第一章半导体产业介绍

合集下载

半导体芯片制造技术

半导体芯片制造技术

⑸固定的熔点
图1-8 晶体非晶体的加热曲线
2. 晶体的缺陷 晶体缺陷按缺陷的几何尺寸可分为点缺陷,如空 位、间隙原子;线缺陷,如位错;及面缺陷,如晶粒 间界和堆垛层错等。
第三节 半导体生产污染控制
一、污染物种类
1.颗粒污染物 颗粒包括空气中所含的颗粒、人员产生的颗粒、 设备和工艺操作过程中使用的化学品产生的颗粒等。 在任何晶片上,都存在大量的颗粒。有些位于器件不 太敏感的区域,不会造成器件缺陷,而有些则属于致 命性的。根据经验得出的法则是:颗粒的大小要小于 器件上最小的特征图形尺寸的1/10,否则,就会形成 缺陷。
单晶体
多晶体
非晶体
图1-3 特性, 称之为晶体的自限性。
⑶各向异性 晶体的物理性质随着晶面的方向不同而不同, 称为晶体的各向异性。
图1-7 云母片和玻璃片的石蜡熔化实验
⑷对称性 晶体在某几个特定的方向上所表现出的物理、 化学性质完全相同。在晶体中,如果沿某些特定的 方向原子排列的密度相同,则沿这些方向的性能相 同。
浓度/(粒/ 升) 小于等于1 小于等于10
最高 最低 最高 最低
噪声(A声 级)/db
100
1000 10000
大于等 于0.5
小于等于 100
小于等于 1000
27
18
60
40
小于等于70
小于等于 10000
五、洁净室的维护 超净间的定期维护是非常必要的。清洁人员 必须要穿着与生产人员一样的洁净服,超净 间的清洁器具,包括拖把,也要仔细选择。 一般家庭使用的清洁器具太脏,无法在超净 间使用。而且使用真空吸尘器也要特别注意。 真空吸尘器中的排风系统中,装有HEPA过 滤器,现在已经可以在超净间中使用。许多 超净间采用内置式真空系统来减少清洁时产 生的脏东西。

第一章半导体器件的特性讲解

第一章半导体器件的特性讲解
第一章 半导体器件的 特性
主要内容及要求
1.1 半导体的导电特性 1.2 PN结 1.3 二极管 1.4 双极型晶体管(BJT) 1.5 场效应管(FET)
基础,必须掌握: 基本概念,原理, 特征曲线、参数, 应用等。
了解原理,掌握特 征曲线、参数。
1.1 半导体的导电特性
半导体材料:
物质根据其导电能力(电阻率)的不同,可划分 导体、绝缘体和半导体。 -4 导 体:ρ<10 Ω·cm 9 绝缘体:ρ>10 Ω·cm 半导体:导电性能介于导体和绝缘体之间。 典型的元素半导体有硅Si和锗Ge ,此外,还有 化合物半导体砷化镓GaAs等。
1.5 场效应管
二、工作原理
VDS=0时, VGS 对沟道的控制作用
当VGS<0时, PN结反偏,| VGS | 耗尽层加厚沟道变窄。 VGS继续 减小,沟道继续变窄,当沟道夹断时, 对应的栅源电压VGS称为夹断电压VP ( 或VGS(off) )。 对于N沟道的JFET,VP <0。 若在漏源极间加上适当电压,沟道中有 电流ID流过。 VGS=0时,ID较大; VGS=VGS(off)时,ID近似为零, 这时管子截止。
1.5 场效应管
特点:
利用输入回路的电场效应控制输出回路的电流;仅靠半导体 中的多数载流子导电(单极型晶体管);输入阻抗高 (107~1012),噪声低,热稳定性好,抗辐射能力强,功 耗小。
分类:
1.5 场效应管
1.5.1结型场效应管 一、结构
N沟道结型场效应管结构示意图
N沟道管符号
P沟道管符号
晶体管结构示意图
晶体管符号
1.4 双极型晶体管
生成类型:合金型和平面型
要实现电流放大作用,要求: 发射区掺杂浓度高; 基区薄且掺杂浓度低; 集电结面积大。

芯片制造半导体工艺实用教程

芯片制造半导体工艺实用教程

1.6 器件制造
• 半导体器件制造分4个不同阶段: 1.材料准备 2.晶体生长与晶圆准备 3.芯片制造 4.封装
材料 晶体生长 准备 与晶圆准备
晶圆 制造 封装
第一步 材料准备
第二步晶体生长与晶圆准备
第三步 芯片制造
制造
电性测试 (芯片分捡)
在晶圆 上制造 单个 电路
每个电路 进行电 测试
第四步 封装
• 尺寸和数量是IC发展的两个共同目标。 • 芯片上的物理尺寸特征称为特征尺寸,将此定义
为制造复杂性水平的标准。
• 通常用微米来表示。一微米为1/10000厘米。 • Gordon Moore在1964年预言IC的密度每隔18~24
个月将翻一番,------摩尔定律。
(元件 / 芯片)
水平
小规模集成电路 中规模集成电路 大规模集成电路 特大规模集成电路 超大规模集成电路
封装 良品芯片
被封装 并测试
良品
1.3 集成电路
• 最早的集成电路仅是几个晶体管、二极管、电 容器、电阻器组成,而且是在锗材料上实现的, 是由德州仪器公司的杰克·基尔比发明的。如 图所示。右图是用平面技术制造的晶体管
坪区 -V
输出
+V
1.4 工艺和产品趋势
• 从以开始,半导体工业就呈现出在新工艺和器件 结构设计上的持续发展。工艺的改进是指以更小 尺寸来制造器件和电路,并使之具有更高的密度, 更多的数量和更高的可靠性。
第一章 半导体产业介绍
• 概述 微电子从40年代末的第一只晶体管(Ge合金管)
问世,50年代中期出现了硅平面工艺,此工艺不 仅成为硅晶体管的基本制造工艺,也使得将多个 分立晶体管制造在同在一硅片上的集成电路成为 可能,随着制造工艺水平的不断成熟, 使微电子 从单只晶体管发展到今天的ULSI。

