) π
即 k = ( 2m + 1)
π
a
, m = 0, ±1, ±2, ⋅⋅⋅
1
第六章 能带理论基础
1 Vn = L
∫ V ( x) e
0
L
−i
2 nπ x a
dx
u ( x + xl ) = 1 +

n≠0
⎡1 2m ⎢ ⎢ ⎣L

L 0
L
0
⎤ − i 2 nπ ( x + xl ) V ( x + xl ) e dx ⎥ e a ⎥ ⎦ 2 2nπ ⎞ ⎛ =2k 2 − =2 ⎜ k − ⎟ a ⎠ ⎝
( )
(
) (
)
() (
)
( ) ()
JJG 只表示相应的 ∂ / ∂x , ∂ / ∂y , ∂ / ∂z 中变数 x, y , z 改变一常数,这显然不影响微分算符,又 在上式中 ∇ G r+R

固体物理考题 第四章 能带理论

固体物理考题 第四章 能带理论

第四章 能带理论1设电子在一维弱周期势场V(x)中运动,其中V(x)= V(x+a),按微扰论求出k=±π/a 处的能隙2怎样用能带论来理解导体、绝缘体、及半导体之间的区别?(可以画图说明)3简单推导布洛赫(Bloch )定理4对于一个二维正方格子,晶格常数为a,λ 在其倒空间画图标出第一、第二和第三布里渊区;λ 画出第一布里渊区中各种不同能量处的等能面曲线;λ 画出其态密度随能量变化的示意图。

5 在一维周期场近自由电子模型近似下,格点间距为a,请画出能带E(k)示意图,并说明能隙与哪些物理量有关。

6推导bloch 定理;写出理想情况下表面态的波函数的表达式,并说明各项的特点。

7在紧束缚近似条件下,求解周期势场中的波函数和能量本征值。

设晶体中第m 个原子的位矢为:112233m m m m =++R a a a …………………………………………………………(5-4-1) 若将该原子看作一个孤立原子,则在其附近运动的电子将处于原子的某束缚态()i m ϕ-r R ,该波函数满足方程:22()()()2m i m i i m V m ϕεϕ⎡⎤-∇+--=-⎢⎥⎣⎦r R r R r R …………………………(5-4-2) 其中()m V -r R 为上述第m 个原子的原子势场,i ε是与束缚态i ϕ相对应的原子能级。

如果晶体为N 个相同的原子构成的布喇菲格子,则在各原子附近将有N 个相同能量i ε的束缚态波函数i ϕ。

因此不考虑原子之间相互作用的条件下,晶体中的这些电子构成一个N 个简并的系统:能量为i ε的N 度简并态()i m ϕ-r R ,m=1,2,…,N 。

实际晶体中的原子并不是真正孤立、完全不受其它原子影响的。

由于晶体中其它诸原子势场的微扰,系统的简并状态将消除,而形成由N 个能级构成的能带。

根据以上的分析和量子力学的微扰理论,我们可以取上述N 个简并态的线性组合(,)()()m i m ma ψϕ=-∑k r k r R …………………………………………………(5-4-3)作为晶体电子共有化运动的波函数,同时把原子间的相互影响当作周期势场的微扰项,于是晶体中电子的薛定谔方程为:22()()()2U E m ψψ⎡⎤-∇+=⎢⎥⎣⎦r r r ……………………………………………………(5-4-4) 其中晶体势场U (r )是由原子势场构成的,即()()()n l nU V U =-=+∑r r R r R ……………………………………………………(5-4-5)微扰计算(5-4-4)式可以转化为如下形式:()()22()()()2m m V U V E m ψψ⎡⎤-∇+-+--=⎢⎥⎣⎦r R r r R r r 代入(5-4-2)和(5-4-3)后,可得:[()()()]()0mi m i m m a E U V εϕ-+---=∑r r R r R ……………………………………(5-4-5)在紧束缚近似作用下,可认为原子间距较i ϕ态的轨道大得多,不同原子的i ϕ重叠很小,从而有:()()*i n i m nm d ϕϕδ--=⎰r R r R r ……………………………………………………(5-4-6) 现以()*i n ϕ-r R 左乘方程(5-4-5),并对整个晶体积分,可以得: *()()[()()]()n i m i m m i m ma E a U V d 0εϕϕ-+---⋅-∑⎰r R r r R r R r =……………(5-4-7)首先讨论(5-4-7)式中的积分。

