高考数学复习专题-对数函数
高考数学专题《对数与对数函数》习题含答案解析
专题3.6 对数与对数函数1.(2021·安徽高三其他模拟(理))函数()ln ||f x x x =+的图象大致是()A .B .C .D .【答案】D 【解析】确定函数的奇偶性,排除两个选项,再由0x >时的单调性排除一个选项,得正确选项.【详解】易知()ln ||f x x x =+是非奇非偶函数,所以排除选项A ,C ;当x >0时,()f x 单调递増、所以排除选项B.故选:D .2.(2021·江西南昌市·高三三模(文))若函数()3log ,12,1x x x f x x ≥⎧=⎨<⎩.则()0f f ⎡⎤=⎣⎦( )A .0B .1C .2D .3【答案】A 【解析】利用函数()f x 的解析式由内到外逐层计算可得()0f f ⎡⎤⎣⎦的值.练基础()3log ,12,1x x x f x x ≥⎧=⎨<⎩,则()0021f ==,因此,()()301log 10f f f ===⎡⎤⎣⎦.故选:A.3.(2021·浙江高三其他模拟)已知a 为正实数,则“1a >”是“32212log log a a ->”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】利用充分、必要条件的定义,即可推出“1a >”与“32212log log a a ->”的充分、必要关系.【详解】因为32212log log a a ->等价于3222log log a a >,由a 为正实数且1a >,故有32a a >,所以3222log log a a >成立;由a 为正实数,3222log log a a >且函数2log y x =是增函数,有32a a >,故()210aa ->,所以1a >成立.故选:C .4.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .5.(2021·江苏南通市·高三三模)已知1331311log 5,,log 26a b c ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a>>D .c a b>>【答案】D 【解析】由于1331log g 66lo c ==,再借助函数3log y x =的单调性与中间值1比较即可.【详解】1331log g 66lo c ==,因为函数3log y x =在()0,∞上单调递增,所以333131log 31log 5log 6log 6a c =<=<<=,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10312112b <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,所以c a b >>故选:D6.(2021·辽宁高三月考)某果农借助一平台出售水果,为了适当地给鲜杏保留空气呼吸,还会在装杏用的泡沫箱用牙签戳上几个小洞,同时还要在鲜杏中间放上冰袋,来保持泡沫箱内部的温度稳定,这样可以有效延长水果的保鲜时间.若水果失去的新鲜度h 与其采摘后时间t (小时)满足的函数关系式为t h m a =⋅.若采摘后20小时,这种杏子失去的新鲜度为10%,采摘后40小时,这种杏子失去的新鲜度为20%.在这种条件下,杏子约在多长时间后会失去一半的新鲜度( )(已知lg 20.3≈,结果取整数)A .42小时B .53小时C .56小时D .67小时【答案】D 【解析】利用指数的运算得出1202a =,再利用对数的运算即可求解.【详解】由题意可得200010m a =⋅,①400020m a =⋅,②②÷①可得202a =,解得1202a =,所以0050t m a =⋅,③ ③÷①可得205t a -=,所以202025t -=,即20lg 2lg 51lg 20.720t -==-=,解得67t ≈(小时).故选:D7.【多选题】(2021·辽宁高三月考)已知2log 3a =,34b =,22log 31c =+,则下列结论正确的是( )A .a c <B .2ab =C .1abc a =+D .22bc b =+【答案】BCD 【解析】先判断1a >,即可判断A ; 利用222log 3b a==判断B ;利用B 的结论判断C ;利用C 的结论判断D.【详解】因为2log 31a =>,所以22log 3112c a a c a =+=+<⇒<,即A 不正确;因为33222log 42log 2log 3b a====,所以2ab =,即B 正确;由2ab =可知,21abc c a ==+,C 正确;由1abc a =+可知,2ab c ab b =+,则22bc b =+,即D 正确.故选:BCD.8.【多选题】(2021·山东日照市·高三一模)已知113log 0x x +=,222log 0xx +=,则( )A .2101x x <<<B .1201x x <<<C .2112lg lg 0x x x x -<D .2112lg lg 0x x x x ->【答案】BC 【解析】根据对数函数的性质可判断AB 正误,由不等式的基本性质可判断CD 正误.【详解】由131log 0x x =->可得101x <<,同理可得201x <<,因为(0,1)x ∈时,恒有23log log x x<所以122231log log 0x x x x -=-<,即12x x <,故A 错误B 正确;因为1201x x <<<,所以12lg lg 0x x <<,即210lg lg x x <-<-,由不等式性质可得1221lg lg x x x x -<-,即2112lg lg 0x x x x -<,故C 正确D 错误.故选:BC9.(2021·浙江高三期末)已知2log 3a =,则4a =________.【答案】9【解析】把2log 3a =代入4a 可得答案.【详解】因为2log 3a =,所以222log 3log 34429a ===.故答案为:9.10.(2021·河南高三月考(理))若41log 32a =,则39a a +=___________;【答案】6【解析】首先利用换底公式表示3log 2a =,再代入39a a +求值.【详解】由条件得331log 4log 22a ==,所以3333log 2log 2log 2log 4393933246a a +=+=+=+=.故答案为:61.(2021·浙江高三专题练习)如图,直线x t =与函数()3log f x x =和()3log 1g x x =-的图象分别交于点A ,B ,若函数()y f x =的图象上存在一点C ,使得ABC V 为等边三角形,则t 的值为( )ABCD.3+【答案】C 【解析】由题意得()3,log A t t ,()3,log 1B t t -,1AB =,根据等边三角形的性质求得C点的横坐标x t =-,结合A ,B两点的纵坐标和中点坐标公式列方程t =,解方程即可求得t 的值.【详解】由題意()3,log A t t ,()3,log 1B t t -,1AB =.设()3,log C x x ,因为ABC V 是等边三角形,所以点C 到直线AB所以t x -=,x t =-根据中点坐标公式可得练提升33333log log 11log log log 22t t t t ⎛+-==-= ⎝,所以t -=,解得t =故选:C2.(2021·安徽高三其他模拟(文))已知函数()()14,12ln 1,1xx f x x x ⎧⎛⎫-≤-⎪ ⎪=⎨⎝⎭⎪+>-⎩,若()0f f x <⎡⎤⎣⎦,则x 的取值范围为( )A .()2,0-B .21,1e ⎛⎫-∞- ⎪⎝⎭C .212,1e ⎛⎫-- ⎪⎝⎭D .()212,11,0e ⎛⎫--⋃-⎪⎝⎭【答案】D 【解析】先由()0f f x <⎡⎤⎣⎦可得出()20f x -<<,然后再分1x ≤-、1x >-两种情况解不等式()20f x -<<,即可得解.【详解】若()1f x ≤-,则()()1402f x f f x ⎛⎫=-<⎡⎤ ⎪⎣⎦⎝⎭,解得()2f x >-,此时,()21f x -<≤-;若()1f x >-,则()()ln 10f f x f x =+<⎡⎤⎡⎤⎣⎦⎣⎦,可得()011f x <+<,解得()10f x -<<.综上,()20f x -<<.若1x ≤-,由()20f x -<<可得12402x ⎛⎫-<-< ⎪⎝⎭,可得1242x⎛⎫<< ⎪⎝⎭,解得21x -<<-,此时21x -<<-;若1x >-,由()20f x -<<可得()2ln 10x -<+<,可得2111x e <+<,解得2110x e -<<,此时,2110x e -<<.综上,满足()0f f x <⎡⎤⎣⎦的x 的取值范围为()212,11,0e ⎛⎫--⋃- ⎪⎝⎭.故选:D.3.(2021·全国高三三模)已知函数()xxf x e e-=+,若()()4561log ,log 6,log 45a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系正确的是( )A .b a c >>B .a b c >>C .c b a >>D .c a b>>【答案】B 【解析】先判断函数的奇偶性,再利用导数判断函数的单调性,最后根据对数函数的性质,结合基本不等式、比较法进行判断即可.【详解】因为()()xx f x ee f x --=+=,所以()f x 为偶函数,()21x xxxe x ee f e --=='-,当0x >时,()0f x '>,函数单调递增,当0x <时,()0f x '<,函数单调递减,()()()()444561log log 5log 5,log 6,log 45a f f f b f c f ⎛⎫==-=== ⎪⎝⎭,因为lg4lg6+>故2222lg4lg6lg 24lg25lg4lg6(lg5)242+⎛⎫⎛⎫⋅<=<= ⎪ ⎪⎝⎭⎝⎭245lg5lg6lg 5lg4lg6log 5log 60lg4lg5lg4lg5-⋅-=-=>⋅所以456log 5log 61log 40>>>>,则.a b c >>故选:B.4.【多选题】(2021·辽宁高三月考)若1a b >>,则( )A .log 3log 3a b <B .33a b <C .11log ()log 21ab ab a b+≥-D .11+11a b <+【答案】ACD 【解析】由已知,A 选项,借助对数换底公式及对数函数单调性可判断;B 选项,利用幂函数单调性可判断;C 选项,利用对数函数单调性可判断;D 选项,利用反比例函数单调性可判断.【详解】对于A 选项:3log y x =在(0,+∞)上单调递增,1a b >>,则333311log log 0log log a b a b>>⇒<,即log 3log 3a b <,A 正确;对于B 选项:函数y =x 3在R 上递增,则33a b >,B 错误;对于C 选项:1a b >>,则ab >1,a +b >2,11log ()log log ()1ab ab ab a ba b a b ab++==+-log 21ab >-,有11log (log 21ab ab a b+≥-成立,即C 正确;对于D 选项:1112a b a b >>⇒+>+>,而函数1y x =在(0,+∞)上递减,则有11+11a b <+,即D 正确.故选:ACD5.【多选题】(2021·全国高三专题练习(理))已知0a b >>,且4ab =,则( )A .21a b ->B .22log log 1a b ->C .228a b +>D .22log log 1a b ⋅<【答案】ACD 【解析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断.【详解】因为0a b >>,且4ab =,对A ,0a b ->,所以0221a b ->=,故A 正确;对B ,取83,32a b ==,所以2222216log log log log log 219a ab b -==<=,故B 错误;对C,22a b ≥+,当且仅当a b =取等号,又因为4a b +≥=,当且仅当a b =取等号,所以228a b ≥≥=+,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故C 正确;对D ,当10>>>a b ,22log 0,log 0a b ><,所以22log log 1a b ⋅<;当1a b >>,22log 0,log 0a b >>,所以()()2222222log log log log log 144a b ab a b +⋅≤==,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故D 正确.故选:ACD.6.【多选题】(2021·湖南高三二模)若正实数a ,b 满足a b >且ln ln 0a b ⋅>,下列不等式恒成立的是( )A .log 2log 2a b >B .ln ln a a b b ⋅>⋅C .122ab a b ++>D .log 0a b >【答案】CD 【解析】由已知不等式,求出,a b 之间的关系,结合选项一一判断即可.【详解】由ln ln 0a b ⋅>有01b a <<< 或1a b >> ,对于选项A ,当01b a <<<或1a b >>都有log 2log 2a b < ,选项A 错误;对于选项B ,比如当11,24a b == 时,有211111111ln ln 2ln ln 44424222⎛⎫==⨯= ⎪⎝⎭故ln ln a a b b ⋅>⋅不成立,选项B 错误;对于C ,因为()()1110ab a b a b +--=-->,所以1ab a b +>+ ,则122ab a b ++> ,选项C 正确;对于选项D ,因为ln ln 0a b ⋅>,所以ln log 0ln a bb a=>,选项D 正确,故选:CD .7.【多选题】(2021·山东临沂市·高三二模)若5log 2a =,1ln 22b =,1ln 55c =,则( )A .a b >B .b c>C .c a>D .2a b>【答案】AB 【解析】对四个选项一一验证:对于A :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于B :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于C :利用不等式的传递性比较大小;对于D :利用换底公式,化为同底结构,利用函数的单调性比较大小;【详解】对于A :522221111ln o 21l g 2,log 522log log a b e e ====⨯=,又25e >,且2log y x =为增函数,所以222l l g 5og o e <,所以22251l og 1l og e <,即a b >.故A 正确;对于B:1ln 22b ==,1ln 55c ==因为101052232,525,ln y x =====为增函数,所以b c >;故B 正确;对于C :因为a b >,b c >,所以a c >,故C 错误;对于D :因为1ln 22b =,所以212ln 2log b e ==,而521log 2,log 5a ==又5e <,所以22log log 5e <,所以2211log log 5e >,所以2b a >,故D 错误.故选:AB.8.(2021·浙江高三专题练习)已知函数()f x 满足()(1)f x f x =-+,当(0,1)x ∈时,函数()3x f x =,则13(log 19)f =__________.【答案】2719-【解析】由()(1)f x f x =-+得函数的周期为2,然后利用周期和()(1)f x f x =-+对13(log 19)f 化简可得13(log 19)f 33927(log 1)(log 1919f f =-+=-,从而可求得结果【详解】解:由题意,函数()f x 满足()(1)f x f x =-+,化简可得()(2)f x f x =+,所以函数()f x 是以2为周期的周期函数,又由(0,1)x ∈时,函数()3x f x =,且()(1)f x f x =-+,则133339(log 19)(log 19)(log 192)(log 19f f f f =-=-+=327log 193392727(log 1)(log 3191919f f =-+=-=-=-.故答案为:2719-.9.(2021·千阳县中学高三其他模拟(文))已知函数()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩,则不等式()1f x >的解集为___________.【答案】11,3⎛⎫- ⎪⎝⎭【解析】根据分段函数的定义,分段讨论即可求解.【详解】解:()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩ ,()10131x x f x +≤⎧∴>⇔⎨>⎩或130log 1x x >⎧⎪⎨>⎪⎩,解得10-<≤x 或103x <<,即113x -<<,∴不等式()1f x >的解集为11,3⎛⎫- ⎪⎝⎭.故答案为:11,3⎛⎫- ⎪⎝⎭.10.(2021·浙江丽水市·高三期末)已知()()()1log 1log 01a a a a a ++<<<,则a 的取值范围是__________.【答案】⎫⎪⎪⎭【解析】通过作差将()()()1log 1log 01a a a a a ++<<<转化为(1)log (1)log 0++-<a a a a ,利用换底公式计算可得[][](1)lg(1)lg lg(1)lg log (1)log lg lg(1)++-+++-=+a a a a a a a a a a ,分别判断每个因式的正负,最终转化为211()124+->a 成立,结合二次函数图像,即可求得a 的取值范围.【详解】∵(1)lg(1)lg log (1)log lg lg(1)a a a aa a a a +++-=-+22lg (1)lg lg (1)a aalg a +-=+[][]lg(1)lg lg(1)lg lg lg(1)a a a a a a +-++=+而当01a <<时,lg 0a <,g(0)l 1a +>,1lg(1)lg lglg10a a a a++-=>=211lg(1)lg lg (1)lg (24a a a a a ⎡⎤++=+=+-⎢⎥⎣⎦,所以()()()1log 1log 01a a a a a ++<<<即为211lg ()024⎡⎤+->⎢⎥⎣⎦a ,由于lg u 单调递增,所以211(124+->a .211()24u a =+-的图象如图,当1u =时,0a =,1a <<时,12u <<,lg 0u >,可得()()log 1log 10a a a a a +-+<.故答案为:⎫⎪⎪⎭1.(2020·全国高考真题(文))设3log 42a =,则4a-=( )练真题A .116B .19C .18D .16【答案】B 【解析】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=,故选:B.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·天津高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a<<D .c a b<<【答案】D 【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.4.(2019年高考全国Ⅲ卷理)设是定义域为R 的偶函数,且在单调递减,则A .(log 3)>()>()B .(log 3)>()>()C .()>()>(log 3)D .()>()>(log 3)【答案】C【解析】是定义域为的偶函数,.,又在(0,+∞)上单调递减,∴,即.故选C .5.(2020·全国高考真题(理))若2233x y x y ---<-,则( )()f x ()0,+∞f 14f 322-f 232-f 14f 232-f 322-f 322-f 232-f 14f 232-f 322-f 14()f x R 331(log (log 4)4f f ∴=223303322333log 4log 31,1222,log 422---->==>>∴>> ()f x 23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<【答案】A 【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23t t f t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.6.(2019·天津高考真题(文))已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( )A.c <b <a B.a <b <c C.b <c <a D.c <a <b【答案】A 【解析】c =0.30.2<0.30=1;log 27>log 24=2;1<log 38<log 39=2.故c <b <a .故选A.。
对数与对数函数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)
考向11 对数与对数函数【2022·全国·高考真题(文)】已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.【2022·全国·高考真题】设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减, 当211x -<<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<-时,()0h x <,所以当021x <<-时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、 商、幂再运算.|3.log (0b a a N b N a =⇔=>,且1)a ≠是解决有关指数、对数问题的有效方法,在运算中应注意互化.4.识别对数函数图象时,要注意底数a 以1为分界:当1a >时,是增函数;当01a <<时,是减函数.注意对数函数图象恒过定点(1,0),且以y 轴为渐近线.5.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.6.比较对数值的大小(1)若对数值同底数,利用对数函数的单调性比较 (2)若对数值同真数,利用图象法或转化为同底数进行比较 (3)若底数、真数均不同,引入中间量进行比较 7.解决对数函数的综合应用有以下三个步骤: (1)求出函数的定义域;(2)判断对数函数的底数与1的大小关系,当底数是含字母的代数式(包含单独一个字母)时,若涉及其单调性,就必须对底数进行分类讨论;(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性1.换底公式的两个重要结论 (1)1log ;log a b b a =(2)log log n a a nmb b m=.其中0a >,且1,0a b ≠>,且1,,R b m n ≠∈. 2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大3.对数函数log (0a y x a =>,且1)a ≠的图象过定点(1,0),且过点1(,1),,1a a ⎛⎫- ⎪⎝⎭,函数图象只在第一、四象限.1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1aa =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象1a >01a <<图象 xyx =1(1,0)xa log Ox yx =1(1,0)xa log O性质定义域:(0)+∞,值域:R过定点(10),,即1x =时,0y = 在(0)+∞,上增函数 在(0)+∞,上是减函数 当01x <<时,0y <,当1x ≥时,0y ≥当01x <<时,0y >,当1x ≥时,0y ≤1.(2022·全国·模拟预测)已知23a=,21log 102b =, 1.012c =,则a ,b ,c 的大小关系为( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>【答案】C 【解析】 【分析】利用指对互化以及指对函数的性质进行比较即可. 【详解】由2log 3log 10log 162a b =<=<,122c >=,可得c b a >>. 故选:C.2.(2022·河南·模拟预测(文))已知0.30.2a -=,0.2log 0.3b =,2log 0.3c =,则( ) A .b a c >> B .a c b >>C .c a b >>D .a b c >>【答案】D 【解析】 【分析】分别判断出每个数的范围,然后比较即可. 【详解】因为0.30.21->,0.20log 0.31<<,2log 0.30<,所以a b c >>. 故选:D.3.(2022·全国·模拟预测(文))已知lg 20.301≈,302用科学记数法表示为302 1.0710m =⨯,则m 的值约为( ) A .8 B .9C .10D .11【答案】B 【解析】 【分析】根据题意得30lg 2lg1.07m =+,再分析求解即可. 【详解】因为lg 20.301≈,302 1.0710m =⨯,所以30lg 2lg1.0710m =⨯, 所以30lg 2lg1.07lg10m =+,所以30lg 2lg1.07m =+, 又lg1.07无限接近于0,所以30lg 2300.3019.039m ≈=⨯=≈. 