喷淋吸收塔主要工艺参数及结构(1)

合集下载

吸收塔作业指导书

吸收塔作业指导书

1工程概况1.1吸收塔系统概况本工程的脱硫装置,设计了一座逆流式喷淋、结构为圆柱形的吸收塔。

其底部为氧化浆池,并配有四台搅拌器;上部为喷淋洗涤区,布置了四层喷嘴,出口烟道内部布置了除雾器和冲洗管,防止烟气带出小液滴。

为了避免烟气和喷淋浆液在接触区形成沉淀,采用工业水定期喷洗吸收塔入口部分的内壁。

吸收塔塔体为钢结构,大部分采用玻璃鳞片环氧树脂内衬,小部分采用衬胶。

其烟道入口还设置了合金钢衬贴。

基本流程为:从原烟道来的烟气经吸收塔内浆液洗涤并与浆液的CaCO3发生反应,生成的亚硫酸钙在吸收塔底部的循环浆池内被氧化风机鼓入的空气强制氧化,生成石膏,由设计在吸收塔底部的石膏排浆泵排出,送入石膏处理系统脱水;烟气从吸收塔循环浆池出来后,经二级除雾器,除去烟气带出的细小液滴,使净烟气的含液滴量低于100mg/Nm3,然后排到GGH,加热至80℃上排至烟囱。

1.1.2主要参数Ⅰ.吸收塔内最佳PH值: 5.6~5.8Ⅱ.吸收塔:进口烟气量: 2214135m3/h出口烟气量 1985928m3/h浆液循环时间 4液气比 14L/Nm3Ca/S(mol) 1.03浆池高度 11.80m吸收塔高度 39.11m吸收塔直径 16.0m浆液池容积 9490m3吸收塔总重 374250kg吸收塔焊缝系数 0.72.编制依据2.1 2×300MW+2×600MW机组施工组织总设计2.3《电力建设施工及验收技术规范》(锅炉机组篇)DL/T5047—95。

2.4吸收塔图纸。

2.5《电力建设安全工作规程》(火力发电厂部分)DL/5009.1—92。

2.6《电力建设施工及技术规范》(火力发电厂焊接篇)DL/T5007—92。

2.7《火力发电厂锅炉压力容器焊接工艺评定规程》SD340—89。

2.8《锅炉压力容器压力管道焊工考试与管理规则》国质检(2002)109号。

2.9《焊工技术考核规程》DL/T679—1999。

湿法脱硫工艺吸收塔及塔内件的设计选型

湿法脱硫工艺吸收塔及塔内件的设计选型

湿法脱硫工艺吸收塔及塔内件的设计选型1 吸收塔塔型的选择在湿法脱硫工艺中,吸收塔是一个核心部件,一个湿法脱硫工程能否成功,关键看吸收塔、塔内件及与之相匹配的附属设备的设计选型是否合理可靠。

在脱硫工程中运行阻力小、操作方便可靠的吸收塔和塔内件的布置形式,将具有较大的发展前景。

目前,在国内的脱硫工程中,应用较多的吸收塔塔型有喷淋吸收空塔、托盘塔、液柱塔、喷射式鼓泡塔等。

国内学者曾在实验室里对各种塔型做了实验测试(见图1),从测试情况看,在塔内烟气流速相同的情况下,喷淋吸收空塔的系统阻力最小,液柱塔的阻力次之,托盘塔的阻力相对较大。

由于喷淋吸收空塔塔内件较少,结垢的机率较小,运行维修成本较低,因此喷淋吸收空塔已逐渐成为目前应用最广泛的塔型之一。

图2为喷淋吸收空塔(以下简称吸收塔)的结构简图。

2 喷淋吸收空塔主要工艺设计参数(1)烟气流速在保证除雾器对烟气中所携带水滴的去除效率及吸收系统压降允许的条件下,适当提高烟气流速,可加剧烟气和浆液液滴之间的湍流强度,从而增加两者之间的接触面积。

同时,较高的烟气流速还可持托下落的液滴,延长其在吸收区的停留时间,从而提高脱硫效率。

另外,较高的烟气流速还可适当减少吸收塔和塔内件的几何尺寸,提高吸收塔的性价比。

在吸收塔中,烟气流速通常为3~4.5m/s。

许多工程实践表明,3.6m/s≤烟气流速(110%过负荷)≤4.2m/s是性价比较高的流速区域。

(2)液气比(L/G)L/G决定了SO2的吸收表面积。

在吸收塔中,喷淋雾滴的表面积与浆液的喷淋速率成一定的比例关系。

当烟气流速确定以后,L/G成为了影响系统性能的最关键变量,这是因为浆液循环率不仅会影响吸收表面积,还会影响吸收塔的其他设计,如雾滴的尺寸等。

L/G的主要影响因素有:吸收区体积、SO2的去除效率、吸收塔空塔速率、原烟气的SO2浓度、吸收塔浆液的氯含量等。

根据吸收塔吸收传质模型及气液平衡数据计算出液气比(L/G),从而确定浆液循环泵的流量。

吸收塔的设计和选型

吸收塔的设计和选型

吸收塔的设计和选型(总27页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--烟气脱硫工艺主要设备吸收塔设计和选型吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。

吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计喷淋塔的高度设计喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1)喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。

通常烟气中的二氧化硫浓度比较低。

吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H0=G m/(k y a)(k a为污染物气相摩尔差推动力的总传质系数,a为塔内单位体积中有效的传质面积。