黄昆固体物理习题-第四章 能带理论

黄昆固体物理习题-第四章 能带理论

4.1 根据状态简并微扰结果,求出与及相应的波函数及,并说明它们的特性,说明它们都代表驻波,并比较两个电子云分布说明能隙的来源(假设).2ψ*=nnV V 解:令,简并微扰波函数取带入上式,其中()n V k E E +=+0第四章习题参考解答, 从上式得到,于是取得到由教材可知, 及均为驻波。

电子波矢时,电子波的波长恰好满足布拉格发射条件,这时电子波发生全反射,并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同能量。

4.1题解答完毕4.2写出一维近自由电子近似,第n个能带(n=1,2,3)中简约波矢的零级波函数解:一维近自由电子近似中,用简约波矢表示的波函数( 为简约波矢)代入得到对于第一个能带第n个能带零级波函数:简约波矢:则有对于第二个能带:对于第三个能带4.2题解答完毕4.3电子在周期场中的势能函数且a=4b, 是常数。

(1)画出此势能曲线,并计算势能的平均值;(2) 用近自由电子模型计算晶体的第一个和第二个带隙宽度。

解:由已知条件画出势能曲线(1)势能曲线势能的平均值为:令(2)带隙宽度第一个带隙宽度第二个带隙宽度4.3题解答完毕4.4 用紧束缚近似求出面心立方晶格和体心立方晶格s态原子能级相对应的能带函数先求面心立方晶格s态原子能级相对应的能带E s(k )函数,利用公式:解:s原子态波函数具有球对称性,则:取任选取一个格点为原点,最近邻格点有12个代入能量公式类似的表示共有12项,归并化简后,得到面心立方s态原子能级相对应的能带为:对于体心立方格子,任选取一个格点为原点有8个最邻近格点,最近邻格点的位置为:类似的表示共有8项,归并化简后得到体心立方s态原子能级相对应的能带代入能量公式()01s ik k ss E k J J eε-⋅=--∑ ()()1,nik k at n sn nk r er k Nφϕ⋅=-∑ M 点的布洛赫波为:()()1,mik k at msm mk r er k Nφϕ⋅=-∑ 4.5 题略p582在只考虑S 态电子的情下,由一维简单晶格的布洛赫波为:解:S 态原子对应的能带函数其中矩阵元:所以此时久期方程变为:其中由于原子波函数满足薛氏方程:晶体的哈密顿量写成H ,所以矩阵元即库仑积分交叠积分由于晶体不同原子的电子波函数很少相互交迭,所以上式中只有当是相邻原子是相同原子时才不为零(2)解:(1)= 4.6 题略解:只计入最近邻格点原子的相互作用时,s态原子能级相对应的能带函数表示为:4.7有一一维单原子链,原子间距a ,总长度为L =Na1)用紧束缚近似方法求出与原子s 态能级相对应的能带函数2)求出其能带密度函数的表达式3)如每个原子s 态中只有一个电子,计算T=0K 时的费密能级和处的能态密度对于一维情形,任意选取一个格点为原点,有两个最近邻的格点,坐标为:a和-a能带密度函数的计算对于一维格子,波矢为具有相同的能量此外考虑到电子自旋有2种取向,在dk区间的状态数为:能带密度T=0K的费密能级计算:总的电子数其中T=0K的费密能级T=0K费密能级处的能态密度4.7题解答完毕4.8 (1)证明一个简单正方晶格在第一布里渊区顶角上的一个自由电子动能比该区一边中点大2倍。

