陕西中考数学23题专练
2023年中考数学压轴题专题23 二次函数推理计算与证明综合问题【含答案】
专题23二次函数推理计算与证明综合问题【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线,抛物线与y轴的交点坐标为;(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.15.(2022•长春二模)在平面直角坐标系中,抛物线y=x2﹣2mx+m2与y轴的交点为A,过点A作直线l垂直于y轴.(1)求抛物线的对称轴(用含m的式子表示);(2)将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(x1,y1),N(x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m﹣1,x2=m+1,都有y1>y2,求m的取值范围;(3)当图象G与直线y=m+2恰好有3个公共点时,直接写出m的取值范围.16.(2022•开福区校级一模)已知:抛物线C1:y=ax2+bx+c(a>0).(1)若顶点坐标为(1,1),求b和c的值(用含a的代数式表示);(2)当c<0时,求函数y=﹣2022|ax2+bx+c|﹣1的最大值;(3)若不论m为任何实数,直线与抛物线C1有且只有一个公共点,求a,b,c的值;此时,若k≤x≤k+1时,抛物线的最小值为k,求k的值.17.(2022•安徽模拟)已知二次函数y=ax2﹣x+c的图象经过点A(﹣2,2),该图象与直线x=2相交于点B.(1)求点B的坐标;(2)当c>0时,求该函数的图象顶点纵坐标的最小值;(3)点M(m,0)、N(n,0)是该函数图象与x轴的两个交点.当m>﹣2,n<3时,结合函数图象分析a的取值范围.18.(2022•江都区一模)对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤5)中是有上界函数的为(只填序号即可),其上确界为;(2)若反比例函数y=(a≤x≤b,a>0)的上确界是b+1,且该函数的最小值为2,求a、b的值;(3)如果函数y=﹣x2+2ax+2(﹣1≤x≤3)是以6为上确界的有上界函数,求实数a的值.19.(2022•亭湖区校级一模)已知抛物线y=ax2﹣(3a﹣1)x﹣2(a为常数且a≠0)与y 轴交于点A.(1)点A的坐标为;对称轴为(用含a的代数式表示);(2)无论a取何值,抛物线都过定点B(与点A不重合),则点B的坐标为;(3)若a<0,且自变量x满足﹣1≤x≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A与点B之间的函数图象记作图象M(包含点A、B),若将M在直线y=﹣2下方的部分保持不变,上方的部分沿直线y=﹣2进行翻折,可以得到新的函数图象M1,若图象M1上仅存在两个点到直线y=﹣6的距离为2,求a的值.20.(2022•义安区模拟)已知抛物线的图象经过坐标原点O.(1)求抛物线解析式.(2)若B,C是抛物线上两动点,直线BC:y=kx+b恒过点(0,1),设直线OB为y=k1x,直线OC为y=k2x.①若B、C两点关于y轴对称,求k1k2的值.②求证:无论k为何值,k1k2为定值.【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【分析】(1)将点(1,m),(3,n)代入抛物线解析式,再根据m=n得出b=﹣4a,再求对称轴即可;(2)再根据m<n<c,可确定出对称轴的取值范围,进而可确定x0的取值范围.【解答】解:(1)将点(1,m),(3,n)代入抛物线解析式,∴,∵m=n,∴a+b+c=9a+3b+c,整理得,b=﹣4a,∴抛物线的对称轴为直线x=﹣=﹣=2;∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).(2)∵m<n<c,∴a+b+c<9a+3b+c<c,解得﹣4a<b<﹣3a,∴3a<﹣b<4a,∴<﹣<,即<t<2.当t=时,x0=2;当t=2时,x0=3.∴x0的取值范围2<x0<3.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【分析】(1)将(2,4)代入解析式求解.(2)由判别式Δ的符号可判断抛物线与x轴交点个数.【解答】解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【分析】(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x﹣x1)(x﹣x2),其中x1,x2是抛物线与x轴交点的横坐标;(2)把函数y1=2(x﹣h)2﹣2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;(3)把y1,y2代入y=y1﹣y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.【分析】(1)设函数y=2x+1的和谐点为(x,x),可得2x+1=x,求解即可;(2)将点(,)代入y=ax2+6x+c,再由ax2+6x+c=x有且只有一个根,Δ=25﹣4ac =0,两个方程联立即可求a、c的值;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,则3≤m≤5时满足题意.【解答】解:(1)存在和谐点,理由如下,设函数y=2x+1的和谐点为(x,x),∴2x+1=x,解得x=﹣1,∴和谐点为(﹣1,﹣1);(2)①∵点(,)是二次函数y=ax2+6x+c(a≠0)的和谐点,∴=a+15+c,∴c=﹣a﹣,∵二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点,∴ax2+6x+c=x有且只有一个根,∴Δ=25﹣4ac=0,∴a=﹣1,c=﹣;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,∴抛物线的对称轴为直线x=3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,∵函数的最大值为3,最小值为﹣1;当3≤m≤5时,函数的最大值为3,最小值为﹣1.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.【分析】(1)把解析式化成顶点式,根据顶点式求得对称轴和顶点坐标,根据顶点在x轴上得到关于a的方程,解方程求得a的值;(2)根据二次函数的性质,分两种情况即可求出m的范围.【解答】解:(1)∵抛物线y=ax2﹣2ax﹣2+a2=a(x﹣1)2+a2﹣a﹣2,∴抛物线的对称轴为直线x=1.若抛物线的顶点在x轴上,则a2﹣a﹣2=0,∴a=2或﹣1.(2)∵抛物线的对称轴为直线x=1,则Q(4,y2)关于直线x=1对称点的坐标为(﹣2,y2),∴当a>0时,若y1<y2,m的取值范围为:﹣2<m<4;当a<0时,若y1<y2,m的取值范围为:m<﹣2或m>4.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.【分析】(1)先化抛物线的表达式为y=a(x﹣1)2+1,依此可求抛物线的对称轴;(2)利用二次函数性质即可求得答案;(3)利用二次函数性质存在A到对称轴的距离与B到对称轴的距离相等即可解答.【解答】解:(1)y=ax2﹣2ax+a=a(x﹣1)2,∴抛物线的对称轴为x=1;(2)∵﹣2<x1<﹣1,1<x2<2,∴1﹣x1>1﹣x2,∴A离对称轴越远,若a>0,开口向上,则y1>y2,若a<0,开口向下,则y1<y2,(3)∵t<x1<t+1,t+2<x2<t+3,存在y1=y2,则t+1<1且t+2>1,∴t<0且t>1,∴存在1﹣x1=x2﹣1,即存在A到对称轴的距离与B到对称轴的距离相等,∴1﹣t>t+2﹣1且1﹣(t+1)<t+3﹣1,∴﹣1<t<0.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线x=2,抛物线与y轴的交点坐标为(0,2);(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.【分析】(1)由对称轴方程,将对应系数代入可得,令抛物线解析式中的x=0,求得y,答案可得;(2)利用当x满足1≤x≤5时,y的最小值为﹣6,可求得a的值,再利用二次函数图象的特点可确定y的最大值.【解答】解:(1)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=﹣=2.令x=0,则y=2.∴抛物线y=ax2﹣4ax+2与y轴的交点为(0,2).故答案为:x=2;(0,2).(2)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=2,∴顶点在1≤x≤5范围内,∵当x满足1≤x≤5时,y的最小值为﹣6,∴当a<0时,抛物线开口向下,x=5时y有最小值﹣6,∴25a﹣20a+2=﹣6,解得a=﹣,∴抛物线为y=﹣x2+x+2当x=2时,y=﹣×22+×2+2=,∴此时y的最大值为.当a>0,抛物线开口向上,x=2时y有最小值﹣6,∴4a﹣8a+2=﹣6,解得a=2,∴抛物线为y=2x2﹣8x+2,当x=5时,y=2×25﹣8×5+2=12,∴此时y的最大值12.综上,y的最大值为12.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.【分析】(1)直接将点(1,2)代入即可求得a的值,然后根据顶点公式求得即可;(2)利用题意,﹣===﹣1求解a,然后把解析式化成顶点式,根据二次函数的性质即可得到结论;(3)利用顶点公式求得x=﹣=﹣+,y==﹣,由a<0且a≠﹣1即可判断x<0,y>0,即可得到该二次函数图象的顶点在第二象限.【解答】解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.【分析】(1)根据对称轴公式x=﹣,即可求出b的值,由抛物线与y轴交点的纵坐标为﹣3即可求得c的值;(2)①由(1)可得抛物线C1的解析式,从而可得抛物线C1的顶点P的坐标,由抛物线C2经过抛物线C1的顶点可得n=﹣m﹣3,从而可得抛物线C2为:y=﹣x2+mx﹣m﹣3,根据对称轴公式x=﹣,即可求出顶点Q的坐标,再将点Q的横坐标代入抛物线C1的解析式中,即可证明;②先分别求出点P和点Q的横坐标,由①可得n=﹣11,设点E横坐标为x,由点E在抛物线C1上可表示出纵坐标,由题可知点F与点E横坐标相同,代入抛物线C2的解析式中可得点F纵坐标,即可求解.【解答】(1)解:∵抛物线C1:y=x2+bx+c对称轴为x=1,且与y轴交点的纵坐标为﹣3,∴x=﹣=1,c=﹣3,∴b=﹣2;(2)①证明:∵抛物线C1的解析式为:y=x2﹣2x﹣3,∴顶点P的坐标为:(1,﹣4),∵抛物线C2经过抛物线C1的顶点,∴﹣4=﹣12+m+n,∴n=﹣m﹣3,∴抛物线C2为:y=﹣x2+mx﹣m﹣3,∴对称轴为:直线x=﹣=,将x=代入y=﹣x2+mx﹣m﹣3,得:y=﹣m﹣3,∴点Q坐标为:(,﹣m﹣3),将x=代入y=x2﹣2x﹣3,得:y=﹣m﹣3,∴点Q也在抛物线C1上;②解:由①知n=﹣m﹣3,∵m=8,∴n=﹣11,∴抛物线C2的解析式为:y=﹣x2+8x﹣11,对称轴为:直线x==4,设点E横坐标为x,∵点E是在点P和点Q之间抛物线C1上的一点,∴点E坐标为(x,x2﹣2x﹣3),1<x<4,∵过点E作x轴的垂线交抛物线C2于点F,∴点F横坐标为x,∴点F坐标为(x,﹣x2+8x﹣11),∴EF=﹣x2+8x﹣11﹣(x2﹣2x﹣3)=﹣x2+8x﹣11﹣x2+2x+3=﹣2x2+10x﹣8=﹣2(x2﹣5x+4)=﹣2(x2﹣5x+)+=﹣2(x﹣)2+,∴当x=时,EF取得最大值,最大值为,∴EF长度的最大值为.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.【分析】(1)利用待定系数法即可求得抛物线解析式,化成顶点式即可求得顶点坐标;(2)根据二次函数的性质判断即可;(3)设M、N的横坐标分别为x1、x2,则x1、x2是方程x2+4x=m的两个根,根据根与系数的关系得到x1+x2=﹣4,x1x2=﹣m,由MN≤5,则(x1﹣x2)2≤25,所以(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得即可.【解答】解:(1)∵抛物线y=ax2+bx经过点A(﹣4,0),B(1,5),∴,解得,∴抛物线为y=x2+4x,∵y=x2+4x=(x+2)2﹣4,∴抛物线的顶点坐标为(﹣2,﹣4);(2)∵抛物线为y=x2+4x的对称轴为直线x=﹣2,且开口向上,∴当x<﹣2时,y随x的增大而减小,∵点P(2,c)关于对称轴的对称点为(﹣6,c),∵x0>﹣6,∴当﹣6<x0<2时,则c>y0;当x0≥2时,则c≤y0;(3)设M、N的横坐标分别为x1、x2,∵直线y=m与抛物线交于M、N两点,(M、N两点不重合),∴x1、x2是方程x2+4x=m的两个根,∴x1+x2=﹣4,x1x2=﹣m,∵MN≤5,∴(x1﹣x2)2≤25,∴(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得m≤,∵抛物线的顶点坐标为(﹣2,﹣4),∴函数的最小值为﹣4,∴﹣4<m≤.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.【分析】(1)证明y1=y2时,方程2x+m+n=x(2x+m)+n有解,进而转化证明一元二次方程的根的判别式非负便可;(2)由y1=y2,求出x1与x2,进而求得b,由b的值,求得x3的值,进而得x3﹣x1的值;(3)把点A(x1,a)、点D(x1+2,c)代入y2=x(2x+m)+n,根据a>c得x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,代入求解即可.【解答】(1)证明:当y1=y2时,得2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,△=(m﹣2)2+8m=(m+2)2≥0,∴方程2x+m+n=x(2x+m)+n有解,∴y1,y2的图象必有交点;(2)解:当y1=y2时,2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,(2x+m)(x﹣1)=0,∵m>0,x1<x2,∴x1=﹣,x2=1,∴b=2+m+n,当y=2+m+n时,y2=x(2x+m)+n=2+m+n,化简为:2x2+mx﹣m﹣2=0,2x2﹣2+mx﹣m=0,2(x+1)(x﹣1)+m(x﹣1)=0,(2x+m+2)(x﹣1)=0,解得,x=1(等于x2),或x=,∴x3=,∴x3﹣x1=﹣(﹣)=﹣1;(3)解:∵点D(x1+2,c)在y2的图象上,∴c=(x1+2)[2(x1+2)+m]+n=2(x1+2)2+m(x1+2)+n.∵点A(x1,a)在y2的图象上,∴a=x1(2x1+m)+n.∵a>c,∴a﹣c>0,∴x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,∴4×(﹣)+4+m<0,﹣2m+4+m<0,﹣m+4<0,m>4,∴m的取值范围为m>4.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.【分析】(1)将二次函数解析式化为顶点式求解.(2)由二次函数的对称性及AB=4可得点A,B坐标,进而求解.(3)由点P坐标及抛物线对称轴可得点P关于对称轴的对称点P'坐标,由抛物线开口向下可求解.【解答】解:(1)∵y=x2﹣4mx+4m2﹣1=(x﹣2m)2﹣1,∴抛物线顶点坐标为(2m,﹣1).(2)∵点A,B关于抛物线对称轴对称,AB=4,对称轴为直线x=2m,∴抛物线经过(2m+2,n),(2m﹣2,n),将(2m+2,n)代入y=(x﹣2m)2﹣1得n=22﹣1=3.(3)点P(2m+1,y1)关于抛物线对称轴的对称点P'坐标为(2m﹣1,y1),∵抛物线开口向上,∴当2m﹣t>2m+1或2m﹣t<2m﹣1时,且y1<y2,解得t<﹣1或t>1.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.【分析】(1)①由交点横坐标及直线解析式可得交点坐标,然后通过待定系数法求解.