)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

吸收塔 设计计算

吸收塔 设计计算

吸收塔设计计算吸收塔是工业生产中常用的设备,用于气体洗涤、脱硫、脱硝、除尘等工艺过程。

其设计计算是确保设备正常运行的重要步骤之一。

下文将从吸收塔的应用、结构分类、设计参数以及计算方法等方面探讨吸收塔的设计计算。

一、吸收塔的应用吸收塔是工业生产中常用的设备,广泛应用于化工、石化、钢铁、电力、印刷、制药等领域,用于将气体中的污染物分离除去。

具体应用包括:1、脱硫:吸收塔可用于烟气中的二氧化硫的脱除。

2、脱硝:吸收塔可用于烟气中的氮氧化物的脱除。

3、除尘:吸收塔可用于烟气中的粉尘颗粒的分离除去。

4、洗涤:吸收塔可用于气体中的酸气、碱气的洗涤处理。

二、吸收塔的结构分类根据结构形式可将吸收塔分为以下几种类型:1、板式吸收塔板式吸收塔是一种以板作为填料的吸收塔,分为横流型、纵流型和斜流型。

吸收塔内置有很多平行的垂直板,气体垂直流过板间空隙,与液体进行旋转接触混合,实现气体进液接触吸收的目的。

板式吸收塔简单易制,可耐受高浓度废气,且维护简单。

2、喷雾吸收塔喷雾吸收塔又称喷淋吸收塔,主要由塔体、喷头等组成。

塔体内装有填料液槽和底部雾化器。

气体经过填料液槽,液体被填料吸附,接触后管道中的液体被喷头雾化,形成雾滴与废气充分接触,从而达到吸附效果。

喷雾吸收塔结构简单,投资少,可以广泛应用。

3、吸附塔吸附塔是一种以吸附剂为填充物的吸收塔。

分为干法吸收和湿法吸收。

吸附塔可用于汽车尾气和工业废气的处理。

吸附塔结构简单,吸附盘式塔种类多样,能够高效地处理各类废气污染物。

三、吸收塔的设计参数1、气体流量气体流量是吸收塔的基本参数之一。

气体流量决定了吸收塔的尺寸和填料数量,它是吸收塔设计的起点。

2、液体流量液体流量是衡量吸收塔性能的重要指标之一。

液体流量要求经过塔体和填料液槽时能够喷淋到填料和气体中,从而实现吸收的目的。

3、气体温度气体温度是影响吸收塔工作效果的因素之一。

高温会导致液体蒸发速度减慢,吸收效果不佳,因此需要保持适宜的气体温度。

喷淋吸收塔

喷淋吸收塔

喷淋吸收塔1. 引言喷淋吸收塔(Spray Absorption Tower)是一种常用的气体净化设备,广泛应用于工业生产过程中对废气进行净化处理。

它通过将废气与液体喷雾充分接触,并利用溶液中的吸收剂吸收废气中的污染物,从而达到净化废气的目的。

本文将详细介绍喷淋吸收塔的工作原理、结构特点及应用领域。

2. 工作原理喷淋吸收塔的工作原理主要包括三个过程:喷雾、接触和吸收。

2.1 喷雾过程在喷淋吸收塔中,通过喷嘴将液体吸收剂以喷雾形式喷洒到废气上方。

喷雾过程中,液滴的大小和分布密度会影响到后续的接触和吸收效果。

因此,选择合适的喷雾器件和喷嘴设计是至关重要的。

2.2 接触过程在接触过程中,喷洒的液滴和废气充分接触,并形成气液两相流动状态。

液滴表面的液膜与废气中的污染物发生物理吸附和化学反应,达到净化的效果。

接触过程的时间和程度取决于喷淋液滴的分布情况、废气流速、液气比等因素。

2.3 吸收过程在吸收过程中,废气中的污染物被液滴吸附,并在液滴表面进行物理或化学反应。

吸收剂中的主要成分与污染物发生物理或化学作用,使其被吸附或转化成不易挥发的形式。

吸附剂的选择和浓度对吸收效果起着重要的影响。

3. 结构特点喷淋吸收塔的结构通常包括塔壳、喷嘴、填料层、入口和出口等组成部分。

3.1 塔壳塔壳是喷淋吸收塔的主体结构,也是废气和液体的接触区域。

它通常采用环保耐腐蚀材料制作,如不锈钢、玻璃钢等,以确保塔壳的强度和耐用性。

3.2 喷嘴喷嘴是将液滴以喷雾形式喷洒到废气上方的设备。

常见的喷雾方式包括气动喷雾和液压喷雾两种。

喷嘴的设计和排布情况能够影响液滴的大小、分布密度和速度,从而影响到接触和吸收效果。

3.3 填料层填料层是塔内提供大表面积的装置,主要用于增加废气与液体的接触面积,并提高吸收效果。

常用的填料材料有陶瓷球、塑料环等。

填料的密度、形状和排布方式会直接影响到接触过程的效果。

3.4 入口和出口入口和出口是喷淋吸收塔的重要组成部分,用于废气的进出口。

酸碱废气处理喷淋塔使用说明书

酸碱废气处理喷淋塔使用说明书

喷淋洗涤塔产品说明书无锡贝乐环保工程有限公司一、酸碱废气处理(喷淋塔)设备概述:1.酸碱废气处理塔分单塔体和双塔体。

采用圆形塔体,具体由贮液箱、塔体、进风段、喷淋层、填料层、旋流除雾层、出风锥帽、观检孔等组成。

2.酸碱废气处理(喷淋塔)的工作原理:2.1我司的酸碱废气处理(喷淋塔)主要的运作方式是不断酸雾废气由风管引入净化塔,经过填料层,废气与吸收液进行气液两相充分接触吸收中和反应,酸雾废气经过净化后,再经除雾板脱水除雾后由风机排入大气。