第一章 半导体器件知识

第一章  半导体器件知识

第一章《半导体器件的基础知识》一、填空:1、半导体的导电能力随着(掺入杂质)、(光照)、(温度)和(输入电压和电流的改变)条件的不同而发生很大的变化,其中,提高半导体导电能力最有效的办法是(掺入杂质)。

2、(纯净的半导体)叫本征半导体。

3、半导体可分为(P )型半导体和(N )型半导体,前者( 空穴)是多子,(电子)是少子。

4、PN结加(正向电压)时导通,加(反向电压)时截止,这种特性称为(单向导电)性。

5、PN结的反向击穿可分为(电)击穿和(热)击穿,当发生(热)击穿时,反向电压撤除后,PN结不能恢复单向导电性。

6、由于管芯结构的不同,二极管可分为(点)接触型、(面)接触型、(平面)接触型三种,其中(点)接触型的二极管PN结面积(小),适宜半导体在高频检波电路和开关电路,也可以作小电流整流,面接触型和平面型二极管PN结接触面(大),载流量(大),适于在(大电流)电路中使用。

7、二极管的两个主要参数是(最大整流电流)和(最高反向电压)使用时不能超过,否则会损坏二极管。

8、在一定的范围内,反向漏电流与反加的反向电压(无关),但随着温度的上升而(上升),反向饱和电流越大,管子的性能就越(差)。

9、硅二极管的死区电压为(0、5)V,锗二极管的死区电压为(0、2)V。

10、三极管起放大作用的外部条件(发射结正偏)和(集电结反偏)11、晶体三极管具有电流放大作用的实质是利用(基极)电流实现对(集电极)电流的控制。

12、3DG8D表示(NPN型硅材料高频小功率三极管);3AX31E表示(PNP型锗材料低频小功率三极管)。

13、三极管的恒流特性表现在(放大)区,在饱和区,三极管失去(放大)作用,集电结、发射结均(正)偏。

14 集---射击穿电压V(BR)CEO是指(基极开路)时集电极和发射极间所承受的最大反向电压,使用时,集电极电源电压应(>)这个数值。

15三极管的三种基本联结方式可分为(共基极电路),(共集电极电路)和(共发射极电路)。

半导体的基础知识教案

半导体的基础知识教案

半导体的基础知识教案第一章:半导体概述1.1 半导体的定义与特性解释半导体的概念介绍半导体的物理特性讨论半导体的重要参数1.2 半导体的分类与制备说明半导体材料的分类探讨半导体材料的制备方法分析半导体器件的制备过程第二章:PN结与二极管2.1 PN结的形成与特性解释PN结的概念与形成过程探讨PN结的特性分析PN结的应用领域2.2 二极管的结构与工作原理介绍二极管的结构解释二极管的工作原理探讨二极管的主要参数与规格第三章:双极型晶体管(BJT)3.1 BJT的结构与分类解释BJT的概念介绍BJT的结构与分类分析BJT的运作原理3.2 BJT的特性与参数探讨BJT的输入输出特性讨论BJT的主要参数与规格分析BJT的应用领域第四章:场效应晶体管(FET)4.1 FET的结构与分类解释FET的概念介绍FET的结构与分类分析FET的运作原理4.2 FET的特性与参数探讨FET的输入输出特性讨论FET的主要参数与规格分析FET的应用领域第五章:半导体器件的应用5.1 半导体二极管的应用介绍半导体二极管的应用领域分析二极管在不同电路中的应用实例5.2 半导体晶体管的应用解释半导体晶体管在不同电路中的应用探讨晶体管在不同电子设备中的应用实例5.3 半导体集成电路的应用介绍半导体集成电路的概念分析集成电路在不同电子设备中的应用实例第六章:半导体存储器6.1 存储器概述解释存储器的作用与分类探讨半导体存储器的发展历程分析存储器的主要参数6.2 RAM与ROM介绍RAM(随机存取存储器)的原理与应用解释ROM(只读存储器)的原理与应用分析RAM与ROM的区别与联系6.3 闪存与固态硬盘探讨闪存(NAND/NOR)的原理与应用介绍固态硬盘(SSD)的结构与工作原理分析固态硬盘的优势与挑战第七章:太阳能电池与光电子器件7.1 太阳能电池解释太阳能电池的原理与分类探讨太阳能电池的优缺点分析太阳能电池的应用领域7.2 光电子器件解释光电子器件的分类与应用探讨光电子器件的发展趋势第八章:半导体传感器8.1 传感器的基本概念解释传感器的作用与分类探讨传感器的基本原理分析传感器的主要参数8.2 