故选:B.4.(2022·黑龙江·鸡西市第四中学三模(理))若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列三个函数:()13=x f x ,()243x f x =⨯,()385log 53log 2xf x =⋅⋅,则( )A .()1f x ,()2f x ,()3f x 为“同形”函数B .()1f x ,()2f x 为“同形”函数,且它们与()3f x 不为“同形”函数C .()1f x ,()3f x 为“同形”函数,且它们与()2f x 不为“同形”函数D .()2f x ,()3f x 为“同形”函数,且它们与()1f x 不为“同形”函数 【答案】A 【解析】 【分析】根据题中“同形”函数的定义和2()f x 、3()f x 均可化简成以3为底的指数形式,可得答案. 【详解】解:()33log 4log 4243333x x xf x +=⨯=⨯=,()518385813log 5g lo l log 23lo 233g 53og 23x x x x x f x -=⋅⋅=⋅⋅==⋅⋅=,故2()f x ,3()f x 的图象可分别由1()3x f x =的图象向左平移3log 4个单位、向右平移1个单位得到, 故()1f x ,()2f x ,()3f x 为“同形”函数. 故选:A .5.(2022·山东·德州市教育科学研究院三模)已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点(16,)B t ,0.1log a t =,0.2t b =,0.1c t =,则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<【答案】C 【解析】【分析】根据对数函数可以解得2a =,4t =,再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈,0.141c =>∴a b c << 故选:C .6.(2022·河南·平顶山市第一高级中学模拟预测(文))已知函数22()ln(1)2f x x x x =++,若()9f a =,则()f a -=( ) A .5- B .9- C .13- D .15-【答案】A 【解析】 【分析】构建()()2g x f x =-,根据奇偶性定义可证()g x 是定义在R 上的奇函数,利用奇函数理解运算. 【详解】令22()()21)g x f x x x x =-=+, 222222()()ln(()1)ln(ln(1)()1g x x x x x x x x g x x x-=--+==-+=-++,()g x ∴是R 上的奇函数,()()0g a g a ∴-+=,即()2()20f a f a --+-=, 又()9f a =,所以()5f a -=-. 故选:A .7.(2022·青海·海东市第一中学模拟预测(理))已知函数()24log 1f x a x ⎛⎫=- ⎪+⎝⎭,若()1f x +是奇函数,则实数a =______. 【答案】1 【解析】 【分析】利用奇函数的性质(1)(1)f x f x -+=-+列方程求参数. 【详解】由题意,(1)(1)f x f x -+=-+,即2244log log 22a a x x ⎛⎫⎛⎫-=-- ⎪ ⎪-+⎝⎭⎝⎭, 所以242224a ax x x a ax --+=--+,化简得()22211a a ⎧-=⎪⎨=⎪⎩,解得1a =. 故答案为:18.(2022·福建·三明一中模拟预测)写出一个满足对定义域内的任意x ,y ,都有()()()f xy f x f y =+的函数()f x :___________.【答案】()ln f x x =(答案不唯一) 【解析】 【分析】利用对数的运算性质可知函数()ln f x x =符合题意. 【详解】若函数()ln f x x =,则()()ln ln ln ()()f xy xy x y f x f y ==+=+满足题意, 故答案为:()ln f x x =(答案不唯一)1.(2022·河南安阳·模拟预测(理))已知0.3211log 0.3,,25a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .b c a <<C .c b a <<D .a c b <<【答案】D 【解析】 【分析】根据给定条件,利用指数函数、对数函数单调性,借助“媒介”数比较作答. 【详解】函数2log y x =在(0,)+∞上单调递增,00.31<<,则22log 0.3log 10a =<=,函数1()2x y =在R 上单调递减,0.31<,0.311()22b =>,而5 2.51052c <=<=,所以a c b <<.故选:D2.(2022·青海·模拟预测(理))设log 2020a =2020ln 2021b =,120212020c =,则a 、b 、c 的大小关系为( ) A .c a b >> B .a c b >> C .a b c >> D .c b a >>【答案】A 【解析】 【分析】利用指数函数、对数函数的性质,再借助“媒介”数比较大小作答. 【详解】函数2021log ,ln y x y x ==在(0,)+∞上都是增函数,120202021,即01a <<,2020012021,则0b <,函数2020x y =在R 上单调递增,而102021>,则1202102012c =>, 所以c a b >>. 故选:A3.(2022·江苏无锡·模拟预测)已知1333,e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( ) A .a b c << B .a c b <<C .c a b <<D .b c a <<【答案】C 【解析】 【分析】根据给定条件,构造函数ln ()(e)xf x x x=≥,利用函数的单调性比较大小作答. 【详解】 令函数ln ()(e)x f x x x=≥,当e x >时,求导得:()21ln 0xf x x '-=<, 则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===, 显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C 【点睛】思路点睛:某些数或式大小比较问题,探讨给定数或式的内在联系,构造函数,分析并运用函数的单调性求解.4.(2022·全国·模拟预测)“熵”是用来形容系统混乱程度的统计量,其计算公式为1ln i B ni i p p S k ==-∑,其中i表示所有可能的微观态,i p 表示微观态i 出现的概率,B k 为大于0的常数.则在以下四个系统中,混乱程度最高的是( ) A .1212p p ==B .113p =,223p =C .12331p p p ===D .116p =,213p =,312p =【答案】C 【解析】 【分析】对选项逐一验证,分别计算系统的混乱程度,借助对数函数比较大小,计算得解. 【详解】对选项逐一验证(不考虑负号和玻尔兹曼常数). A 选项:系统的混乱程度11111ln ln ln 2ln 22222A S +=-=;B 选项:系统的混乱程度311222ln ln ln 2ln 3333334B S +=-=C 选项:系统的混乱程度1111111ln ln ln ln 3ln 3333333c S ++=-=;D 选项:系统的混乱程度3331111111ln ln ln ln 2ln 3433466332232234DS ++=--=--,所以A C S S >,B C S S >,C D S S >,所以C S 最小,从而C 选项对应的系统混乱程度最高. 故选:C.5.(2022·辽宁实验中学模拟预测)已知实数a ,b 满足()2log 1,01a a b a +=<<,则21log 4b a a -的最小值为( ) A .0 B .1- C .1 D .不存在【答案】A 【解析】 【分析】由题设条件可得2log 1a b a =-,从而利用换底公式的推论可得21log 1b a a =-,代入要求最小值的代数式中,消元,利用均值不等式求最值 【详解】2log 1a a b +=2log 1a b a ⇒=-21log 1b a a ⇒=- 又01a <<,则2011a <-<()()22211log 11441b a a a a -=+---()()22111041a a ≥⨯-=- 当且仅当()221141a a =--即2a = 故选:A6.(2022·全国·模拟预测(理))已知10a b a>>>,则下列结论正确的是( ) A .1a bb a -⎛⎫> ⎪⎝⎭B .log log a a bba b <C .log log a b baa b <D .11b a a b-<- 【答案】D 【解析】 【分析】根据不等式的性质,结合指数函数、对数函数的单调性、作差法比较大小等知识,逐一分析各个选项,即可得答案. 【详解】 因为10a b a>>>,所以1a >, 对于A :01b a <<,0a b ->,所以01a bb b a a -<⎛⎫⎛⎫⎪⎪⎝⎝⎭=⎭,故A 错误; 对于B :1ab>,所以log a b y x =在(0,)+∞上为增函数,又a b >,所以log log a a bba b>,故B 错误;对于C :log log log log log a b a a a babbbb a b a ab-=+=,因为1ab>,1ab >,所以log log 10a a b b ab =>,所以log log a b baa b>,故C 错误;对于D :11111()ab b a b a a b a b b a ab -⎛⎫⎛⎫---=-+-=- ⎪ ⎪⎝⎭⎝⎭, 因为0a b ->,1ab >, 所以111()0ab b a a b a b ab -⎛⎫⎛⎫---=-< ⎪ ⎪⎝⎭⎝⎭,即11b a a b -<-,故D 正确. 故选:D7.(2022·北京·北大附中三模)已知函数()2log 1f x x x =-+,则不等式()0f x <的解集是( ) A .()1,2 B .()(),12,-∞+∞C .()0,2D .()()0,12,⋃+∞【答案】D 【解析】 【分析】由()0f x <可得2log 1x x <-,在同一坐标系中作出两函数的图象,即可得答案. 【详解】解:依题意,()0f x <等价于2log 1x x <-,在同一坐标系中作出2log y x =,1y x =-的图象,如图所示:如图可得2log 1x x <-的解集为:()()0,12,⋃+∞. 故选:D.8.(2022·湖北省仙桃中学模拟预测)已知(),()y f x x R =∈是奇函数,当0x <时,312()8log ()f x x x =+-,则2(|log |)0f x <的解集为( )A .2[(1,2] B .2(2) C .2((1,2) D .2(2,)+∞ 【答案】C 【解析】 【分析】先求出函数的解析式,令2log t x =,把原不等式转化为()0f t t <⎧⎨≥⎩,利用单调性法解不等式即可得到答案.【详解】因为(),()y f x x R =∈是奇函数,当0x <时,312()8log ()f x x x =+-;所以当0x =时,()0f x =;当0x >时,则0x -<,所以()312()8log f x x x -=-+.因为()y f x =是奇函数,所以()()312()8log f x f x x x -=-=-+,所以()3128log f x x x =-.即当0x >时,()3128log f x x x =-.综上所述:()()3123128log ,00,08log ,0x x x f x x x x x ⎧+-<⎪⎪==⎨⎪->⎪⎩. 令2log t x =,则2log 0t x =≥,所以不等式2(|log |)0f x <可化为:()00f t t <⎧⎨≥⎩. 当0=t 时,()0f t =不合题意舍去.当0t >时,对于()3128log f x x x =-.因为3y x =在()0,+∞上递增,12log y x=-在()0,+∞上递增,所以()3128log f x x x =-在()0,+∞上递增.又3121118log 0222f ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,所以由()00f t t <⎧⎨≥⎩可解得:102t <<,即210log 2x <<,解得:2((1,2)x ∈.故选:C9.(2022·全国·哈师大附中模拟预测(理))函数()ln f x x =,其中()()2f x f y +=,记()()()11*ln ln ln ln nn n nn S x xy xyy n N --=++++∈,则202211i iS==∑( )A .20222023B .20232022C .20234044 D .40442023【答案】A 【解析】 【分析】由条件结合对数运算性质可求xy ,再结合倒序相加法求n S ,利用裂项相消法求202211i iS =∑. 【详解】()()ln ln ln()2f x f y x y xy +=+==,∴2e xy =()()11ln ln ln ln n n n n n S x x y xy y --=++++,()()11ln ln ln ln n n n n n S y xy x y x --=++++()2(1)ln (1)ln()2(1)n n n S n x y n n xy n n =+=+=+,∴(1)n S n n =+2022202220221111111120221(1)120232023i i i iS i i i i ===⎛⎫==-=-= ⎪++⎝⎭∑∑∑, 故选:A .10.(2022·吉林·东北师大附中模拟预测(理))已知函数()ln f x x =,若0a b <<,且()()f a f b =,则2+a b 的取值范围是______. 【答案】()3,+∞ 【解析】 【分析】由()()f a f b =,0a b <<可得01,1a b <<>,ln ln a b -=,得1b a =,所以22a b a a+=+,然后构造函数2()(01)g x x x x=+<<,利用可求出其单调区间,从而可求出其范围【详解】()ln f x x =的图象如图,因为()()f a f b =, 所以ln ln a b =, 因为0a b <<, 所以ln 0a <,ln 0b >, 所以01,1a b <<>, 所以ln ln ,ln ln a a b b =-=,所以ln ln a b -=,所以ln ln ln()0a b ab +==, 所以1ab =,则1b a=, 所以22a b a a+=+, 令2()(01)g x x x x =+<<,则22()1x g x x x '-=-=,当01x <<时,()0g x '<, 所以()g x 在(0,1)上递减, 所以()(1)123g x g >=+=, 所以23+>a b ,所以2+a b 的取值范围为()3,+∞, 故答案为:()3,+∞11.(2022·青海·大通回族土族自治县教学研究室三模(文))若0a >,0b >,()lg lg lg 2a b a b +=+,则22a b b+的最小值为___________. 【答案】222+ 【解析】 【分析】由()lg lg lg 2a b a b +=+可得2ab a b =+,变为211ba+=,则可利用22222122a b a a a bb b b b b b a b a+⎛⎫=+=++=++ ⎪⎝⎭,结合基本不等式,即可求得答案. 【详解】∵()lg lg lg 2a b a b +=+,∴2ab a b =+,0a >,0b >,∴211ba+=,∴22222122222222a b a a a ba b b b b b b b a b ab a +⎛⎫=+=++=++≥⋅=+ ⎪⎝⎭ 2a b =,即21a =,22b = ∴22a b b+的最小值为222+故答案为:222+12.(2022·云南师大附中模拟预测(理))给出下列命题:①3eln 242<1515<;③ln eππ<ln 332<,其中真命题的序号是______.【答案】①②④ 【解析】 【分析】 构造函数ln ()(0)xf x x x=>,借助函数的单调性分别比较大小即可. 【详解】 构造函数ln ()(0)x f x x x =>,所以21ln ()xf x x -'=,得,当0e x <<时,()0f x '>;当e x >时,()0f x '<,于是()f x 在(0e),上单调递增,在(e )+∞,上单调递减. 对于①,112ln e 22ln e3eln 2423e e e e 42424222<<⇒<<⇒<,即(22)(e)f f <,又e 22<据()f x 的单调性知(22)(e)f f <成立,故①正确;对于②,152ln 15ln 2ln 15215152ln15ln 2ln 22151515<<⇒<⇒<ln 22ln 2ln 42224==⨯,所以ln 4ln 15415<(4)(15)f f <,又415e >,据()f x 的单调性知(4)(15)f f <成立,故②正确; 对于③,π2ln πln πe πe πe<<<⇒ ln πln πln eπ2e πe ,即(π)(e)f f <e πe ,据()f x 的单调性知(π(e)f f >成立,故③错误;对于④,2ln 3ln 332ln 2ln 233<< ln 3ln 223<,即(3)(2)f f <32e <<,据()f x 的单调性可知(3)(2)f f <成立,故④正确. 故答案为:①②④.13.(2022·浙江绍兴·模拟预测)已知函数()()2()log 9,()log x a a f x a g x x ax =-=-,若对任意1[1,2]x ∈,存在2[3,4]x ∈使得()()12f x g x ≥恒成立,则实数a 的取值范围为____________. 【答案】()()0,11,3【解析】 【分析】恒成立存在性共存的不等式问题,需要根据题意确定最值比大小解不等式即可. 【详解】根据题意可得只需()()12min min f x g x ≥即可,由题可知a 为对数底数且29001a a ->⇒<<或13a <<.当01a <<时,此时(),()f x g x 在各自定义域内都有意义,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递减,所以()21min (2)log (9)a f x f a ==-,()2min (4)log (164)a g x g a ==-,所以22log (9)log (164)9164a a a a a a -≥-⇒-≤-,即2470a a -+≥,可得01a <<;当13a <<时,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递增,所以()21min (2)log (9)a f x f a ==-,()2min (3)log (93)a g x g a ==-,所以22log (9)log (93)993a a a a a a -≥-⇒-≥-,即230a a -≤,可得13a <<.综上:()()0,11,3a ∈⋃.故答案为:()()0,11,3.14.(2022·四川·内江市教育科学研究所三模(文))已知函数()21log 22x xf x ⎛⎫=+ ⎪⎝⎭,数列{}n a 是公差为2的等差数列,若()()()()112233440a f a a f a a f a a f a +++=,则数列{}n a 的前n 项和n S =___________. 【答案】24n n - 【解析】 【分析】利用定义判断()f x 的奇偶性,并确定值域范围,根据已知条件易得14230a a a a +=+=,进而求出首项,根据等差数列前n 项和公式求n S . 【详解】由2211()log (2)log (2)()22xxx xf x f x ---=+=+=且定义域为R , 所以()f x 为偶函数,而1122222x x x x +≥⋅=,当0x =时等号成立,所以在R 上()1f x ≥恒成立,故要使()()()()112233440a f a a f a a f a a f a +++=,又{}n a 是公差为2的等差数列,所以14230a a a a +=+=,则13a =-,故23(1)4n n n n n S n =-+-=-.故答案为:24n n -. 【点睛】关键点点睛:判断函数的奇偶性,根据其对称性确定1234,,,a a a a 的数量关系. 15.(2022·山西运城·模拟预测(文))若221ee,ln 12x x y y-=-=,则xy =__________. 【答案】e2##1e 2【解析】 【分析】 将221e2x x -=变形为2ln22x x +=,e ln 1y y -=换元整理为ln 2t t +=,构造函数()ln f x x x =+,由()f x 单增得到2x t =即可求解. 【详解】由221e2x x -=,两边取以e 为底的对数,得122ln ln 2x x -+=,即2ln22x x +=. 由e ln 1y y -=,令e t y =,则ey t =,所以e ln 1t t-=,即ln 2t t +=.设()ln f x x x =+,则()110f x x=+>',所以()ln f x x x =+在()0,∞+上单调递增. 由2ln22x x +=以及ln 2t t +=,则2x t =,又e t y =,所以e 2xy =. 故答案为:e2.1.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.2.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减, 211x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<时,()0h x <,所以当021x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.3.(2022·浙江·高考真题)已知825,log 3ab ==,则34a b -=( )A .25B .5C .259 D .53【答案】C 【解析】 【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 【详解】因为25a =,821log 3log 33b ==,即323b =,所以()()22323232452544392a a a b b b -====. 故选:C.4.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<【答案】D 【解析】 【分析】根据指数函数和对数函数的性质求出,,a b c 的范围即可求解. 【详解】22log 0.3log 10<=,0a ∴<, 122225log 0.4log 0.4log log 212=-=>=,1b ∴>, 0.3000.40.41<<=,01c ∴<<,a cb ∴<<.故选:D.5.(2020·全国·高考真题(理))若2233x y x y ---<-,则( ) A .ln(1)0y x -+> B .ln(1)0y x -+< C .ln ||0x y -> D .ln ||0x y -<【答案】A 【解析】 【分析】将不等式变为2323x x y y ---<-,根据()23t tf t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果. 【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23t tf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A. 【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.6.(2020·全国·高考真题(文))设3log 42a =,则4a -=( ) A .116B .19C .18D .16【答案】B 【解析】 【分析】根据已知等式,利用指数对数运算性质即可得解 【详解】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=, 故选:B. 【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.7.(2019·天津·高考真题(理))已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】利用10,,12等中间值区分各个数值的大小.【详解】551log 2log 52a =<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A . 【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.8.(2019·全国·高考真题(文))已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.9.(2019·全国·高考真题(理))若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C . 【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.10.(2016·全国·高考真题(理))已知432a =,254b =,1325c =,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】 【详解】因为4133216a ==,2155416b ==,1325c =, 因为幂函数13y x =在R 上单调递增,所以a c <, 因为指数函数16x y =在R 上单调递增,所以b a <, 即b <a <c . 故选:A.11.(2018·天津·高考真题(文))已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 12.(2016·全国·高考真题(文))已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小. 13.(2016·全国·高考真题(文))若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b【答案】B 【解析】 【详解】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a ba b c c==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用x y c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.14.(2016·浙江·高考真题(理))已知a >b >1.若log a b+log b a=52,a b =b a ,则a=___,b=____.【答案】 4 2 【解析】 【详解】试题分析:设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=, 因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒== 指数运算,对数运算. 在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误15.(2015·北京·高考真题(文))32-,123,2log 5三个数中最大数的是 . 【答案】2log 5 【解析】 【详解】 31218-=<,12331=>,22log 5log 423>>>2log 5最大.。