②由抛物线开口方向及交点横坐标求解.(2)由y=y1﹣y2,M=N可得m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系进行证明.【解答】解:(1)①将x=﹣1和x=2分别代入y2=x+1得y2=0,y2=3,∴抛物线经过(﹣1,0),(2,3),∴,解得,∴y1=﹣x2+2x+3.②∵抛物线y1=﹣x2+2x+3开口向下,抛物线与直线交点坐标为(﹣1,0),(2,3),∴﹣1<x<2时,y1>y2.(2)∵y=y1﹣y2=ax2+bx+3﹣(x+1)=ax2+(b﹣1)x+2,∴x=m时,M=am2+(b﹣1)m+2,x=n时,N=an2+(b﹣1)n+2,∴m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系可得m+n=﹣=1,∴b﹣1=﹣a,∴a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.【分析】(1)由Δ=b2﹣4ac>0证明.(2)将点A坐标代入解析式求解.(3)分类讨论,通过数形结合求解.【解答】解:(1)令x2﹣(m+2)x+m=0,则Δ=(m+2)2﹣4m=m2+4>0,∴方程x2﹣(m+2)x+m=0有两个不相等实数根,∴二次函数的图象与x轴总有两个交点.(2)将(2m+1,7)代入y=x2﹣(m+2)x+m得7=(2m+1)2﹣(m+2)(2m+1)+m,解得m=2或m=﹣2,当m=2时,y=x2﹣4x+2,当m=﹣2时,y=x2﹣2.(3)①当m=2时,y=x2﹣4x+2,令x2﹣4x+2=0,解得x1=2+,x2=2﹣,∴抛物线与x轴交点坐标为(2+,0),(2﹣,0),如图,当直线y=x+t经过(2+,0)时,2++t=0,解得t=﹣2﹣,当直线y=x+t与抛物线y=x2﹣4x+2只有1个公共点时,令x2﹣4x+2=x+t,整理得x2﹣5x+2﹣t=0,则Δ=52﹣4(2﹣t)=17+4t=0,解得t=﹣,∴﹣<t<﹣2﹣满足题意.②同理,当m=﹣2时,y=x2﹣2,将x=0代入y=x2﹣2得y=﹣2,∴抛物线经过(0,﹣2),将(0,﹣2)代入y=x+t得t=﹣2,令x2﹣2=x+t,由Δ=1﹣4(﹣2﹣t)=0可得t=﹣,∴﹣<t<﹣2满足题意.综上所述,﹣<t<﹣2﹣或﹣<t<﹣2.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.【分析】(1)将(﹣1,﹣2)代入解析式求解.(2)将x=﹣2代入解析式求出点P纵坐标,通过配方可得y p取最小值时m的值,再将二次函数解析式化为顶点式求解.(3)分别将点A,B坐标代入解析式求解.【解答】解:(1)将(﹣1,﹣2)代入y=x2﹣2mx+m2﹣2得﹣2=1+2m+m2﹣2,解得m=﹣1,∴y=x2+2x﹣1.(2)将x=﹣2代入y=x2﹣2mx+m2﹣2得y P=m2+4m+2=(m+2)2﹣2,∴m=﹣2时,y p取最小值,∴y=x2+4x+2=(x+2)2﹣2,∴x<﹣2时,y随x增大而减小,∵x1<x2≤﹣2,∴y1>y2.(3)∵y=x2﹣2mx+m2﹣2=(x﹣m)2﹣2,∴抛物线顶点坐标为(m,﹣2),∴抛物线随m值的变化而左右平移,将(0,2)代入y=x2﹣2mx+m2﹣2得m2﹣2=2,解得m=2或m=﹣2,将(2,2)代入y=x2﹣2mx+m2﹣2得2=4﹣4m+m2﹣2,解得m=0或m=4,∴﹣2≤m≤0时,抛物线对称轴在点A左侧,抛物线与线段AB有交点,2≤m≤4时,抛物线对称轴在点A右侧,抛物线与线段AB有交点.∴﹣2≤m≤0或2≤m≤4.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.【分析】(1)将(2,1)代入函数解析式求解.(2)由当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,可得抛物线对称轴为y轴,从而可得a的值,然后将x=2代入解析式判断.(3)由b≤﹣2时,m≤n恒成立,可得抛物线开口向下,求出点E关于对称轴对称的点坐标,列不等式求解.【解答】解:(1)将(2,1)代入y=a(x﹣1)(x﹣)得1=a(2﹣),解得a=2,∴y=2(x﹣1)(x﹣).(2)∵y=a(x﹣1)(x﹣),∴抛物线与x轴交点坐标为(1,0),(,0),∴抛物线对称轴为直线x=,∵x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,∴抛物线对称轴为值x=0,即1+=0,解得a=﹣3,∴y=﹣3(x﹣1)(x+1),将x=2代入y=﹣3(x﹣1)(x+1)得y=﹣9,∴点(2,﹣9)在抛物线上.(3)∵抛物线对称轴为直线x=,∴点E(0,n)关于对称轴对称的点E'(1+,n),∵当b≤﹣2时,m≤n恒成立,∴抛物线开口向下,即a<0,且﹣2≤1+,解得a≤﹣1.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.【分析】(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),即可求解;(Ⅱ)(i)设P(t,0),分两种情况讨论:当D点在点P右侧时,过点D作DN⊥x轴交于点N,通过证明△PND≌△AOP(AAS),可得D(t+2,﹣t),再将D点代入二次函数解析式求出t的值,从而求出D的坐标;当点D在点P的左侧时,同理可得D(t﹣2,t),再将D点代入二次函数解析式求出t的值,即可求解;(ii)分两种情况讨论:当D点在x轴下方时,当PE∥y轴时,∠OAP=45°,P(2,0);当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,可证明△GAF≌△APO(AAS),从而得到GF=2,则E点与G点重合,OP=AF=OA﹣OF=2﹣=,求出P(﹣,0).【解答】解:(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),得﹣12a=﹣2,∴a=,∴y=(x+3)(x﹣4)=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点为(,﹣);(Ⅱ)(i)令a(x+3)(x﹣4)=0,解得x=4或x=﹣3,∴B(4,0),设P(t,0),如图1,当D点在点P右侧时,过点D作DN⊥x轴交于点N,∵∠APD=90°,∴∠OPA+∠NPD=90°,∠OPA+∠OAP=90°,∴∠NPD=∠OAP,∴△PND≌△AOP(AAS),∴OP=ND,AO=PN,∴D(t+2,﹣t),∴(t+5)(t﹣2)=﹣t,解得t=1或t=﹣10,∴D(3,﹣1)或(﹣8,10);当点D在点P的左侧时,同理可得D(t﹣2,t),∴t=(t﹣2+3)(t﹣2﹣4),解得t=,∴D(,)或(,);综上所述:D点坐标为(3,﹣1)或(﹣8,10)或(,)或(,);(ii)如图2,当D点在x轴下方时,∵PE平分∠APD,∴∠APE=∠EPD,∵∠APD=90°,∴∠APE=45°,当PE∥y轴时,∠OAP=45°,∴P(2,0);如图3,当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,∵∠PAF+∠FAG=90°,∠FAG+∠FGA=90°,∴∠PAF=∠FGA,∵PE平分∠APD,∠APD=90°,∴∠APE=∠EPD=45°=∠AGP,∵AP=AG,∴△GAF≌△APO(AAS),∴AF=OP,FG=OA,∵OA=2,∴GF=2,∵E(2,﹣),∴E点与G点重合,∴OP=AF=OA﹣OF=2﹣=,∴P(﹣,0);综上所述:P点坐标为(2,0)或(﹣,0).14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.【分析】(1)用待定系数法求出抛物线的解析式,再将抛物线的解析式化成顶点式,即可求解;(2)①先根据等腰三角形的性质求出A、B、C三点坐标,再根据三角形面积公式求解即可;②按第一种情况:当点A是最高点,可得m>1或m<﹣,第二种情况:当点B是最高点,得m的取值范围,再计算纵坐标的差h即可解答;(3)分情况讨论:①当m<﹣1时,②当﹣1≤m≤1时时,③当1<m<2时,④当2<m<3时,⑤当m=3,⑥当3≤m<4时,⑦当m=4时,⑧当m>4时,分别画出图形求解即可.【解答】解:(1)把(0,﹣1)和(2,7)代入y=x2+bx+c,得:,解得:,∴抛物线对应的函数表达式为:y=x2+2x﹣1,∵y=x2+2x﹣1=(x+1)2﹣2,∴顶点C的坐标为(﹣1,﹣2);(2)①当x=﹣1﹣2m时,y=(﹣1﹣2m+1)2﹣2=4m2﹣2,∴B(﹣1﹣2m,4m2﹣2).当△ABC是以AB为底的等腰三角形时,则AC=BC,又∵点C在抛物线对称轴x=﹣1上,∴点A、点B关于直线x=﹣1对称,∴A(2m﹣1,4m2﹣2),∵点A的横坐标为m,∴2m﹣1=m,解得:m=1,∴A(1,2),B(﹣3,2),∵由(1)得,C(﹣1,﹣2),=[1﹣(﹣3)]×[2﹣(﹣2)]=8;∴S△ABC②∵A(m,(m+1)2﹣2),B(﹣1﹣2m,4m2﹣2).∴当点A是最高点,即m>1或m<﹣时,则h=(m+1)2﹣2﹣(﹣2)=(m+1)2;当点B是最高点,即0≤m<1时,则h=4m2﹣2﹣(﹣2)=4m2,综上,h与m之间的函数关系式为:h=(m+1)2(m>1或m<﹣)或h=4m2(0≤m<1);(3)①当m<﹣1时,则2﹣m>3,1﹣m>2,如图:。
中考数学专题复习 专题23 平行四边形(教师版含解析)
中考专题23 平行四边形问题1.平行四边形定义有两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,读作“平行四边形ABCD”。
2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。
3.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)两组对角分别相等的四边形是平行四边形。
4.平行四边形的面积:S平行四边形=底边长×高=ah【经典例题1】(2020年•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( )A.40°B.50°C.60°D.70°【标准答案】D【分析】根据等腰三角形的性质可求∠C,再根据平行四边形的性质可求∠E.【答案剖析】∵在△ABC中,∠A=40°,AB=AC,∴∠C=(180°﹣40°)÷2=70°,∵四边形BCDE是平行四边形,∴∠E=70°.【知识点练习】(2019•山东临沂)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND【标准答案】A【答案剖析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.【经典例题2】(2020年•凉山州)如图,▱ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周长等于16 .【标准答案】16.【答案剖析】由平行四边形的性质得AB=CD,AD=BC,OB=OD,证OE是△ABD的中位线,则AB=2OE,AD=2AE,求出AE+OE=4,则AB+AD=2AE+2OE=8,即可得出标准答案.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,∵OE∥AB,∴OE是△ABD的中位线,∴AB=2OE,AD=2AE,∵△AOE的周长等于5,∴OA+AE+OE=5,∴AE+OE=5﹣OA=5﹣1=4,∴AB+AD=2AE+2OE=8,∴▱ABCD的周长=2×(AB+AD)=2×8=16;【知识点练习】(2019•湖北武汉)如图所示,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.【标准答案】21°.【答案剖析】设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°。
2023年陕西省中考数学试卷及答案解析
2023年陕西省中考数学试卷及答案解析第一部分:选择题(共40分)1. 以下哪个数字是质数?A. 12B. 15C. 17D. 22答案:C解析:质数是指只能被1和自身整除的数。
选项C中的17只能被1和17整除,因此是质数。
2. 设a+b=10,a-b=4,则a的值为多少?A. 6B. 7C. 8D. 9答案:C解析:将两个方程相加得到a+b+a-b=10+4,化简得2a=14,再除以2得到a=7。
3. 已知∠ABC=90°,AB=5cm,BC=12cm,则AC的长度是多少?A. 5cmB. 7cmC. 12cmD. 13cm答案:D解析:根据勾股定理,AC的长度为√(AB²+BC²)=√(5²+12²)=√(25+144)=√169=13cm。
...第二部分:填空题(共20分)1. 把1/4化成百分数是______。
(填写百分数,保留一位小数)答案:25%2. 将0.75化成百分数表示是______%。
答案:75%...第三部分:解答题(共40分)1. 已知长方形的长是12cm,宽是8cm,求其面积和周长。
答案:面积:12cm × 8cm = 96cm²周长:2 × (12cm + 8cm) = 40cm2. 甲数的2/3比乙数的3/4少6,求甲数。
答案:设甲数为x。
根据题意可得方程:(2/3)x = (3/4)(x + 6)解方程可得:x = 72...以上是2023年陕西省中考数学试卷及答案解析的一部分内容。
完整试卷及答案解析请参考陕西省考试中心官方发布的文件。
陕西中考数学针对23题专练
陕西中考数学针对23题专练1.在直角三角形ABC中,角ACB为90度,点D位于边AB上,以BD为直径的圆O与边AC相切于点E,连接DE并延长交BC。
证明:DE是圆O的切线;若CF=1,且OA/BA=3/5,求圆O的半径。
2.在图中,AB为圆O的直径,点B在圆上,OA交圆O于点C,过点A和B的直线交于点D。
证明:OD平分角BOC;若角A为30度,AD=8,求圆O的半径。
3.在直角三角形ABC中,角C为90度,点O在AB上,以点O为圆心,OA为半径的圆分别与AC和AB相交于点D和E,且角CBD等于角A。
证明:直线BD与圆O相切;若4.在图中,AB是圆O的直径,AC是圆O的切线,且AC=AB=4,CO交圆O于点P,CO的延长线交圆O于点F,BP的延长线交AC于点E,连接AP和AF。
证明:AF平行于BE;求CE的长度。
5.在图中,AB是圆O的直径,点C在圆上,连接BC和AC,作OD平行于BC,与过点A的切线交于点D,连接DC并延长交AB的延长线于点E。
证明:△DAC是等腰三角形;若圆O的半径为5,BC=6,求DC的长度。
6.在直角三角形ABC中,角C为90度,点O在AB上,以点O为圆心,OA为半径的圆分别与AC和AB相交于点D和E,且角CBD等于角A。
判断直线BD与圆O的位置关系,并证明结论;若7.在图中,D为圆O上一点,点C在直径BA的延长线上,且角CDA等于角CBD。
证明:CD是圆O的切线;过点B作圆O的切线交CD的延长线于点E,若BC=6,tan角CDA=2/3,求BE的长度。
8.在图中,AB是圆O的直径,BC与圆O相切于点B,AC与圆O相交于点D,点E是AD上任一点。
证明:角BED 等于角DBC;已知AD=CD=3,求图中阴影部分的面积(结果保留π)。
2)若AB=10,BC=6,求DE的长。
8.在三角形ABC中,点D在AC上且CD=CB,以BC为直径作圆O,交BD于点E,连接CE,过D作DF⊥AB于点F,且∠BCD=2∠ABD。
初中数学精品试题:中考专项第21、22、23题训练(1)