常见半导体传感器介绍常见的半导体传感器类型解释半导体传感器的原理与应用分析半导体传感器的优势与挑战8.3 传感器在物联网中的应用探讨物联网与传感器的关系介绍传感器在物联网应用中的实例分析物联网传感器的发展趋势第九章:半导体激光器与光通信9.1 半导体激光器解释半导体激光器的工作原理探讨半导体激光器的特性与参数分析半导体激光器的应用领域9.2 光通信原理解释光纤通信与无线光通信的区别探讨光通信系统的组成与工作原理9.3 光通信器件与技术介绍光通信器件的类型与功能解释光通信技术的分类与发展趋势分析光通信在现代通信系统中的应用第十章:半导体技术与未来趋势10.1 摩尔定律与半导体技术发展解释摩尔定律的概念与意义探讨摩尔定律对半导体技术发展的影响分析半导体技术的未来发展趋势10.2 纳米技术与半导体器件介绍纳米技术在半导体器件中的应用解释纳米半导体器件的特性与优势探讨纳米半导体器件的未来发展趋势10.3 新兴半导体技术与应用分析新兴半导体技术的种类与应用领域探讨量子计算、生物半导体等未来技术的发展前景预测半导体技术与产业的未来发展趋势重点和难点解析重点环节一:半导体的定义与特性重点环节二:半导体的分类与制备重点环节三:PN结与二极管重点环节四:双极型晶体管(BJT)重点环节五:场效应晶体管(FET)重点环节六:半导体存储器重点环节七:太阳能电池与光电子器件重点环节八:半导体传感器重点环节九:半导体激光器与光通信重点环节十:半导体技术与未来趋势全文总结和概括:本文主要对半导体的基础知识进行了深入的解析,包括半导体材料的分类与特性、半导体的制备方法、PN结与二极管、双极型晶体管(BJT)、场效应晶体管(FET)、半导体存储器、太阳能电池与光电子器件、半导体传感器、半导体激光器与光通信以及半导体技术与未来趋势等内容进行了详细的阐述。

半导体行业包括哪些产业呢

半导体行业包括哪些产业呢

半导体行业包括哪些产业呢半导体行业是当今科技领域中一个备受关注的领域,其在现代社会的发展中扮演着至关重要的角色。

半导体产业不仅涉及到芯片的生产和应用,还涉及到众多相关产业的发展和应用。

本文将为你详细介绍半导体行业所涉及的主要产业和相关领域。

半导体制造半导体制造是半导体行业的核心产业之一,其主要包括晶圆制造、光刻技术、沉积技术、蚀刻技术等。

晶圆制造是半导体芯片的基础,光刻技术则是在晶圆上制造微细线路的关键技术,沉积技术和蚀刻技术则是用于形成半导体材料的关键工艺。

半导体制造是半导体行业中最复杂、最关键的一个环节,也是技术密集型和资金密集型的产业之一。

半导体设备半导体设备是半导体产业中的一个重要环节,主要包括晶圆设备、封装测试设备、半导体制程设备等。

晶圆设备用于晶圆的制造和加工,封装测试设备用于芯片的封装和测试,半导体制程设备则用于半导体芯片的制程过程。

半导体设备的发展水平直接影响了半导体产业的发展速度和水平。

半导体材料半导体杗料是半导体产业中一个重要的产业分支,主要包括硅材料、氮化物材料、碳化物材料等。

硅材料是半导体产业中最为常见的材料,广泛应用于各种晶体管和集成电路中;氮化物材料在LED和激光器等领域有着广泛的应用;碳化物材料则在功率器件和高温器件中具有很好的性能。

半导体应用半导体行业的应用领域非常广泛,包括计算机、通信、消费电子、汽车电子、航天航空等诸多领域。

在计算机领域,半导体芯片被广泛应用于CPU、GPU、内存和存储器等核心部件;在通信领域,半导体芯片被广泛应用于基站、移动设备等核心组件;在汽车电子领域,半导体芯片被广泛应用于发动机控制、安全系统等重要部件。

结语半导体行业是一个复杂而充满活力的产业领域,其发展不仅受到技术的驱动,更受到市场的需求和政策的影响。

随着社会的不断进步和科技的不断发展,半导体行业也将持续迎来更多的机遇和挑战。

希望本文对您对半导体产业有所了解,谢谢!以上就是关于半导体行业包括哪些产业呢的相关内容,希望能对您有所帮助。

半导体制造技术复习总结

半导体制造技术复习总结

半导体制造技术复习总结半导体制造技术复习总结第⼀章半导体产业介绍1、集成电路制造的不同阶段:硅⽚制备、硅⽚制造、硅⽚测试/拣选、装配与封装、终测;2、硅⽚制造:清洗、成膜、光刻、刻蚀、掺杂;3、半导体趋势:提⾼芯⽚性能、提⾼芯⽚可靠性、降低芯⽚价格;4、摩尔定律:⼀个芯⽚上的晶体管数量⼤约每18个⽉翻⼀倍。