2023年高考数学(文科)一轮复习——对数与对数函数
第6节对数与对数函数考试要求 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.1.对数的概念如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质、运算性质与换底公式(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)对数的运算性质如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R).(3)换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1,N>0).3.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.1.换底公式的两个重要结论(1)log a b =1log b a (a >0,且a ≠1;b >0,且b ≠1).(2)log am b n =nm log a b (a >0,且a ≠1;b >0;m ,n ∈R ,且m ≠0). 2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限.1.思考辨析(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( ) (3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (4)当x >1时,若log a x >log b x ,则a <b .( ) 答案 (1)× (2)× (3)√ (4)×解析 (1)log 2x 2=2log 2|x |,故(1)错误.(2)形如y =log a x (a >0,且a ≠1)为对数函数,故(2)错误. (4)若0<b <1<a ,则当x >1时,log a x >log b x ,故(4)错误.2.(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)( ) A.1.5 B.1.2 C.0.8D.0.6答案 C解析 由题意知,4.9=5+lg V ,得lg V =-0.1,得V =10-110=11010≈11.259≈0.8,所以该同学视力的小数记录法的数据约为0.8.3.(2021·天津卷)设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0. ∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .4.(易错题)函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 当x =2时,函数y =log a (x -1)+2(a >0,且a ≠1)的值为2,所以图象恒过定点(2,2).5.(易错题)已知lg x +lg y =2lg(x -2y ),则xy =________. 答案 4解析 ∵lg x +lg y =2lg(x -2y ), ∴lg(xy )=lg(x -2y )2,∴⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,xy =(x -2y )2,即⎩⎪⎨⎪⎧x >2y ,y >0,(x -y )(x -4y )=0,则x =4y >0,∴xy =4.6.若函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________. 答案 2或12解析 当0<a <1时,f (x )=log a x 在[2,4]上单调递减,故f (x )max =f (2),f (x )min =f (4),则f (2)-f (4)=log a 12=1,解得a =12.当a >1时,f (x )在[2,4]上单调递增,此时f (x )max =f (4),f (x )min =f (2),则f (4)-f (2)=log a 2=1,解得a =2.考点一 对数的运算1.(2020·全国Ⅰ卷)设a log 34=2,则4-a =( ) A.116 B.19C.18D.16答案 B解析 法一 因为a log 34=2,所以log 34a =2,则4a =32=9,所以4-a =14a =19. 法二 因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4-log 49=4log 49-1=9-1=19.2.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1 C.lg 10.1D.10-10.1答案 A解析 依题意,m 1=-26.7,m 2=-1.45,代入所给公式得52lg E 1E 2=-1.45-(-26.7)=25.25.所以lg E 1E 2=25.25×25=10.1,即E 1E 2=1010.1.3.(2021·天津卷)若2a =5b =10,则1a +1b =( ) A.-1 B.lg 7 C.1 D.log 710答案 C解析 ∵2a =5b =10, ∴a =log 210,b =log 510,∴1a +1b =1log 210+1log 510=lg 2+lg 5=lg 10=1.4.计算:(1-log 63)2+log 62·log 618log 64=________.答案 1解析 原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.感悟提升 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.考点二 对数函数的图象及应用例1 (1)函数f (x )=log a |x |+1(0<a <1)的图象大致为( )(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为________.答案 (1)A (2)⎝⎛⎦⎥⎤0,22解析 (1)由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位长度即得f (x )的图象,结合图象知选A.(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 和函数y =log a x 的图象在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a 12≤2,解得0<a ≤22. 感悟提升 对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质,函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.训练1 (1)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1(2)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 答案 (1)D (2)(1,+∞)解析 (1)由该函数的图象通过第一、二、四象限知该函数为减函数,∴0<a <1,∵图象与x 轴的交点在区间(0,1)之间,∴该函数的图象是由函数y =log a x 的图象向左平移不到1个单位长度后得到的,∴0<c <1.(2)问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.考点三 解决与对数函数的性质有关的问题 角度1 比较大小例2 (1)已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b(2)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是( ) A.a <b <c B.b <a <c C.c <b <aD.a <c <b(3)(2021·衡水中学检测)已知a =⎝ ⎛⎭⎪⎫120.2,b =log 120.2,c =a b ,则a ,b ,c 的大小关系是( ) A.a <b <c B.c <a <b C.a <c <bD.b <c <a答案 (1)D (2)C (3)B解析 (1)∵0<a <1,b =log 213=-log 23<0,c =log 1213=log 23>1.∴c >a >b .(2)根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0,即log 2c <log 2b <log 2a <0, 可得c <b <a <1.故选C.(3)函数y =⎝ ⎛⎭⎪⎫12x与y =log 12x 的图象关于直线y =x 对称,则0<⎝ ⎛⎭⎪⎫120.2<1<log 120.2,∴a <b .又c =a b =⎝ ⎛⎭⎪⎫120.2log 120.2=⎝ ⎛⎭⎪⎫12log 120.20.2=0.20.2<⎝ ⎛⎭⎪⎫120.2=a ,所以b >a >c . 角度2 解对数不等式例3 (1)(2022·太原质检)定义在R 上的奇函数f (x ),当x ∈(0,+∞)时,f (x )=log 2x ,则不等式f (x )<-1的解集是________.(2)不等式log a (a 2+1)<log a (2a )<0,则a 的取值范围是________. 答案 (1)(-∞,-2)∪⎝ ⎛⎭⎪⎫0,12 (2)⎝ ⎛⎭⎪⎫12,1解析 (1)设x <0,则-x >0, ∴f (x )=-f (-x )=-log 2(-x ), ∴f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,x =0,-log 2(-x ),x <0.当x >0时,f (x )<-1,即log 2x <-1=log 212,解得0<x <12. 当x <0时,f (x )<-1,即-log 2(-x )<-1, 则log 2(-x )>1=log 22,解得x <-2. 当x =0时,f (x )=0<-1显然不成立.综上,原不等式的解集为(-∞,-2)∪⎝ ⎛⎭⎪⎫0,12.(2)由题意得a >0且a ≠1, 故必有a 2+1>2a .又log a (a 2+1)<log a (2a )<0,所以0<a <1, 所以2a >1,即a >12. 综上,12<a <1.角度3 对数型函数性质的综合应用 例4 已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解 (1)若函数f (x )是R 上的奇函数,则f (0)=0,∴log 2(1+a )=0,∴a =0.当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0.(2)若函数f (x )的定义域是一切实数, 则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0), 故只要a ≥0,则a 的取值范围是[0,+∞).(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设得log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2,则log 2(1+a )≥log 2(4a +2). ∴⎩⎪⎨⎪⎧1+a ≥4a +2,4a +2>0,解得-12<a ≤-13. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-12,-13.感悟提升 1.比较对数值的大小与解形如log a f (x )>log a g (x )的不等式,主要是应用函数的单调性求解,如果a 的取值不确定,需要分a >1与0<a <1两种情况讨论. 2.与对数函数有关的复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.训练2 (1)(2019·天津卷)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( ) A.c <b <aB.a <b <cC.b <c <aD.c <a <b(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为________.(3)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.答案 (1)A (2)[1,2) (3)⎝ ⎛⎭⎪⎫1,83 解析 (1)显然c =0.30.2∈(0,1).因为log 33<log 38<log 39,所以1<b <2.因为log 27>log 24=2,所以a >2.故c <b <a .(2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a , 要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,则f (x )min =f (2)=log a (8-2a )>1,即8-2a >a ,且8-2a >0,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (1)=log a (8-a )>1,且8-2a >0.∴8-a <a 且8-2a >0,此时解集为∅.综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83.1.已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A.d =acB.a =cdC.c =adD.d =a +c 答案 B解析 ∵log 5b =a ,lg b =c ,∴5a =b ,10c =b .又∵5d =10,∴5a =b =10c =(5d )c =5cd ,∴a =cd .2.(2021·濮阳模拟)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫3x +43x +m 的值域是全体实数,则实数m 的取值范围是( )A.(-4,+∞)B.[-4,+∞)C.(-∞,-4)D.(-∞,-4]答案 D解析 由题意可知3x +43x +m 能取遍所有正实数.又3x +43x +m ≥m +4,所以m +4≤0,即m ≤-4.∴实数m 的取值范围为(-∞,-4].3.若函数f (x )=|x |+x 3,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12+f (lg 5)+f ⎝ ⎛⎭⎪⎫lg 15=( ) A.2B.4C.6D.8答案 A 解析 由于f (x )=|x |+x 3,得f (-x )+f (x )=2|x |.又lg 12=-lg 2,lg 15=-lg 5.所以原式=2|lg 2|+2|lg 5|=2(lg 2+lg 5)=2.4.(2021·新高考Ⅱ卷)已知a =log 52,b =log 83,c =12,则下列判断正确的是( )A.c <b <aB.b <a <cC.a <c <bD.a <b <c答案 C解析 a =log 52<log 55=12=log 822<log 83=b ,即a <c <b .5.在同一直角坐标系中,函数y =1a x ,y =log a ⎝ ⎛⎭⎪⎫x +12(a >0,且a ≠1)的图象可能是( )答案 D解析 若a >1,则y =1a x 单调递减,A ,B ,D 不符合,且y =log a ⎝ ⎛⎭⎪⎫x +12过定点⎝ ⎛⎭⎪⎫12,0,C 项不符合,因此0<a <1.当0<a <1时,函数y =a x 的图象过定点(0,1),在R 上单调递减,于是函数y =1a x的图象过定点(0,1),在R 上单调递增,函数y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0,在(-12,+∞)上单调递减.因此, 选项D 中的两个图象符合.6.已知函数f (x )=log 2(1-|x |),则关于函数f (x )有下列说法:①f (x )的图象关于原点对称;②f (x )的图象关于y 轴对称;③f (x )的最大值为0;④f (x )在区间(-1,1)上单调递增.其中正确的是( )A.①③B.①④C.②③D.②④答案 C解析f(x)=log2(1-|x|)为偶函数,不是奇函数,∴①错误,②正确;根据f(x)的图象(图略)可知④错误;∵1-|x|≤1,∴f(x)≤log21=0,故③正确.7.(2021·济南一中检测)已知函数y=log a(2x-3)+2(a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则b=________.答案-7解析令2x-3=1,得x=2,∴定点为A(2,2),将定点A的坐标代入函数f(x)中,得2=32+b,解得b=-7.8.计算:lg 25+lg 50+lg 2·lg 500+(lg 2)2=________.答案 4解析原式=2lg 5+lg(5×10)+lg 2·lg(5×102)+(lg 2)2=2lg 5+lg 5+1+lg 2·(lg 5+2)+(lg 2)2=3lg 5+1+lg 2·lg 5+2lg 2+(lg 2)2=3lg 5+2lg 2+1+lg 2(lg 5+lg 2)=3lg 5+2lg 2+1+lg 2=3(lg 5+lg 2)+1 =4.9.函数f(x)=log2x·log2(2x)的最小值为________.答案-1 4解析依题意得f(x)=12log2x·(2+2log2x)=(log2x)2+log2x=⎝ ⎛⎭⎪⎫log2x+122-14≥-14,当log2x=-12,即x=22时等号成立,所以函数f(x)的最小值为-14.10.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log a(x+1)(a>0,且a≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围.解 (1)当x <0时,-x >0,由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,所以f (-x )=f (x ).所以当x <0时,f (x )=log a (-x +1),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log a (x +1),x ≥0,log a (-x +1),x <0.(2)因为-1<f (1)<1,所以-1<log a 2<1,所以log a 1a <log a 2<log a a .①当a >1时,原不等式等价于⎩⎨⎧1a <2,a >2,解得a >2; ②当0<a <1时,原不等式等价于⎩⎨⎧1a >2,a <2,解得0<a <12.综上,实数a 的取值范围为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 11.已知函数f (x )=log 21+ax x -1(a 为常数)是奇函数. (1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围.解 (1)因为函数f (x )=log 21+ax x -1是奇函数,所以f (-x )=-f (x ),所以log21-ax-x-1=-log21+axx-1,即log2ax-1x+1=log2x-11+ax,所以a=1,f(x)=log21+x x-1,令1+xx-1>0,解得x<-1或x>1,所以函数的定义域为{x|x<-1或x>1}.(2)f(x)+log2(x-1)=log2(1+x),当x>1时,x+1>2,所以log2(1+x)>log22=1.因为x∈(1,+∞)时,f(x)+log2(x-1)>m恒成立,所以m≤1,所以m的取值范围是(-∞,1].12.(2022·烟台模拟)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系式为P=P0e-kt,其中P0,k为正常数.如果一定量的废气在前10 h的过滤过程中污染物被消除了20%,那么污染物减少到最初含量的50%还需要经过多长时间?(结果四舍五入取整数,参考数据:ln 2≈0.693,ln 5≈1.609)()A.11 hB.21 hC.31 hD.41 h答案 B解析由已知得1-15=e-10k,方程两边同取自然对数得ln 45=-10k,所以k=2ln 2-ln 5-10≈0.022 3.设污染物减少到最初含量的50%需要经过t h,则12=e-0.022 3t,方程两边同取自然对数得ln 12=-0.022 3t,解得t≈31.所以还需要经过31-10=21(h)使污染物减少到最初含量的50%,故选B.13.已知函数f (x )=⎩⎨⎧log 2(x -1),x >1,2x ,x ≤1,且关于x 的方程f (x )-a =0有两个实数根,则实数a 的取值范围为( )A.(0,1)B.(0,1]C.(1,2)D.(0,2]答案 D解析 作出函数y =f (x )的图象(如图),方程f (x )-a =0有两个实数根,即y =f (x )与y =a 有两个交点,由图知,0<a ≤2.14.(2022·郑州调研)在①f (x )+f (-x )=0,②f (x )-f (-x )=0,③f (-2)=-f (2)这三个条件中选择一个合适的补充在下面问题中,并给出解答.已知函数f (x )=log 2(x 2+a +x )(a ∈R )满足________.(1)求a 的值;(2)若函数g (x )=2f (-x )+1-x 2+1,证明:g (x 2-x )≤54. 注:如果选择多个条件分别解答,按第一个解答计分.解 若选择②f (x )-f (-x )=0,因为f (x )-f (-x )=0,所以log 2(x 2+a +x )-log 2(x 2+a -x )=0, 所以x 2+a +x =x 2+a -x ,所以x =0,a ≥0,此时求不出a 的具体值,所以不能选②. 若选择①f (x )+f (-x )=0,(1)因为f (x )+f (-x )=0,所以log 2(x 2+a +x )+log 2(x 2+a -x )=0, 所以log 2[(x 2+a +x )(x 2+a -x )]=0, 所以x 2+a -x 2=1,解得a =1. 若选择③f (-2)=-f (2),(1)因为f (-2)=-f (2),所以log 2(4+a -2)=-log 2(4+a +2), 所以(4+a -2)(4+a +2)=1, 所以4+a -4=1,所以a =1.(2)由(1)知f (x )=log 2(x 2+1+x ), f (-x )=log 2(x 2+1-x ),所以g (x )=2log2(x 2+1-x )+1-x 2+1 =x 2+1-x +1-x 2+1=-x +1, 所以g (x 2-x )=-(x 2-x )+1=-x 2+x +1=-⎝ ⎛⎭⎪⎫x -122+54≤54.。
对数函数-高中数学总复习课件
范围是(
)
A. [-1,2]
B. [0,2]
C. [1,+∞)
D. [0,+∞)
解析: 当 x ≤1时,由21- x ≤2得1- x ≤1,∴0≤ x ≤1;当 x >1
1
时,由1-log2 x ≤2得 x ≥ ,∴ x >1.综上, x 的取值范围为[0,+
2
∞).故选D.