《固体物理学答案》第五章

《固体物理学答案》第五章

第五章 晶体中电子能带理论 习题1.晶体常数为a 的一维晶体中,电子的波函数为(1)()x ai x k πψ3cos =,(2)()f la x f x k,)(-l ∑∞∞=-=ψ是某一函数,求电子在以上状态中的波矢.[解 答]由《固体物理教程》(5.14)式()()r e R r k R r i n k nψψ∙=+可知,在一维周期势场中运动的电子的波函数满足()()x e a x k ika k ψψ=+由此得(1) ()()()()x e x x ai x a i a x a i a x k ika k k ψψππππψ=-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡+=+3cos 3cos 3cos于是1-=ikae因此得 ,5,3,aa akπππ±±±= 若只取布里渊区内的值:ak aππ<-,则有ak π=(2) ()].)1([)(a l x f la a x f a x l l k ∑∑∞-∞=∞-∞=--=++=+ψ令1+='ll得 ()()()()x e x a l x f a x k ika k k ψψψ==-=+∑'.由上式知 ikae =1所以有 ,6,4,2,0aa a kπππ±±±= 因此得在布里渊区内的值为0=k2.一维周期势场为()()[]()⎪⎩⎪⎨⎧-≤≤+-+≤≤---=.1,0,21222b na x b a n b na x b na na x b mW x V 当当其中b a 4=,W 为常数,试画出此势能曲线,并求出势能的平均值.[解 答]图5.1 一维周期势场如图5.1所示,由于势能具有周期性,因此只能在一个周期内求平均即可,于是得V=a 1 ()dx x V a a ⎰-22=()dx x V b bb ⎰-2241 =dx x b mW b b b ⎰--][2141222 =b b x x b b mW --]31[8322 =2261b mW . 3.用近自由电子模型求解上题,确定晶体的第一及第二个禁带宽度. [解 答]根据教科书(5.35)式知禁带宽度的表示式为 ng V E 2=,其中n V 是周期势场()x V傅里叶级数的系数,该系数可由《固体物理教程》(5.22)式n V = a 1 ()dx e x V nx ai a a π222--⎰求得,第一禁带宽度为112V E g ==2()dxex V a a x ai ⎰--222a 1π=2⎰---b b x ai dxex b mW b π2222][241=2⎰-⎪⎭⎫ ⎝⎛-b b dx x b x b mW b 2cos ][241222π=3228πb mW .第二禁带宽度为222V E g ==2()dxex V a a x ai ⎰--224a 1π=2⎰---b b x bi dx e x b mW b π][241222 =2⎰-⎪⎭⎫ ⎝⎛-b b dx x b x b mW b πcos ][241222=222πb mW4.已知一维晶格中电子的能带可写成()⎪⎭⎫⎝⎛+-=ka ka ma k E 2cos 81cos 8722 , 式中a是晶格常数.m 是电子的质量,求(1)能带宽度,(2)电子的平均速度,(3)在带顶和带底的电子的有效质量. [解 答](1)能带宽度为 .min max E E E -=∆由极值条件 ()0=dkk dE 得上式的唯一解是0sin =ka 的解,此式在第一布里渊区内的解为 ak π,0=.当()k E k ,0时=取极小值min E ,且有 min E =()00=E当()k E ak,时π=,E(k)取极大值max E ,且有.222max ma a E E=⎪⎭⎫ ⎝⎛=π由以上可得能带宽度为.222m i nm a x ma E E E =-=∆(2)由《固体物理教程》(5.81)式,得电子的平均速度为 ().2sin 41sin 1⎪⎭⎫⎝⎛-==ka ka ma dk k dE v(3)由《固体物理教程》(5.87)式得,带顶和带底电子的有效质量分别为.322cos 21cos 1222m ka ka m k E mak ak ak -=⎪⎭⎫⎝⎛-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂=±=-±=*±=πππ.22cos 21cos 012220m ka ka m k E m k k k =⎪⎭⎫ ⎝⎛-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂==-==*5.对简立方结构晶体,其晶格常数为a .(1)用紧束缚方法求出对应非简并s态电子的能带;(2)分别画出第一布里渊区[110]方向的能带﹑电子的平均速度、有效质量以及沿[110]方向有恒定电场时的加速度曲线.[解 答](1)非简并s态电子的能带().e n R k ∑∙--=ns s ats s J C E k E式中n R是晶体参考格点最近邻格矢.对于简单立方晶体,任一格点有6个最近邻.