5、半导体趋势:①提⾼芯⽚性能:a关键尺⼨(CD)-等⽐例缩⼩(Scale down)b每块芯⽚上的元件数-更多 c 功耗-更⼩②提⾼芯⽚可靠性: a⽆颗粒净化间的使⽤ b控制化学试剂纯度c分析制造⼯艺 d硅⽚检测和微芯⽚测试e芯⽚制造商成⽴联盟以提⾼系统可靠性③降低芯⽚价格:a.50年下降1亿倍 b减少特征尺⼨+增加硅⽚直径c半导体市场的⼤幅度增长(规模经济)第⼆章半导体材料特性6、最常见、最重要半导体材料-硅:a.硅的丰裕度 b.更⾼的熔化温度允许更宽的⼯艺容限c.更宽的⼯作温度范围d.氧化硅的⾃然⽣成7、GaAs的优点:a.⽐硅更⾼的电⼦迁移率; b.减少寄⽣电容和信号损耗; c.集成电路的速度⽐硅制成的电路更快; d.材料电阻率更⼤,在GaAs衬底上制造的半导体器件之间很容易实现隔离,不会产⽣电学性能的损失;e.⽐硅有更⾼的抗辐射性能。

GaAs的缺点: a.缺乏天然氧化物;b.材料的脆性; c.由于镓的相对匮乏和提纯⼯艺中的能量消耗,GaAs的成本相当于硅的10倍; d.砷的剧毒性需要在设备、⼯艺和废物清除设施中特别控制。

第三章器件技术8、等⽐例缩⼩:所有尺⼨和电压都必须在通过设计模型应⽤时统⼀缩⼩。

第四章硅和硅⽚制备9、⽤来做芯⽚的⾼纯硅称为半导体级硅(semiconductor-grade silicon, SGS)或电⼦级硅西门⼦⼯艺:1.⽤碳加热硅⽯来制备冶⾦级硅SiC(s)+SiO2(s) Si(l)+SIO(g)+CO(g)2.将冶⾦级硅提纯以⽣成三氯硅烷Si(s)+3HCl(g) SiHCl3(g)+H2(g)3.通过三氯硅烷和氢⽓反应来⽣成SGS SiHCl3(g)+H2(g) Si(s)+3HCl(g)10、单晶硅⽣长:把多晶块转变成⼀个⼤单晶,并给予正确的定向和适量的N型或P型掺杂,叫做晶体⽣长。

半导体工艺及芯片制造复习资料简答题与答案

半导体工艺及芯片制造复习资料简答题与答案

半导体工艺及芯片制造复习资料简答题与答案第一章、半导体产业介绍1 .什么叫集成电路?写出集成电路发展的五个时代及晶体管的数量?(15分)集成电路:将多个电子元件集成在一块衬底上,完成一定的电路或系统功能。

集成电路芯片/元件数 无集成1 小规模(SSI )2到50 中规模(MSI )50到5000 大规模(LSI )5000到10万 超大规模(VLSI ) 10万至U100万 甚大规模(ULSI ) 大于100万 产业周期1960年前 20世纪60年代前期 20世纪60年代到70年代前期 20世纪70年代前期到后期 20世纪70年代后期到80年代后期 20世纪90年代后期到现在2 .写出IC 制造的5个步骤?(15分)Wafer preparation (硅片准备)Wafer fabrication (硅片制造)Wafer test/sort (硅片测试和拣选)Assembly and packaging (装配和封装)Final test (终测)3 .写出半导体产业发展方向?什么是摩尔定律?(15分)发展方向:提高芯片性能一提升速度(关键尺寸降低,集成度提高,研发采用新材料),降低功耗。