1
log a (2 a )<0,所以0< a <1,且2 a >1,所以 < a <1.故 a 的取值
2
范围是
1
,1
2
.
目录
高中总复习·数学
解题技法
求解对数不等式的两种类型及方法
(1)log ax>log ab:借助 y =log ax的单调性求解,如果 a 的取值不确
定,需分 a >1与0< a <1两种情况讨论;
图象如图所示,又 f ( a )= f ( b )且0< a < b ,
∴0< a <1, b >1且 ab =1,∴ a 2< a ,当 a 2≤ x
≤ b 时,由图知, f ( x )max= f ( a 2)=|log2 a
2|=-2log
1
1
2 a =2,∴ a = 2 ,∴ b =2.∴ + b =4.
0< a <1,A正确.
目录
高中总复习·数学
(2)已知函数 f ( x )=|log2 x |,实数 a , b 满足0< a < b ,且 f
1
2
( a )= f ( b ),若 f ( x )在[ a , b ]上的最大值为2,则 +
b=
4 .
解析:∵ f ( x )=|log2 x |,∴ f ( x )的
2023年高考数学总复习:对数函数(附答案解析)
2023年高考数学总复习:对数函数一.选择题(共11小题)1.(2021秋•成都期中)函数log (1)(0a y x a =+>,且1)a ≠与函数221y x ax =-+在同一直角坐标系中的图象大致是( )A .B .C .D .2.(2021秋•成都期中)已知函数()log 2(0,1)a f x x a a =+>≠在区间1[2,4]上的最大值为4,则a 的值为( ) A .12B .2C .22D .2或223.(2021秋•仙桃月考)已知集合2{|20}M x x x =+-<,{|(2)0}N x lg x =+>,则(MN =)A .(2,)-+∞B .(1,1)-C .(,1)-∞D .(1,)-+∞4.(2021秋•河北月考)函数1(1)y ln x =+的大致图象为( )A .B .C .D .5.计算72log 22341277log 2225(64lne lg lg ⨯-+--= ) A .20B .21C .9D .116.计算3458log 4log 5log 8log 9⋅⋅⋅的结果是( ) A .1B .32C .2D .37.(2021春•昌江区校级期末)已知π为圆周率,e 为自然对数的底数,则( ) A .3e e π< B .3log log e e π>C .2233e e ππ--⋅<⋅D .3log 3log e e ππ>8.(2021春•烟台期末)某种放射性物质在其衰变过程中,每经过一年,剩余质量约是原来的23.若该物质的剩余质量变为原来的14,则经过的时间大约为( )(20.301lg ≈,30.477)lg ≈A .2.74年B .3.42年C .3.76年D .4.56年9.(2021秋•西城区校级期中)已知2log 3a =,则44a a -+的值为( ) A .52B .103C .376D .82910.(2021秋•10月份月考)方程24log log (23)x x =+的解为( ) A .1- B .1C .3D .1-或311.1223(0.25)(log 3)(log 4)-+⋅的值为( )A .52B .2C .3D .4二.填空题(共7小题)12.(2021秋•裕安区校级月考)已知函数()log (2)a f x x a =-在区间12[,]33上恒有()0f x >,则实数a 的取值范围为 .13.(2020秋•赣榆区校级月考)已知函数()log ()a f x x m n =-+的图象恒过定点(3,5),则lgm lgn +的值是 .14.(2021春•南开区期末)计算:23192log 3log 8⋅= .15.(2021春•温州期末)若2log 3a =,3log 4b =,则4a = ;22log log a b += . 16.(2021春•金山区校级期末)方程22log 13x +=的解x = .17.(2021春•杭州期末)已知2lg a =,3lg b =,则2log 12= (用a ,b 表示). 18.(2021•梁园区校级模拟)已知0.12a -=,2log 3b =,4log 10c =,则a ,b ,c 的大小关系为 (按从大到小顺序排列).2023年高考数学总复习:对数函数参考答案与试题解析一.选择题(共11小题)1.(2021秋•成都期中)函数log (1)(0a y x a =+>,且1)a ≠与函数221y x ax =-+在同一直角坐标系中的图象大致是( )A .B .C .D .【答案】C【考点】函数的图象与图象的变换;对数函数的图象与性质 【专题】数形结合;数形结合法;函数的性质及应用;直观想象【分析】由函数log (1)a y x =+与函数221y x ax =-+的图象特征,结合选项直接得解. 【解答】解:函数221y x ax =-+的对称轴为x a =,且恒过定点(0,1),观察选项可知,选项C 可能符合,若选C ,则由图象可知,此时01a <<,函数log (1)a y x =+单调递减,且恒过定点(0,0),符合题意. 故选:C .【点评】本题主要考查二次函数与对数函数的图象,考查数形结合思想,属于基础题. 2.(2021秋•成都期中)已知函数()log 2(0,1)a f x x a a =+>≠在区间1[2,4]上的最大值为4,则a 的值为( )A .12B .2CD .2 【答案】D【考点】函数的最值及其几何意义;对数函数的图象与性质 【专题】分类讨论;数学运算【分析】对数函数的底数的范围不确定时,要分类讨论.【解答】\解:当1a >时,()max f x f =(4)log 424a =+=,所以2a =.当01a <<时,11()()log 2422max a f x f ==+=,所以a .故选:D .【点评】利用对数函数的单调性解最值.3.(2021秋•仙桃月考)已知集合2{|20}M x x x =+-<,{|(2)0}N x lg x =+>,则(MN =)A .(2,)-+∞B .(1,1)-C .(,1)-∞D .(1,)-+∞【答案】A【考点】并集及其运算;对数函数的图象与性质 【专题】计算题;集合思想;定义法;集合;数学运算 【分析】求出集合M ,N ,利用并集定义能求出MN .【解答】解:集合2{|20}(2,1)M x x x =+-<=-,{|(2)0}(1N x lg x =+>=-,)+∞, 则(2,)MN =-+∞,故选:A .【点评】本题考查集合的运算,考查并集定义、不等式的解法等基础知识,考查运算求解能力,是基础题.4.(2021秋•河北月考)函数1(1)y ln x =+的大致图象为( )A.B.C.D.【答案】A【考点】对数函数的图象与性质【专题】计算题;转化思想;综合法;函数的性质及应用;数学运算【分析】由12x=-时,0y<,排除B,D,再取12x=时,0y>,故排除C,即可得到答案.【解答】解:由题意可得10(1)0xln x+>⎧⎨+≠⎩,解得定义域{|1x x>-且0}x≠,当12x =-时,1110112(1)22y ln ln ln ===-<-+,∴排除B ,D ; 当12x =时,11013(1)22y ln ln ==>+,故排除C , 故选:A .【点评】本题考查了对函数图象,通过对函数性质的探究,排除不合题意的选项,可得出正确结果,属于基础题. 5.计算72log 22341277log 2225(64lne lg lg ⨯-+--= ) A .20 B .21 C .9 D .11【答案】B【考点】对数的运算性质【专题】函数思想;综合法;函数的性质及应用;数学运算;计算题 【分析】利用有理数指数幂和对数的运算性质求解. 【解答】解:原式233343242222592322(25)1832221log lg lg lg lg ⨯-=⨯-+--=⨯++-+=++-=.故选:B .【点评】本题主要考查了有理数指数幂的运算性质,考查了对数的运算性质,是基础题. 6.计算3458log 4log 5log 8log 9⋅⋅⋅的结果是( ) A .1 B .32C .2D .3【答案】C【考点】对数的运算性质【专题】转化思想;转化法;计算题;函数的性质及应用;数学运算 【分析】利用对数的运算法则及换底公式求解即可. 【解答】解:3458log 4log 5log 8log 9⋅⋅⋅ 24589932323458333lg lg lg lg lg lg lg lg lg lg lg lg lg lg =⋅⋅⋅====. 故选:C .【点评】本题考查了对数运算法则及换底公式的运用,属于基础题.7.(2021春•昌江区校级期末)已知π为圆周率,e 为自然对数的底数,则( ) A .3e e π< B .3log log e e π>C .2233e e ππ--⋅<⋅D .3log 3log e e ππ>【答案】D【考点】对数的运算性质【专题】计算题;函数思想;综合法;函数的性质及应用;数学运算【分析】根据幂函数的单调性即可判断A 错误;根据对数的换底公式和对数函数的单调性即可判断B 错误;根据幂函数的单调性即可判断C 错误;根据不等式的性质即可判断D 正确.【解答】解:A .3π>,0e >,3e e π∴>,A ∴错误; 311.,3B log e log e ln ln ππ==,且30ln ln π>>, ∴113ln ln π<, 3log log e e π∴<,B ∴错误;C .30e -<,333e e π--∴>, 212133e e ππ----∴⋅>⋅, 2233e e ππ--∴⋅>⋅,C ∴错误;D.330log e log e ππ>⎧⎨>>⎩, 3log 3log e e ππ∴>,D ∴正确.故选:D .【点评】本题考查了幂函数和对数函数的单调性,不等式的性质,对数的换底公式,考查了计算能力,属于基础题.8.(2021春•烟台期末)某种放射性物质在其衰变过程中,每经过一年,剩余质量约是原来的23.若该物质的剩余质量变为原来的14,则经过的时间大约为( )(20.301lg ≈,30.477)lg ≈A .2.74年B .3.42年C .3.76年D .4.56年【答案】B【考点】对数的运算性质【专题】方程思想;定义法;函数的性质及应用;数学运算 【分析】该物质的剩余质量变为原来的14,设经过的时间大约为n 年,设该种放射性物质原来质量为a ,列出方程,再由对数的运算能求出结果. 【解答】解:该物质的剩余质量变为原来的14,设经过的时间大约为n 年, 设该种放射性物质原来质量为a , 则21()34n a a ⋅=⋅,23112220.3014 3.4224230.3010.4773lglg n log lg lg lg --⨯∴===≈≈--(年).故选:B .【点评】本题考查对数在生产生活中的应用,考查对数的运算法则等基础知识,考查运算求解能力,是基础题.9.(2021秋•西城区校级期中)已知2log 3a =,则44a a -+的值为( ) A .52B .103C .376D .829【答案】D【考点】对数的运算性质【专题】计算题;函数思想;综合法;函数的性质及应用;数学运算 【分析】利用对数的运算性质求解.【解答】解:2log 3a =,222223393282444422939log log log log a a ----∴+=+=+=+=, 故选:D .【点评】本题主要考查了对数的运算性质,是基础题.10.(2021秋•10月份月考)方程24log log (23)x x =+的解为( ) A .1- B .1 C .3 D .1-或3【答案】C【考点】对数的运算性质【专题】计算题;方程思想;转化法;函数的性质及应用;数学运算【分析】根据对数的运算性质解方程即可.【解答】解:24log log (23)x x =+,即为221log log (23)2x x =+,即222log log (23)x x =+,则2023x x x >⎧⎨=+⎩,解得3x =,故选:C .【点评】本题考查了对数的运算方程,考查了运算求解能力,属于基础题. 11.1223(0.25)(log 3)(log 4)-+⋅的值为( )A .52B .2C .3D .4【答案】D【考点】对数的运算性质【专题】对应思想;转化法;函数的性质及应用;数学运算 【分析】根据对数的运算性质计算即可. 【解答】解:1223(0.25)(log 3)(log 4)-+⋅12()23220.522423lg lg lg lg ⨯-=+⋅=+=, 故选:D .【点评】本题考查了对数的运算性质,是基础题. 二.填空题(共7小题)12.(2021秋•裕安区校级月考)已知函数()log (2)a f x x a =-在区间12[,]33上恒有()0f x >,则实数a 的取值范围为 1(3,2)3 .【答案】1(3,2)3.【考点】对数函数的单调性与特殊点【专题】转化思想;综合法;函数的性质及应用;数学运算【分析】由题意利用对数函数的单调性和特殊点,函数的恒成立问题,求得实数a 的取值范围.【解答】解:函数()log (2)a f x x a =-在区间12[,]33上恒有()0f x >,即当1a >时,21x a ->,或当01a <<时,021x a <-<.∴11213a a >⎧⎪⎨⨯->⎪⎩①,或011021320213a a a ⎧⎪<<⎪⎪<⨯-<⎨⎪⎪<⨯-<⎪⎩②.由①求得a ∈∅,由②求得1233a <<.综合可得实数a 的取值范围为1(3,2)3,故答案为:1(3,2)3.【点评】本题主要考查对数函数的单调性和特殊点,函数的恒成立问题,属于中档题. 13.(2020秋•赣榆区校级月考)已知函数()log ()a f x x m n =-+的图象恒过定点(3,5),则lgm lgn +的值是 1 .【答案】1.【考点】对数函数的单调性与特殊点【专题】函数思想;定义法;函数的性质及应用;逻辑推理;数学运算【分析】先利用对数函数恒过的定点,由函数的图象变换,即可求出m ,n 的值,再利用对数的运算性质求解即可.【解答】解:因为函数log a y x =的图象恒过定点(1,0),又函数log a y x =的图象向右平移m 个单位,向上平移n 的个单位,即可得到函数()log ()a f x x m n =-+的图象,则函数()log ()a f x x m n =-+的图象恒过定点(1,)m n + 又函数()log ()a f x x m n =-+的图象恒过定点(3,5), 故13m +=,5n =, 即2m =,5n =,所以25101lgm lgn lg lg lg +=+==. 故答案为:1.【点评】本题考查了对数函数图象和性质的应用,函数图象变换的应用,对数运算性质的应用,考查了逻辑推理能力与化简运算能力,属于基础题.14.(2021春•南开区期末)计算:23192log 3log 8⋅= 1- .【答案】1-.【考点】对数的运算性质【专题】计算题;函数思想;综合法;函数的性质及应用;数学运算 【分析】根据对数的换底公式和对数的运算性质运算即可. 【解答】解:原式2923log 3log 4log 3log 21=-⋅=-⋅=-. 故答案为:1-.【点评】本题考查了对数的换底公式,对数的运算性质,考查了计算能力,属于基础题. 15.(2021春•温州期末)若2log 3a =,3log 4b =,则4a = 9 ;22log log a b += . 【答案】9,1. 【考点】对数的运算性质【专题】计算题;函数思想;综合法;函数的性质及应用;数学运算 【分析】根据2log 3a =可得出23a =,进而得出4a 的值,可得出223b log =,从而可求出ab 的值,进而得出22log log a b +的值. 【解答】解:2log 3a =, 23a ∴=,24(2)9a a ∴==, 又3log 4b =,∴2224323log ab log log =⋅=, 2222log log log log 21a b ab ∴+===.故答案为:9,1.【点评】本题考查了对数的定义,对数的换底公式,对数的运算性质,考查了计算能力,属于基础题.16.(2021春•金山区校级期末)方程22log 13x +=的解x = 2 . 【答案】2.【考点】对数的运算性质【专题】转化思想;分析法;函数的性质及应用;数学运算 【分析】根据已知条件,运用对数的运算公式,即可求解. 【解答】解:22log 13x +=, 2log 1x ∴=,即2x =.故答案为:2.【点评】本题考查了对数的运算公式,需要学生熟练掌握公式,属于基础题. 17.(2021春•杭州期末)已知2lg a =,3lg b =,则2log 12= 2a ba+ (用a ,b 表示). 【答案】2a ba+. 【考点】对数的运算性质【专题】方程思想;定义法;函数的性质及应用;数学运算 【分析】利用对数的运算法则知212223log 1222lg lg lg lg lg +==,由此能求出结果. 【解答】解:2lg a =,3lg b =, 2122232log 1222lg lg lg a blg lg a ++∴===. 故答案为:2a ba+. 【点评】本题考查对数的运算,考查对数的运算法则等基础知识,考查运算求解能力,是基础题.18.(2021•梁园区校级模拟)已知0.12a -=,2log 3b =,4log 10c =,则a ,b ,c 的大小关系为 c b a >> (按从大到小顺序排列). 【答案】c b a >>. 【考点】对数值大小的比较【专题】函数思想;转化法;函数的性质及应用;逻辑推理;数学运算【分析】利用指数函数的性质、对数函数的性质与特殊值0和1进行比较,即可得到答案.【解答】解:因为0.10221a -=<=,422log 10log log 21c b ==>>=, 所以a ,b ,c 的大小关系为c b a >>. 故答案为:c b a >>.【点评】本题考查了对数值、指数值大小的比较,解题的关键是掌握指数函数的性质、对数函数的性质的应用,与特殊值0和1进行比较,考查了逻辑推理能力与运算能力,属于基础题.。
对数函数-高考数学复习
解析
当
当
当
1
1
logm7=log ,logn7=log ,
7
7
1
1
1<m<n 时,0<log7m<log7n,所以
>
,即 logm7>logn7;
log7
log7
1
1
0<m<n<1 时,log7m<log7n<0,所以log > log ,即 logm7>logn7;
函数y=loga|x|与y=|logax|(a>0,a≠1)的性质
y=loga|x|
函数
a>1
0<a<1
定义域 (-∞,0)∪(0,+∞)
R
值域
奇偶性 偶函数
在(0,+∞)内单调递增; 在(-∞,0)内单调递增;
单调性
在(-∞,0)内单调递减 在(0,+∞)内单调递减
图象
y=|logax|
a>1
0<a<1
1.函数f(x)=log3(x-1)是对数函数.( × )
2.若logax>1,则x>a.( × )
3.函数f(x)=loga(ax-1)(a>0,a≠1)在其定义域上是单调递增函数.(
4.函数 y=|lo1 x| 的单调递减区间是(1,+∞).( × )
2
)
题组二 回源教材
5.(人教A版必修第一册习题4.4第1题改编)函数 y= 0.5 (4-3) 的定义域
2023年数学高考复习真题演练(2021-2022年高考真题)10 对数与对数函数 (含详解)