吸收液在塔底经水泵增压后在塔顶喷淋而下,最后回流至塔底循环使用。

净化后的酸雾废气达到并低于国家排放标准的排放要求。

3.废气处理的的工程的工艺流程:3.1排除的酸雾废气→进入风管→经过酸碱废气处理塔→风机→风管→达标排放。

3.2 我公司的酸碱废气处理塔(喷淋塔)具有以下特点:1. 采用填料塔对废气进行净化,适合于连续和间歇排放废气的治理;2. 工艺简单,管理、操作及维修相当方便简洁,不会对车间的生产造成任何影响;3. 适用范围广,可同时净化多种污染物;4压降较低,操作弹性大,且具有很好的除雾性能;5. 塔体可根据实际情况采用FRP/PP/PVC等材料制作;6.填料采用高效、低阻的鲍尔环,可彻底地去除气体中的异味、有害物质等。

7. 我公司的废气处理塔采用五重废气吸附过滤净化系统,工业废气处理设计周密、层层净化过滤废气,效果较好,去除率可高达99%以上。

适用范围:广泛应用于化工、电子、冶金、电镀、纺织(化纤)、食品、机械制造等行业过程中排放的酸、碱性废气的净化处理。

如调味食品、制酸、酸洗、电镀、电解、蓄电池等。

8.我公司的废气处理塔气速高,处理能力大,塔的重量轻,汽液分布比较均匀,不易被固体及黏性物料堵塞。

特别是由于塔内湍动强烈,故质量及能量传递得以强化,因而能够较大地缩小塔径,降低塔高。

该塔处理风量较大,空塔气速1.5~6.0m/s,喷淋密度20~110m3/(m2·h),压力损失1500~3800Pa,喷淋塔的除雾装置采用旋流板除雾器,通过使气体通过塔板产生旋转运动,利用离心力的作用将雾沫除下,其除雾效率可达98%-99%,而且结构简单压降较小。

吸收塔施工方案

吸收塔施工方案

吸收塔施工方案吸收塔是整个排烟脱硫装置中最大、最重要的非标准设备,本工程共计2台,现场拟采用倒装法进行组对制作安装,焊接主要采用手工电弧焊工艺。

吸收塔主要技术参数制作工艺方法基础验收基础验收按照GB50202-2002“建筑地基基础工程质量验收规范”的要求对塔体基础进行验底板底板安装是吸收塔安装质量的基础。

底板安装前二次浇灌强度必须达到设计要求。

将底板按照编号依次码放在基础上进行焊接,为了保证底板的平整度,底板的焊接必须先焊横焊缝,后焊纵焊缝,并从中心开始辐射至四周为了防止变形。

吸收塔罐底扇型板的下料应采用半自动火焰切割机或半自动等离子切割机。

1、剖视图B-B中的单板单坡口形式由30°改为留4mm钝边后,余下部分用磨光机开出,并将原4mm间隙改为6mm-8mm。

2、扇形板在开坡口前如呈龟背状则应将拱面朝下铺设。

3、蓝图中件13、26采用扁钢制作。

4、件垫板16,盖板17,垫板18,筋板19的制作和安装可放在吸收塔安装后期实施5、扇形板与角钢骨架的焊接,扇形板与底环板的焊接,底环板与底环板的焊接是整个罐底安装质量的关键所在,应当严格控制上板作业人数,焊接人数确定在2-4人。

尽量减少焊接作业时所形成的热量。

应采用以下焊接顺序和工艺:a,点焊时应注意其对称性。

b,先焊塞焊,后焊侧边,先点焊,后断续打底焊,再补齐焊,盖面时仍采用打底时的顺序的方法。

c,禁止采用大电流,大直径焊条的一次性的连续焊接工艺。

d,采用大跨度,大间距的,且每处焊接点的焊接长度控制在80mm左右的焊接工艺。

以防止焊接时的热量的产生。

e,扇形板与中心园板及底环板的焊接其T型焊缝口放至最后来焊接。

6、底环板与基础之间应在底环板的两端及中部用钢板垫实。

7、底环板与底环板的焊接时用δ=30mm厚C型钢板跨焊缝点焊定位,然后对底环板施焊。

8、整个底板焊缝的打磨应做到焊接凹坑深度不得大于1mm,且不得有棱角现象出现。

9、图定的吸收塔方位点是吸收塔安装时的重要技术依据,应将图定的吸收塔的方位点标记引至吸收塔底环板上,该标记保留至吸收塔安装结束。

吸收塔系统工艺规程

吸收塔系统工艺规程

吸收塔系统工艺规程16.1脱硫吸收塔及其内部件检修16.1.1脱硫吸收塔及其内部件概述吸收塔为圆柱形,尺寸为Φ15.2×31.600m,结构如图所示。

由锅炉引风机来的烟气,经增压风机升压后,从吸收塔中下部进入吸收塔,脱硫除雾后的净烟气从塔顶侧向离开吸收塔。

塔的下部为浆液池,设四个侧进式搅拌器。

氧化空气由四根矛式喷射管送至浆池的下部,四根矛状管中三根的出口都非常靠近搅拌器,将吹入池中的氧化空气由搅拌器打碎成小气泡以增加传质面积。

烟气进口上方的吸收塔中上部区域为喷淋区,喷淋区的下部设置一合金托盘,托盘上方设三个喷淋层,喷淋层上方为二级串联的除雾器。

塔身共设六层钢平台,每个喷淋层、托盘及每级除雾器各设一个钢平台,钢平台附近及靠近地面处共设六个人孔门。

图41烟气出口2除雾器3喷淋层4喷淋区5冷却区6浆液循环泵7氧化空气管8搅拌器9浆液池10烟气进口11喷淋管12除雾器清洗喷嘴13碳化硅空心锥喷嘴吸收塔包括一个托盘,三层喷淋装置以及两级除雾器和除雾器冲洗水系统。