提高芯片可靠性一严格控制污染。

降低成本——线宽降低、晶片直径增加。

摩尔定律指:IC 的集成度将每隔一年翻一番。

1975年被修改为:IC 的集成度将每隔一年半翻一番。

4 .什么是特征尺寸CD ? (10分)最小特征尺寸,称为关键尺寸(Critical Dimension, CD ) CD 常用于衡量工艺难易的标志。

5.什么是 More moore 定律和 More than Moore 定律?(10 分)“More Moore”指的是芯片特征尺寸的不断缩小。

从几何学角度指的是为了提高密度、性能和可靠性在晶圆水平和垂直方向上的特征尺寸的继续缩小。

与此关联的3D结构改善等非几何学工艺技术和新材料的运用来影响晶圆的电性能。

第一章半导体基础知识

第一章半导体基础知识

第一章半导体基础知识〖本章主要内容〗本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。

首先介绍构成PN结的半导体材料、PN结的形成及其特点。

其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。

然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。

〖本章学时分配〗本章分为4讲,每讲2学时。

第一讲常用半导体器件一、主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。

半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9Ω∙cm。

典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。

半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。

2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。

制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。

在热力学温度零度和没有外界激发时,本征半导体不导电。

3、半导体的本征激发与复合现象当导体处于热力学温度0K时,导体中没有自由电子。

当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。

这一现象称为本征激发(也称热激发)。

因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。

游离的部分自由电子也可能回到空穴中去,称为复合。

在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。

4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。

中等职业学校半导体专业教学指导方案公开课教案教学设计课件资料

中等职业学校半导体专业教学指导方案公开课教案教学设计课件资料

中等职业学校半导体专业教学指导方案公开课教案教学设计课件资料第一章:半导体基础知识1.1 半导体材料的特性介绍半导体材料的种类(硅、锗等)解释半导体的电导特性及其原因讨论半导体的能带结构1.2 半导体器件的基本原理介绍PN结的形成及特性解释二极管、晶体管等半导体器件的工作原理探讨半导体器件的应用领域第二章:半导体器件的制造工艺2.1 晶圆制造工艺介绍晶圆的生长、切割和抛光过程解释光刻、蚀刻等基本工艺步骤探讨晶圆制造中的质量控制和成本效益2.2 半导体器件的结构与制造分析不同类型半导体器件的结构特点讨论半导体器件的制造工艺流程探讨半导体器件制造中的关键技术问题和解决方案第三章:半导体集成电路3.1 集成电路的基本概念介绍集成电路的分类(模拟、数字、混合信号等)解释集成电路的优点及其在电子技术中的应用探讨集成电路的发展趋势3.2 集成电路的制造工艺分析集成电路的制造工艺流程讨论集成电路制造中的关键工艺步骤和技术难题探讨集成电路制造的挑战和发展方向第四章:半导体材料与器件的测试4.1 半导体材料测试介绍半导体材料的电学、光学和结构性质测试方法分析半导体材料测试中的关键参数及其意义探讨半导体材料测试的实验操作技巧4.2 半导体器件测试分析半导体器件的电学性能测试方法讨论半导体器件测试中的关键参数及其评价标准探讨半导体器件测试的实验操作技巧和测试设备的选择第五章:半导体应用技术5.1 半导体器件在电子设备中的应用分析半导体器件在各种电子设备中的应用实例讨论半导体器件在电子设备中的性能优势及其作用探讨半导体器件在新型电子设备中的应用前景5.2 半导体集成电路在电子产品中的应用介绍半导体集成电路在各种电子产品中的应用实例分析半导体集成电路在电子产品中的性能优势及其作用探讨半导体集成电路在新型电子产品中的应用前景第六章:半导体器件的应用与设计6.1 半导体二极管的应用与设计介绍二极管的特性及应用领域学习二极管的基本电路及其应用电路设计探讨二极管在现代电子技术中的重要作用6.2 半导体晶体管的应用与设计解释晶体管的工作原理及其特性学习晶体管的基本电路及其应用电路设计探讨晶体管在现代电子技术中的重要作用第七章:半导体集成电路设计7.1 模拟集成电路设计介绍模拟集成电路的基本概念及其设计流程学习模拟集成电路中的关键模块设计探讨模拟集成电路在现代电子技术中的应用7.2 数字集成电路设计介绍数字集成电路的基本概念及其设计流程学习数字集成电路中的关键模块设计探讨数字集成电路在现代电子技术中的应用第八章:半导体器件的封装与组装8.1 半导体器件的封装介绍半导体器件封装的基本概念及其类型学习封装技术的发展及其在半导体器件中的应用探讨封装技术在半导体器件性能提升中的作用8.2 半导体器件的组装介绍半导体器件组装的基本概念及其流程学习半导体器件组装技术及其应用探讨组装技术在半导体器件性能提升中的作用第九章:半导体技术的未来发展9.1 新型半导体材料的研究与发展介绍新型半导体材料的研究现状及其发展前景学习新型半导体材料在电子技术中的应用探讨新型半导体材料对电子技术发展的影响9.2 半导体器件技术的创新与发展介绍半导体器件技术的创新及其发展前景学习半导体器件技术在电子技术中的应用探讨半导体器件技术对电子技术发展的影响第十章:半导体产业的现状与发展趋势10.1 半导体产业的现状分析全球半导体产业的分布及其竞争格局学习我国半导体产业的发展现状及其挑战探讨半导体产业的发展策略及其政策环境10.2 半导体产业的发展趋势分析半导体产业的发展趋势及其影响因素学习半导体产业的技术发展趋势探讨半导体产业在未来的发展方向及其机遇重点和难点解析一、半导体基础知识重点和难点解析:半导体的电导特性及其原因,能带结构的理解。

半导体行业分析范文

半导体行业分析范文

半导体行业分析范文
一、行业概况
半导体行业指的是采用半导体材料制造电子产品的行业。

半导体是将
导电特性混合在一起来工作的硅基材料,可以安装在电子电路中以完成各
种电子功能。

半导体行业几乎涵盖了所有电子产品的产业链,从主板到嵌
入式处理器,从显示器到电源,从通信系统到软件,半导体行业几乎领先
于整个电子产品行业的发展。

在现代经济领域,半导体行业一直拥有较高的市场份额,市场份额占
全球总量的80%以上。

技术发展的不断进步,满足人们对更快、更好产
品的需求,推动了半导体行业的迅速发展。

由于半导体行业非常庞大,参
与者众多,因此很难处理定价,存在着巨额利润空间,市场竞争激烈。

二、行业发展趋势
1、技术创新
(1)技术的改进:在半导体工艺技术方面,各国积极研发工艺技术,更加集成化、更小尺寸。

(2)芯片的多功能化:传统芯片仅用于其中一特定用途。

第一章常用半导体器件 (2)