专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212ab c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100B .b -a =ea 增大a 增大C .28ln 2ab <D .ln6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <- C .01b a << D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x x f x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( )A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a <<B.b a <Ca b <D.a b <<例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1C .2D .a 例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0,∞+的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为( )A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是( ).A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则( )A.sin sin a b > B .11a b> C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则( ) A .a c <B .b a <C .c a <D .a b <例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则a b的取值可以是( ) A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2x f x x x -=+-的零点,则020e ln xx -+=_______.【过关测试】一、单选题 1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)( ) A .1393.1610s ⨯ B .1391.5810s ⨯ C .1401.5810s ⨯D .1403.1610s ⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为( ) A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则( ) A .111x y z+=B .111y z x+= C .112x y z += D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ( )A .是奇函数,且在0,1上单调递增B .是奇函数,且在0,1上单调递减C .是偶函数,且在0,1上单调递增D .是偶函数,且在0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点 A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为( ) A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是( ) A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( )A b a <<B .b a <C a b <D .a b <<二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是( ) A .11a b+的最小值是4 B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是( ) A .2ab bc ac +=B .ab bc ac +=C .4949b b a c ⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是( )A .()(lg f x x =B .()2f x x ax =+C .()21xaf x e =-- D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为( )AB C D三、填空题13.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论: ①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--; ④函数()y f x =在()(),1k k k +∈Z 上单调递减. 其中所有正确结论的序号为______. 四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ] (m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1axf x x -=-在其定义域上是奇函数,a 为常数. (1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M . (1)当t e =时,求切线l 的方程;(2)O为坐标原点,记AMO的面积为S,求面积S以t为自变量的函数解析式,写出其定义域,并求单调增区间.专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 【答案】(1)7;(2)109;(3)2a bb+-. 【解析】(1)利用对数恒等式和对数的运算法则计算即可; (2)利用指对互化可得实数x 的值;(3)先求出a ,再利用换底公式结合对数的运算法则求得结果.【详解】(1)原式=()23lg 510lg25lg51lg26lg5lg26lg107++⨯+=+++=++=+=;(2)因为()23log log lg 1x ⎡⎤=⎣⎦,所以()3log lg 2x =,所以2lg 39x ==,所以x =109;a 增大a 增大(3)因为185a =,所以18log 5a =,所以()()()181818183618181818log 59log 45log 5log 9log 45log 36log 182log 18log 189⨯+====⨯+÷1818181818log 5log 9log 18log 18log 92a bb++=+--.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35 【答案】(1)18;(2)21a bb ++. 【解析】 【分析】(1)首先根据题意得到原式()()()2352log 53log 23log 3=-⋅⋅-,再利用换底公式化简即可得到答案.(2)首先根据题意得到3log 7b =,3log 52=a ,再利用换底公式化简即可得到答案. 【详解】(1)原式()()()1233232355log 5log 2log 32log 53log 23log 3--=⋅⋅=-⋅⋅-lg5lg 2lg31818lg 2lg3lg5=⋅⋅⋅=(2)由37b =得到3log 7b =, 由9log 5=a ,得到31log 52=a ,即3log 52=a . 33321333log 35log 5log 72log 35log 21log 7log 31a bb ++===++.【点睛】本题主要考查对数的换底公式,同时考查指数、对数的互化公式,属于中档题.例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值. 【答案】(1)详见解析;(2)2. 【解析】【分析】(1)设3461a b c k ===>,应用指对数的互化有346log ,log ,log a k b k c k ===,进而应用换底公式及对数的运算性质分别求21a b +、2c,即可证结论;(2)应用指对数互化有6060log 3,log 5a b ==,应用对数的运算性质求12(1)a bb ---,进而可求12(1)12a b b ---的值.【详解】(1)设346a b c k ===,则1k >. ∴346log ,log ,log a k b k c k ===,∴3421212log 3log 4log 9log 4log 362log 6log log k k k k k k a b k k+=+=+=+==, 而6222log 6log k c k==, ∴212a b c+=. (2)由题设知:6060log 3,log 5a b ==,得606011log 5log 12b -=-=,60606011log 3log 5log 4a b --=--=, ∴60121260log 42log 21log 22(1)2log 122a b b --===-, 则121log 22(1)12122a b b ---==.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100 B .b -a =e C .28ln 2ab < D .ln6b a ->【答案】D 【解析】 【分析】利用指数和对数互化,得到a ,b 后逐项判断. 【详解】对于A ,由e 4a =,e 25b =,得ln 4a =,ln 25b =,所以ln 4ln 25ln100a b +=+=,故A 错误;对于B ,25ln 25ln 4ln4b a -=-=,故B 错误; 对于C ,2ln 4ln 252ln 2ln168ln 2ab =⨯>⨯=,故C 错误;对于D ,25ln 25ln 4lnln 64b a -=-=>,故D 正确. 故选:D .例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8【答案】C 【解析】 【分析】 根据y x x y =得到lg lg x xy y =,再利用换底公式得到2x y=,利用lg 2lg x y =,即2x y =,求出4x =,2y =,所以6x y +=.【详解】由y x x y =,得lg lg y x x y =,lg lg x xy y=. 由log 4y x x y +=,lg log lg y x x y =,所以lg 4lg x x y y+=, 所以4x xy y +=,解得:2x y=,则lg 2lg x y =,即2x y =, 所以4x =,2y =,所以6x y +=, 故选:C.例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞【答案】C 【解析】 【分析】由二次函数的性质判断()f x 区间单调性,根据解析式知()f x 恒过(4,2)且(0)2f =,进而确定区间值域,再由对数函数性质求2log y x =的对应区间值域,即可得不等式解集. 【详解】由题设,()f x 对称轴为2x =且图象开口向下,则()f x 在(0,2)上递增,(2,)+∞上递减, 由2()42(4)2f x ax ax ax x =-+=-+,即()f x 恒过(4,2)且(0)2f =, 所以(0,4)上()2f x >,(4,)+∞上()2f x ,而2log y x =在(0,)+∞上递增,且(0,4)上2y <,(4,)+∞上2y >,所以2()log f x x >的解集为(0,4). 故选:C例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.【答案】12x x ⎧⎫>⎨⎬⎩⎭【解析】 【分析】 分1x ≤、12x <≤和2x >,依次解不等式,再取并集即可.【详解】当1x ≤时,不等式()(1)f x f x <-为2211(1)x x -<--,解得112x <≤; 当12x <≤时,不等式()(1)f x f x <-为212log 1(1)x x <--,易知21122log log 10,1(1)0x x <=--≥,解得12x <≤;当2x >时,不等式()(1)f x f x <-为1122log log (1)x x <-,解得2x >;综上,解集为:12x x ⎧⎫>⎨⎬⎩⎭.故答案为:12x x ⎧⎫>⎨⎬⎩⎭.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可) 【答案】12log x,(log a x ,(0<a <1)都对)【解析】 【分析】满足第一个条件,表示函数是单调递减函数,第二个条件正好是符合对数的运算性质; 【详解】对于条件①,不妨设12x x <,则210x x ->,∵()()21210f x f x x x -<-,∴()()210f x f x -<∴12()()f x f x >,∴()f x 为()0,+∞上的单调递增函数,对于条件②,刚好符合对数的运算性质,故这样的函数可以是一个单调递减的对数函数. 故答案为:12log x.(log ax ,(0<a <1)都对)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值. 【答案】(1)9x =或181x =;(2)2a =. 【解析】 【分析】(1)根据给定条件求出m 值,并代入方程,再解方程即得.(2)由给定解集借助对数函数单调性求出()f x 范围,换元借助一元二次不等式即可得解. 【详解】(1)由已知得()31f =,即log 31m =,则3m =,于是得()3log f x x =, 方程222()(1)()10()2()80f x m f x m f x f x +-+-=⇔+-=, 从而得()2f x =或()4f x =-,即3log 2x =或3log 4x =-,9x =或181x =, 所以原方程的根为9x =或181x =; (2)依题意,函数()3log f x x =中,1,93x ⎛⎫∈ ⎪⎝⎭,从而得()3log 1,2x ∈-.又()()()()3310log 1log 0f x a f x x x a +⋅->⇔+⋅-<⎡⎤⎡⎤⎣⎦⎣⎦,令3log x t =, 即一元二次不等式()()10t t a +⋅-<的解集为()1,2-,因此有-1,2是关于t 的方程()()10t t a +⋅-=的两根,则2a =, 所以实数a 的值为2.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <-C .01b a <<D .log 0a b >【答案】C 【解析】 【分析】结合函数()f x 的图象可得1a >和10b -<<,然后逐项分析即可求出结果. 【详解】由图象可知()f x 在定义域内单调递增,所以1a >,令()()log 0a f x x b =-=,即1x b =+,所以函数()f x 的零点为1b +,结合函数图象可知011b <+<,所以10b -<<,因此0a b +>,故A 错误;0-<<a ab ,又因为1a >,所以1a -<-,因此1ab <-不一定成立,故B 错误;因为10b a a a -<<,即11b a a <<,且101a<<,所以01b a <<,故C 正确; 因为01b <<,所以log log 1a a b <,即log 0a b <,故D 错误, 故选:C.例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A.3-B .1C . 3+D .2+【答案】C 【解析】 【分析】由对数函数的性质,可得()2,1A --,可得21m n +=,再根据基本不等式“1”的用法,即可求出结果.【详解】解:因为函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点()2,1A --,所以210m n --+=,即21m n +=, 所以()1111223n m m n m n m n m n⎛⎫+=++=++ ⎪⎝⎭, 又0mn >,所以0,0n mm n>>所以2333n m m n ++≥=,当且仅当2n m m n =,即1n =时取等号.故选:C.(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤【答案】BCD 【解析】 【分析】对于A 结合对数型函数图像相关知识求解;对于B 运用定义法判断()f x 是否在R 上是奇函数;对于C 运用定义法判断函数单调性;对于D 通过作差法并对式子变形即可判断. 【详解】对于A ,由图像可知,函数()()log a g x x k =+(0a >且1a ≠)在()2,-+∞上单调递增,所以1a >,因为()g x 经过()1,0-,所以()()1log 10a g k -=-+=,所以01a k =-+,2k =,故A 错误.对于B ,()x x f x a a -=-,定义域R 关于原点对称,()()x xf x a a f x --=-=-,所以()f x 在R 上是奇函数,故B 正确.对于C ,对于()x xf x a a -=-,由题意不妨令1212,,x x x R x R >∈∈,则()()()()()121212121212121212111x x x x x x x x x x x x x x x x a a a a a f x f x a a a a a a a a ++++--⎛⎫⎛⎫-=---=-+=⎪ ⎪⎝⎭⎝⎭,因为1212,,x x x R x R >∈∈,1a >,所以12121210,0,0x x x x x x a a a a +++>>->,即()()12f x f x >,所以()f x 在R 上是单调递增函数,故C 正确.对于D ,()()()()()()()()()2222222x x x x x x x x x x x x x x a a a a a a a a a a a a a x f a f x --------=---=---+--=-()()()()22322221111112x x x x x x xx xxxa a a a a a a a a aa----+-⎛⎫⎛⎫--=⎪-==⎪⎝⎭⎝⎭,因为1a >,0x ≥,所以()3210,010,xxxa a a +≥>->,所以()()23101x x xa a a-+-≤,当且仅当0x =时等号成立,即当0x ≥时,()()22f x f x ≤成立,故D 正确.故选:BCD例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______. 【答案】ln 31[,)3e【解析】 【分析】由分段函数解析式,结合导数研究|()|f x 的性质,再将问题转化为|()|f x 与(1)y a x =+有3个不同交点,应用数形结合的思想有(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点,最后由导数求它们相切或(1)y a x =+过(2,ln 3)时参数a 的值,即可知a 的取值范围. 【详解】由题设,20x -≤<上239()2()48f x x =--+,故值域为[14,0]-且单调递增;02x ≤≤上()f x '=101x -<+,故()f x 值域为[ln 3,0]-且单调递减; ∴|()|f x 在20x -≤<上值域为[0,14]且单调递减;在02x ≤≤上值域为[0,ln 3]且单调递增; 要使()g x 与x 轴有3个不同的交点,即|()|f x 与(1)y a x =+有3个不同交点,它们的图象如下:∴由图知:要使函数图象有3个交点,则(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点, 由02x ≤≤,1()|()|ln1g x f x x ==-+,则1()|()|1g x f x x '==+,此时,若|()|f x 与(1)y a x =+相切时,切点为(,(1))m a m +, ∴111ln (1)1a m a m m ⎧=⎪⎪+⎨⎪-=+⎪+⎩,可得1e a =,当(1)y a x =+过(2,ln 3)时,有3ln3a =,得ln 33a =, ∴ln 313ea ≤<. 故答案为:ln 31[,)3e【点睛】关键点点睛:根据已知研究|()|f x 的性质,并将问题转化为|()|f x 与(1)y a x =+的交点问题,应用导数的几何意义、数形结合的思想求参数范围.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭【答案】C 【解析】【分析】先求出函数的定义域,再利用复合函数单调性法则“同增异减”即可求解.【详解】函数()22log 43y x x=+-的定义域为()1,4-.要求函数()22log 43y x x =+-的一个单调增区间,只需求243y x x =+-的增区间,只需32x <. 所以312x -<<. 所以函数()22log 43y x x =+-的一个单调增区间是31,2⎛⎫- ⎪⎝⎭. 故选:C例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】分函数()f x 在R 上的单调递减和单调递增求解. 【详解】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a aa ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数,所以函数()f x 在R 上不可能是增函数,综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a << B.b a < Ca b < D.a b <<【答案】A 【解析】 【分析】对33log log 4log log 3a b a b -=-利用换底公式等价变形,得333311log log log log -<-b a b a,结合1y x x=-的单调性判断b a <,同理利用换底公式得343411log log log log b a b a ->-,即34log log b a >,再根据对数运算性质得4log log log a =>3log y x =单调性,b >解. 【详解】由33log log 4log log 3a b a b -=-可得333343111log log log log log log b a a b a a-=-<-, 因为1y x x=-在(,0),(0,)-∞+∞上单调递增,且3log a ,3log (0,)b ∈+∞,所以33log log b a <,即b a <, 其次,343411log log log log b a b a->-,所以34log log b a >,又因为4log log log a =>3log y x =单调递增,所以由3log log b >b >b a <. 故选:A例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1 C .2 D .a【答案】C 【解析】【分析】根据对数函数的单调性可求出结果. 【详解】∵0<a <1,∴f (x )=log ax 在[a 2,a ]上是减函数, ∴f (x )max =f (a 2)=log aa 2=2. 故选:C例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A .⎫⎪⎪⎝⎭B .C .⎛ ⎝⎭D .)