取参考格点的坐标为(0,0,0),则6个最近邻点的坐标为()()().,0,0,0,,0,0,0,a a a ±±±简单立方体非简并s 态电子的能带则为()().cos cos cos 2a k a k a k J C E k E z y x s s at s s ++--=(2)在[110]方向上 ,22,0k k k k y x z === 能带变为(),22cos 40⎪⎪⎭⎫⎝⎛-=ka J E k E s s其中 ,20ss at s J C E E --=在[110]方向上,在第一布里渊区内,电子的能带如图5.2所示.图5.2[110]方向电子的能带电子的平均速度.22sin 221⎪⎪⎭⎫⎝⎛=∂∂=ka a J k E v s 平均速度曲线如图5.3所示.图5.3 平均速度曲线电子的有效质量,22cos 222222⎪⎪⎭⎫ ⎝⎛=∂∂=*ka a J k E m s 有效质量曲线如图5.4所示.图5.4 有效质量曲线 在[110]方向有恒定电场情况下,电子的受力 εe F -=电子的加速度2222cos 2⎪⎪⎭⎫⎝⎛-==*ka a J e m F a s ε.设电场方向与[110]方向相反,加速度曲线则如图5.5所示.图5.5加速度曲线6.用紧束缚方法处理面心立方体晶格的s 态电子,试导出其能带⎥⎦⎤⎢⎣⎡++--=2cos 2cos 2cos 2cos 2cos 2cos 4a k a k a k a k a k a k J C E E x z z y y x s s atss ,并求出能带底的有效质量. [解 答]用紧束缚方法处理晶格的s 态电子,当只计及最近邻格点的相互作用时,根据《固体物理教程》(5.60)式,其能带表示式为()∑∙--=ns s ats s J C E k E n R k e ,n R 是最近邻格矢.对面心立方晶格,取参考点的坐标为(0,0,0),则12个最近邻格点的坐标为 (2a ±,2a ±,0),( 2a ±,0, 2a ±),(0, 2a ±,2a±). 将上述12组坐标带入能带的表示式,得()∑∙--=ns s ats s J C E k E n R k es s ats J C E --=()()()()()()()()()()()()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++++⎥⎦⎤⎢⎣⎡++++⎥⎦⎤⎢⎣⎡+++---+-+---+-++---+-z y z y z y z k y k a i z k x k a i z k x k a i z k x k a i z x y x y x y x y x k k a i k k a i k k a i k k a i k k a i k k a i k k a i k k a i e e e e e e e e e e e e 222222222222()()()()()()⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧++++-+++-++--=z y z y z x z x y x y x s s ats k k a k k a k k a k k a k k a k k a J C E 2cos 2cos 2cos 2cos 2cos 2cos⎥⎦⎤⎢⎣⎡++--=2cos 2cos 2cos 2cos 2cos 2cos 4a k a k a k a k a k a k J C E x z z y y x s s ats .能带底即()k E 的最小值对应的k为(0,0,0),有《固体物理教程》(5.87)可得在能带底处电子的有效质量为2202222a J k E m s kxx xx i=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂==*.同理可得222a J m s yy=*,222a J m s zz =*其它交叉项的倒数全为零.7.用紧束缚方法处理体心立方晶体,求出 (1) s 态电子的能带为()2cos 2cos 2cos 8a k a k a k J C E k E z y x s s ats s --= ; (2) 画出第一布里渊区[111]方向的能带曲线;(3) 求出带顶和带底电子的有效质量. 【解 答】(1)用紧束缚方法处理晶格的s 态电子,当只计及最近邻格点的相互作用时,其能带的表示式为().e n R k ∑∙--=ns s ats s J C E k E n R 是最近邻格矢.对体心立方晶格,取参考格点的坐标为(0,0,0),则8个最近邻格点的坐标为 (2,2,2aa a ±±±). 将上述8组坐标代入能带的表示式,的().e n R k ∑∙--=ns s ats s J C E k E()()()()()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++++++--=---+---+---++-+--+++z k y k x k a i z k y k x k a i z k y k x k a i z k y k x k ai z k y k x k a i z k y k x k a i z k y k x k a i z y x e e e e e e e e J C E k k k a i s s ats 22222222()()()()⎥⎦⎤⎢⎣⎡+++--=--+--+2cos 2cos 2cos 2cos 22222a k e a k e a k e a k e J C E z zz z k k a i s s atsy k x k ai y k x k a i y k x k a i y x ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--=-2cos 2cos 422a k a k e e J C E z y k a i s s at s x k ai x 2cos 2cos 2cos 8ak a k a k J C E z y x s s at s --=.