16.1.2吸收塔本体及其内部件规范吸收塔本体规范16.1.3吸收塔检修项目、工艺方法及质量标准16.1.4吸收塔检修后验收16.2吸收塔附属设备检修16.2.1吸收塔附属设备概述吸收塔浆液循环泵安装在吸收塔旁,用于吸收塔内石膏浆液的再循环。

采用单流和单级卧式离心泵,包括泵壳、叶轮、轴、导轴承、出口弯头、底板、进口、密封盒、轴封、基础框架、地脚螺栓、机械密封和所有的管道、阀门及就地仪表和电机。

工作原理是叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都能得到提高,从而能够将吸收塔浆液提升到相应层的喷嘴并以一定的压力经过喷嘴喷下和烟气进行化学反应。

同时在泵的入口形成负压,使流体能够被不断吸入。

图5 浆液循环泵结构简图1叶轮2入口3前护板4蜗壳5后护板6机械密封7托架8轴浆液循环系统采用单元制,每个喷淋层配一台浆液循环泵,每台吸收塔配三台浆液循环泵。

喷淋式气体吸收塔工作原理

喷淋式气体吸收塔工作原理

喷淋式气体吸收塔工作原理喷淋式气体吸收塔,也称为喷雾吸收塔,是一种常用于烟气脱硫、脱硝等环保设备的塔式反应器。

其工作原理是利用喷嘴将液体吸收剂雾化成小液滴,与烟气接触反应,从而达到净化废气的目的。

下面将从塔体结构、液体吸收剂的喷射、气液接触等方面详细介绍喷淋式气体吸收塔的工作原理。

一、塔体结构喷淋式气体吸收塔一般分为两个区域:底部反应区和顶部松散区。

1. 底部反应区:位于塔体底部,主要是进行气液反应,包括液体吸收剂的喷淋、烟气逆流洗涤、物质传递与反应等。

为了增强反应效果,该区域通常设置了内嵌式填料层,以增加流动物料间的接触面积和传质效率。

2. 顶部松散区:位于底部反应区上方,主要是为了收集已经清洗干净的烟气和液体吸收剂,并减小烟气的流速。

其设计有利于减少烟气中携带粒子和液滴,防止设备堵塞。

二、液体吸收剂的喷射液体吸收剂是对废气中有害成分进行吸收的重要载体。

在喷淋式气体吸收塔中,液体吸收剂通常采用喷射均匀的方式与烟气接触。

在液体喷射过程中,喷头成为一种非常重要的组件。

其喷孔数量多,布局合理,能够快速将液体吸收剂雾化成小液滴,进入反应区域。

一般来讲,这些喷头可固定在塔壁上,或采用内嵌式设计。

喷嘴的数量、喷射角度、喷射高度等因素,都能影响吸收效果,并需要根据具体情况进行合理配置。

三、气液接触过程气液接触是喷淋式气体吸收塔内部的一种重要物质传递过程。

具体而言,其主要通过以下两种方式进行:1. 气液接触过程:喷淋式气体吸收塔中,气体在通过反应区时,与液滴接触、吸附反应。

在该过程中,气液接触的方式有溶剂化、物理吸附和化学反应,反应类型主要取决于液体吸收剂的类型和烟气中的气态成分。

2. 液液接触过程:除了与气体进行接触外,液滴间的互相接触也是液体吸收剂向烟气中物质传递的方式之一。

其主要通过小液滴间的“碰撞”过程,实现污染物的扩散和吸收。

在液滴间接触的同时,也会处于塔体中的填料层上发生同样的过程。

总之,喷淋式气体吸收塔主要利用喷嘴将液体吸收剂雾化成小液滴,送入反应区域并与烟气接触、吸附、反应等过程,以去除废气中的有害物质。

化工吸收塔

化工吸收塔

前言:在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次化工原理课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气,使其达到排放标准。

设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。

设计任务书一、题目净化含氮2%的废气,气体处理量为5150Nm3/h.二、原始设计数据1.2.净化要求:99.9%3.操作条件:(1)操作压力:常压(1atm)(2)操作温度:30℃4.吸收液:清水三、设计内容1.吸收流程选定2.填料塔塔径、塔高等工艺尺寸的计算及输送机械的选型四、设计要求1.写出设计说明书2.给出工艺流程3.绘出填料塔的总装配图4.输送机械选型内容摘要1.操作条件和工艺参数的计算2.塔设备和附件的选择3.塔设备的装配图工艺流程图及说明设 计 计 算 过 程一、 简化证明吸收过程是一复杂的物理化学过程,为使计算方便特作如下的简化: 1.确定过程为单组分吸收由表格中各气体组份的亨利系数数据可知,在操作条件下(30℃,1atm ),H 2, ,CO ,N 2的亨利系数均比NH 3 的亨利系数大104倍以上,即H 2, ,CO ,N 2在该条件下的溶解度小于NH 3溶解度的1/10000,因此,在工程计算过程中可以认为该操作只吸收NH 32.确定过程为低浓度吸收气体中被吸收组分含量≤10%即可认为是低浓度吸收,根据任务条件,混合气中NH 3含量为2%符合低浓度吸收,因此,该操作可视为低浓度吸收。