+∞【答案】A 【解析】 【分析】根据对数函数的性质可得()()0,11,a ∈+∞且23410x ax -+->,则0∆>,即可求出a 的大致范围,再令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,对a 分两种情况讨论,结合二次函数、对数函数的单调性判断即可; 【详解】解:依题意()()0,11,a ∈+∞且23410x ax -+->,所以216120a ∆=->,解得a >a <()1,a ⎫∈+∞⎪⎪⎝⎭,令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,若()1,a ∈+∞,则log a y u =在定义域上单调递增,()2341u x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,函数不存在最小值,故舍去;若a ⎫∈⎪⎪⎝⎭,则log a y u =在定义域上单调递减,()2341u x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递减,在22,3a x ⎛⎫ ⎪⎝⎭上单调递增,所以函数在23a x =取得最小值,所以a ⎫∈⎪⎪⎝⎭; 故选:A【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<【答案】A 【解析】 【分析】根据对数函数的图象与性质,分1a >和01a <<两种情况分类讨论,结合函数的单调性,列出不等式,即可求解. 【详解】当1a >时,由1(0,)2x ∈,可得log 0a x <,则log 0a x ->,又由20x >,此时不等式2log 0a x x -<不成立,不合题意;当01a <<时,函数log a y x =在1(0,)2上单调递减,此时函数log a y x =-在1(0,)2上单调递增,又由2yx 在1(0,)2上单调递增,要使得不等式2log 0a x x -<在1(0,)2内恒成立,可得211()log 022a -≤,解得1116a ≤<.故选:A.例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2【答案】A 【解析】根据题意,先求得12a =,把不等式()()1122log 4log 2x x t t ⋅<-在[]1,2x ∈上恒成立,转化为402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立,结合指数幂的运算性质,即可求解. 【详解】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,可得函数y 的最大值为116,当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递减,当1x a =时,函数y 有最大值,即12411416a a -+⎛⎫= ⎪⎝⎭,解得12a =; 当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x xt t ⋅<-在[]1,2x ∈上恒成立, 即402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立, 由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <; 由42x x t t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122xxf x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫⎪⎝⎭.故选:A. 例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 【答案】13,4∞⎛⎤- ⎥⎝⎦【解析】 【分析】将问题转化为在对应区间上max max ()()f x g x ≥,结合对勾函数、对数函数的性质求()f x 、()g x 的区间最值,即可求a 的范围. 【详解】若()f x 在[3,4]上的最大值max ()f x ,()g x 在[4,8]上的最大值max ()g x , 由题设,只需max max ()()f x g x ≥即可.在[3,4]上,9()6f x x x =+≥=当且仅当3x =时等号成立, 由对勾函数的性质:()f x 在[3,4]上递增,故max 25()4f x =. 在[4,8]上,()g x 单调递增,则max ()3g x a =+, 所以2534a ≥+,可得134a ≤.故答案为:13,4∞⎛⎤- ⎥⎝⎦.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 【答案】12ea ≥. 【解析】 【分析】把不等式作等价变形,构造函数()ln g x x x =+,借助其单调性可得2e x a x ≥,分离参数构造函数并求出最大值作答. 【详解】函数()ln f x x x =-定义域为(0,)+∞,则(0,)∀∈+∞x :222()e ln 0e ln l 2n e ln ln x x x f x a a a a x a a x x x x++≥⇔+≥⇔+≥+++22e e )n ln(l x x a a x x ⇔≥++,令()ln g x x x =+,函数()g x 在(0,)+∞上单调递增,则有原不等式等价于()()2e xg a g x ≥22e e x xx a x a ⇔≥⇔≥, 令2()e x x h x =,0x >,求导得:212()exx h x -'=,当102x <<时,()0h x '>,当12x >时,()0h x '<, 因此,函数()h x 在1(0,)2上单调递增,在1(,)2+∞上单调递减,当12x =时,max 11()()22eh x h ==,则12ea ≥, 所以实数a 的取值范围是12ea ≥. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.例23.(2022·全国·高三专题练习)已知函数()log (0,1)xa f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围. 【答案】(1)2;(2)1,5⎡⎫+∞⎪⎢⎣⎭【解析】 【分析】(1)根据指对数函数的单调性得函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,进而得260+-=a a ,解方程得2a =;(2)根据题意,将问题转化为对于任意的[2,)x ∈+∞,1()k f x ≥恒成立,进而求函数的最值即可. 【详解】解:(1)因为函数,log (0,1)xa y a y x a a ==>≠在[1,2]上的单调性相同, 所以函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,所以函数()f x 在[1,2]上的最大值与最小值之和为2log 26log 2a a a a ++=+,所以260+-=a a ,解得2a =和3a =-(舍) 所以实数a 的值为2.(2)由(1)得2()2log x f x x =+,因为对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,所以对于任意的[2,)x ∈+∞,1()k f x ≥恒成立, 当[2,)x ∈+∞时,2()2log x f x x =+为单调递增函数, 所以()()25f x f ≥=,所以11()5f x ≤,即15k ≥ 所以实数k 的取值范围1,5⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的[2,)x ∈+∞,1()k f x ≥恒成立求解.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠. (1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.【答案】(1)13a =;(2)()1,11,82⎛⎫⋃ ⎪⎝⎭. 【解析】 【分析】(1)由()32f =可求得log 3a 的值,进而可求得实数a 的值;(2)由()6f x >可得出log 3a x <-或log 1>a x ,分01a <<、1a >两种情况讨论,可得出关于实数a 的不等式,由此可解得实数a 的取值范围. (1)解:因为()32f =,所以()2log 32log 332a a ++=,所以()2log 310a +=,所以log 31a =-,解得13a =.(2)解:由()6f x >,得()2log 2log 30a a x x +->,即()()log 3log 10a a x x +->,即log 3a x <-或log 1>a x .当01a <<时,log 12log log 8a a a x ≤≤,则log 83a <-或log 121a >,因为log 12log 10a a <=,则log 121a >不成立,由log 83a <-可得318a ⎛⎫< ⎪⎝⎭,得112a <<;当1a >时,log 8log log 12a a a x ≤≤,则log 123a <-或log 81a >,因为log 12log 10a a >=,则log 123a <-不成立,所以log 81a >,解得18a <<. 综上,a 的取值范围是()1,11,82⎛⎫⋃ ⎪⎝⎭.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;。
高考数学复习考点知识讲解课件11 对数与对数函数
— 17 —
[解析] 由 y=ln(1-x)可得 ey=1-x,即 x=1-ey,因为函数 f(x)与 y=ln(1-x)的图 象关于直线 y=x 对称,所以 f(x)=1-ex.
— 14 —
— 返回 —
核心考点突破
02
(新教材) 高三总复习•数学
— 返回 —
考点一 对数的运算——自主练透
对点训练
1.(2022·浙江卷)已知 2a=5,log83=b,则 4a-3b=( C )
对点训练 1.函数 y=lo1g3x的图象大致是( D )
— 返回 —
[解析] 当 x=3 时,y=1,即函数图象过点(3,1),排除 A;因为 y=log3x 为增函数, 所以 y=lo1g3x在(0,1)和(1,+∞)上单调递减,排除 B,C.故选 D.
— 27 —
(新教材) 高三总复习•数学
只需 f1(x)=(x-1)2 在(1,2)上的图象在 f2(x)=logax 图象的下方即可.
当 0<a<1 时,显然不成立;
当 a>1 时,如图,要使 x∈(1,2)时 f1(x)=(x-1)2 的图象在 f2(x)=logax 的图象下方,
只需 f1(2)≤f2(2),
— 24 —
(新教材) 高三总复习•数学
(2)对数函数的图象与性质 a>1
0<a<1
— 返回 —
第12讲 对数与对数函数(课件)高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)
3
2
所以( ) m 与( ) n 均为方程 t 2+ t -1=0的实数根,由 t 2+ t -1=0,解得 t =
3
2
3
2
3
2
3
2
因为( ) m >0,( ) n >0,所以( ) m =( ) n =
所以 m = n , =
6
4
3
2
=( ) m =
−1+ 5
2
−1+ 5
2
,故选B.
3
2
−1+ 5
∴ f ( x )是偶函数,∴由 f (ln x )+ f (-ln x )<2可得2 f (ln x )<2,即 f (ln x )<1.
当 x >0时, f ( x )=log2 x + x 2.∵ y =log2 x 和 y = x 2在(0,+∞)上都是单调递增的,
1
∴ f ( x )在(0,+∞)上单调递增,又 f (1)=1,∴|ln x |<1且ln x ≠0,∴ < x <e且 x ≠1,
<1时相反.
(2)研究 y = f (log ax )型的复合函数的单调性,一般用换元法,即令 t =log
ax ,则只需研究
注意
t =log ax 及 y = f ( t )的单调性即可.
研究对数型复合函数的单调性,一定要坚持“定义域优先”原则,
否则所得范围易出错.
角度1
例3
比较大小
1
(1)[2021新高考卷Ⅱ]若 a =log52, b =log83, c = ,则( C
f (-ln x )<2的解集为(
1
D
1
A. ( ,1)
对数与对数函数-高考数学复习课件
故有ቊ
解得1< a ≤3.
6 − 2≥0,
(2)(2024·河南郑州模拟)设函数 f ( x )=ln| x +3|+ln| x -3|,则
f ( x )( A
)
A. 是偶函数,且在(-∞,-3)上单调递减
B. 是奇函数,且在(-3,3)上单调递减
C. 是奇函数,且在(3,+∞)上单调递增
因为0< a < b ,所以ln a <0,ln b >0,
所以0< a <1, b >1,
所以-ln a =ln b , 所以ln a +ln b =ln( ab )=0,
1
所以 ab =1,则 b = ,
2
所以 a +2 b = a + .
2
令 g ( x )= x + (0< x <1),
a >1
0< a <1
图象
定义域
(0,+∞)
值域
性质
R
过定点 (1,0)
,即 x = 1
时, y = 0
a >1
0< a <1
当 x >1时, y >0 ;
当0< x <1时, y <0
性质
在(0,+∞)上是 增
数
函
当 x >1时, y <0 ;
当0< x <1时, y >0
在(0,+∞)上是 减
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 对数与对数运算
1. 对数的概念
如果 ax = N ( a >0,且 a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作
新高考数学复习考点知识与题型专题讲解21---对数函数的概念(解析版)
新高考数学复习考点知识与题型专题讲解21 对数函数的概念1.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中是自变量,函数的定义域是_____________.温馨提示:(1)对数函数y=log a x是由指数函数y=a x反解后将x、y互换得到的.(2)无论是指数函数还是对数函数,都有其底数a>0且a≠1.2.对数函数的图象及性质注意:底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.3.当底数不同时对数函数图象的变化规律作直线y=1与所给图象相交,交点的横坐标即为对数的底数,依据在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,可得b>a>1>d>c>0.答案:x (0,+∞)题型一 对数函数的定义域和值域 1.函数2ln 2()||x f x x x =的图象大致为( )A .B .C .D .【答案】B【解析】函数()f x 的定义域为{}|0x x ≠, 又()()()2222ln ()||ln x x x f x f x x x x---===---, 所以函数()f x 是奇函数,故排除A ,C ; 又因为11()2ln 024f =<,故排除D.故选:B题型二 对数函数的图像问题2.如果函数(0,1)x y a a a =>≠的反函数是增函数,那么函数log (1)a y x =-+的图象大致是( )A .B .C .D .【答案】C【解析】因为函数(0,1)x y a a a =>≠的反函数是增函数,可得函数x y a =为增函数,所以1a >, 所以函数log (1)a y x =-+为减函数,可排除B 、D ; 又由当0x =时,log (01)0a y =-+=,排除A. 故选:C.题型三 对数函数的单调性3.函数()12log f x x =的单调递增区间是( )A .10,2⎛⎤⎥⎝⎦B .(]1,2C .[)1,+∞D .()0,∞+【答案】C【解析】由112211222log ,01log ,01()log log ,1log ,1x x x x f x x x x x x <<⎧<<⎧⎪⎪===⎨⎨-≥⎪⎪≥⎩⎩,而对数函数12log y x=在()0,1上是减函数,2log y x =在[)1,+∞上是增函数,所以函数()f x 单调递增区间为[)1,+∞. 故选:C题型四 对数函数的最值及参数问题4.已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,若[]10,3x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥,则实数m的取值范围为( )A .1,2⎛⎤-∞- ⎥⎝⎦B .1,4⎛⎤-∞ ⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,4⎡⎫+∞⎪⎢⎣⎭【答案】D【解析】若[]10,3x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥,则()()min min f x g x ≥.由于函数()()2ln 1f x x =+在区间[]0,3上为增函数,则()()min 00f x f ==,由于函数()12xg x m ⎛⎫=- ⎪⎝⎭在区间[]1,2上为减函数,则()()min 124g x g m ==-,所以,104m -≤,解得14m ≥.故选:D.5.在b =log 3a -1(3-2a )中,实数a 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭∪3,2⎛⎫+∞ ⎪⎝⎭B .12,33⎛⎫ ⎪⎝⎭∪23,32⎛⎫ ⎪⎝⎭C .12,33⎛⎫⎪⎝⎭D .23,32⎛⎫ ⎪⎝⎭【答案】B【解析】要使式子b =log 3a -1(3-2a )有意义, 则310,311,320,a a a ->⎧⎪-≠⎨⎪->⎩解得1233a << 或 2332a <<.故选:B .6.已知函数()log (6)a f x ax =-在(0,2)上为减函数,则a 的取值范围是( ) A .(1,3]B .(1,3)C .(0,1)D .[3,+∞) 【答案】A【解析】由函数()log (6)a f x ax =-在(0,2)上为减函数, 可得函数6t ax =-在(0,2)上大于零,且t 为减函数,1a >,故有1620a a >⎧⎨-≥⎩,解得13a故选:A .7.若函数()lg 1y ax =+的定义域为(),1-∞,则a =( ) A .1B .-1 C .2D .无法确定 【答案】B【解析】函数()lg 1y ax =+的定义域为(),1-∞,则10ax +>的解集为(),1-∞, 即0a <,且10ax +=的根11a-=,故1a =-. 故选:B.8.下列不等号连接不正确的是( ) A .0.5 0.5 log 2.2log 2.3>B .36log 4log 5> C .35log 4log 6>D .log log e e ππ> 【答案】D【解析】对于选项A :因为0.5log y x =在()0,∞+单调递减,2.2 2.3<,所以0.50.5log 2.2log 2.3>,故选项A 正确;对于选项B :33log 4log 31>=,6660log 1log 5log 61=<<=,即3log 41>,6log 51<, 所以36log 4log 5>,故选项B 正确;对于选项C :33333444log 4log 3log 3log 1log 333⎛⎫=⨯=+=+ ⎪⎝⎭,55555666log 6log 5log 5log 1log 555⎛⎫=⨯=+=+ ⎪⎝⎭,因为33546log log log 3565>>,所以3541log log 3615+>+, 故选项C 正确;对于选项D :log log 1e πππ<=,log log 1e e e π>=,所以log log e e ππ<,故选项D 不正确; 所以只有选项D 不正确, 故选:D9.函数()f x )A .[)1,+∞B .2,3⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .2,13⎛⎤⎥⎝⎦【答案】D【解析】由题可得,()13320log 320x x ->⎧⎪⎨-≥⎪⎩,解得213x <≤.所以函数()f x 的定义域是2,13⎛⎤⎥⎝⎦.故选:D .12.已知0a >,且1a ≠,函数x y a =与()log a y x =-的图象只能是下图中的( )A .B .C .D .【答案】B【解析】当1a >时,函数x y a =与()log a y x =-的大致图象如图所示:当01a <<时,函数x y a =与()log a y x =-的大致图象如图所示:根据题意,所以正确的是B . 故选:B .13.下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1). A .1个B .2个C .3个D .4个 【答案】B【解析】形如log a y x =(0a >且1a ≠)的函数为对数函数, 故③④为对数函数, 所以共有2个. 故选:B14.已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是________. 【答案】(5,+∞)【解析】函数f (x )=|lg x |定义域为()0,∞+,图象如下:因为f (a )=f (b ),且0<a <b ,所以0<a <1<b ,且-lg a =lg b , 即1b a=,所以a +4b =a +4a ,令g (a )=a +4a ,易知对勾函数g (a )在(0,1)上为减函数,所以g (a )>g (1)=1+41=5,即a +4b 的取值范围是(5,+∞). 故答案为:(5,+∞).15.已知24log 02x +⋅≤. (1)求x 的取值的集合A ;(2)x A ∈时,求函数()1342x x f x ++=-的值域;(3)设()21,032,2,20,x x g x x x ⎧-≤≤=⎨+-≤<⎩若()y g x a =-有两个零点1x 、2x (12x x <),求1ax 的取值范围.【答案】(1){}|25A x x =-≤≤;(2)[]4,3840-;(3)[]1,0-.【解析】(1)由24log 02x +⋅≤得, ()()222log 41log 4log 90x x +-+-≤⎡⎤⎡⎤⎣⎦⎣⎦,∴()221log 4log 9x ≤+≤,∴25x -≤≤, 故{}|25A x x =-≤≤为所求.(2)当x A ∈时,()1342x x f x ++=-()()2242824214x x x =⋅-⋅=--,∵25x -≤≤,∴12324x ≤≤,∴()43840f x -≤≤,即为()f x 的值域. (3)作出函数()g x 的图象,∵()y g x a =-有两个零点1x 、2x 且12x x <, ∴120x -≤<,02a ≤<, 且()112a f x x ==+,∴()()()2111111211ax f x x x x x ==+=+-, ∵120x -≤<, ∴110ax -≤≤即1ax 的取值范围为[]1,0-.。