1.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.2.在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.3.已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4,AD3BC4,求CF的长.4.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?5.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.6.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?7.将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(4)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.8.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.9.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).(1)求这两个函数的解析式;(2)当x取何值时,y1>y2.10.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨的部分b0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?11.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.12.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=kx(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.13.小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;(2)求小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?14.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.15.在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为12时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=-x2,试判断抛物线y=-x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.16.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.参考答案:1.解:(1)设三角形的第三边为x,∵每个三角形有两条边的长分别为5和7,∴7﹣5<x<5+7,∴2<x<12,∴其中一个三角形的第三边的长可以为10.(2)∵2<x<12,它们的边长均为整数,∴x=3,4,5,6,7,8,9,10,11,∴组中最多有9个三角形,∴n=9;(3)∵当x=4,6,8,10时,该三角形周长为偶数,∴该三角形周长为偶数的概率是.2.解:(1)当k=﹣2时,A(1,﹣2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=,代入A(1,﹣2)得:﹣2=,解得:m=﹣2,∴反比例函数的解析式为:y=﹣;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x﹣1)=k(x+)2﹣k,的对称轴为:直线x=﹣,要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣时,才能使得y随着x的增大而增大,∴综上所述,k<0且x<﹣;(3)由(2)可得:Q(﹣,k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作AD⊥OC,QC⊥OC,∴OQ==,∵OA==,∴=,解得:k=±.3.(1)证明:∵⊙D与AB相切于点A,∴AB⊥AD。
陕西中考23题专题训练
陕西中考23题专题训练1、如图1,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO .(1)求证:BD 是⊙O 的切线.(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且且CF=9,△BEF 的面积为8,cos ∠BFA =32,求△ACF 的面积.2、如图2,AB 是⊙O 的直径,AB=10, DC 切⊙O 于点C ,AD ⊥DC ,垂足为D ,AD 交⊙O 于点E 。
(1)求证:AC 平分∠BAD ; (2)若sin ∠BEC=53,求DC 的长。
3、如图3 ,矩形ABCD 中,53AB AD ==,.点E 是CD上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G .(1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线; (2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.4、如图4,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F . (1)求证:;(2)若,⊙O 的半径为3,求BC 的长.CF BF =2AD =图 8CCB5、如图,△ABC 内接于半圆,AB 是直径,过A 作直线MN ,若∠MAC=∠ABC .(1)求证:MN 是半圆的切线;(2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE⊥AB 于E ,交AC 于F .求证:FD =FG .(3)若△DFG 的面积为4.5,且DG=3,GC=4,试求△BCG 的面积.6、如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠.(1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当108AB BC ==,时,求BD 的长.7、如图,点A 、B 、C 是O 上的三点,//AB OC .(1)求证:AC 平分OAB ∠.(2)过点O 作OE AB ⊥于点E ,交AC于点P. 若2AB =,30AOE ∠=︒,求PE 的长.8、如图10,⊙O 的弦AD ∥BC,过点D 的切线交BC 的延长线于点E ,AC ∥DE 交BD 于点H ,DO 及延长线分别交AC 、BC 于点G 、F.(1)求证:DF 垂直平分AC ; (2)求证:FC =CE ;(3)若弦AD =5㎝,AC =8㎝,求⊙O 的半径.。
中考数学解答重难专题专题一 第23题圆的综合题
专题一第23题圆的综合题(2010~2019.23)【专题解读】圆的综合题近10年每年必考,分值均为8分.涉及三角形:①相似三角形(6次);②锐角三角函数(2次);③全等三角形(1次,2012年19题考查相似三角形,故23题考查全等三角形).设问形式:①证明角相等或线段相等;②线段平行;③线段垂直;④切线的判定;⑤计算线段长、线段比例关系;⑥求正切值等.1.如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,BC是⊙O的切线,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)求证:∠B+∠FED=90°;(2)若FC=6,DE=3,FD=2.求⊙O的直径.第1题图2.如图,AB是⊙O的直径,AC切⊙O于点A,连接BC交⊙O于点D,点E是弧BD的中点,连接AE交BC于点F.(1)求证:AC=CF;(2)若AB=4,AC=3,求∠BAE的正切值.第2题图3.如图,P A,PB是⊙O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥AC.第3题图4.如图,△ABC内接于⊙O,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,(2)若sinP=,BH=3,求BD的长.连接BE.(1)求证:AD⊥CD;(2)若CD=4,AE=2,求⊙O的半径.第4题图5.(2019西工大附中模拟)如图,P为⊙O直径AB延长线上的一点,PC切⊙O于点C,过点B作CP的垂线BH交⊙O于点D,交CP于点H,连接AC、CD.(1)求证:∠PBH=2∠HDC;34第5题图6.(2019陕西定心卷)如图,在△Rt ABC中,∠C=90°,点D、E分别在边AC、BC上,DE∥△AB,DCE 的外接圆⊙O与AB相切于点F.(1)求证:CD·C B=CA·C E;(2)若BE=5,⊙O的半径为4,求CD的长.第6题图7.如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O交于点D,点E在⊙O上,且DE=DA,AE 与BC相交于点F.求证:(1)∠CAD=∠B;(2)FD=CD.(2)若BC=8,tanB=,求⊙O的半径.(2)若3AE=4DE,求的值.第7题图8.如图,AB为⊙O的直径,CD切⊙O于点D,AC⊥CD于点C,交⊙O于点E,连接AD、BD、ED.(1)求证:BD=ED;(2)若CE=3,CD=4,求AB的长.第8题图9.如图,在△Rt ABC中,∠ACB=90°,CE为△ABC外接圆的切线,过点A作AE⊥CE于点E.(1)求证:∠ACE=∠B;(2)若AE=2,AB=8,求CE的长.第9题图10.如图,在△Rt ABC中,点O在斜边AB上,以O为圆心,OB为半径作⊙O,分别与BC,AB相交于点D、E,连接AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线;12第10题图11.如图,在△ABC中,CD是AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点,连接ED、EG.(1)求证:GE是⊙O的切线;EGOD(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.第11题图12.(2019西工大附中模拟)如图,已知四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O 的切线与DA的延长线交于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;12第12题图∴DE DF32=,即=,参考答案1.(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵BC是⊙O的切线,AC为⊙O的直径,∴∠BCA=90°,∴∠B+∠A=90°,∴∠B+∠FED=90°;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,AC CF AC6解得AC=9,即⊙O的直径为9.2.(1)证明:如解图,连接BE,∵CA是⊙O的切线,AB是⊙O的直径,∴∠CAB=90°,∠AEB=90°,∴∠CAF+∠BAE=90°,∠FBE+∠EFB=90°,∵E是弧BD的中点,︵︵∴DE=BE,∴∠BAE=∠FBE,∴∠CAF=∠EFB=∠AFC,∴AC=CF;第2题解图(2)解:如解图,连接AD,在△Rt ABC中,AB=4,AC=3,∴BC=AB2+AC2=5.∵CF=AC=3,∴BF=BC-CF=2.∵AB是⊙O的直径,∵cos∠ABC===,∴BD=,∴AD=AB2-BD2=,DF=BD-BF=.∴tan∠BAE=tan∠DAE==.∴∠OPC=∠APC=×60°=30°,∴∠ADB=90°,BD AB4AB BC516512565DF1AD23.证明:(1)如解图,连接OB,∵PA,PB是⊙O的切线,OA、OB为⊙O的半径,∴OA⊥AP,OB⊥BP,又∵OA=OB,∴PO平分∠APC;第3题解图(2)∵OA⊥AP,OB⊥BP,∴∠CAP=∠OBP=90°,∵∠C=30°,∴∠APC=90°-∠C=90°-30°=60°,∵PO平分∠APC,1122∴∠POB=90°-∠OPB=90°-30°=60°,又∵OD=OB,∴△ODB是等边三角形,∴∠OBD=60°,∴∠DBP=∠OBP-∠OBD=90°-60°=30°,∴∠DBP=∠C,∴DB∥AC.4.(1)证明:如解图,连接OC,交BE于点F,∴DC是⊙O的切线,∴OC⊥DC,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAD,∴∠DAC=∠OAC.∴∠OCA=∠DAC,∴OC∥AD,∴∠D=∠OCD=90°,即AD⊥CD;第4题解图(2)解:∵AB是⊙O的直径,∴∠AEB=90°,∵∠D=90°,∴∠AEB=∠D,∴BE∥CD,∵OC⊥CD,∴OC⊥BE,∵OC∥AD,OA=BO,∴EF=BF,∵OC∥ED,∴四边形EFCD是矩形,∴EF=CD=4,∴BE=8,∴AB=AE2+BE2=22+82=217,∴⊙O的半径为17.5.(1)证明:如解图,连接OC,∵PC切⊙O于点C,∴OC⊥PC,又∵DH⊥PC,∴DH∥OC,∴∠PBH=∠BOC,∵∠BOC=2∠HDC,∴∠PBH=2∠HDC;OC PO∵sinP = = ,BH =3, ∴BH r 4+r∴CD CE =,第 5 题解图(2)解:如解图,过点 O 作 OM ⊥DH 于点 M ,则 DM =BM ,设⊙O 的半径为 r,∵∠OCH =∠OMH =∠CHM =90°,∴四边形 OMHC 为矩形, BH 3 BP 4∴BP =4,∵OC ∥DH ,∴△PHB ∽△PCO ,PB = , 3 4 ∴ = ,解得 r =12,∴MH =OC =12,∴MB =MH -BH =12-3=9,∴BD =2MB =18. 6.(1)证明:∵DE ∥AB ,∴∠CED =∠B.又∵∠C =∠C ,∴△CDE ∽△CAB ,CA CB∴CD · C B =CA · C E ;(2)解:如解图,连接 OF ,过点 E 作 EG ⊥AB 于点 G ,∵AB 为⊙O 的切线,切点为点 F ,∴OF ⊥AB ,∴∠OFG =∠EGF =90°,∵DE ∥AB ,∴∠FOE =180°-∠OFG =90°,又∵OE =OF ,∴四边形 OEGF 为正方形,∴EG =OF =4,DE =2OE =8, ∵∠CED =∠B ,∠C =∠EGB ,∴CD DE CD8=,即=,∴CD=.∴△CDE∽△GEB,GE BE45325第6题解图7.证明:(1)∵AC是⊙O的切线,AB是⊙O的直径,∴BA⊥AC,∠ADB=90°,∴∠CAD+∠BAD=90°,∠B+∠BAD=90°,∴∠CAD=∠B;(2)∵DA=DE,∴∠EAD=∠E,而∠B=∠E,∴∠B=∠EAD,由(1)知,∠CAD=∠B,∴∠EAD=∠CAD,在△ADF和△ADC中,⎧⎪∠ADF=∠ADC=90°⎨AD=AD,⎪⎩∠F AD=∠CAD∴△ADF≌△ADC,∴FD=CD.8.(1)证明:如解图,连接OD、OE.∵CD切⊙O于点D,∴OD⊥CD.∵AC⊥CD,∴OD∥AC.∴∠EAO=∠DOB,∠AEO=∠EOD.∵∠EAO=∠AEO,∴∠EOD=∠DOB.∵OE=OD=OB,∴△OED≌△ODB,∴BD=ED;∴CE DE35=,即=,∴AB=.第8题解图(2)解:∵CE=3,CD=4,AC⊥CD,∴ED=5.∵BD=ED,∴BD=5.∵AB为⊙O的直径,∴∠ADB=90°,∴∠ACD=∠ADB.∵四边形ABDE内接于⊙O,∴∠CED=∠B,∴△CDE∽△DAB.DB AB5AB2539.(1)证明:如解图,取AB的中点O,连接OC,∵∠ACB=90°,∴AB为直径,点O为△ABC外接圆的圆心,∴OC=OB,∴∠OCB=∠B,∵CE为△ABC外接圆的切线,∴∠OCE=90°,∵∠ACB=90°,∴∠OCE-∠ACO=∠ACB-∠ACO,即∠ACE=∠OCB,∴∠ACE=∠B;第9题解图(2)解:∵AE⊥CE,∴∠AEC=∠ACB=90°,∴AE AC=,在△Rt ACD中,tan∠1=tanB=,解得r=.∵∠ACE=∠B,∴△ACE∽△ABC,AC AB∴AC=AE·A B=4,在△Rt ACE中,CE=AC2-AE2=23.10.(1)证明:如解图,连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在△Rt ACD中,∠1+∠2=90°,∴∠4=180°-(∠2+∠3)=90°,∴OD⊥AD,∵OD是⊙O的半径,∴AD是⊙O的切线;第10题解图(2)解:设⊙O的半径为r,在△Rt ABC中,AC=BC·tan B=4,根据勾股定理得AB=42+82=45,∴OA=45-r,12∴CD=AC·tan∠1=2,根据勾股定理得AD2=AC2+CD2=16+4=20,在△Rt ADO中,OA2=OD2+AD2,即(45-r)2=r2+20,35211.(1)证明:如解图,连接OE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=AD=DG,∴GE AGOE OD DE∴AE4=,∴GE GE4==.12∴∠GED=∠GDE,∵OE=OD,∴∠OED=∠ODE,∵CD是AB边上的高,∴∠ODE+∠GDE=90°,∴∠GED+∠OED=90°,即OE⊥EG,又∵OE是⊙O的半径,∴GE是⊙O的切线;第11题解图(2)解:由(1)得∠ODE+∠GDE=90°,∵∠A+∠GDE=90°,∴∠A=∠ODE,∵AG=GE,OD=OE,∴∠A=∠ODE=∠AEG=∠OED,∴△AGE∽△DOE,AE==,∵3AE=4DE,DE3又∵OD=OE,OD OE312.(1)证明:如解图,连接OB,延长EB至点F.∵AD是⊙O的直径,∴∠ABD=90°.∵EB是⊙O的切线,∴OB⊥EF,∴∠4+∠5=∠5+∠DBF=90°,∴∠DBF=∠4=∠3.又∵四边形ABCD是⊙O的内接四边形,∴∠1=∠ABE ,即 tan ∠1=tan ∠ABE = = . ∴ CD BC 9 x = ,即=,∴⊙O 的半径为 .∴∠BCD =180°-∠3.∵∠EBD =180°-∠DBF ,∴∠BCD =∠EBD.又∵∠E =∠DBC ,∴△DBE ∽△DCB ,∴∠1=∠2,即 DB 平分∠ADC ;第 12 题解图(2)解:∵BE 为⊙O 的切线,AD 为⊙O 的直径,OB =OD ,∴∠ABE +∠4=∠4+∠5=∠1+∠4=90°, AB 1 AD 2设 AB =x ,则 BD =2x.∵∠1=∠2,∴BC =AB =x.∵△DBE ∽△DCB ,BD EB 2x 10解得 x =3 5(负值已舍),即 AB =3 5,∴BD =6 5,在 △Rt ABD 中,由勾股定理得AD = AB 2+BD 2=15, 15 2。