喷淋塔技术

喷淋塔技术
2
氧化区・中和区
O O 2 O2 O O2 O O2 O2
2 2 2
O2
O2
O O 2
2
SO3-+1/2O2→HSO4←H++SO42HSO4- →
中和反应
O 2 O
2
O2
O2
O2
O2
H2SO4
CaCO3 (石灰石)
CaSO4· 2H2O (石膏)
Ca2++CO32-+2H++SO42-+H2O →CaSO4· 2H2O+CO2↑
进口烟气
喷雾嘴 吸收塔除雾器
吸收塔循环泵
吸收塔氧化方式的比较
氧化空气分布采用氧 枪结构,氧化空气被氧 枪注入到搅拌机桨叶的 压力侧,被压力和剪切 力打碎为细小气泡,促 进氧气溶解、使得浆液 池中的亚硫酸氧化更彻 底,氧枪不易结构塞
氧枪 型式
喷管 型式
喷嘴技术特点
采用大口径中空螺旋状喷嘴, 喷出的浆液为三重环状液膜, 气液接触效率高,能达到高效 吸收性能和高除尘性能,喷嘴 不易结垢堵塞; 吸收塔内部只布置有喷嘴, 构造简单; 低阻力喷嘴(进口压头仅 0.029-0.039MPa),节能降耗, 单个喷嘴喷雾量大,需要布 置的数量少; 喷嘴材质为陶瓷,耐腐蚀、 耐磨损,具有较长的使用寿命。
塔型对比
顶出式吸收塔
吸收塔出口
反转型吸收塔
包藏除雾器
除雾器 喷嘴 隔板 烟气 烟气 出口 吸收塔 搅拌器
吸收塔出口 除雾器 喷嘴 烟气 进口 烟气 出口
进口
吸收塔
搅拌器 氧化用气管 吸收塔循环泵 吸收塔循环泵
反转型吸收塔技术特点
吸收塔的构造为内部设隔板、净烟气 顶部反转,出口烟道采用内包藏型结 构,烟道布置短洁顺畅、紧凑;

石灰石膏法脱硫工艺参数设计

石灰石膏法脱硫工艺参数设计

吸收塔系统
吸收系统组成: SO2吸收系统、浆液循环系统、石 膏氧化系统、除雾器
• 烟气中的SO2被吸收浆液洗涤并与浆液中 的CaCO3发生反应,反应生成的亚硫酸钙 在吸收塔底部的循环浆池内被氧化风机鼓 入的空气强制氧化,最终生成石膏,石膏 由石膏浆排出泵排出,送入石膏处理系统 脱水。烟气从吸收塔出来后,经过二级除 雾器,以除去脱硫后烟气夹带的细小液滴 ,使烟气在含雾量低于100mg/ Nm 3下排 出。
工艺技术参数设计
湿式石灰石—石膏法烟气脱硫工艺
• (1)石灰石制浆系统; • (2)烟气系统; • (3)吸收塔系统; • (4)石膏脱水系统; • (5)脱硫废水处理系统 • (6)浆液排放及收集系统; • (7)工艺水系统; • (8)电气及仪表控制系统。
工艺流程图
工艺流程图
石灰石制浆系统
吸收塔系统
• 四、除雾器 当带有液滴的烟气进入除雾器通道时,由于流线的偏折 在惯性力的作用下实现气液分离,部分液滴撞击在除雾 器叶片上被捕集下来。
除雾器的组成: 由除雾器本体及冲洗系统(有单面冲洗和 双 面冲洗两种形式)组成。 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定 结构组装而成。除雾器冲洗系统主要由冲洗喷嘴、除雾 器冲洗泵、管路、阀门、压力仪表及电气控制部分组成 。其作用是定期冲洗由除雾器叶片捕集的液滴、粉尘, 保持叶片表面清洁,防止叶片结垢和堵塞,维持系统正 常运行。
排水坑: 容积 V = 90 m3 长×宽×高 = 6m×6m×2.5m
排水坑泵: 设计流量Q = 40m3/h 扬程H = 20m 为单流单级离心液下泵,一用一备
事故浆液储存池:容积 V = 1290.4 m3 长×宽×高 = 16m×16m×5.1m

吸收塔喷淋层的概述及堵塞问题处理方案

吸收塔喷淋层的概述及堵塞问题处理方案

吸收塔喷淋层的概述及堵塞问题处理方案摘要:喷淋层又可以称为液体分布器,它是由喷淋管和喷嘴组成,将夜通过喷淋管的分配作用达到均匀分布的每个喷嘴,由喷嘴喷出,与逆向流动的烟气充分接触,SO2污染气体即在此吸收。

现存在堵塞、磨损断裂,结构等问题,本文针对问题及处理方案展开了详细的分析和阐述。

关键词:吸收塔;喷淋层,堵塞;处理方案1、喷淋层中喷淋管及管网的喷淋层中的喷淋管目前主要有2种材质和结构形式:(1)全玻璃钢(FRP)材质,由于玻璃钢的材料特性,这种结构需要在喷淋管底部设置支撑梁。

(2) FRP管,主管和支管之间用法兰连接,特点是采用等径管,管径大、壁较厚,能自身起到支撑梁的作用,FRP支管底部可不设支撑梁。

据了解国外支管都用柔性接头,而我国只能做插管手糊加强性连接,考虑此连接部受弯和喷浆时可能由颤抖现象而引起疲劳开裂(因为喷头处压力为0.07MPa,喷头质量有8kg)。