2025届高考数学一轮复习北师大版多选题专题练: 对数运算和对数函数(含解析)
2025届高考数学一轮复习北师大版多选题专题练: 对数运算和对数函数A.C. D.4.设,当时,对这三个函数的增长速度进行比较,下列结论中,错误的是( )A.的增长速度最快, 的增长速度最慢B.的增长速度最快, 的增长速度最慢C.的增长速度最快, 的增长速度最慢D.的增长速度最快, 的增长速度最慢5.已知函数,则下列说法正确的是( ).A.B.函数的图象与x 轴有两个交点C.函数的最小值为-434log 9log 2+=212log 3=+5log 3259=225511log 25log log 8log 252⎛⎫⎛⎫++= ⎪⎪⎝⎭⎝⎭()()()22,2,log x f x x g x h x x ===(4,)x ∈+∞()f x ()h x ()g x ()h x ()g x ()f x ()f x ()g x ()2222()log log 3f x x x =--(4)3f =-()y f x =()y f x =D.函数的最大值为46.下列运算正确的是( ).A. B.C.若,则 D.若,则7.下列运算正确的是( ).A. B.C.若,则 D.若,则8.已知,且,下列说法中错误的是( ).A.若,则B.若,则C.若,则D.若,则9.下列运算错误的是( ).A. B.C. D.10.下列运算错误的是( )A.B.C.D.11.若,,且,则( )A. B.C. D.12.下列式子中正确的是( )()y f x =lg(lg10)0=lg(ln e)0=lg 10x =10x =ln e x =2e x=1232=129ln e 4+=3log (lg )1x =1000x=log a c =7cb a =0a >1a ≠M N =log log a a M N =log log a a M N =M N =22log log a a M N =M N =M N =22log log a a M N =11552log 10log 0.252+=42598log 27log 8log 59⨯⨯=23511log 25log log 16169⨯⨯=lg 2lg 5010+=11552log 10log 0.252+=42598log 27log 8log 59⋅⋅=lg 2lg 5010+=((2225log (2log 4-=-1a >1b >lg()lg lg a b a b +=+lg(1)lg(1)0a b -+-=11lg 0a b ⎛⎫+= ⎪⎝⎭lg(1)lg(1)1a b -+-=11lg 1a b ⎛⎫+= ⎪⎝⎭A.若,则B.若C.D.13.在天文学中,星等是衡量天体光度的量,是表示天体相对亮度的数值.天体亮度越强,星等的数值越小,星等的数值越大,天体的亮度就越暗.两颗星的星等与亮度满足的星的亮度为.已知太阳的星等是-26.7,天狼星的星等是-1.45,南极星的星等是-0.72,则( )A.天狼星的星等大约是南极星星等的2倍B.太阳的亮度与天狼星的亮度的比值是10.1C.天狼星的亮度与太阳的亮度的比值是D.天狼星的亮度与南极星的亮度的比值是14.已知且A. B. C. D.15.下列运算正确的是( )A. B.C. D.16.下列运算中正确的是( )A. B.C. D.17.下列运算正确的是( )A. B.C. D.18.下列运算中正确的是( )A. B.C. D.552log 10log 0.252+=42598log 27log 8log 59⨯⨯=lg 2lg5010+=ln 2ln3e 6+=10lg x =10x =25log x =5=±lg(lg10)0=24log 5280+=2152m m -=k ()1,2k E k =10,110-0,29210-0a b >>ln a =22log log a b>2e ab >122ab a b ++<a b b aa b a b >lg 5lg 21+=42log 32log 3=ln πe π=5lg 5lg 2log 2÷=lg5lg 21+=ln πe π=42log 32log 3=2lg 5lg 2log 5÷=52log 10log 0.252s +=42598log 27log 8log 59⨯⨯=lg2lg5010+=ln 2ln36e +=19.下面对函数与在区间上的衰减情况的说法中错误的有( )A.的衰减速度越来越慢,的衰减速度越来越快B.的衰减速度越来越快,的衰减速度越来越慢C.的衰减速度越来越慢,的衰减速度越来越慢D.的衰减速度越来越快,的衰减速度越来越快20.已知,,则的值可能为( )A.B.C.24D.12()log f x x =1()2g x x ⎛⎫= ⎪⎝⎭()0,+∞()f x ()g x ()f x ()g x ()f x ()g x ()f x ()g x ,a b ∈R 249a b ==2a b -8338124参考答案解析:对选项A:,正确;对选项C:,正确;341log 9log 222+=+=2212log 32log 3==-=+555log 3log 3log 9225559===对选项D:,正确;故选:BCD 4.答案:ACD解析:画出函数,,的图象,如图所示,结合图象,可得三个函数,,中,当时,函数增长速度最快,增长速度最慢.所以选项B 正确;选项ACD 不正确.故选:ACD.5.答案:ABC解析:对于A ,,正确;对于B ,,,令,得,即得或,所以或,即的图象与x 轴有两个交点,正确;对于C ,,,当,即时,,正确;对于D ,易知没有最大值.6.答案:AB 解析:7.答案:BCD 解析:8.答案:ACD 解析:()2222(4)log 4log 433f =--=-()222()log 2log 3f x x x =--(0,)x ∈+∞()0f x =()()22log 1log 30x x +-=2log 1x =-2log 3x =12x =2255252511log 25log log 8log log 5log 42log 5log 2252⎛⎫⎛⎫++=⨯=⨯= ⎪⎪⎝⎭⎝⎭()2f x x =()2x g x =()2log h x x =()2f x x =()2x g x =()2log h x x =(4,)x ∈+∞()2x g x =()2log h x x =8x =()f x ()22()log 14f x x =--(0,)x ∈+∞2log 1x =2x =min ()4f x =-()f x9.答案:ABD 解析:对于A ,,故A 错误.对于B ,误.对于C ,,故C 正确.对于D ,,故D 错误.10.答案:ABC解析:对于A ,,A 错误;对于B ,对于C ,,C 错误;对于D ,故选:ABC.11.答案:AB解析:依题意,,由,得,所以,且,即,.故选AB12.答案:CD解析:若,则,故A 错误;若,故B 错误;因为,则,故C 正确;()221111115555552log 10log 0.25log 10log 0.25log 100.25log 252+=+=⨯==-4259lg 27lg8lg 53lg 33lg 2lg 5log 27log 8log 5lg 4lg 25lg 92lg 22lg 52lg 3⨯⨯=⨯⨯=⨯⨯=242235235112lg 54lg 22lg 3log 25log log log 5log 2log 316169lg 2lg 3lg 5----⨯⨯=⨯⨯=⨯⨯=lg 2lg 50lg1002+==()22111155552log 10log 0.25log 100.25log 52+=⨯==-334259222lg 312lg 533log 27log 8log 5lg 215lg 3222g g ⨯⋅⋅=⋅⋅==⨯⨯lg 2lg 50lg1002+==((22221log (2log 12⎛⎫-=--= ⎪⎝⎭1a >1b >lg()lg lg lg()a b a b ab +=+=a b ab +=(1)(1)()1a b ab a b --=-++=111a b=+=[]lg(1)lg(1)lg (1)(1)lg10a b a b -+-=--==11lg 0a b ⎛⎫+= ⎪⎝⎭10lg x =1010x =25log x =12255x ==lg101=lg(lg10)lg10==,故D 正确.故选:CD.13.答案:AC 解析:14.答案:AD解析:对于选项A :因为,又因为在上单调递增,所以,故A 正确;对于选项B :因为,解得或,所以或,故B 错误;对于选项C :因为,且,可得,同号,则有若,同正,可得,则,可得;若,同负,可得,则,可得.综上所述,,又因为在定义域内单调递增,所以,故C 错误;对于选项D :因为,则,可得在上单调递增,可得,且,,所以,故D 正确.故选AD.15.答案:AC解析:,故选项A 正确;,故选项B 错误;根据对数恒等式可知,,选项C 正确;根据换底公式可得:,故选项D 错误.故选:AC.16.答案:AD解析:对于选项A ,,所以选项A 正确;224log 5log 5422216580+==⨯=⨯0a b >>2log y x =()0,+∞22log log a b >2(ln ln )ln ln 4a b a b +<=()2ln 14ab >()ln 2ab >()ln 2ab <-2e ab >210e ab <<0a b >>ln ln 10a b =>ln a ln b ln a ln b e 1a b >>>()()()1110a b ab a b --=-++>1ab a b +>+ln a ln b 110ea b >>>>()()()1110a b ab a b --=-++>1ab a b +>+1ab a b +>+2x y =122ab a b ++>0a b >>0a b ->a b y x -=()0,+∞0a b a b a b -->>0b a >0b b >a b b a a b a b >()lg 5lg 2lg 52lg101+=⨯==224222log 3log 31log 3log 3log 42log 22===ln πe π=5lg 2log 2lg 2lg 5lg 5==÷()2255552log 10log 0.25log 100.25log 52+=⨯==对于选项B ,误;对于选项C ,,所以选项C 错误;对于选项D ,,所以选项D 正确.故选:AD 17.答案:ABD解析:对于选项A ,,故选项A 正确;对于选项B ,根据对数恒等式可知,故选项B 正确;对于选项C ,,故选项C 错误;对于选项D ,根据换底公式可得,故选项D 正确.故选ABD.18.答案:AD解析:对于选项A,,所以选项A 正确;对于选项B,项C,,所以选项C 错误;对于选项D,, 所以选项D 正确.19.答案:ABD解析:在平面直角坐标系中画出与图象如下图所示,由图象可判断出衰减情况为衰减速度越来越慢,衰减速度越来越慢.20.答案:BC解析:由题意得,,则时,,同理时,334259222lg 3lg 2lg 533log 27log 8log 5lg 2lg 5lg 3222⨯⨯⨯=⨯⨯==⨯⨯lg 2lg50lg1002+==ln 2ln3ln 2ln3e e e 236+=⋅=⨯=lg5lg 2lg(52)lg101+=⨯==224222log 3log 31log 3log 3log 42log 22===2lg 5log 5lg 5lg 2lg 2==÷()2255552log 10log 0.25log 100.25log 52+=⨯==334259222lg3lg2lg533log 27log 8log 5lg2lg5lg3222⨯⨯⨯=⨯⨯==⨯⨯lg2lg50lg1002+==ln 2ln 3ln 2ln 3236e e e +=⋅=⨯=()f x ()g x ()f x ()g x 42log 9log 3a ==3b =±3b =23228a a bb -==3b =-22242a a bb -==故选:BC.。
专题 对数函数、幂函数(教案)高考数学二轮重难点复习专题
对数与对数运算1.在指数函数y =a x (a >0,且a ≠1)中,幂指数x ,又叫做以a 为底y 的对数.2.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数.3.对数恒等式a log aN =N .4.对数与指数间的关系:a b =N ⇔b =log a N (a >0,a ≠1).5.常用对数/自然对数以10为底的对数叫做常用对数,通常把log 10N 记作lg N . 以e 为底的对数叫做自然对数,通常把log e N 记作ln N . 6.对数运算性质 (1)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么 ⇔log a (MN )=log a M +log a N ;⇔log a MN =log a M -log a N ;⇔log a M n =n log a M (n ⇔R ). (2)对数的性质 ⇔log a Na= N ;⇔log a a N = N (a >0且a ≠1).(3)对数的换底公式log a b =log c blog c a(a >0,且a ≠1;c >0,且c ≠1;b >0).对数函数1.一般地,我们把函数y =log a x (a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域为(0,+∞).2.对数函数的图象与性质a >10<a <1(1)(0,+∞) 习题1.对数式lg(2x -1)中实数x 的取值范围是________;2.对数式log (x -2)(x +2)中实数x 的取值范围是______.3.下列函数表达式中,是对数函数的个数有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ; ⑤y =log x (x +2);⑥y =2log 4x ; ⑦y =log 2(x +1). A .1个 B .2个 C .3个D .4个4.若对数函数f (x )的图象过点(4,-2),则f (8)=________.5.若函数f (x )=log (a +1)x +(a 2-2a -8)是对数函数,则a =________.6.函数f (x )=log 3(2x -1)的定义域为______.7.函数f (x )=12-x+ln(x +1)的定义域为______. 8.函数y =log 32x -1的定义域为( )A .[1,+∞)B .(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1 9.已知a >0且a ≠1,函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )10.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)11.函数2()ln(28)f x x x =-- 的单调递增区间是( )A.(,2)-∞-B. (,1)-∞-C. (1,)+∞D. (4,)+∞12.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________. 13.若实数a ,b ,c 满足log a 2<log b 2<log c 2,则下列关系中不可能成立的是( )A .a <b <cB .b <a <cC .c <b <aD .a <c <b14.设 a =log 36,b =log 48,c =log 510,则 ( )15.设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b16.已知 log a 13>log b 13>0,则 a ,b 之间的大小关系是 ( )A. 1<b <aB. 1<a <bC. 0<a <b <1D. 0<b <a <117.函数 y =√log 0.5(4x−3) 的定义域为 ( )A. (34,1)B. (34,+∞)C. (1,+∞)D. (34,1)∪(1,+∞)18.函数 y =log a (x +1)+2(a >0且a ≠1) 恒过定点,其坐标为 .幂函数1.一般地,函数y =x α(α⇔R )叫做幂函数,其中x 是自变量,α是常数.2.幂函数的图像3.幂函数的性质4.“对号”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:习题1.在函数y =x -2,y =2x 2,y =(x +1)2,y =3x 中,幂函数的个数为( )A .0B .1C .2D .32.已知幂函数y =f (x )的图象过点(2, 2),则f (9)=________.3.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝⎛⎭⎫12的值等于________. 4.当x ∈(1,+∞)时,下列函数中图象全在直线y =x 下方的增函数是( )A. y =x 12B. y =x 2C. y =x 3D. y =x −1 5.若(2m +1)21>(m 2+m -1)21,则实数m 的取值范围是 ( )A.⎝ ⎛⎦⎥⎤-∞,-5-12B.⎣⎢⎡⎭⎪⎫5-12,+∞C .(-1,2)D.⎣⎢⎡⎭⎪⎫5-12,26.已知α⇔{-1,1,2,3},则使函数y x α=的值域为R ,且为奇函数的所有α的值为( )A.1,3B.-1,1C.-1,3D.-1,1,37.已知幂函数f (x )=x 12)(-+m m (m ⇔N +)(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.8.已知f (x )=x 21,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f (1a )<f (1b )B .f (1a )<f (1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f (1a )D .f (1a )<f (a )<f (1b)<f (b ) 9.已知 a =(13)3,b =x 3,c =lnx ,当x >2 时,a,b,c 的大小关系为( )A. a <b <cB. a <c <bC. c <b <aD. c <a <b 10.已知函数12)15()(++-=m x m m x h 为幂函数,且为奇函数(1)求m 的值(2)求函数]21,0[,)(21)()(∈-+=x x h x h x g 的值域。
对数与对数函数-2025高考数学复习
高考一轮总复习 • 数学
[解析] 因为 a=log36=1+log32,b=1+2log52,
②logaMN =_l_o_g_a_M_-__l_o_g_a_N__; ③logaMn=_n__lo_g_a_M__(n∈R).
第二章 函数概念与基本初等函数Ⅰ
高考一轮总复习 • 数学
返回导航
知识点二 对数函数的图象与性质 1.对数函数的定义、图象和性质
定义
函数___y_=__lo_g_a_x_(_a_>__0_,__且__a_≠_1_)___叫做对数函数
a>1
0<a<1
图象
第二章 函数概念与基本初等函数Ⅰ
高考一轮总复习 • 数学
返回导航
性质
定义域:___(_0_,__+__∞__) ________ 值域:____(-__∞__,__+__∞_)______
当x=1时,y=0,即过定点____(_1_,_0_) ______
当0<x<1时,y<0; 当x>1时,____y_>__0______
5 log4 3
5
=log2 8=3log2 3,所以 a-3b=log2 5-log2 3=log2 3= log4 2 =2log4 3=
25 log4 9 ,所以 4a-3b=
25 = 9 ,故选 C.
第二章 函数概念与基本初等函数Ⅰ
高考一轮总复习 • 数学
返回导航
8 . (2017·全 国 卷 Ⅱ ) 函 数 f(x) = ln(x2 - 2x - 8) 的 单 调 递 增 区 间 是
1 =2,∴a<c<b.故选 C.