2024年陕西省中考数学真题解析版
2024年陕西省初中学业水平考试数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1. 3-的倒数是( )A 3 B. 13 C. 13- D. 3-2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A. B. C. D.3. 如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒4. 不等式()216x -≥的解集是( )A. 2x ≤B. 2x ≥C. 4x ≤D. 4x ≥5. 如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有( ).A. 2个B. 3个C. 4个D. 5个6. 一个正比例函数图象经过点()2,A m 和点(),6B n -,若点A 与点B 关于原点对称,则这个正比例函数的表达式为 ( )A. 3y x =B. 3y x =-C. 13y x =D. 13y x =-7. 如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为( )A. 2 B. 3 C. 52 D. 838. 已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,x…4-2-035…y …24-8-03-15-…则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当0x >时,y 的值随x 的值增大而增大C. 图象经过第二、三、四象限D. 图象的对称轴是直线1x =第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:2a ab -=_______________.10. 小华探究“幻方”时,提出了一个问题:如图,将0,2-,1-,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)的11. 如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.12. 已知点()12,A y -和点()2,B m y 均在反比例函数5y x=-的图象上,若01m <<,则12y y +________0.13. 如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.三、解答题(共13小题,计81分。
2023年陕西省数学中考试卷(含解析)
2023年陕西省中考数学试卷(A卷)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 计算:3―5=( )A. 2B. ―2C. 8D. ―82. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.3.如图,l//AB,∠A=2∠B.若∠1=108°,则∠2的度数为( )A. 36°B. 46°C. 72°D. 82°4. 计算:6xy2⋅(―1x3y3)=( )2A. 3x4y5B. ―3x4y5C. 3x3y6D. ―3x3y65. 在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是( )A. B.C. D.6.如图,DE 是△ABC 的中位线,点F 在DB 上,DF =2BF.连接EF 并延长,与CB 的延长线相交于点M.若BC =6,则线段CM 的长为( )A. 132B. 7C. 152D. 87. 陕西饮食文化远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.AB 是⊙O 的一部分,D 是AB 的中点,连接OD ,与弦AB 交于点C ,连接OA ,OB.已知AB =24cm ,碗深CD =8cm ,则⊙O 的半径OA 为( )A. 13cmB. 16cmC. 17cmD. 26cm8. 在平面直角坐标系中,二次函数y =x 2+mx +m 2―m(m 为常数)的图象经过点(0,6),其对称轴在y 轴左侧,则该二次函数有( )A. 最大值5B. 最大值154C. 最小值5 D. 最小值154二、填空题(本大题共5小题,共15.0分)9. 如图,在数轴上,点A表示3,点B与点A位于原点的两侧,且与原点的距离相等.则点B 表示的数是______ .10.如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为______ .11. 点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为______ .12.如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是______ .13.如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M、N分别是边AB、BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC的长为______ .三、解答题(本大题共13小题,共81.0分。
中考数学 专题23《特殊四边形》练习题
《特殊四边形》练习题一.选择题1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( )A.45° B.55° C.60° D.75°2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形4.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°5.(2016·四川泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.6.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF二.填空题7. (2016·内蒙古包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.8. 如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.9. 如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.10. 如图,矩形ABCD中,AD=5,AB=7. 点E为DC上一个动点,把△ADE沿AE折叠,当点D 的对应点D'落在∠ABC的角平分线上时,DE的长为 .11. 如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=13a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=13A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.三.解答题12.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.13.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.14.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.15.(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.答案:1.C2.B3.C4.C5.B6.B7. 22.5°8. 2﹣2 9. (4,4)10. 52或53.11. 25()9n a12. 解:(1)∵正方形ABCD∴AD=B A,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ13. (1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,14. (1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴=,∵A D=2DM,∴DM:MA=1:3,∴DE=AB=×6=2.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为60°.15. 解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,,∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F,O,H′,C在一条直线上,∵EG=,。
陕西省2023年度中考数学真题试题(含解析)
陕西省2023年度中考数学真题试题(含解析)第一部分选择题(共40分)1. 选择题(每题2分,共20题)1.已知函数y=kx+b的图象如下图所示,那么函数的解析式是()函数图象函数图象A. y = 2x + 1B. y = -2x + 1C. y = -2x - 1D. y = 2x - 1解析:根据图象,我们可以看出直线的斜率为2,且与y 轴的交点为(0,1)。
因此函数的解析式为y = 2x + 1。
答案选A。
2.若1/2x - 2 = 4,则x =()A. -12B. -4C. 0D. 12解析:将题目中的方程进行移项,得到1/2x = 6。
进一步将等式两边乘以2,就可以得到x = 12。
答案选D。
3.若x + y = 7,x - y = 1,则x =()A. 4B. 7C. 3D. 1解析:将两个方程相加,可以得到2x = 8,进而得到x = 4。
答案选A。
4.若m/n = 16/20,且m + n = 140,则n =()A. 56B. 60C. 64D. 70解析:根据题目中的等式可以得到m = 80。
将m的值代入第一个等式中,我们可以得到80/n = 16/20。
通过交叉相乘可以得到16n = 1600,进一步得到n = 100,答案选D。
5.若2x + y = 7,且2x - y = 1,则x + y =()A. 3B. 2C. 1D. 0解析:将两个方程相加,可以得到4x = 8,进而得到x = 2。
将x的值代入第一个方程中,可以得到y = 3。
因此 x + y 的值为2 + 3 = 5,答案选E。
2. 填空题(每题2分,共10题)1.在数轴上,点D的坐标为0,点A的坐标为4,点M的坐标为2,则AM的长度等于__\\。
解析:根据数轴上点的坐标,我们可以计算出AM的长度为4-2=2。
答案是2。
2.若正方形ABCD的边长为8cm,则它的面积等于__\\。
解析:正方形的边长为8cm,所以它的面积为8cm × 8cm = 64cm²。
最新陕西中考数学23题专练
陕西23题专练1.如图,在⊙O中,M是弦AB定的中点,过点B作⊙O的切线,与OM延长线交于点C.(1)求证:∠A=∠C;(2)若OA=5,AB=8,求线段OC的长.2.如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.3.如图,⊙O的半径为3,C是⊙O外一点,且OC=6,过点C作⊙O的两条切线CB,CD.切点分别为B,D,连接BO并延长交切线CD于点A.(1)求AD的长;(2)若M是⊙O上一动点,求CM长的最大值,并说明理由.4.如图,在Rt△ABC中,∠BAC=90°,∠BAC的平分线交BC于点O,以O为圆心做圆,⊙O与AC相切于点D.(1)试判断AB与⊙O的位置关系,并加以证明.(2)在Rt△ABC中,若AC=6,AB=3,求切线AD的长.5.如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;(1)求证:AP=AC;(2)若AC=3,求PC的长.6.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.7.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=6,∠ACB的平分线CO交AB于点O,以OB为半径作⊙O.(1)请判断AC与⊙O的位置关系,并说明理由;(2)求⊙O的半径.8.如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.9.如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O 上一点,连接AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.10.如图,AB是⊙O的直径,延长AB至点C,过点C作⊙O的切线CD,切点为D,连接AD、BD,过圆心O作AD的垂线交CD于点P.(1)求证:直线PA是⊙O的切线;(2)若AB=4BC,求的值.个人简历。
2024年陕西省中考数学试题及答案
2024年陕西省初中学业水平考试数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1. 3-的倒数是( )A. 3B. 13 C. 13- D. 3-2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A. B. C. D.3. 如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒4. 不等式()216x -≥的解集是( )A 2x ≤ B. 2x ≥ C. 4x ≤ D. 4x ≥5. 如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有().A. 2个B. 3个C. 4个D. 5个6. 一个正比例函数的图象经过点()2,A m 和点(),6B n -,若点A 与点B 关于原点对称,则这个正比例函数的表达式为 ( )A. 3y x =B. 3y x =-C. 13y x =D. 13y x =-7. 如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为( )A. 2 B. 3 C. 52 D. 838. 已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,则下列关于这个二次函数结论正确的是( )A. 图象的开口向上B. 当0x >时,y 的值随x 的值增大而增大C. 图象经过第二、三、四象限D. 图象的对称轴是直线1x =第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:2a ab -=_______________.10. 小华探究“幻方”时,提出了一个问题:如图,将0,2-,1-,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)的11. 如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.12. 已知点()12,A y -和点()2,B m y 均在反比例函数5y x=-的图象上,若01m <<,则12y y +________0.13. 如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.三、解答题(共13小题,计81分。