大部分用FRP(玻璃纤维增强塑料)材料制作,质量较轻。

在实际运行中,全玻璃钢喷淋层底部的支撑梁有被上部喷嘴喷出的浆液击穿破坏的现象。

为避免由此带来的隐患,喷淋层采用第2种形式,喷淋FRP支管底部不设支撑梁。

吸收塔喷淋区域塔径,喷淋FRP支管较长,喷淋层供应商利用管道分析软件对喷淋层进行受力分析,选择合理管壁厚,通过在支管上加筋提高FRP支管的强度和刚度,并对其各个生产环节进行认真监督检验。

最上层喷浆管至第一段除雾器高差。

根据喷浆后雾滴大小及烟气上升流速考虑,一般在3m~3.5 m左右。

喷淋层中管网的作用是浆液通过分布在喷淋管上的喷嘴喷出雾状液以吸收烟气中的S02。

要求管内外均耐磨蚀,管内同时要求耐浆液腐蚀,管表面要求耐浆液冲刷。

其设计,首先要考虑喷头的布置,应保证塔内喷出浆液匀称,避免疏密不均。

喷头的数量根据液/气比需要的浆液量而定。

为保证浆液与烟气的接触充分,一般喷浆管分成3~5层,喷淋层间距通常为lm~2m,一般按1.5~1.7m 计。

吸收塔的设计、制造、安装

吸收塔的设计、制造、安装

吸收塔结构示意
High efficiency two stage mist eliminator
Fine droplet spray nozzles
In-situ forced oxidation in a discretely separated zone Sump dividing elements prevents backmixing between upper oxidation zone and lower sump
壁板的卷制
• 见华东列电照片
4吸收塔的安装
• • • • • • • 4.1安装准备 施工机具 起重机 电焊机 测量仪器 衬胶设备 人员:最重要的是焊工和测量工
预组装场地
• 吸收塔预组装场地 • 进口烟道预组装场地
壁板运输
壁板运输B
壁板堆放
基准画线
• 中心、十字画线 • 沉降观察基准

• 2.2焊接标准 • 主要的焊接标准有GB和DL;在具体验收方面 电厂可能更趋向DL • 2.3防腐标准 • 2.3.1橡胶衬里 • 2.3.2鳞片树脂 • 2.4其它 • 保温、表面处理
• 2.5材料标准 • 2.5.1碳素钢的标准 • 2.5.2高级合金的标准
3零件制作
• • • • 3.1壁板的制作 3.1.1下料 3.1.2喷砂除锈 3.1.3涂漆
吸收塔的设计、制造、安装
1.吸收塔的结构概况 2.采用的标准 3.零部、件的制作 4.安装 5.检验与试验
1.吸收塔的结构概况 吸收塔是一个平底圆柱形钢制容器 塔体由以下部件构成: a塔体壁板 塔体不同高度由厚度不同的碳素钢笔构成 b基础底板 由环形底板及基础部分构成。 c池分离器管 由碳素钢板卷制成直径约1米多的钢管,数根并列在最 高液位下约5米。 d进口烟道 在塔体中部左右,向下15°倾斜。材料多为高级合金或 贴衬合金。 e出口收缩段及出口法兰 收缩段为圆锥体,承受其上部传递来的出 口烟道载荷和位移。

吸收塔的工作原理

吸收塔的工作原理

吸收塔的工作原理吸收塔是一种常见的化工设备,广泛应用于化工、环保、能源等领域。

它的主要作用是将气体中的有害物质吸收到液体中,从而达到净化气体的目的。

本文将详细介绍吸收塔的工作原理,包括其结构、工作过程、吸收机理等方面。

一、吸收塔的结构吸收塔通常由塔壳、填料层、进料管、出料管、液位控制器、喷淋器等部分组成。

其中,塔壳是吸收塔的主体部分,通常采用圆柱形或方形结构,材料可以是碳钢、不锈钢、玻璃钢等。

填料层是吸收塔中的核心部分,它可以增加气液接触面积,促进质量传递。

填料的种类很多,常见的有球形填料、环形填料、片状填料等。

进料管和出料管分别用于将气体和液体送入和取出吸收塔。

液位控制器用于控制液位,保证液体能够充满塔壳并与气体充分接触。

喷淋器则负责将液体均匀地喷洒到填料层上,使气体和液体能够充分接触。

二、吸收塔的工作过程吸收塔的工作过程可以分为两个阶段:吸收阶段和再生阶段。

吸收阶段是指将气体中的有害物质吸收到液体中的过程,而再生阶段则是指将液体中的有害物质从中去除的过程。

在吸收阶段中,气体通过进料管进入吸收塔,经过填料层时与液体充分接触,有害物质被溶解到液体中。

液体从塔底流出,进入下一个处理单元或者直接排放。

在此过程中,液位控制器会自动调节液位,保证液体能够充满塔壳并与气体充分接触。

喷淋器则负责将液体均匀地喷洒到填料层上,使气体和液体能够充分接触。

在再生阶段中,液体通过进料管进入吸收塔,经过填料层时与气体充分接触,将其中的有害物质吸收到气体中。

气体从塔顶排出,经过处理后再次进入吸收塔。

在此过程中,喷淋器负责将液体均匀地喷洒到填料层上,使气体和液体能够充分接触。

液位控制器则会自动调节液位,保证液体能够充满塔壳并与气体充分接触。

三、吸收塔的吸收机理吸收塔的吸收机理可以分为物理吸收和化学吸收两种。

物理吸收是指气体在液体表面附着的过程,它主要取决于气体和液体之间的接触面积和接触时间。

在填料层中,填料可以增加气液接触面积,促进物理吸收的发生。

吸收塔

吸收塔

吸收塔☆☆☆吸收塔是实现吸收操作的设备。

按气液相接触形态分为三类。

第一类是气体以气泡形态分散在液相中的板式塔、鼓泡吸收塔、搅拌鼓泡吸收塔;第二类是液体以液滴状分散在气相中的喷射器、文氏管、喷雾塔;第三类为液体以膜状运动与气相进行接触的填料吸收塔和降膜吸收塔。