(2)在[111]方向上k k k k z y x 33=== , 且第一布里渊区边界在 ak k k z y x π±===,于是能带化成⎪⎪⎭⎫⎝⎛-=ka J E E s 63cos 830,其中s ats C E E -=0.图5.6为第一布里渊区[111]方向的能带曲线.图5.6 [111]方向的能带曲线(3)由能带的表示式及余弦函数的性质可知,当===z y x k k k 时,sE 取最小值,即0===z y x k k k 是能带底,电子的有效质量为2202222a J k E m s kxx xx i=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂==*同理可得222a J m s yy=*,222a J m s zz =*其它交叉项的倒数全为零.而在布里渊区边界上的⎪⎭⎫ ⎝⎛±⎪⎭⎫ ⎝⎛±⎪⎭⎫ ⎝⎛±a a a πππ2,0,0,0,2,0,0,0,2处是能带顶,电子的有效质量为222a J m m m s zzyyxx-===***.其它交叉项的倒数也全为零.8.某晶体电子的等能面是椭球面⎪⎪⎭⎫⎝⎛++=32322212122m k m k m k E ,坐标轴1,2,3相互垂.(1) 求能态密度;(2)今加一磁场B , B与坐标轴的夹角的方向余弦分别为γβα,,,写出电子的运动方程;(3) 证明电子在磁场中的回旋频率*=m eB c ω, 其中2132********⎥⎦⎤⎢⎣⎡++=*m m m m m m m γβα.【解 答】(1) 由已知条件可将波矢空间内电子能带满足的方程化为1222232322222121=++ E m k E m k E m k .将上式与椭球公式1222222=++c z b y a x 比较可知,在波矢空间内电子的等能面是一椭球面.与椭球的体积abc π34比较可得到,能量为E 的等能面围成的椭球体积 2332132234E m m m πτ= 由上式可得dE E m m m d 21321324 πτ=.能量区间内电子的状态数目()dE E m m m V d V dz cc 1321323222πτπ== 是晶体体积.电子的能态密度()21321322E m m m VdE dz E N cπ==(2) 根据《固体物理教程》中(5.86)式得⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂∂+∂∂=331222121212211F k k EF k k E F k E a ,⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂+∂∂∂=332222221122221F k k E F k E F k k E a,⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂∂=323222321132231F k E F k k E F k k E a .将⎪⎪⎭⎫⎝⎛++=32322212122m k m k m k E代入上述三式得运动方程为 333222111,,m F a m Fa m F a ===.即333222111,,F dtdvm F dt dv m F dt dv m ===. (1)当存在磁场B时,电子受到洛仑兹力B v e F⨯-=.其分量形式为 ()()23323223321v B v B v e B v B v e F ωνωβγ-=--=--=,()()31131331132v B v B v e B v B v e F ωνωγα-=--=--=, ()()12212112213v B v B v e B v B v e F ωνωαβ-=--=--=式中B B=,γωβωαωeB eB eB ===321,,.将上述结果代入运动方程(1)得.,,122133311322233211v v dt dvm v v dt dvm v v dt dv m ωωωωωω-=-=-= (2)(3)上述方程可用不同的方法求解.解法一:对(2)式两边作拉普拉斯变换,并采用如下初始条件 ()1010v v =,()2020v v =,().0303v v =得[]11v pL m +[]23v L ω-[]32v L ω=101v m ,-[]13v L ω+[]22v pL m +[]31v L ω=202v m ,[]12v L ω-[]21v L ω+[]33v pL m =303v m .由此解出[]∆∆=11v L . 其中()()B p Ap m m m p m m m pm p m p m +≡+++=---=∆22332222113321312123231ωωωωωωωωω.321m m m A =,321233222211m m m m m m B ωωω++=.