碰撞与动量守恒专题训练
专题 动量守恒定律中的碰撞问题(高三)
专题:碰撞中的动量守恒碰撞1.碰撞指的是物体间相互作用持续时间很短,而物体间相互作用力很大的现象.在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分,中学物理只研究正碰的情况.2.一般的碰撞过程中,系统的总动能要有所减少,若总动能的损失很小,可以略去不计,这种碰憧叫做弹性碰撞.其特点是物体在碰撞过程中发生的形变完全恢复,不存在势能的储存,物体系统碰撞前后的总动能相等。
若两物体碰后粘合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.其特点是发生的形变不恢复,相碰后两物体不分开,且以同一速度运动,机械能损失显著。
在碰撞的一般情况下系统动能都不会增加(有其他形式的能转化为机械能的除外,如爆炸过程),这也常是判断一些结论是否成立的依据.3.弹性碰撞题目中出现:“碰撞过程中机械能不损失”.这实际就是弹性碰撞. 设两小球质量分别为m 1、m 2,碰撞前后速度为v 1、v 2、v 1/、v 2/,碰撞过程无机械能损失,求碰后二者的速度. 根据动量守恒 m 1 v 1+m 2 v 2=m 1 v 1/+m 2 v 2/ ……①根据机械能守恒 ½m 1 v 12十½m 2v 22= ½m 1 v 1/2十½m 2 v 2/2 ……②由①②得v 1/= ()21221212m m v m v m m ++-,v 2/= ()21112122m m v m v m m ++-仔细观察v 1/、v 2/结果很容易记忆, 当v 2=0时v 1/= ()21121m m v m m +-,v 2/= 21112m m v m + ①当v 2=0时;m 1=m 2 时v 1/=0,v 2/=v 1 这就是我们经常说的交换速度、动量和能量. ②m 1>>m 2,v /1=v 1,v 2/=2v 1.碰后m 1几乎未变,仍按原来速度运动,质量小的物体将以m 1的速度的两倍向前运动。
高考物理模拟题训练碰撞与动量守恒专题04子弹打木块模型含解析
专题04 子弹打木块模型1.(2017福建霞浦一中期中)如图所示,在光滑水平面上有一辆质量M=8kg的平板小车,车上有一个质量m=1.9 kg的木块(木块可视为质点),车与木块均处于静止状态.一颗质量m0=0.1kg 的子弹以v0=200m/s的初速度水平向左飞,瞬间击中木块并留在其中.已知木块与平板之间的动摩擦因数μ=0.5,(g=10m/s2)求:(1)子弹射入木块后瞬间子弹和木块的共同速度(2)若木块不会从小车上落下,求三者的共同速度(3)若是木块刚好不会从车上掉下,则小车的平板至少多长?【解答】解:(1)子弹射入木块过程系统动量守恒,以水平向左为正,则由动量守恒有:m0v0=(m0+m)v1,解得:v1===10m/s;(2)子弹、木块、小车系统动量守恒,以向左为正方向,由动量守恒定律得:(m0+m)v1=(m0+m+M)v,解得:v===2m/s;(3)子弹击中木块到木块相对小车静止过程,由能量守恒定律得:(m0+m)v12=μ(m0+m)gL+(m0+m+M)v2,解得:L=8m;答:(1)子弹射入木块后瞬间子弹和木块的共同速度为10m/s.(2)若木块不会从小车上落下,三者的共同速度为2m/s.(3)若是木块刚好不会从车上掉下,则小车的平板长度至少为8m.2 . 如图所示,在光滑水平地面上的木块M紧挨轻弹簧靠墙放置。
子弹m以速度v0沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩劲度系数未知弹簧至弹簧最短.已知子弹质量为m,木块质量是子弹质量的9倍,即M=9m;弹簧最短时弹簧被压缩了△x;劲度系数为k、形变量为x的弹簧的弹性势能可表示为E p=12kx2。
求:(i)子弹射入木块到刚相对于木块静止的过程中损失的机械能;(ii)弹簧的劲度系数。
【名师解析】(1)设子弹射入木块到刚相对于木块静止时的速度为v,由动量守恒定律,mv0=(m+M)v,解得v= v0/10。
设子弹射入木块到刚相对于木块静止的过程中损失的机械能为△E,由能量守恒定律:△E=12mv02-12(m+M)v2代入数据得△E =2920 mv。
高中物理动量守恒定律专项训练100(附答案)