塔内气液两相的流动方式可以逆流也可并流。

通常采用逆流操作,吸收剂以塔顶加入自上而下流动,与从下向上流动的气体接触,吸收了吸收质的液体从塔底排出,净化后的气体从塔顶排出。

工业吸收塔应具备以下基本要求:1.塔内气体与液体应有足够的接触面积和接触时间。

2.气液两相应具有强烈扰动,减少传质阻力,提高吸收效率。

3.操作范围宽,运行稳定。

4.设备阻力小,能耗低。

5.具有足够的机械强度和耐腐蚀能力。

6.结构简单、便于制造和检修。

几种常用的吸收塔1.填料塔填料塔结构见图1,它由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成,塔外壳多采用金属材料,也可用塑料制造。

填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。

填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。

常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。

填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。

该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5~1.2m/s,气速过大会形成液泛,喷淋密度6~8m3/(m2,h)以保证填料润湿,液气比控制在2~10L/m3。

填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。

吸收塔的工艺计算教程文件

吸收塔的工艺计算教程文件

吸收塔的工艺计算第3章吸收塔的工艺计算3.1基础物性数据3.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

由手册查得, 的有关物性数据如下:粘度为L 0.001 Pa s=3.6 kg/(m h)表面张力为九72.6dyn/cm 940896kg / h23.1.2气相物性数据混合气体的平均摩尔质量为5(!v18.1 10 pa s 0.065kg / (m由手册查得,25C时氨在空气中的扩散系数为:2 2D v 0.236 cm / s 0.08496 m / h 20°C时水密度为998.2 km / m查手册得20 ;C时氨在水中的扩散系数为9 2D 1.761 10 m /sM Vm y i M i0.05 17 0.95 29 28.40kg / kmol混合气体的平均密度为Vm 込J"325 28・41.161RT 8.314 298kg/m 325 C时混合气体流量:298 152100 2292.2(m3/h)273.15混合气体的粘度可近似取为空气的粘度,查手册得259时空气的黏度为:h)3.1.3气相平衡数据有手册查得氨气的溶解度系数为H 0.725kmol/(kPa m3) 计算得亨利系数L HM S998.20.725 18.0276.41kPa相平衡常数为E 76.41 mP 101.3 0.7543 3.2物料衡算进塔气相摩尔比为:丫0.050.052631 0.05出塔气相摩尔比为:丫2第(1 A) 0.05263 (1 0.94)0.003158对于纯溶剂吸收过程,进塔液相组成为:X2 0(清水)2100惰性气体流量:V (1 0.05) 89.06(kmol/h)最小液气比:Y丫2 丫1 丫2 X1X2¥/m X20.05263 0.0031580.05263/0.7543 00.7090取实际液气比为最小液气比的2倍,则可得吸收剂用量为: L L2( —)min 2 0.7090 1.4180V VL 1.4180 89.06 126.287(kmol / h)X1 V^l89.°6(O.。

吸收塔系统工艺规程

吸收塔系统工艺规程

吸收塔系统工艺规程16.1脱硫吸收塔及其内部件检修16.1.1脱硫吸收塔及其内部件概述吸收塔为圆柱形,尺寸为Φ15.2×31.600m,结构如图所示。

由锅炉引风机来的烟气,经增压风机升压后,从吸收塔中下部进入吸收塔,脱硫除雾后的净烟气从塔顶侧向离开吸收塔。

塔的下部为浆液池,设四个侧进式搅拌器。

氧化空气由四根矛式喷射管送至浆池的下部,四根矛状管中三根的出口都非常靠近搅拌器,将吹入池中的氧化空气由搅拌器打碎成小气泡以增加传质面积。

烟气进口上方的吸收塔中上部区域为喷淋区,喷淋区的下部设置一合金托盘,托盘上方设三个喷淋层,喷淋层上方为二级串联的除雾器。

塔身共设六层钢平台,每个喷淋层、托盘及每级除雾器各设一个钢平台,钢平台附近及靠近地面处共设六个人孔门。

图41烟气出口2除雾器3喷淋层4喷淋区5冷却区6浆液循环泵7氧化空气管8搅拌器9浆液池10烟气进口11喷淋管12除雾器清洗喷嘴13碳化硅空心锥喷嘴吸收塔包括一个托盘,三层喷淋装置以及两级除雾器和除雾器冲洗水系统。

16.1.2吸收塔本体及其内部件规范吸收塔本体规范16.1.3吸收塔检修项目、工艺方法及质量标准16.1.4吸收塔检修后验收16.2吸收塔附属设备检修16.2.1吸收塔附属设备概述吸收塔浆液循环泵安装在吸收塔旁,用于吸收塔内石膏浆液的再循环。