第一章常用半导体器件 (2)

Cb
• d
S
式中ε是介质常数,S是PN结的面积,d是PN结的宽度。
❖ 扩散电容Cd
Cd是PN结正向电压变化时, 多数载流子在扩散过程中积累 引起的。反向偏置时,以扩散 电容Cd为主。
PN结正偏时,多数载流子扩 散到对方成为对方区域中的“少 子” (称为“非平衡少子”)这 些少子在正偏电压变化时,也有 堆积与泄放的过程。
+4
+4
+4
电流是电子电流和空穴电流之和,
(而导体只有自由电子导电)。
图 1.1.2 电子-空穴对的产生和空穴的移动
在本征半导体中不断地进行着激发与复合 两种相反的过程, 当温度一定时, 两种状态 达到动态平衡,即本征激发产生的电子-空穴对, 与复合的电子-空穴对数目相等,这种状态称为 动态平衡状态(热平衡)。 半导体中自由 电子和空穴的多少分别用浓度(单位体积中载 流子的数目)ni和pi来表示。处于热平衡状态 下的本征半导体,其载流子的浓度是一定的, 并且自由电子的浓度和空穴的浓度相等。
第一章 常用半导体器件
1.1 半导体的基本知识 1.2 半导体二极管 1.3 双极型晶体管 1.4 场效应管
有关半导体的基本概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
§ 1.1 半导体基础知识
自然界的物质按其导电能力可分为导体、半导 体和绝缘体三类。常用的半导体材料有硅(Si)和 锗(Ge)。半导体导电能力介于导体和绝缘体之间。
1.2.4. 二极管的等效电路
(a)理想二极管
(b)正向导通时端电压为常量 (c)正向导通时端电压与电流成线性关系
图1.2.4由伏安特性折线化得到的等效电路

第一章半导体器件基础知识

第一章半导体器件基础知识

江西应用技术职业学院
16
本章概述
第一节 第二节 第三节 第四节 第五节
第一章 半导体器件基础知识
2. 最高反向工作电压 UR
工作时允许加在二极管两端的反向电压值。通常将击穿电
压 UBR 的一半定义为 UR 。


3. 反向电流 IR

通常希望 IR 值愈小愈好。
半 导
4. 最高工作频率 fM
体 二
如果给PN外加反向电压,即P区接电源的负极,N区接电源的
正极,称为PN结反偏,如图所示。
外加电压在PN结上所形成的外电场与PN结内电场的方向相同, 第
增强了内电场的作用,破坏了原有的动态平衡,使PN结变厚,加 强了少数载流子的漂移运动,由于少数载流子的数量很少,所以 只有很小的反向电流,一般情况下可以忽略不计。这时称PN结为
江西应用技术职业学院
22
本章概述
第一节 第二节 第三节 第四节 第五节
第一章 半导体器件基础知识
2.光电二极管 光电二极管又称光敏二极管,是一种将光信号转换为电信号的 特殊二极管(受光器件)。光电二极管的符号如图所示。
受光面
受光面




光电二极管工作在反向偏置下,无光照时,流过光电二极管的电 导

第五节
击穿并不意味管子损坏,若控制击穿电流,电
压降低后,还可恢复正常。
江西应用技术职业学院
15
第一章 半导体器件基础知识
三、温度对二级管特性的影响
本章概述
1.温度升高1℃,硅和锗二极管导通时的正向压降UF将
减小2.5mv左右。
第一节
2.温度每升高10℃,反向电流增加约一倍。

第1章半导体器件

第1章半导体器件
击穿并不意味着管子一定要损坏,如果我们采取适 当的措施限制通过管子的电流,就能保证管子不因过 热而烧坏。如稳压管稳压电路中一般都要加限流电阻 R,使稳压管电流工作在Izmax和Izmin的范围内。
在反向击穿状态下,让通过管子的电流在一定范围 内变化,这时管子两端电压变化很小,稳压二极管就 是利用这一点达到“稳压”效果的。
2 何谓杂质半 导体?N型半导 体中的多子是 什么?少子是 什么?
3 P型半导体中的空 穴多于自由电子,是 否意味着带正电?N 型半导体是否带负 电?
10
1.1 半导体基础知识
g. PN结及其形成过程
杂质半导体的导电能力虽然比本征半导体极大增强,但它 们并不能称为半导体器件。
空间电荷区
P区
在一块晶片的两端分别注入三价 元素硼和五价元素磷
内电场 外电场
V
IS
13
1.1 半导体基础知识
i. PN结的电流方程
一般地:
qu
i I s (e kT 1)
可以简化为,
u
i

I
I
s
(eUT
1)
当T=300K时,
u
i I s (e 0.026 1)
14
1.1 半导体基础知识
j. PN结的伏安特性曲线
当u>> UT时,
u
i IseUT
反向截止区内反向饱和电流很小,可近似视为零值。
外加反向电压超过反向击穿电压UBR时,反向电流突然增大,二 极管失去单向导电性,进入反向击穿区。
23
1.2 半导体二极管
正向导通区的讨论
I (mA) 60
当外加正向电压大于死区电压时,二 极管由不导通变为导通,电压再继续增