陕西中考数学23题专练
1.如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.1)求证:∠BAD=∠E; 2)若⊙O的半径为5,AC=8,求BE的长.2.如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,1)求弦AC的长; 2)求证:BC∥PA.3.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB 的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:1)FC=FG; 2)AB2=BC•BG.4.如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.1)求证:AD平分∠BAC; 2)求AC的长.5.如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE、AF,并分别延长交直线l于B、C两点.1)求证:∠ABC+∠ACB=90°;2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.6.如图,AB是⊙O的直径,CO⊥AB于点O,CD是⊙O的切线,切点为D.连接BD,交OC于点E.1)求证:∠CDE=∠CED;2)若AB=13,BD=12,求DE的长.7.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.1)求证:AC平分∠DAB;2)若AD=6,CD=2,求⊙O的半径.8.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AD交⊙O于点E1)求证:AC平分∠DAB;2)连接CE,若AE=6,CE=2,求⊙O的半径长及CD的长.9.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.1)求证:BC是⊙O的切线; 2)已知AD=3,CD=2,求BC的长.10.在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.1)求证:AC与⊙O相切.2)若BC=6,AB=12,求⊙O的面积.11.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D作⊙O的切线交BC于点E.1)求证:点E为BC中点;2)若tan∠EDC=,AD=5,求DE的长.12.如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC交于点E,且BE平分∠ABC,1)求证:AC是⊙O的切线; 2)若AD=2,AE=,求⊙O的半径.13.如图,Rt△ABC中,∠C=Rt∠,D是AB上一点,以BD为圆心的⊙O切AC于点E,交BC 于点F,OG⊥BC于G点.1)求证:CE=OG; 2)若BC=3cm,sinB=,求线段AD的长.14.如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.1)求证:直线EF是⊙O的切线;2)求sin∠E的值.3)求ED的长.15.如图,AB是⊙O的弦,AC是⊙O的切线,OC与⊙O相交于点E,且OB⊥OC.1)求证:∠CAD=∠CDA;2)若AC=6,CE=2时,求图中阴影部分面积.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,且∠A=∠D.1)求∠ACD的度数; 2)若CD=3,求图中阴影部分的面积.17.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.1)求证:EF是⊙O的切线.,求BF的长.2)如果⊙O的半径为5,sin∠ADE=4/5418.如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PD交PO的延长线于点E.1)求证:DE=DO;2)若⊙O的半径为3,AD=8,求tan∠AOP的值.19.如图,在△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于点M,线段AB=2,AC=2,过点M的切线交AC边于点P,连接OP.1)求sin∠CMP的值; 2)求证:AP=PC.20.已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.1)求证:∠BCP=∠BAC; 2)若=,求的值.21.已知:如图,△ABC是⊙O的内角三角形,△ABC的外角平分线BD交⊙O于D,DE与⊙O 相切,交CB的延长线于E.1)求证:AC∥DE; 2)若∠A=30°,BE=1cm,求DE的长.22.已知:如图PT是⊙O的切线,T为切点,PAB是经过圆心O的割线.1)求证:∠PTA=∠BTO; 2)若PT=4,PA=2,求sinB的值.23.如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.1)判断DE与⊙O的位置关系,并证明你的结论;2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).24.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.1)求证:∠E=∠C;2)当⊙O的半径为3,cosA=4/5时,求EF的长.25.如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP 与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.1)求证:PC是半⊙O的切线;2)若∠CAB=30°,AB=10,求线段BF的长.26.如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的⊙O交AC于点E,F是⊙O上的点,且AF=BF.1)求证:BC是⊙O的切线;2)若sinC=3/5,AE=,求sinF的值和AF的长.。
中考数学必考考点专题23多边形内角和问题含解析
专题23 多边形内角和问题1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2.多边形的内角:多边形相邻两边组成的角叫做它的内角。
3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫多边形的外角。
4.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
5.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
6.多边形内角和公式:n 边形的内角和等于(n-2)·180° 7.多边形的外角和:多边形的内角和为360°。
8.多边形对角线的条数:(1)从n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分成(n-2)个三角形。
(2)n 边形共有23)-n(n 条对角线。
【例题1】(2019贵州铜仁)如图为矩形ABCD ,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a 和b ,则a +b 不可能是( )A .360°B .540°C .630°D .720°【答案】C .【解析】一条直线将该矩形ABCD 分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a +b 不可能是630°.【例题2】(2019广西梧州)正九边形的一个内角的度数是( )专题知识回顾专题典型题考法及解析A.108°B.120°C.135°D.140°【答案】D.【解析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=.【例题3】(2019湖南湘西州)已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理。
2025中考数学二次函数压轴题专题练习23 将军饮马模型(学生版+解析版)
专题23将军饮马模型一、知识导航通过全国中考试题分析来看,将军饮马的才莫型多出现在中考二次函数压轴题笫二问中出现,难度不大,但需要,主意对称点的选择,动点通常在对称轴上,而且已知定点中往往有一个与x轴的交点.考法主要有以下几种:1.求取最小值时动点坐标2.求最小值.3.求三角形或四边形周长最小值.模型一:两定点一动点!如图,A,B力定点,P为[上动点,求AP+BP最小值:8解析.作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+PB二1,“8p,,当A'、P、B三点共线的时候,PA'+PB=A'B,此时为最小值(两点之间线段最短),,.BA端点,',、,,/,、、,,、,、,l,ll ,',p折点;;'模型二:如图,P为定点,M、N分别为O A和OB上的动点,求6.P MN周长最小值A A。
声N8。
,,P`、/\\PB解析:分别作点P关于OA、OB的对称点,则t::.PM N的周长为PM+MN+NP=P'M+M N+NP",当P'、M、N、P“共线时,t:i.P MN周长最小模型三:两定点两动点如图,P、Q为两定点,M、N分别为OA、OB上的动点,求四边形PQ M N的最小值A A。
声B。
NQp\“出飞`\8解析:. P Q是条定线段,只需考虑PM+MN+NQ最小值即可,分别作点P、Q关于OA、OB对称,PM+MN+NQ=P'M+MN+NQ',当P'、M、N、Q'共线时,四边形PMNQ的周长最小。
如图,P为定点,M、N分别为OA、OB上的动点,求PM+MN最小值。
AA。
渗NBp .、一p ·伈1:、}NB解析:作点P关于OA对称的点P',PM+MN=P'M+MN,过点P'作OB垂线分别交OA、OB于点M、N,得PM+MN 赦小值(点到直线的连线中,垂线段最短)模型五:将军饮马有距离例一、如图,A、D 为定点,B、C为直线l上两动点,BC为定值,求AB+BC+CD最小值?• D.ABc解析.BC力定值,只需求AB+CD枭小即可,平移AB至CE ,则变成求CE+CD的最小值,基本将军饮马的模型例二、如图,A、D 为定点,B、C 力直线l i 、h 上两动点,BC ..L h ,求AB +BC+CD 最小值?.Al1c/2• D解析.B C力定值,只需求AB+CD赦小即可,平移CD至BE,则变成求AB+BE枭小,基本将军饮马.-例一:如图l (注:与图2完全相同),在直角坐标系中,抛物线经过点A(l ,O)、8(5,0)、C(0,4)三点.x图1(I)求抛物线的解析式和对称轴,图2(2)p是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);【分析)(1)将点A 、B 的坐标代入二次函数表达式得:y =a(儿-1)(x -5)=a(x 2-6x +5),即可求解;(2)连接B 、C 交对称轴千点P ,此时PA+PC 的值为最小,即可求解;【解答】解:(1)将点A 、B 的坐标代入二次函数表达式得:y = a (x-l)(x-5) = a (.:r2 -6x+ 5), 则5a =4,解得:a ==,4抛物线的表达式为:4勹(4 24y =�(x 2 -6x+5) =�x 2-—x +4,函数的对称轴为:x =3,顶点坐标为(3,_竺);5 5 5(2)连接B 、C 交对称轴千点P ,此时PA +PC 的值为最小,将点B 、C 的坐标代入一次函数表达式I y =kx +b 得I{0 = S k +b b=4y解得Ilk =-5,4b=4-O直线BC 的表达式为: 4y =--:-x +4,5::::::,','亡,'.:·-::::宁,.1.、.图当x =3时,.8-5=y8故点P(3,一);5例二:如图,直线y =-.,\,+3与x 轴、x 轴另一交点为A,顶点为D.y 轴分别交于B 、C 两点,抛物线y=-x 2+bx+c 经过点B 、C ,与(I)求抛物线的解析式;(2)在入轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;yx备用图【分析】(1)直线y =-x +3与x 轴、y 轴分别交千B 、将点B 、C 的坐标代入二次函数表达式,即可求解;C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),(2)如图1,作点C 关于x 轴的对称点C',连接C D'交x 轴千点E ,则此时EC +ED 为最小,即可求解1【解答】解:(1)直线y =-x +3与x 轴、y 轴分别交于B 、C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),将点B 、C 的坐标代入二次函数表达式得:{-9+3b+c=O,解得:b=2c = 3 {c=3'故函数的表达式为:y=-x 2+2x +3,令y =O ,则x =-l 或3,故点A(-1,0)1(2)如图1,作点C 关于x 轴的对称点C',连接CI Y 交x 轴于点E ,则此时E C +E D 为最小,函数顶点D 坐标为(1,4),点C'(0,-3),将C'、D 的坐标代入一次函数表达式并解得:直线CD 的表达式为:y =?x -3, 当y =O 时,, 3一7= x 3故点E(-,0),7;.::月y、3.• 「E,','则EC +ED 的最小值为DC'=[可工言了=5丘;图1I三、中考真题演练I.(2023宁夏中考真题)如图,抛物线y=ax 2 +bx+3(G 汪0)与X 轴交千A,知点A的坐标是(-1,0),抛物线的对称轴是直线x=I.yB两点,与Y轴交千点C.已X X备用胆(I)直接写出点B 的坐标;(2)在对称轴上找一点P,使PA+PC的值最小.求点P的坐标和PA+PC的最小值;(3)第一象限内的抛物线上有一动点M,过点M作MN乒轴,垂足为N,连接BC交MN千点Q 依题意补全图形,当MQ +石CQ 的值最大时,求点M 的坐标2.(2023黑龙江齐齐哈尔中考真题)综合与探究如图,抛物线y=-x 2+bx+c 上的点A,C 坐标分别为(0,2),(4,0),抛物线与x 轴负半轴交千点B,点M 为y 轴负半轴上一点,且OM=2,连接AC,CM.yyx x(l)求点M的坐标及抛物线的解析式;(4)将抛物线沿x轴的负方向平移得到新抛物线,点A的对应点为点A',点C的对应点为点C',在抛物线平移过程中,当MA'+M C的值最小时,新抛物线的顶点坐标为,MA '+M C 的最小值为3.(2023湖南张家界中考真题)如图,在平面直角坐标系中,已知二次函数y=ax 2+bx+c 的图象与过由交千点A(-2,0)和点B(6,0)两点,与y 轴交千点C(0,6)点D 为线段BC 上的一动点.y yXX图1(I)求二次函数的表达式;(2)如图l ,求t::.AOD周长的最小值;图24.(2023山东枣庄中考真题)如图,抛物线y= -x2 +bx+c经过A(一1,0),C(0,3)两点,并交x轴千另一点B,点M是抛物线的顶点,直线AM与轴交千点D.x x备用图(J)求该抛物线的表达式:(2)若点H是.x轴上一动点,分别连接MH,DH,求1\1H+DH的最小值;5.如图,已知抛物线y=ax2+bx-6与x轴的交点A(-3, 0), B (I., 0),与y轴的交点是点C.yxA(I)求抛物线的解析式:(2)点P是抛物线对称轴上一点,当PB+PC的值最小时,求点P的坐标:(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M,N,使得LCMN=90且以点C,M, N为顶点的三角形与.OAC相似?若存在,求出点M和点N的坐标:若不存在,说明理由.6.如图,在平面直角坐标系中,抛物线y=--产+bx+c经过点A(4,0)、B(0,4)、 C.其对称轴l交x 轴千点D,交直线AB千点F,交抛物线千点E.(I)求抛物线的解析式;(2)点P为直线l上的动点,求ti.PBC周长的最小值;(3)点N为四线AB上的一点(点N不与点F重合),在抛物线上是否存在一点M,使以点E、F、N、M为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.7 已知,抛物线y=x2+2x-3,与x轴交千A B两点(点A在点B的左侧),交y轴于点C,抛物线的顶点为点D.(I)求AB的长度和点D的坐标;(2)在该抛物线的对称轴上找一点P,求出PB+PC的值最小时P点的坐标;(3)点M是第三象限抛物线上一点,当s MAC.最大时,求点M的坐标,并求出s MAC的最大值.专题23将军饮马模型、知识导航通过全国中考试题分析来看,将军饮马的枝型多出现在中考二次函数压轴题笫二问中出现,难度不大,但需要注意对称点的选择,动点通常在对称轴上,而且已知定点中往往有一个与x轴的交点.考法主要有以下几种:l.求取最小值时动点坐标2.求最小值.3.求三角形或四边形周长最小值模型一:两定点一动点如图,A,B为定点,P为l上动点,求AP+BP最小值二B解析·作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+P B/lll¥ABpII当A'、P、B三点共线的时候,PA'+PB=A'B,此时为最小值(两点之间线段最短)/重BA端点平了模型二:如图,P为定点,M、N分别为OA和OB上的动点,求6.PMN周长最小值A A。