()()322130313202121021120332302323103213130312202231011C p C p C v m v m v m pv m m v m m p v m m m pm v m p m v m v m ++≡+++-+=--=∆ωωωωωωωωωωω()203302322103211,v v m m C v m m m C ωω+==,3031320212102113v m v m v m C ωωωωω++=.因此得[]()Bp A C B p p AB C B C p AB C B p Ap C p C p C v L +++-+=+++=22231323221111.上式两边取逆拉普拉斯变换得t B BA Ct B AB C B C p AB C v sin cos 123131+-+=.同理可得t B B A C t B AB C B C p AB C v sin cos 123132'+'-'+'=.()301103312203211,v v m m C v m m m C ωω+='=', 1021130323202223v m v m v m C ωωωωω++='.及t B B A C t B AB C B C p AB C v sin cos 123133''+''-''+''=.()102201212303211,v v m m C v m m m C ωω+=''=''2032210311302333v m v m v m C ωωωωω++=''.可见电子回旋频率为B .解法二:由于电子作周期运动,将试探解t i c e v v ω101=, t i c e v v ω202=t i c e v v ω303=(这里302010,,v v v 一般为复数,电子的真实速度应为321,,v v v 的实部或虚部.) 代入(2)式得 101v m i c ω+302v ω-203v ω=0,103v ω+202v m i c ω-301v ω=0,102v ω-201v ω+303v m i c ω=0.302010,,v v v 有不全为零的解的充要条件是0312123231=----m i m i m i c c c ωωωωωωωωω. 由此得 ()02332222113321=++-c c m m m m m m ωωωωω.于是B m m m m m m c=++=3212332222112ωωωω.这样,两种方法均给出电子回旋频率为21321233222211⎪⎪⎭⎫ ⎝⎛++==m m m m m m B c ωωωω.再将γωβωαωeB eB eB ===321,,,代入上式即得*=meBc ω, 其中2132********⎪⎪⎭⎫⎝⎛++=*m m m m m m m γβα.9.求出一维、二维金属中自由的能态密度.[解 答](1)一维情况自由电子的色散关系为 mk E 222 =.由此得dk E m dk m kdE 2121222⎪⎪⎭⎫ ⎝⎛== ,即dE E m dk 212122-⎪⎭⎫⎝⎛= . 对应同一个dE ,在k ±方向各有一个dk ,因此空间中dE E E +与之间的区间为dE E m dk d 2121222-⎪⎭⎫⎝⎛== τ,在该范围内的状态数为dE E m L d LdZ 212122-⎪⎭⎫⎝⎛== πτπ,其中L 是晶格长度.于是,态密度()12122-⎪⎭⎫ ⎝⎛==E m L dE dZ E N π.(2)二维情况参照《固体物理教程》(5.102)式可知,二维情况下态密度的一般表示式为()⎰∇=Lk EdLS E N 22π.其中S 是晶格的面积,积分沿能量为E 的等能线进行.由()2222y x k k m E += 得 ()mk k k m E y x k 221222 =+=∇.于是有()21222222 mS k m k S E dL S E N Lk ππππ=⎪⎪⎭⎫ ⎝⎛=∇=-⎰.10.二维金属晶格,晶胞为简单矩形,晶格常数A a2=,A b 4=,原子为单价的.(1) 试画出第一、二布里渊区; (2) 计算自由电子费密半径;(3) 画出费密面在第一、二布里渊区的形状.【解 答】(1) 倒格子原胞基矢j bb i a b ππ2,221==.选定一倒格点为原点,原点的最近邻倒格矢有4个,它们是21,b b ±±这4个倒格矢的中垂线围成的区间即是第一布里渊区.即图5.7中Ⅰ所示区间.原点的次近邻倒格矢有4个,它们是21b b ±±这4个倒格矢的中垂线围成的区间与第一布里渊区边界围成的区间即是第二布里渊区.即图5.7中Ⅱ所示区间.图5.7 二维矩形晶格第一、二布里渊区(2)在绝对零度时,二维金属中导电电子若看成自由电子,电子的能量mk E 222 =,能量dE E E+→区间的电子占据波矢空间dk 的范围.在此范围内的波矢数目为图5.8二维波矢空间kdk S ππ2)2(2∙,其中2)2(πS是二维金属中导电电子的波矢密度,S 是金属面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能带理论 - 练习题
袁建勇:
1.布洛赫函数满足)()(r e R r n R ik n ϕϕ•=+,何以见得上式中k 具有波矢的意义?
[解答] 人们总可以把布洛赫函数)(r ϕ展成傅里叶级数
∑•++=h
r
K K
i h h e K K a r )(//
)()(ϕ ,
其中/K 是电子的波矢。