半导体器件物理教案课件

半导体器件物理教案课件

半导体器件物理教案课件PPT第一章:半导体简介1.1 半导体的概念与分类介绍半导体的定义解释N型和P型半导体讲解半导体材料的分类及性质1.2 半导体的导电特性说明半导体的导电原理探讨半导体导电性的影响因素分析N型和P型半导体的导电特性第二章:PN结的形成与特性2.1 PN结的形成讲解PN结的形成过程说明PN结的形成机制探讨PN结的平衡状态2.2 PN结的特性分析PN结的伏安特性讲解PN结的击穿现象探讨PN结的势垒结构和电荷分布第三章:二极管的结构与特性3.1 二极管的结构介绍二极管的结构及组成讲解P型和N型半导体对接形成二极管的过程探讨二极管的掺杂浓度和材料选择3.2 二极管的特性分析二极管的伏安特性讲解二极管的正向和反向导通条件探讨二极管的动态响应特性和温度特性第四章:二极管的应用4.1 整流电路讲解二极管整流电路的原理分析整流电路的电压和电流波形探讨整流电路的效率和输出特性4.2 滤波电路介绍二极管滤波电路的原理分析滤波电路的频率响应特性探讨滤波电路的应用场景和效果4.3 稳压电路讲解二极管稳压电路的原理分析稳压电路的稳压特性探讨稳压电路的选用和设计要点第五章:晶体三极管的结构与特性5.1 晶体三极管的结构介绍晶体三极管的结构及组成讲解PNP和NPN型晶体三极管的结构特点探讨晶体三极管的制造工艺和材料选择5.2 晶体三极管的特性分析晶体三极管的伏安特性讲解晶体三极管的工作原理探讨晶体三极管的电流放大效应和输出特性第六章:晶体三极管的应用6.1 放大电路讲解晶体三极管放大电路的原理分析放大电路的电压和电流波形探讨放大电路的输入和输出特性6.2 开关电路介绍晶体三极管开关电路的原理分析开关电路的转换特性探讨晶体三极管在开关电路中的应用和选择第七章:场效应晶体管的结构与特性7.1 场效应晶体管的结构介绍场效应晶体管的结构及组成讲解MOSFET和JFET的结构特点探讨场效应晶体管的制造工艺和材料选择7.2 场效应晶体管的特性分析场效应晶体管的伏安特性讲解场效应晶体管的工作原理探讨场效应晶体管的电流放大效应和输出特性第八章:集成电路的基本原理8.1 集成电路的构成介绍集成电路的构成要素讲解集成电路的制造工艺探讨集成电路的分类和应用领域8.2 集成电路的设计与制造分析集成电路的设计流程讲解集成电路的制造步骤探讨集成电路的设计原则和制造技术第九章:常用集成电路应用实例9.1 放大集成电路讲解放大集成电路的原理与应用分析放大集成电路的性能指标探讨放大集成电路在实际电路中的应用实例9.2 数字集成电路介绍数字集成电路的原理与应用分析数字集成电路的逻辑功能探讨数字集成电路在数字系统中的应用实例第十章:半导体器件的发展与新技术10.1 半导体器件的发展历程回顾半导体器件的发展历程分析不期半导体器件的特点和突破探讨半导体器件未来发展趋势10.2 半导体新技术介绍半导体新技术的研究方向分析半导体新技术的应用前景探讨半导体新技术对半导体产业的影响重点和难点解析重点环节1:半导体的导电特性需要重点关注半导体导电原理和影响导电性的因素,因为这是理解后续半导体器件工作的基础。