中考数学专题复习《21~23题题型》测试卷-附带答案
中考数学专题复习《21~23题题型》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.市体育局对甲乙两运动队的某体育项目进行测试两队人数相等测试后统计队员的成绩分别为:7分8分9分10分(满分为10分).依据测试成绩绘制了如图所示尚不完整的统计图表:甲队成绩统计表成绩7分8分9分10分人数01m7请根据图表信息解答下列问题:(1)填空:α=__________︒m=_________(2)补齐乙队成绩条形统计图(3)①甲队成绩的中位数为_________ 乙队成绩的中位数为___________①分别计算甲乙两队成绩的平均数并从中位数和平均数的角度分析哪个运动队的成绩较好.2.某校在评选“劳动小能手”活动中随机调查了部分学生的周末家务劳动时间根据调查结果将劳动时长划分为A B C D四个组别并绘制成如下不完整统计图表学生周末家务劳动时长分组表组别A B C Dt(小时)0.5t<0.51t≤<1 1.5t≤< 1.5t≥请根据图表中的信息解答下列问题:(1)这次抽样调查共抽取______名学生条形统计图中的=a______ D组所在扇形的圆心角的度数是______(2)已知该校有900名学生根据调查结果请你估计该校周末家务劳动时长不低于1小时的学生共有多少人?(3)班级准备从周末家务劳动时间较长的三男一女四名学生中随机抽取两名学生参加“我劳动我快乐”的主题演讲活动 请用列表法或画树状图法求出恰好选中两名男生的概率.3..如图 ABC 内接于O AB 是O 的直径 BC BD = DE AC ⊥于点E DE 交BF 于点F 交AB 于点G 2BOD F ∠=∠ 连接BD .(1)求证:BF 是O 的切线(2)判断DGB 的形状 并说明理由(3)当2BD =时 求FG 的长.4.如图 AB 是O 的直径 点E C 在O 上 点C 是BE 的中点 AE 垂直于过C 点的直线DC 垂足为D AB 的延长线交直线DC 于点F .(1)求证:DC 是O 的切线(2)若2AE = 1sin 3AFD ∠= ①求O 的半径 ①求线段DE 的长.5.如图 在菱形ABCD 中 对角线,AC BD 相交于点,E O 经过,A D 两点 交对角线AC 于点F 连接OF 交AD 于点G 且AG GD =.(1)求证:AB 是O 的切线(2)已知O 的半径与菱形的边长之比为5:8 求tan ADB ∠的值.6.如图 在O 中 直径AB 垂直弦CD 于点E 连接,,AC AD BC 作CF AD ⊥于点F 交线段OB 于点G (不与点,O B 重合) 连接OF .(1)若1BE = 求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG = 猜想CAD ∠的度数 并证明你的结论.7. 我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系 用直线上点的位置刻画圆上点的位置 如图 AB 是O 的直径 直线l 是O 的切线 B 为切点.P Q 是圆上两点(不与点A 重合 且在直径AB 的同侧) 分别作射线AP AQ 交直线l 于点C 点D .(1)如图1 当6AB = BP 的长为π时 求BC 的长.(2)如图2 当34AQ AB = BP PQ =时 求BC CD的值. (3)如图3 当6sin BAQ ∠=BC CD =时 连接BP PQ 直接写出PQ BP 的值.8.如图 一次函数1(0)y kx b k =+≠与函数为2(0)m y x x =>的图象交于1(4,1),,2A B a ⎛⎫ ⎪⎝⎭两点. (1)求这两个函数的解析式(2)根据图象 直接写出满足120y y ->时x 的取值范围(3)点P 在线段AB 上 过点P 作x 轴的垂线 垂足为M 交函数2y 的图象于点Q 若POQ △面积为3 求点P 的坐标.9..如图 在平面直角坐标系中 四边形OABC 是边长为2的正方形.点A C 在坐标轴上.反比例函数()0k y x x=>的图象经过点B . (1)求反比例函数的表达式(2)点D 在反比例函数图象上 且横坐标大于2 3OBD S =.求直线BD 的函数表达式.10.如图 点A 在反比例函数(0)k y k x=≠的图象上 点C 是点A 关于y 轴的对称点 OAC 的面积是8. (1)求反比例函数的解析式(2)当点A 的横坐标为2时 过点C 的直线2y x b =+与反比例函数的图象相交于点P 求交点P 的坐标.11.如图 点A 在反比例函数()0k y x x =>的图象上 AB y ⊥轴于点B 1tan 2AOB =∠ 2AB =. (1)求反比例函数的解析式(2)点C 在这个反比例函数图象上 连接AC 并延长交x 轴于点D 且45ADO ∠=︒ 求点C 的坐标.12.如图 一次函数2y x =的图象与反比例函数(0)ky x x=>的图象交于点()4,A n .将点A 沿x 轴正方向平移m 个单位长度得到点,B D 为x 轴正半轴上的点 点B 的横坐标大于点D 的横坐标 连接,BD BD 的中点C在反比例函数(0)k y x x =>的图象上. (1)求,n k 的值(2)当m 为何值时 AB OD ⋅的值最大?最大值是多少?13.如图 在平面直角坐标系xOy 中 直线y kx b =+与x 轴交于点()4,0A 与y 轴交于点()0,2B 与反比例函数m y x=在第四象限内的图象交于点()6,C a . (1)求反比例函数的表达式:(2)当m kx b x+>时 直接写出x 的取值范围 (3)在双曲线m y x=上是否存在点P 使ABP 是以点A 为直角顶点的直角三角形?若存在 求出点P 的坐标 若不存在 请说明理由.参考答案与解析1.【答案】(1)126,12m α=︒=(2)见解析(3)①9分 8分①=9.3x 甲 =8.3x 乙 中位数角度看甲队成绩较好 从平均数角度看甲队成绩较好【分析】(1)根据样本容量=频数÷所占百分比 结合圆心角的计算解答即可.(2)根据样本容量 求得7分的人数补图即可.(3)①根据有序数据的中间数据或中间两个数据的平均数为中位数计算即可.①根据加权平均数公式计算即可.【详解】(1)解:本次抽样调查的样本容量是72420360︒÷=︒(人) ①201712m =--=(人) 736012620α=⨯︒=︒故答案为:126 12.(2)①20-4-5-4=7(人)①补图如下:(3)①①甲队的第10个 11个数据都是9分①中位数是9+9=92(分)①乙队的第10个 11个数据都是8分①中位数是8+8=82(分)故答案为:9分 8分. ①①70+81+912+107==9.320x ⨯⨯⨯⨯甲(分)77+84+95+104==8.320x ⨯⨯⨯⨯乙(分)故从中位数角度看甲队成绩较好 从平均数角度看甲队成绩较好.【点睛】本题考查了中位数 条形统计图 扇形统计图 熟练掌握中位数 平均数 扇形统计图条形统计图的基本计算是解题的关键.2.【答案】(1)50 9 108︒(2)估计该校周末家务劳动时长不低于1小时的学生共有666人 (3)12【分析】(1)根据数据计算即可(2)根据(1)求出的D 组所占的比例计算结果(3)列出所有可能情况求概率.【详解】(1)解:这次抽样调查共抽取的人数有:224450÷=%(人)B 组的人数为:5018%9a =⨯=(人)D 组所占的比例为:18%18%44%30---=︒①D 组所在扇形的圆心角的度数是:36030%108︒⨯=︒(2)解:根据题意得 900(30%44%)666⨯+=(人)答:估计该校周末家务劳动时长不低于1小时的学生共有666人(3)解:列表如下: 男1 男2 男3 女男1 (男2 男1) (男3 男1) (女 男1)男2 (男1 男2) (男3 男2) (女 男2)男3 (男1 男3) (男2 男3) (女 男3)女 (男1 女) (男2 女) (男3 女)共有12中等可能结果 其中恰好选中两名男生的结果数为6①恰好选中两名男生的概率61122==. 【点睛】本题主要考查了统计的实际问题 涉及用样本估计总体的数量 求圆心角的度数 求概率等 属于基础题要认真读图.3.【答案】(1)见解析(2)DGB 是等腰三角形 理由见解析(3)4FG =【分析】(1)连接CO 根据圆周角定理得出2BOD BOC BAC ∠=∠=∠ 根据已知得出F BAC ∠=∠ 根据DE AC ⊥得出90AEG ∠=︒ 进而根据对等角相等 以及三角形内角和定理可得90FBG AEG ∠=∠=︒ 即可得证(2)根据题意得出AD AC = 则ABD ABC ∠=∠ 证明EF BC ∥ 得出AGE ABC ∠=∠ 等量代换得出FGB ABD ∠=∠ 即可得出结论(3)根据FGB ABD ∠=∠ AB BF ⊥ 设FGB ABD α∠=∠= 则90DBF F α∠=∠=︒- 等边对等角得出DB DF = 则224FG DG DB ===.【详解】(1)证明:如图所示 连接CO①BC BD = ①2BOD BOC BAC ∠=∠=∠①2BOD F ∠=∠ ①F BAC ∠=∠①DE AC ⊥ ①90AEG ∠=︒①AGE FGB ∠=∠①90FBG AEG ∠=∠=︒即AB BF ⊥ 又AB 是O 的直径 ①BF 是O 的切线(2)①BC BD = AB 是O 的直径 ①AD AC = BC AC ⊥ ①ABD ABC ∠=∠①DE AC ⊥ BC AC ⊥①EF BC ∥ ①AGE ABC ∠=∠又AGE FGB ∠=∠ ①FGB ABD ∠=∠ ①DGB 是等腰三角形(3)①FGB ABD ∠=∠ AB BF ⊥设FGB ABD α∠=∠= 则90DBF F α∠=∠=︒-①DB DF = ①224FG DG DB ===.【点睛】本题考查了切线的判定 等腰三角形的性质与判定 圆周角定理 熟练掌握以上知识是解题的关键.4.【答案】(1)证明见解析(2)①3 ①2【分析】(1)根据等弧所对的圆周角相等和等边对等角的性质 得到CAE ACO ∠=∠ 推出AD OC ∥ 进而得到OC DC ⊥ 再利用圆的切线的判定定理即可证明结论(2)①连接BE 根据直径所对的圆周角是直角和平行线的判定 得到BE DF ∥ 进而得到AFD ABE ∠=∠ 再利用锐角三角函数 求得6AB = 即可求出O 的半径①利用锐角三角函数 分别求出BF 和AD 的长 即可得到线段DE 的长.【详解】(1)证明:如图 连接OC 点C 是BE 的中点 CE CB ∴= CAE CAB ∴∠=∠OA OC = CAB ACO ∴∠=∠ CAE ACO ∴∠=∠AD OC ∴∥AD DC ⊥ OC DC ∴⊥ OC 是O 的半径 DC ∴是O 的切线(2)解:①如图 连接BEAB 是直径 90AEB ∴∠=︒ BE AD ∴⊥AD DF ⊥ BE DF ∴∥ AFD ABE ∠=∠∴ 1sin 3AFD ∠= 1sin 3AE ABE AB ∴∠== 2AE = 6AB ∴=∴O 的半径为3①由(1)可知 OC DF ⊥ 1sin 3OC AFD OF ∴∠== 3OC = 3OF OB BF BF =+=+ 3133BF ∴=+ 6BF ∴= 6612AF AB BF ∴=+=+= AD DF ⊥ 1sin 123AD AD AFD AF ∴∠=== 4AD ∴= 2AE = 422DE AD AE ∴=-=-=.【点睛】本题是圆和三角形综合题 考查了圆的切线的判定定理 圆的性质 等腰三角形的性质 锐角三角函数等知识 熟练掌握圆的相关性质 灵活运用正弦值求边长是解题关键.5.【答案】(1)见解析(2)tan 2ADB ∠=【分析】(1)利用垂径定理得OF AD ⊥ 利用菱形的性质得GAF BAF ∠=∠ 利用半径相等得OAF OFA ∠=∠ 即可证明90OAF BAF ∠+∠=︒ 据此即可证明结论成立(2)设4AG GD a == 由题意得:5:4OA AG = 求得5OA a = 由勾股定理得到3OG a = 求得2FG a = 利用菱形的性质求得ADB AFG ∠=∠ 据此求解即可.【详解】(1)证明:连接OA①AG GD = 由垂径定理知OF AD ⊥ ①90OGA FGA ∠=∠=︒①四边形ABCD 是菱形 ①GAF BAF ∠=∠ ①90GAF AFG BAF AFG ∠+∠=︒=∠+∠ ①OA OF = ①OAF OFA ∠=∠ ①90OAF BAF OAB ∠+∠=∠=︒ 又①OA 为O 的半径 ①AB 是O 的切线(2)解:①四边形ABCD 是菱形 AG GD = ①设4AG GD a == ①O 的半径与菱形的边长之比为5:8 ①在Rt OAG △中 :5:4OA AG = ①5OA a = 223OG OA AG a -= ①2FG OF OG a =-=①四边形ABCD 是菱形 ①BD AC ⊥ 即90DEA FGA ∠=︒=∠ ①ADB AFG ∠=∠ ①4tan tan 22AG aADB AFG FG a∠=∠===. 【点睛】本题考查了菱形的性质 垂径定理 切线的判定 求角的正切值 勾股定理 解答本题的关键是明确题意 找出所求问题需要的条件.6.【答案】(1)1(2)见解析【分析】(1)由垂径定理可得90AED ∠=︒ 结合CF AD ⊥可得DAE FCD ∠=∠ 根据圆周角定理可得DAE BCD ∠=∠ 进而可得BCD FCD ∠=∠ 通过证明BCE GCE ≌可得1GE BE == (2)证明ACB △CEB ∽ 根据对应边成比例可得2BC BA BE =⋅ 再根据2AB BO = 12BE BG =可证2BC BG BO =⋅【详解】(1)解:直径AB 垂直弦CD ∴90AED ∠=︒ ∴90DAE D ∠+∠=︒CF AD ⊥ ∴90FCD D ∠+∠=︒ ∴DAE FCD ∠=∠由圆周角定理得DAE BCD ∠=∠ ∴BCD FCD ∠=∠ 在BCE 和GCE 中BCE GCE CE CEBEC GEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BCE GCE ≌()ASA∴1GE BE ==(2)证明:AB 是O 的直径 ∴90ACB ∠=︒在ACB △和CEB 中90ACB CEB ABC CBE ∠=∠=︒⎧⎨∠=∠⎩∴ACB △CEB ∽ ∴BC BABE BC= ∴2BC BA BE =⋅ 由(1)知GE BE = ∴12BE BG =又2AB BO =∴2122BC BA BE BO BG BG BO =⋅=⋅=⋅7.【答案】(1)3(2)34 10【分析】(1)根据扇形的弧长公式即可求出BOP ∠度数 利用切线的性质和解直角三角形即可求出BC 的长.(2)根据等弧所对圆周角相等推出BAC DAC ∠=∠ 再根据角平分线的性质定理推出CF CB = 利用直角三角形的性质即可求出FCD BAQ ∠=∠ 通过等量转化和余弦值可求出答案. (3)根据三角形相似的性质证明APQ ADC ∽△△和APB ABC ∽△△ 从而推出PQ APCDAD和BP AP BC AB = 利用已知条件将两个比例线段相除 根据正弦值即可求出答案 【详解】(1)解:如图1 连接OP 设BOP ∠的度数为n .