将)(r ϕ代入 )()(r e R r n
R ik n ϕϕ•=+
得到 n n
R ik R ik e e
••=/
其中利用了p p R K n h (2π=•是整数),由上式可知,/
k k =, 即 k 具有波矢的意义。

2.波矢空间与倒格空间有何关系?为什么说波矢空间内的状态点是准连续的?
[解答] 波矢空间与倒格空间处于统一空间,倒格空间的基矢分别为1b ,2b ,3b ,而波矢空间的基矢分别为 11/N b ,22/N b ,33/N b ;1N ,2N ,3N 分别是沿正格基矢1a ,2a ,3a 方向晶体的原胞数目。

倒格空间中一个倒格点对应的体积为 *
321)(Ω=⨯•b b b ,
波矢空间中一个波矢点对应的体积为 N
N b N b N b *
332211)(Ω=
⨯• 即波矢空间中一个波矢点对应的体积,是倒格空间中一个倒格点对应的体积的N /1 。

由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的。

也就是说, 波矢点在倒格空间看是极其稠密的。

因此,在波矢空间内作求和处理时,可把波矢空间内的状态点看成是准连续的。

3.一维周期势函数的傅里叶级数 ∑=n
nx a
i
n e
V x V π2)(中,指数函数的形式是由什么
条件决定的?
[解答] 周期势函数)(x V 傅里叶级数的通式为 ∑=n
x
i n n e V x V λ
)(。

上式必须满足势场的周
期性,即
()()()n n n n i x a i x i a i x n n n n
n
n
V x a V e V e e V x V e λλλλ++==⨯==∑∑∑
显然 1=a
i n e
λ 。

要满足上式,n λ必为倒格矢n a
n π
λ2= 。

可见周期势函数)(x V 的傅里叶级数中指数函数的形式是由其周期性决定的。

4.已知一维晶体的电子能带可写成
式中a 是晶格常数,
试求:(i )能带的宽度;(ii )电子在波矢k 状态时的速度。

[解答]
()()()()()
()
2
22
22min 2max 2
2
max min 22
2
71cos cos 2,881
1cos 24400,2;221
sin 24sin 4k i E k ka ka ma ka ma k E k E a ma
E E E ma ma
ii v E k
v ka ka ma
π
⎛⎫
=
-+ ⎪⎝⎭
⎡⎤=--⎢⎥⎣⎦
====∆=-=
∴=∇∴=-
-解:
当时,当时,能带的宽度为:
徐晨辉:
1.利用能带理论判别导体、半导体和绝缘体。

[解答] 导体含有不满带;只有满带和空带的材料为非导体,其中禁带宽度大于5eV 的材料为绝缘体,禁带宽度为约1~3eV 的材料为半导体。

【教材P53】
2.晶格常数为a 的一维晶体中,电子的波函数为x a
i x k π
ϕ3cos )(=,求电子在以上状态中的波矢。

[解答] 由式 ()()n
ik R k n k r R e
r φφ•+=可知,在一维周期势场中运动的电子的波函数满足
)()(x e a x k ika
k ϕϕ=+。

由此得
(1)
)
()()3cos()3cos()](3cos[
)(x e x x a
i x a
i a x a i a x k ika k k ϕϕπ
ππ
πϕ=-=-=+=+=+
于是 1-=ika
e
因此得
a
k π
±
= , a π3±
, a
π5± ,… 若只取布里渊区内的值:a
k a
π
π

<- , 则有a k /π=
3.一维周期势场为
222
1[()],
()20,(1)mW b x na na b x na b V x n a b x na b ⎧---≤≤+⎪=⎨⎪-+≤≤-⎩
当当
其中b a 4= , W 为常数,求出势能的平均值。

[解答] 由于势能具有周期性,因此只在一个周期内求平均即可,于是得
2
2322
2
222/2/2261
]31[8][2141)(41)(1b mW x x b b mW dx x b mW b dx x V b dx x V a V b
b
b b a a b b =-=
-===----⎰⎰⎰。

相关文档
最新文档