第二章 函数概念与基本初等函数Ⅰ
返回导航
考点突破 · 互动探究
高三数学对数函数知识点
高三数学对数函数知识点对数函数是高中数学中的一个重要内容,也是高三数学的重点之一。
对数函数的概念与性质需要我们掌握,下面就是一些高三数学对数函数的知识点。
一、对数的定义在数学中,对数是指“以某个数为底的幂等于另一个数”的关系。
设a是一个大于0且不等于1的实数,x是一个正数,那么数b是以a为底x的对数,记作b=logₐx,当且仅当aⁿ=x,其中a称为对数的底,x称为真数,n称为对数的指数。
二、对数的性质1. 对数的相乘性:logₐ(MN)=logₐM+logₐN。
2. 对数的相除性:logₐ(M/N)=logₐM-logₐN。
3. 对数的幂运算性:logₐ(Mⁿ)=nlogₐM。
4. 对数的换底公式:logₐM=log_bM/log_ba,其中a、b、M都是正数且a≠1,b≠1。
三、常用对数和自然对数1. 常用对数:以10为底的对数,常用符号是lg。
常用对数的换底公式为lgM=log₁₀M。
2. 自然对数:以自然常数e≈2.71828为底的对数,常用符号是ln。
自然对数的换底公式为lnM=log_eM。
四、指数和对数函数的图像1. 指数函数y=aⁿ的图像特点:当a>1时,函数的图像是递增的;当0<a<1时,函数的图像是递减的;当a=1时,函数的图像是常数函数。
2. 对数函数y=logₐx的图像特点:当0<a<1时,函数的图像是递增的;当a>1时,函数的图像是递减的;当a=1时,函数的图像是y=0的一条水平直线。
五、对数函数的应用1. 指数增长与衰减:通过对数函数的性质,我们可以求解指数增长与衰减的问题。
比如,某种细菌的数量以每小时增长50%,那么经过t小时后的细菌数量可以表示为N=No·1.5^t,其中No是初始数量。
2. pH值的计算:pH值是描述溶液酸碱性的指标,可通过对数函数计算。
pH=-log₁₀[H⁺],其中[H⁺]代表溶液中的氢离子浓度。
3. 预测模型的建立:对数函数可用于建立某些预测模型。
高考数学一轮复习---对数函数知识点与题型
高考数学一轮复习---对数函数知识点与题型一、基础知识 1.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). y =log a x 的3个特征 (1)底数a >0,且a ≠1; (2)自变量x >0; (3)函数值域为R.2.对数函数y =log a x (a >0,且a ≠1)的图象与性质定义域:(0,+∞)3.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.二、常用结论 对数函数图象的特点(1)对数函数的图象恒过点(1,0),(a,1),⎪⎭⎫⎝⎛-1,1a ,依据这三点的坐标可得到对数函数的大致图象. (2)函数y =log a x 与y =log 1ax (a >0,且a ≠1)的图象关于x 轴对称.(3)当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势.三、考点解析考点一 对数函数的图象及应用 例、(1)函数y =lg|x -1|的图象是( )(2)已知当0<x ≤14时,有x <log a x ,则实数a 的取值范围为________.变式练习1.[变条件]若本例(1)函数变为f (x )=2log 4(1-x ),则函数f (x )的大致图象是( )2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.3.[变条件]若本例(2)变为不等式x 2<log a x (a >0,且a ≠1)对x ∈⎪⎭⎫ ⎝⎛210,恒成立,求实数a 的取值范围.考点二 对数函数的性质及应用 考法(一) 比较对数值的大小例、已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b考法(二) 解简单对数不等式例、已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.考法(三) 对数型函数性质的综合问题例、已知函数f (x )=log 4(ax 2+2x +3),若f (1)=1,求f (x )的单调区间.跟踪训练 1.已知a =2-13,b =log 213,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a2.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( )A.⎪⎭⎫ ⎝⎛210, B.]21,0( C.)21(∞+,D .(0,+∞) 3.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________.课后作业1.函数y =log 3(2x -1)+1的定义域是( )A .[1,2]B .[1,2) C.)32[∞+,D.)32(∞+, 2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log2x B.12x C .log 12x D .2x -23.如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x 4.函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )5.若a =20.5,b =log π3,c =log 2sin2π5,则a ,b ,c 的大小关系为( ) A .b >c >a B .b >a >c C .c >a >b D .a >b >c6.设函数f (x )=log a |x |(a >0,且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2) D .不能确定7.已知a >0,且a ≠1,函数y =log a (2x -3)+2的图象恒过点P .若点P 也在幂函数f (x )的图象上,则f (x )=________.8.已知函数f (x )=log a (x +b )(a >0,且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________. 9.函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是________.10.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________________.11.求函数f (x )=log 2x ·log2(2x )的最小值.12.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域; (2)求f (x )在区间]320[,上的最大值.。
2023 届高考数学专项(对数与对数函数)经典好题练习(附答案)
2023 届高考数学专项(对数与对数函数)经典好题练习1.(历年山东烟台模拟,1)已知集合A=x 14≤2x ≤4,B=y y lgx ,x 110,则A ∩B=( )A.[-2,2]B.(1,+∞)C.(-1,2]D.(-∞,-1]∪(2,+∞)2.(历年辽宁大连一中考前模拟,理7)已知a ,b 是非零实数,则“a>b ”是“ln |a|>ln |b|”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.(历年山东济宁二模,6)设a=14log 213,b=120.3,则有( )A.a+b>abB.a+b<abC.a+b=abD.a-b=ab4.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A.1033B.1053C.1073D.10935.(历年山东德州二模,6)已知a>b>0,若log a b+log b a=52,a b =b a ,则a b=( ) A.√2 B.2 C.2√2 D.46.(多选)有以下四个结论:①lg(lg 10)=0;②lg(ln e)=0;③若e =ln x ,则x=e 2;④ln(lg 1)=0.其中正确的是( ) A.① B.② C.③ D.④ 7.(多选)若函数f (x )=log a (ax-3)在[1,3]上单调递增,则a 的取值可以是( )A.6B.3C.4D.58.(多选)设f (x )=lg 21-x+a 是奇函数,则使f (x )<0的x 的取值可能为( )A.-1B.-13C.0D.-129.log 24+log 42= ,log a b+log b a (a>1,0<b<1)的最大值为 . 10.当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,则a 的取值范围为 . 11.若函数f (x )=log x ,x 2,-x 2x -2,x 2(a>0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是 .12.函数f(x)=log2√xꞏlo g√ 2x的最小值为.13.(历年山东青岛二模,7)已知非零实数a,x,y满足lo g x<lo g y<0,则下列关系式恒成立的是()A.1x2 1 1y2 1B.x+y>yx xyC.1|a| 1x<1|a| 1yD.y x>x y14.设x,y,z为正数,且2x=3y=5z,则()A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z15.(历年山东模考卷,8)若a>b>c>1,且ac<b2,则()A.log a b>log b c>log c aB.log c b>log b a>log a cC.log c b>log a b>log c aD.log b a>log c b>log a c16.(历年山东菏泽一模,8)已知大于1的三个实数a,b,c满足(lg a)2-2lg a lg b+lg b lg c=0,则a,b,c的大小关系不可能是()A.a=b=cB.a>b>cC.b>c>aD.b>a>c17.(历年河北保定一模,理12)设函数f(x)=log0.5x,若常数A满足:对∀x1∈[2,22 020],存在唯一的x2∈[2,22 020],使得f(x1),A,f(x2)成等差数列,则A=()A.-1 010.5B.-1 011C.-2 019.5D.2 020参考答案1.C 由不等式142x ≤4,得-2≤x ≤2,即A={x|-2≤x ≤2}.因为函数y=lg x 单调递增,且x>110,所以y>-1,即B={y|y>-1},则A ∩B=(-1,2].故选C .2.D 由于ln |a|>ln |b|,则|a|>|b|>0.由a>b 推不出ln |a|>ln |b|,比如a=1,b=-2,有a>b ,但ln |a|<ln |b|;反之,由ln |a|>ln |b|推不出a>b ,比如a=-2,b=1,有ln |a|>ln |b|,但a<b.故“a>b ”是“ln |a|>ln |b|”的既不充分也不必要条件.故选D .3.A a=14log 213=log 21314=log 23-14>log 24-14=-12,b=120.3>120.5=√22,∴ab<0,a+b>0,∴a+b>ab ,故选A .4.D设M N =x=33611080,两边取对数,得lg x=lg33611080=lg 3361-lg 1080=361×lg 3-80≈93.28,所以x ≈1093.28,即与MN最接近的是1093.故选D . 5.B ∵log a b+log b a=52,∴log a b+1log a b52,解得log a b=2或log a b=12,若log a b=2,则b=a 2,代入a b =b a 得a=(a 2)a =a 2a , ∴a 2=2a ,又a>0,∴a=2,则b=22=4,不合题意; 若log a b=12,则b=√a ,即a=b 2,代入a b =b a 得(b 2)b =b 2b =,∴2b=b 2,又b>0,∴b=2,则a=b 2=4,∴a b=2.故选B .6.AB 因为lg 10=ln e =1,lg(lg 10)=lg 1=0,lg(ln e)=lg 1=0,所以①②均正确;若e =ln x ,则x=e e ,故③错误;因为lg 1=0,而ln 0没有意义,故④错误.故选AB .7.ACD 由于a>0,且a ≠1,∴u=ax-3为增函数,∴若函数f (x )为增函数,则f (x )=log a u 必为增函数,因此a>1.又y=ax-3在[1,3]上恒为正,∴a-3>0,即a>3,故选ACD . 8.BD 由f (-x )=-f (x ),即lg21 x+a =-lg21-x+a ,21 x +a=21-x+a -1,即2 a ax 1 x1-x2 a -ax,则1-x 2=(2+a )2-a 2x 2恒成立,可得a 2=1,且(a+2)2=1,解得a=-1,∴f (x )=lg 1 x1-x,定义域为(-1,1).由f (x )<0,可得0<1 x1-x<1,∴-1<x<0.故选BD .9.52-2 因为log 24+log 42=log 222+lo g 2=2+1252.由换底公式可得log b a=1log a b,因为a>1,0<b<1,所以log a b<0,log b a<0,所以log a b+log b a=-[(-log a b )+(-log b a )]≤-2,当且仅当log a b=log b a 时,等号成立,故log a b+log b a 的最大值为-2. 10.(1,2] 设f 1(x )=(x-1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,只需f 1(x )=(x-1)2在(1,2)上的图像在f 2(x )=log a x 的下方即可,如图所示.当0<a<1时,显然不成立.当a>1时,如图,要使在区间(1,2)上, f 1(x )=(x-1)2的图像在f 2(x )=log a x 图像的下方,只需f 1(2)≤f 2(2), 即(2-1)2≤log a 2.即log a 2≥1,则1<a ≤2,即a 的取值范围为(1,2]. 11.12,1 x ≤2时,f (x )=-x 2+2x-2=-(x-1)2-1,f (x )在(-∞,1)上单调递增,在(1,2]上单调递减,∴f (x )在(-∞,2]上的最大值是f (1)=-1,所以f (x )的值域是(-∞,-1];又当x>2时,log a x ≤-1,故0<a<1,且log a 2≤-1,∴12a<1,故实数a 的取值范围为12,1.12.-14由题得,x>0,∴f (x )=log 2√x lo g √ 2x=12log 2x ꞏlog 24x 2=12log 2x ꞏ(log 24+2log 2x )=log 2x+(log 2x )2=log 2x+122-14-14.当且仅当x=√22时,有f (x )min =-14.13.D 因a 2+1>1,且lo g x<lo g y<0,由对数函数的单调性,得0<x<y<1,令x=14,y=12,将x=14,y=12代入选项,得A,B,C 不成立,D 成立,故选D .14.D 由2x =3y =5z ,同时取自然对数,得x ln 2=y ln 3=z ln 5.由2x 3y2ln33ln2ln9ln8>1,可得2x>3y.再由2x 5z2ln55ln2ln25ln32<1,可得2x<5z.所以3y<2x<5z ,故选D .15.B 因为a>b>c>1,且ac<b 2,令a=16,b=8,c=2,则log c a=4>1>log a b ,故A,C 错误;log c b=3>log b a=43,故D 错误,B 正确.故选B.16.D 令f (x )=x 2-2x lg b+lg b lg c ,则lg a 为f (x )的零点,且该函数图像的对称轴为x=lg b ,故Δ=4lg 2b-4lg b lg c ≥0.因为b>1,c>1.故lg b>0,lg c>0.所以lg b ≥lg c ,即b ≥c.又f (lg b )=lg b lg c-lg 2b=lg b (lg c-lg b ),f (lg c )=lg 2c-lg b lg c=lg c (lg c-lg b ),若b=c ,则f (lg b )=f (lg c )=0.故lg a=lg b=lg c ,即a=b=c.若b>c ,则f (lg b )<0,f (lg c )<0,利用二次函数图像,可得lg a<lg c<lg b ,或lg c<lg b<lg a ,即a<c<b ,或c<b<a.故选D .17.A 因为对∀x 1∈[2,22 020],存在唯一的x 2∈[2,22 020],使得f (x 1),A ,f (x 2)成等差数列,所以2A=f (x 1)+f (x 2),即2A-f (x 1)=f (x 2).因为f (x )=log 0.5x 在[2,22 020]上单调递减,可得f (x )在[2,22 020]的值域为[-2 020,-1],故y=2A-f (x )在(0,+∞)单调递增,可得其在区间[2,22 020]的值域为[2A+1,2A+2 020].由题意可得[2A+1,2A+2 020]⊆[-2 020,-1],即2A+1≥-2 020,且2A+2 020≤-1,解得A ≥-2 0212,且A ≤-2 0212,可得A=-2 0212.故选A .。
高考数学专题复习 对数及对数函数(原卷版+解析版)
第六讲 对数及对数函数【套路秘籍】一.对数的概念 (1)对数的定义①一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么称b 是以a 为底N 的对数,记作b =log a N ,其中,a 叫做对数的底数,N 叫做真数.②底数的对数是1,即log a a =1,1的对数是0,即log a 1=0. (2)几种常见对数4.对数的性质与运算法则 (1)对数的性质 ①log a Na=N (a >0且a ≠1,N >0);②log a a N=N (a >0且a ≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1,N >0);②log a b =1log b a (a ,b 均大于零且不等于1).(3)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R ); ④log m na M =n mlog a M . 二.对数函数的定义1.形如y =log a x (a >0,a ≠1)的函数叫作对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质3.反函数指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.【套路修炼】考向一 对数的运算【例1】(1)lg 22·lg 250+lg 25·lg 40=. (2)若3a=5b=225,则1a +1b = 。
(4)若log a 2=m ,log a 5=n ,则a 3m+n =( 。
【举一反三】1.已知a =log 32,那么log 38-2log 36用a 表示为. 2.若3x =4y=36,则2x +1y=.3. 设2a =5b=m ,且1a +1b=2,则m =.4.计算:(1-log 63)2+log 62·log 618log 64=.5.已知均不为1的正数a ,b ,c 满足a x =b y =c z,且1x +1y +1z=0,求abc 的值.6.设log a C ,log b C 是方程x 2-3x +1=0的两根,求log a bC 的值.7.方程33x -56=3x -1的实数解为.考向二 对数函数的判断【例2】函数f(x)=(a 2+a −5)log a x 为对数函数,则f(18)等于( ) A .3 B .−3 C .−log 36 D .−log 38【举一反三】1.下列函数是对数函数的是( )A .y =log 3(x +1)B .y =log a (2x)(a >0,a ≠1)C .y =lnxD .y =log a x 2(a >0,a ≠1) 2.下列函数,是对数函数的是 A .y=lg10xB .y=log 3x2C .y=lnxD .y=log13(x –1)3.在M=log (x –3)(x+1)中,要使式子有意义,x 的取值范围为A .(–∞,3]B .(3,4)∪(4,+∞)C .(4,+∞)D .(3,4)考向三 对数的单调性【例3】(1)函数f(x)=lg(6x −x 2)的单调递减区间为 。
2024年高考数学高频考点(新高考通用)对数与对数函数(精练:基础+重难点)解析版
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第11练对数与对数函数(精练)【A组在基础中考查功底】....【答案】A【分析】根据函数的奇偶性和函数值等知识确定正确答案.【详解】依题意ππ),,22y x x⎛⎫=∈- ⎪⎝⎭,cos x为偶函数,则ln(cos)x为偶函数,令1()44g b a b b b=+=+,根据对勾函数的图像与性质易得所以()(1)5g b g >=.故4a b +>故选:C.7.(2023·全国·高三专题练习)已知函数要求积的最大值,....【答案】A【分析】先求出定义域,由)x 为偶函数,结合函数在数值的正负,排除BC ,结合函数图象的走势,排除D ,得到正确答案【详解】()22ln x x f x =变形为,定义域为()(,00,∞-U当01a <<时,函数()lg f x x =在函数()πsin2x g x =在[]0,a 上单调递增,所以所以π1sin22a a a M m -==,解得15.(2023·上海·高三专题练习)若实数x 、y 满足lg x m =、110m y -=,则xy =______________.【答案】10【分析】根据指数式与对数式的关系,将lg x m =转化为指数式,再根据指数运算公式求值.【详解】由lg x m =,得10m x =,所以1110101010m m m m xy -+-=⋅==,【B组在综合中考查能力】A .14B .15C .16D .【答案】D【分析】根据题意可得()10145n-%≤,两边取对数能求出冷轧机至少需要安装轧辊的对数【详解】厚度为10α=mm 的带钢从一端输入经过减薄率为4%的n 对轧辊后厚度为【C组在创新中考查思维】则函数()y f x =的图象关于直线令()t f x =因为函数()()()2g x f x af x =+由题意可知,4cos 25θ=,所以22tan 3tan 2,1tan 4θθθ==-解得tan 因为θ为锐角,所以tan 3,1θ=由对称性,不妨取直线AD 进行研究,则直线。