《半导体物理第一章》课件

《半导体物理第一章》课件

3
1.3.3 pn结的I-V特性
详细解释pn结的I-V特性曲线,包括正向和反向电流的变化。
1.4 光电应及其在太 阳能电池中的应用。
2 1.4.2 光电二极管
阐述光电二极管的原理 及其在通信和显示技术 中的应用。
3 1.4.3 光电池
讨论光电池的构造、工 作原理和应用领域。
1.5 半导体器件的制作技术
晶体生长
介绍半导体晶体生长方法和技 术,如Czochralski法和液相外 延。
晶体制备
讨论半导体晶体的切割、抛光 和清洗等制备工艺。
制作半导体器件
概述半导体器件制作的关键步 骤,包括光刻、扩散和金属沉 积等工艺。
1.6 总结与展望
1.6.1 半导体物理的应用前景
评估半导体物理在电子技术、通信和能源领域 的未来发展。
1.1 半导体材料的基本性质
半导体的定义
介绍半导体的定义,以及其与导体和绝缘体的区别。
半导体的基本性质
探讨半导体的导电性、禁带宽度、载流子等基本特性。
半导体的能带结构
解释能带理论,讨论导带与禁带之间的能量差异对电子行为的影响。
1.2 掺杂半导体
1.2.1 掺杂的概念
介绍半导体掺杂的概念,包 括n型和p 型半导体的区别。
《半导体物理第一章》 PPT课件
An engaging and comprehensive introduction to the fundamental properties of semiconductor materials and their applications in electronic devices.
1.2.2 正、负离子掺 杂
说明正、负离子掺杂对半导 体电子结构的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•器件尺寸下降,芯片尺寸增加 •互连层数增加 •掩膜版数量增加 •工作电压下降
等比例缩小原则 Scaling down
器件的等比例缩小原则
Constant-field Scaling-down Principle
器件几何尺寸:Lg,Wg,tox,xj →×1/k
衬底掺杂浓度N
→×k
电压Vdd ⇒ 器件速度
❖Intel 公司第一代CPU—4004 1971
电路规模:2300个晶体管 生产工艺:10um 最快速度:108KHz
❖Intel 公司CPU—386TM
电路规模:275,000个晶体管 生产工艺:1.5um 最快速度:33MHz
❖Intel 公司最新一代CPU—Pentium® 4
电路规模:4千2百万个晶体管 生产工艺:0.13um 最快速度:2.4GHz
Year of introduction 1971 1972 1974 1978 1982 1985 1989 1993 1997 1999 2000
Transistors 2,250 2,500 5,000
29,000 120,000 275,000 1,180,000 3,100,000 7,500,000 24,000,000 42,000,000
集成电路器件与工艺
参考书目
半导体器件物理与工艺 施敏 苏州大学出版社 微电子材料与制程 陈力俊 复旦大学出版社 硅超大规模集成电路工艺技术--理论实践与模型 《硅集成电路工艺基础》 北京大学出版社 《芯片制造—半导体工艺制程实用教程》(第四版),
电子工业出版社 半导体技术天地 集成电路教育网
102-103
LSI (1971)
103-105
VLSI (1980)
105-107
特征线宽(um)
栅氧化层厚度 (nm)
结深(um)
芯片面积 (mm2)
被加工硅片直 径(mm)
10-5 120-100
2-1.2 <10 50-75
5-3 100-40 1.2-0.5 10-25 100-125
3-1 40-15 0.5-.02 25-50 150
双极-MOS(BiMOS)集成电路:是同时包括双极 和MOS晶体管的集成电路。综合了双极和MOS 器件两者的优点,但制作工艺复杂。
课程成绩
30%:平时成绩(作业、出勤、课上表现、 笔记:不定期抽查)
70%:期末考试 考试内容以上课ppt和作业为主
第一章 前言
1956年的诺贝尔物理学奖
第一个点接触式晶体管 1947 -- by Bell Lab J. Bardeen
W. Brattain
W. Shockley
1947年圣诞前夕,贝尔实验室的科学家肖 克利(William Shockley)和他的两助手布 拉顿(Water Brattain 、巴丁(John bardeen)在贝尔实验室工作时发明了世界 上第一个点接触型晶体管
摩尔定律(Moore’s Law)
硅集成电路二年(或二到三年)为一代,集成度翻两番,工艺 线宽约缩小30%,芯片面积约增1.5倍,IC工作速度提高1.5倍
DRAM
半导体电子:全球最大的工业
Explosive Growth of Computing Power
1st electronic computer ENIAC (1946)
点接触晶体管:基片是N型锗,发射 极和集电极是两根金属丝。这两根 金属丝尖端很细,靠得很近地压在 基片上。金属丝间的距离:
200~250μm
第一章 前言
杰克-基尔比
1958年时,集 成电路是如此 的粗糙!!
Ti 公司的Kilby 12个器件,Ge 晶体
第一章 前言
(Fairchild Semi.)
Si IC
第一个单片集成电路
简短回顾
➢Bardeen, Brattain, Shockley, 第一个锗双极晶体管1947, Bell Labs. Nobel prize ➢Atalla, 第一个Si基MOSFET , 1958, Bell Labs. ➢Kilby (TI) & Noyce (Fairchild),发明集成电路, Nobel prize ➢平面工艺, Jean Hoerni, 1960, Fairchild ➢第一个CMOS 电路, 1963, Fairchild ➢“Moore’s law” coined 1965, Fairchild ➢Dennard, 定标法则, 1974, IBM ➢First Si technology roadmap published 1994, USA
ITRS— International Technology Roadmap for Semiconductors http:/// ❖预言硅主导的IC技术蓝图
由欧洲电子器件制造协会(EECA)、欧洲半导体工业协会(ESIA)、日 本电子和信息技术工业协会(JEITA)、韩国半导体工业协会(KSIA)、 台湾半导体工业协会(TSIA)和半导体工业协会(SIA)合作完成。
1st computer(1832)
Vacuum Tuber
1st transistor 1947
Pentium IV
Macroelectronics Microelectronics Nanoelectronics
❖ IC在各个发展阶段的主要特征数据
发展 阶段
主要特征 元件数/芯片
MSI (1966)
→×1/k →×k
芯片密构类型 集成度 电路的功能 应用领域
按器件结构类型分类
双极集成电路:主要由双极型晶体管构成 NPN型双极集成电路 PNP型双极集成电路
金属-氧化物-半导体(MOS)集成电路:主要由 MOS晶体管(单极型晶体管)构成 NMOS PMOS CMOS(互补MOS)
ULSI (1990)
107-108 <1
15-10
0.2-.01 50-100
>150
❖Intel 公司CPU芯片集成度的发展
Intel’s CPU 4004 8008 8080 8086 286 386™ processor 486™ DX processor Pentium® processor Pentium II processor Pentium III processor Pentium 4 processor
相关文档
最新文档