=6AB BP 的长为ππ3π180n ⋅⋅∴=. 60n ∴= 即60BOP ∠=︒.1302BAP BOP ∴∠=∠=︒.直线l 是O 的切线90ABC ∴∠=︒.①233BC == (2)解:如图2 连接BQ 过点C 作CF AD ⊥于点FAB 为直径90BQA ∴∠=︒.3cos 4AQ BAQ AB ∴∠==. BP PQ = BAC DAC ∴∠=∠.CF AD ⊥ AB BC ⊥CF CB ∴=.90BAQ ADB ∠+∠=︒ 90FCD ADB ∠+∠=︒FCD BAQ ∴∠=∠.3cos cos 4BC FC FCD BAQ CD CD ∴==∠=∠=. (310理由如下: 如图3 连接BQAB BC ⊥ BQ AD ⊥90ABQ BAD ∴∠+∠=︒ 90ADB BAD ∠+∠=︒ ABQ ADC ∴∠=∠ABQ APQ ∠=∠ ∴APQ ADC ∠=∠. PAQ CAD ∠=∠ APQ ADC ∴∽△△PQ APCD AD.① BAP BAC ∠=∠ 90ABC APB ∠=∠=︒APB ABC ∴△∽△ BP APBC AB∴=.① BC CD = ÷①②得cos PQ ABBAQ BP AD ==∠. 6sin BAQ ∠=10cos BAQ ∴∠=.【点睛】本题是圆的综合题 考查了圆周角定理 相似三角形的判定与性质 解直角三角形以及三角函数 切线的性质定理 扇形的弧长公式 角平分线性质定理等 解题的关键在于熟练掌握相关性质定理和相关计算公式. 8.【答案】(1)129y x =-+ 24(0)y x x => (2)142x << (3)点P 的坐标为()2,5或5,42⎛⎫ ⎪⎝⎭【分析】(1)将(4,1)A 代入2(0)my x x=>可求反比例函数解析式 进而求出点B 坐标 再将(4,1)A 和点B 坐标代入1(0)y kx b k =+≠即可求出一次函数解析式(2)直线AB 在反比例函数图象上方部分对应的x 的值即为所求(3)设点P 的横坐标为p 代入一次函数解析式求出纵坐标 将x p =代入反比例函数求出点Q 的纵坐标 进而用含p 的代数式表示出PQ 再根据POQ △面积为3列方程求解即可. 【详解】(1)解:将(4,1)A 代入2(0)my x x => 可得14m = 解得4m =∴反比例函数解析式为24(0)y x x=>1,2B a ⎛⎫⎪⎝⎭在24(0)y x x =>图象上∴4812a == ∴1,82B ⎛⎫ ⎪⎝⎭将(4,1)A 1,82B ⎛⎫⎪⎝⎭代入1y kx b =+ 得:41182k b k b +=⎧⎪⎨+=⎪⎩ 解得29k b =-⎧⎨=⎩∴一次函数解析式为129y x =-+(2)解:142x << 理由如下: 由(1)可知1(4,1),,82A B ⎛⎫⎪⎝⎭当120y y ->时 12y y >此时直线AB 在反比例函数图象上方 此部分对应的x 的取值范围为142x <<即满足120y y ->时 x 的取值范围为142x <<(3)解:设点P 的横坐标为p将x p =代入129y x =-+ 可得129y p =-+ ∴(),29P p p -+.将x p =代入24(0)y x x=> 可得24y p =∴4,Q p p ⎛⎫⎪⎝⎭.∴429PQ p p=-+-∴11429322POQP SPQ x p p p ⎛⎫=⋅=⨯-+-⋅= ⎪⎝⎭整理得229100p p -+= 解得12p = 252p =当2p =时 292295p -+=-⨯+= 当52p =时 5292942p -+=-⨯+= ∴点P 的坐标为()2,5或5,42⎛⎫ ⎪⎝⎭.【点睛】本题属于一次函数与反比例函数的综合题 考查求一次函数解析式 反比例函数解析式 坐标系中求三角形面积 解一元二次方程等知识点 解题的关键是熟练运用数形结合思想.9.【答案】(1)4y x =(2)132y x =-+ 【分析】(1)根据四边形OABC 是边长为2的正方形求出点B 的坐标 代入ky x=求出k (2)设4,D a a ⎛⎫⎪⎝⎭过点D 作DH x ⊥轴 根据OBDOBHBHDODHSSSS=+-面积列方程 求出点D 坐标 再由待定系数法求出直线BD 的函数表达式.【详解】(1)解:四边形OABC 是边长为2的正方形 ∴4OABC S xy ==正方形 ∴4k =即反比例函数的表达式为4y x=. (2)解:设4,D a a ⎛⎫⎪⎝⎭过点D 作DH x ⊥轴点()2,2B 4,D a a ⎛⎫⎪⎝⎭(),0H a①12OBHS OH AB a =⋅= 1144(2)(2)222BHDa SDH AH a a a-=⋅=⋅⋅-= 122ODHSOH DH =⋅=3OBDOBHBHDODHSSSS=+-=∴4(2)232a a a-+-= 解得:14a = 21a =- 经检验4a = 是符合题意的根 即点()4,1D设直线BD 的函数解析式为y kx b =+ 得① 2241k b k b +=⎧⎨+=⎩ 解得:123k b ⎧=-⎪⎨⎪=⎩ 即:直线BD 的函数解析式为132y x =-+.【点睛】本题考查了反比例函数的几何意义和待定系数法求一次函数解析式 反比例函数ky x=图象上任意一点做x 轴 y 轴的垂线 组成的长方形的面积等于k 灵活运用几何意义是解题关键.10.【答案】(1)8y x=(2)(222,442P -++或(222,442P --- 【分析】(1)设,k A m m ⎛⎫ ⎪⎝⎭可得,k C m m ⎛⎫- ⎪⎝⎭ 结合OAC 的面积是8.可得()182k m m m += 从而可得答案(2)先求解()2,4A ()2,4C - 可得直线为28y x =+ 联立828y x y x ⎧=⎪⎨⎪=+⎩ 再解方程组即可. 【详解】(1)解:①点A 在反比例函数(0)ky k x=≠的图象上 ①设,k A m m ⎛⎫⎪⎝⎭①点C 是点A 关于y 轴的对称点 ①,k C m m⎛⎫- ⎪⎝⎭①OAC 的面积是8. ①()182km m m+= 解得:8k①反比例函数解析式为:8y x=(2)①点A 的横坐标为2时 ①842A y == 即()2,4A 则()2,4C -①直线2y x b =+过点C ①44b -+= ①8b =①直线为28y x =+ ①828y x y x ⎧=⎪⎨⎪=+⎩解得:22242x y ⎧=-+⎪⎨=+⎪⎩222442x y ⎧=--⎪⎨=-⎪⎩经检验 符合题意 ①(222,442P -++或(222,442P ---.【点睛】本题考查的是一次函数与反比例函数的综合应用 轴对称的性质 一元二次方程的解法 熟练的利用图形面积建立方程求解是解本题的关键.11.【答案】(1)8y x=(2)()4,2C 【分析】(1)利用正切值 求出4OB = 进而得到()2,4A 即可求出反比例函数的解析式(2)过点A 作AE x ⊥轴于点E 易证四边形ABOE 是矩形 得到2OE = 4AE = 再证明AED △是等腰直角三角形 得到4DE = 进而得到()6,0D 然后利用待定系数法求出直线AD 的解析式为6y x =-+ 联立反比例函数和一次函数 即可求出点C 的坐标. 【详解】(1)解:AB y ⊥轴90ABO ∴∠=︒1tan 2AOB =∠ 12AB OB ∴= 2AB =4OB ∴=()2,4A ∴点A 在反比例函数()0k y x x=>的图象上248k ∴=⨯=∴反比例函数的解析式为8y x=(2)解:如图 过点A 作AE x ⊥轴于点E90ABO BOE AEO ∠=∠=∠=︒∴四边形ABOE 是矩形2OE AB ∴== 4OB AE ==45ADO ∠=︒AED ∴是等腰直角三角形 4DE AE ∴== 246OD OE DE ∴=+=+= ()6,0D ∴设直线AD 的解析式为y kx b =+2460k b k b +=⎧∴⎨+=⎩ 解得:16k b =-⎧⎨=⎩∴直线AD 的解析式为6y x =-+点A C 是反比例函数8y x=和一次函数6y x =-+的交点 联立86y x y x ⎧=⎪⎨⎪=-+⎩ 解得:24x y =⎧⎨=⎩或42x y =⎧⎨=⎩ ()2,4A ()4,2C ∴.【点睛】本题是反比例函数综合题 考查了锐角三角函数值 矩形的判定和性质 待定系数法求函数解析式 反比例函数和一次函数交点问题等知识 求出直线AD 的解析式是解题关键. 12.【答案】(1)8n = 32k = (2)当6m =时 AB OD ⋅取得最大值 最大值为36【分析】(1)把点()4,A n 代入2y x = 得出8n = 把点()4,8A 代入(0)k y x x=> 即可求得32k = (2)过点C 作x 轴的垂线 分别交,AB x 轴于点,E F 证明ECB FCD △≌△ 得出,BE DF CE CF == 进而可得(8),4C 根据平移的性质得出,(48)B m + (12),0D m - 进而表示出AB OD ⋅ 根据二次函数的性质即可求解.【详解】(1)解:把点()4,A n 代入2y x = ①24n =⨯ 解得:8n =把点()4,8A 代入(0)k y x x=> 解得32k = (2)①点B 横坐标大于点D 的横坐标 ①点B 在点D 的右侧如图所示 过点C 作x 轴的垂线 分别交,AB x 轴于点,E F①AB DF ∥①B CDF ∠=∠在ECB 和FCD 中BCE DCF BC CDB CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ASA ECB FCD ≌①,BE DF CE CF ==①8A EF y ==①4CE CF ==①(8),4C①将点A 沿x 轴正方向平移m 个单位长度得到点B①,(48)B m +①4BE DF m ==-①(12),0D m -①12OD m =-①()()212636AB OD m m m ⋅=-=--+①当6m =时 AB OD ⋅取得最大值 最大值为36.【点睛】本题考查了一次函数与反比例函数综合 二次函数的性质 全等三角形的性质与判定 熟练掌握以上知识是解题的关键.13.【答案】(1)6y x =- (2)<2x -或06x << (3)()32-,或()16-, 【分析】(1)将()4,0A ()0,2B 代入y kx b =+,求得一次函数表达式 进而可得点C 的坐标 再将点C 的坐标代入反比例函数即可(2)将一次函数与反比例函数联立方程组 求得交点坐标即可得出结果(3)过点A 作AP BC ⊥交y 轴于点M 勾股定理得出点M 的坐标 在求出直线AP 的表达式 与反比例函数联立方程组即可.【详解】(1)解:把()4,0A ()0,2B 代入y kx b =+中得:402k b b +=⎧⎨=⎩ ①122k b ⎧=-⎪⎨⎪=⎩ ①直线y kx b =+的解析式为122y x =-+ 在122y x =-+中 当6x =时 1212y x =-+=- ①()61C -,把()61C -,代入m y x=中得:16m -= ①6m =-①反比例函数的表达式6y x=- (2)解:联立1226y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解得61x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩ ①一次函数与反比例函数的两个交点坐标分别为()()6123--,、, ①由函数图象可知 当<2x -或06x <<时 一次函数图象在反比例函数图象上方①当m kx b x+>时 <2x -或06x << (3)解:如图所示 设直线AP 交y 轴于点()0M m ,①()4,0A ()0,2B ①222244BM m m m =-=-+ 2222420AB 2222416AM m m =+=+①ABP 是以点A 为直角顶点的直角三角形①90BAM ∠=︒①222BM BA AM =+①22442016m m m -+=++解得8m =-①()08M -,同理可得直线AM 的解析式为28y x =- 联立286y x y x =-⎧⎪⎨=-⎪⎩解得32x y =⎧⎨=-⎩或16x y =⎧⎨=-⎩ ①点P 的坐标为()32-,或()16-,.【点睛】本题主要考查了反比例函数与一次函数综合 勾股定理 正确利用待定系数法求出对应的函数解析式是解题的关键.。
陕西西安二十三中中考模拟试卷--数学(解析版)
陕西省西安二十三中中考数学模拟试卷一.选择题(本题共10小题,每小题3分,共30分)1.三角形在方格纸中的位置如图所示,则cosα的值是()A. B. C. D.2.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+3.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°4.在△ABC中,∠C=90°,如果tanA=,那么sinB的值等于()A.B.C.D.5.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)6.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°7.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P的⊙O上C.点P在⊙O外 D.点P在⊙O上或⊙O外8.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.9.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x …﹣2 ﹣1 0 1 2 …y …﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣510.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③二、填空题(本题共10小题,每小题3分,共30分)11.直径所对的圆周角是.12.圆心角为120°,半径为6cm的扇形的弧长是cm.13.将二次函数y=x2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是.14.等腰三角形腰长为2cm,底边长为2cm,则顶角为,面积为.15.圆内接正六边形的边心距为2,则这个正六边形的面积为cm2.16.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.17.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.18.已知二次函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为x=﹣3,此二次函数的解析式为.19.如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD=度.20.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是.三、作图题(共1小题,满分10分)21.用尺规作圆内接正三角形.四、解答题(本大题共50分)22.计算:(1)sin45°+sin30°•cos60°;(2)+()﹣1﹣2cos60°+(2﹣π)0.(3)+1﹣3tan230°+2.23.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)24.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4,求EF的长.25.已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?2016年陕西省西安二十三中中考数学模拟试卷参考答案与试题解析一.选择题(本题共10小题,每小题3分,共30分)1.三角形在方格纸中的位置如图所示,则cosα的值是()A. B. C. D.【考点】锐角三角函数的定义.【分析】根据网格特点和勾股定理分别求出AC、AB,根据余弦的定义计算即可.【解答】解:根据网格特点可知,AC=4,BC=3,由勾股定理得,AB==5,则cosα==,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.【点评】本题考查了二次函数的定义,y=ax2+bx+c (a≠0)是二次函数,注意二次函数都是整式.3.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【考点】圆内接四边形的性质;圆周角定理.【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.