采用单流和单级卧式离心泵,包括泵壳、叶轮、轴、导轴承、出口弯头、底板、进口、密封盒、轴封、基础框架、地脚螺栓、机械密封和所有的管道、阀门及就地仪表和电机。

工作原理是叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都能得到提高,从而能够将吸收塔浆液提升到相应层的喷嘴并以一定的压力经过喷嘴喷下和烟气进行化学反应。

同时在泵的入口形成负压,使流体能够被不断吸入。

图5 浆液循环泵结构简图1叶轮2入口3前护板4蜗壳5后护板6机械密封7托架8轴浆液循环系统采用单元制,每个喷淋层配一台浆液循环泵,每台吸收塔配三台浆液循环泵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)喷淋液循环泵
吸收塔再循环泵安装在吸收塔旁,用于吸收塔内喷淋液的再循环。采用单流和单级卧式离心泵,包括泵壳、叶轮、轴、导轴承、出口弯头、底板、进口、密封盒、轴封、基础框架、地脚螺栓、机械密封和所有的管道、阀门和电机。工作原理是叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都能得到提高,从而能够被输送到高处或远处。同时在泵的入口形成负压,使流体能够被不断吸入。泵头采用耐腐蚀材料。
喷淋吸收塔主要工艺参数:
聚丙烯鲍尔环喷淋塔(¢1600mm*4500mm) 混合气体处理量:8000m3/h 工艺参数 名称 数值 备注 操作压力,kpa 101.3 常压 操作温度,℃ 20 常温 流速,m/s <1 压降,pa 650 塔径,mm Φ1600 塔高,mm 4500 鲍尔环填料高度,mm 300 共两层 液体密度,kg/m3 1000 水溶液 液气比 0.72 喷头数量,只 16 共两层 吸收率 92%以上 聚丙烯鲍尔环喷淋塔(¢2000mm*4500mm) 混合气体处理量:17000m3/h 工艺参数 名称 数值 备注 操作压力,kpa 101.3 常压 操作温度,℃ 20 常温 流速,m3/h <1.5 压降,pa 680 塔径,mm Φ2000 塔高,mm 4500 鲍尔环填料高度,mm 500 共两层 液体密度,kg/m3 1000 水溶液 液气比 0.67 喷头数量,只 20 共两层 吸收率 93%以上
(2)喷淋装置
吸收塔内部喷淋系统是由分配母管和喷嘴组成的网状系统。每台吸收塔再循环泵均对应一个喷淋层,喷淋层上安装空心锥喷嘴,其作用是将喷淋液雾化。喷淋液由吸收塔再循环泵输送到喷嘴,喷入废气中。喷淋系统能使浆液在吸收塔内均匀分布,流经每个喷淋层的流量相等。
(3)除雾装置
用于分离烟气携带的液滴。吸收塔除雾器布置于吸收塔顶部最后一个喷淋组件的上部。烟气穿过循环浆液喷淋层后,再连续流经除雾器时,液滴由于惯性作用,留在挡板上。由于被滞留的液滴也含有固态物,因此存在在挡板结垢的危险,需定期进行清洗,除去所含浆液雾滴。
注:乙方到现场安装前,甲方需把该设备所需的水电到位。
喷淋吸收塔结构介绍:
喷淋吸收系统主要由填料、喷淋装置、除雾装置、喷淋液循环泵、吸收塔组成。
(1)填料
填料主要作为布风装置,布置于吸收塔喷淋区下部,烟气通过托盘后,被均匀分布到整个吸收塔截面。这种布风装置对于提高吸收效率是必要的,除了使主喷淋区烟气分布均匀外,吸收塔托盘还使得烟气与吸收液或洗涤液在托盘上的液膜区域得到充分接触。托盘结构为带分隔围堰的多孔板,托盘被分割成便于从吸收塔人孔进出的板片,水平搁置在托盘支撑的结构上。
1 、排气系统的试车流程
1)酸排气系统的操作流程:
A排气系统开机流程:
B 排气系统停机流程:
关闭系统时确认系统可以关闭并各生产系统允许停机:
(6)排气系统
排气系统主要是烟囱。由于喷淋塔放置于房顶,已经超过了国家15米高空排方的标准,所有无需设置烟囱,仅设置约1.5米高的标准的废气含量检测口。
(7)安装结构
喷淋塔采用50*5mm镀锌角铁制作框架,其结构形式为四柱角钢结构,中间采用抱箍对塔筒体进行固定。底脚固定在现浇的水泥基础上面,顶部气体检测口设有抽样检测平台。支架每只检修口处设有爬梯。
浆液再循环系统采用单元制,喷淋层配一台洗涤液循环泵。循环系统使用一段时间后,循环液废水最终排入废水处理池。
(5)喷淋吸收塔
塔体采用仿进口耐紫外线纯PP材质。在喷淋塔壳体的设计方面,我们考虑了以下综合因素,其工作环境是相当恶劣的,长期在酸性的腐蚀下工作,并且要承受塔体自身压力及溶液压力,还要承受工作时的风压,要求即要良好的耐腐蚀性能,又要保持较高的抗拉、抗压强度,喷淋塔体采用机械焊接工艺生产制作,强度高,质量可信,性能良好。 附Βιβλιοθήκη 备图纸: 试车前的准备工作:
* 在启动本系统前,需对系统做全面的检查,对照工艺流程图、装置安装图,逐一核实、确认无误;清理本系统内所有可视杂物;
* 在启动本系统前,须对本系统内所有管线、设备等设施进行相应的检查,其性能是良好的、符合试车要求;
* 与本系统相配套的电力系统、给水系统、排水系统工作正常,完全满足本系统试车运行的要求;
相关文档
最新文档