在△ABC中,∠C=90°,如果tanA=,那么sinB的值等于()A.B.C.D.【考点】锐角三角函数的定义.【分析】先根据题意设出直角三角形的两直角边,根据勾股定理求出其斜边;再根据直角三角形中锐角三角函数的定义求解即可.【解答】解:∵在△ABC中,∠C=90°,tanA=,∴设BC=5x,则AC=12x,∴AB=13x,sinB==.故选B.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)【考点】二次函数的性质.【专题】压轴题.【分析】直接利用顶点式的特点可写出顶点坐标.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选D.【点评】主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.6.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°【考点】三角形的外接圆与外心;圆周角定理.【专题】分类讨论.【分析】利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.【解答】解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.7.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P的⊙O上C.点P在⊙O外 D.点P在⊙O上或⊙O外【考点】点与圆的位置关系;坐标与图形性质.【分析】根据点到圆心的距离与圆的半径之间的关系:“点到圆心的距离为d,则当d=r时,点在圆上;当d>r 时,点在圆外;当d<r时,点在圆内”来求解.【解答】解:∵圆心O的坐标为(0,0),点P的坐标为(4,2),∴OP==<5,因而点P在⊙O内.故选A.【点评】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.8.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m<0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.9.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x …﹣2 ﹣1 0 1 2 …y …﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣5【考点】二次函数的图象.【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.【点评】本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B【点评】此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本题共10小题,每小题3分,共30分)11.直径所对的圆周角是直角.【考点】圆周角定理.【分析】由圆周角定理的推论:直径所对的圆周角是直角,即可得出结果.【解答】解:直径所对的圆周角是直角;故答案为:直角.【点评】本题考查了圆周角定理;熟记直径所对的圆周角是直角是解决问题的关键.12.圆心角为120°,半径为6cm的扇形的弧长是4πcm.【考点】弧长的计算.【专题】应用题.【分析】弧长的计算公式为l=,将n=120°,R=6cm代入即可得出答案.【解答】解:由题意得,n=120°,R=6cm,故可得:l==4πcm.故答案为:4π.【点评】此题考查了弧长的计算公式,属于基础题,解答本题的关键是掌握弧长的计算公式及公式字母所代表的含义.13.将二次函数y=x2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2.【考点】二次函数图象与几何变换.【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点为(0,0),向右平移1个单位,在向上平移2个单位后,那么新抛物线的顶点为(1,2).可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x﹣1)2+2.故所得图象的函数表达式是:y=(x﹣1)2+2.【点评】解决本题的关键是得到新抛物线的顶点坐标.14.等腰三角形腰长为2cm,底边长为2cm,则顶角为120°,面积为cm2..【考点】解直角三角形;等腰三角形的性质.【分析】作底边上的高,根据等腰三线合一的性质,也是底边上的中线,利用勾股定理求出底边上的高,然后代入面积公式求解即可.【解答】解:如图,作AD⊥BC于D,∴BD=DC=cm,∴AD=cm,∴∠B=30°,∴顶角为180°﹣30°﹣30°=120°,三角形的面积=×2×1=cm2.故答案为:120°;cm2.【点评】本题考查解直角三角形问题,关键是利用等腰三角形三线合一和勾股定理求解.15.圆内接正六边形的边心距为2,则这个正六边形的面积为24cm2.【考点】正多边形和圆.【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OA•cos 30°,∴OA===4,∴这个正六边形的面积为6××4×2=24cm 2.故答案为:24.【点评】此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质及锐角三角函数的定义解答即可.16.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交于点E ,以点O 为圆心,OC 的长为半径作交OB 于点D .若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算. 【专题】压轴题.【分析】连接OE 、AE ,根据点C 为OC 的中点可得∠CEO=30°,继而可得△AEO 为等边三角形,求出扇形AOE 的面积,最后用扇形AOB 的面积减去扇形COD 的面积,再减去S 空白AEC 即可求出阴影部分的面积. 【解答】解:连接OE 、AE , ∵点C 为OA 的中点, ∴∠CEO=30°,∠EOC=60°, ∴△AEO 为等边三角形, ∴S 扇形AOE ==π,∴S 阴影=S 扇形AOB ﹣S 扇形COD ﹣(S 扇形AOE ﹣S △COE ) =﹣﹣(π﹣×1×)=π﹣π+ =+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.17.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25元.【考点】二次函数的应用.【专题】销售问题.【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【解答】解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.【点评】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.18.已知二次函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为x=﹣3,此二次函数的解析式为y=﹣(x+7)(x﹣1).【考点】待定系数法求二次函数解析式.【分析】根据抛物线的对称性得到抛物线与x轴的两个交点坐标,然后把顶点坐标(﹣3,4)代入函数解析式y=a(x+7)(x﹣1)求得系数a的值.【解答】解:∵该函数图象与x轴两交点间的距离是8,对称轴为x=﹣3,∴抛物线与x轴的两个交点坐标是(0,﹣7)、(0,1).故设该抛物线解析式为y=a(x+7)(x﹣1)(a≠0).把顶点(﹣3,4)代入得到:4=a(﹣3+7)(﹣3﹣1),解得a=﹣1.则该二次函数解析式为:y=﹣(x+7)(x﹣1).故答案是:y=﹣(x+7)(x﹣1).【点评】本题考查了待定系数法求二次函数解析式.根据题意得到抛物线与x轴的两个交点坐标和顶点坐标是解题的关键.19.如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD=60度.【考点】圆周角定理.【分析】根据圆周角定理可得出两个条件:①∠ACD=90°;②∠D=∠B=30°;在Rt△ACD中,已知了∠D的度数,即可求出∠CAD的度数.【解答】解:∵AD是⊙O的直径,∴∠ACD=90°;∵∠CDA=∠ABC=30°,(同弧所对的圆周角相等)∴∠CAD=90°﹣∠CDA=60°.【点评】熟练运用圆周角定理及其推论是解答本题的关键.20.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是m≥﹣1.【考点】二次函数的性质.【分析】根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.【解答】解:抛物线的对称轴为直线x=﹣=,∵当x>1时,y的值随x值的增大而增大,∴≤1,解得:m≥﹣1.故答案为:m≥﹣1.【点评】本题考查了二次函数的性质,主要利用了二次函数的增减性,熟记性质并列出不等式是解题的关键.三、作图题(共1小题,满分10分)21.用尺规作圆内接正三角形.【考点】作图—复杂作图;正多边形和圆.【专题】作图题.【分析】在⊙O上依次截取AB=BC=CD=DE=EF=圆的半径,则△ACE满足条件.【解答】解:如图,△ACE为⊙O的内接正三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共50分)22.计算:(1)sin45°+sin30°•cos60°;(2)+()﹣1﹣2cos60°+(2﹣π)0.(3)+1﹣3tan230°+2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用算术平方根定义计算,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果;(3)原式利用特殊角的三角函数值及二次根式性质计算即可得到结果.【解答】解:(1)原式=×+×=1;(2)原式=2+2﹣2×+1=4﹣1+1=4;(3)原式=+1﹣3×+2×(1﹣)=+1﹣1+2﹣=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)【考点】勾股定理的应用.【分析】首先利用两个直角三角形求得AB的长,然后除以时间即可得到速度.【解答】解:由题意知:PO=100米,∠APO=60°,∠BPO=45°,在直角三角形BPO中,∵∠BPO=45°,∴BO=PO=100m在直角三角形APO中,∵∠APO=60°,∴AO=PO•tan60°=100∴AB=AO﹣BO=(100﹣100)≈73米,∵从A处行驶到B处所用的时间为3秒,∴速度为73÷3≈24.3米/秒=87.6千米/时>80千米/时,∴此车超过每小时80千米的限制速度.【点评】本题考查了解直角三角形的应用,从复杂的实际问题中整理出直角三角形并求解是解决此类题目的关键.24.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4,求EF的长.【考点】切线的判定.【专题】证明题.【分析】(1)连接OD,由题可知,E已经是圆上一点,欲证CD为切线,只需证明∠ODF=90°即可.(2)连接BD,作DG⊥AB于G,根据勾股定理求出BD,进而根据勾股定理求得DG,根据角平分线性质求得DE=DG=,然后根据△ODF∽△AEF,得出比例式,即可求得EF的长.【解答】(1)证明:连接OD,∵AD平分∠CAB,∴∠OAD=∠EAD.∵OD=OA,∴∠ODA=∠OAD.∴∠ODA=∠EAD.∴OD∥AE.∵∠ODF=∠AEF=90°且D在⊙O上,∴EF与⊙O相切.(2)连接BD,作DG⊥AB于G,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6,AD=4,∴BD==2,∵OD=OB=3,设OG=x,则BG=3﹣x,∵OD2﹣OG2=BD2﹣BG2,即32﹣x2=22﹣(3﹣x)2,解得x=,∴OG=,∴DG==,∵AD平分∠CAB,AE⊥DE,DG⊥AB,∴DE=DG=,∴AE==,∵OD∥AE,∴△ODF∽△AEF,∴=,即=,∴=,∴EF=.【点评】本题考查了相似三角形的性质和判定,勾股定理,切线的判定等知识点的应用,主要考查学生运用性质进行推理和计算的能力,两小题题型都很好,都具有一定的代表性.25.已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?【考点】二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.【专题】压轴题;分类讨论.【分析】(1)直接把A(﹣3,0)和B(0,3)两点代入抛物线y=﹣x2+bx+c,求出b,c的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,∴,解得,故此抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵由(1)知抛物线的解析式为:y=﹣x2﹣2x+3,∴当x=﹣=﹣=﹣1时,y=4,∴M(﹣1,4).(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′.∴MN•NN′=16,∴NN′=4.i)当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii)当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.【点评】本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西中考数学23题专
练
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
陕西23题专练
1.如图,在⊙O中,M是弦AB定的中点,过点B作⊙O的切线,与OM延长线交于点C.
(1)求证:∠A=∠C;
(2)若OA=5,AB=8,求线段OC的长.
2.如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.
(1)求证:AD平分∠BAC;
(2)求AC的长.
3.如图,⊙O的半径为3,C是⊙O外一点,且OC=6,过点C作⊙O的两条切线CB,CD.切点分别为B,D,连接BO并延长交切线CD于点A.
(1)求AD的长;
(2)若M是⊙O上一动点,求CM长的最大值,并说明理由.
4.如图,在Rt△ABC中,∠BAC=90°,∠BAC的平分线交BC于点O,以O为圆心做圆,⊙O与AC相切于点D.
(1)试判断AB与⊙O的位置关系,并加以证明.
(2)在Rt△ABC中,若AC=6,AB=3,求切线AD的长.
5.如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;
(1)求证:AP=AC;
(2)若AC=3,求PC的长.
6.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP
(1)求证:∠APO=∠BPO;
(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的
最大值.
7.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=6,∠ACB的平分线CO交AB于点O,以OB为半径作⊙O.
(1)请判断AC与⊙O的位置关系,并说明理由;
(2)求⊙O的半径.
8.如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.
(1)求证:OM=AN;
(2)若⊙O的半径R=3,PA=9,求OM的长.
9.如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O 上一点,连接AE、AF,并分别延长交直线l于B、C两点.
(1)求证:∠ABC+∠ACB=90°;
(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.
10.如图,AB是⊙O的直径,延长AB至点C,过点C作⊙O的切线CD,切点为D,连接AD、BD,过圆心O作AD的垂线交CD于点P.
(1)求证:直线PA是⊙O的切线;
(2)若AB=4BC ,求的值.
3。