最新高中物理动量守恒定律专项训练100( 附答案 )一、高考物理精讲专题动量守恒定律1.如下图,在水平川面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰巧与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【分析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,以后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,所以两物体在这段时间均匀速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)依据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.如下图,一小车置于圆滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg, AO 部分粗拙且长L=2m,动摩擦因数μ=0.3,OB部分圆滑.另一小物块a.放在车的最左端,和车一同以 v0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬时速度变成零,但不与挡板粘连.已知车 OB 部分的长度大于弹簧的自然长度,弹簧一直处于弹性限度内. a、 b 两物块视为质点质量均为 m=1kg,碰撞时间极短且不粘连,碰后一同向右运动.(取 g=10m/s2)求:(1)物块 a 与 b 碰后的速度大小;(2)当物块 a 相对小车静止时小车右端 B 到挡板的距离;(3)当物块 a 相对小车静止时在小车上的地点到O 点的距离.【答案】 (1)1m/s (2)(3) x=0.125m【分析】试题剖析:(1)对物块 a,由动能定理得:代入数据解得 a 与 b 碰前速度:;a、 b 碰撞过程系统动量守恒,以 a 的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分别, a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车 B 端距挡板的距离:;(3)由能量守恒得:,解得滑块 a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。
专题检测卷(17) 专题九碰撞与动量守恒 近代物理初步
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
专题检测卷(十七)碰撞与动量守恒近代物理初步(45分钟100分)1.(16分)(1)如图所示,小车M由光滑的弧形段AB和粗糙的水平段BC组成,静止在光滑水平面上。
当小车固定时,从A点由静止滑下的物块m到C点恰好停止。
如果小车不固定,物块m仍从A点静止滑下( )A.还是滑到C点停住B.滑到BC间某处停住C.会冲出C点落到车外D.上述三种情况都有可能=0.4 kg,开始时都静止于光滑水平面上,(2)两木板M小物块m=0.1 kg以初速度v=10 m/s滑上M1的表面,最后停在M2上时速度为v2=1.8 m/s,求:①最后M1的速度v1;②在整个过程中克服摩擦力所做的功。
2.(17分)(2012·天津高考)(1)下列说法正确的是( )A.采用物理或化学方法可以有效地改变放射性元素的半衰期B.由玻尔理论知道氢原子从激发态跃迁到基态时会放出光子C.从高空对地面进行遥感摄影是利用紫外线良好的穿透能力D.原子核所含核子单独存在时的总质量小于该原子核的质量(2)如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h,坡道底端与台面相切。
小球A从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半。
两球均可视为质点,忽略空气阻力,重力加速度为g。
求:①小球A刚滑至水平台面的速度v A;②A、B两球的质量之比m A∶m B。
3.(17分)(2013·宿迁一模)(1)下列说法中正确的是( )A.光电效应现象说明光具有粒子性B.普朗克在研究黑体辐射问题时提出了能量子假说C.玻尔建立了量子理论,成功解释了各种原子发光现象D.运动的宏观物体也具有波动性,其速度越大物质波的波长越大(2)如图所示,一水平面上P点左侧光滑,右侧粗糙,质量为m的劈A在水平面上静止,上表面光滑,A轨道右端与水平面平滑连接,质量为M的物块B恰好放在水平面上P点,物块B与水平面的动摩擦因数为μ=0.2。
山东省2021高考物理一轮复习 专题七 碰撞与动量守恒精练(含解析)
专题七碰撞与动量守恒【考情探究】课标解读考情分析备考指导考点内容动量、动量定理1。
理解冲量和动量。
2.通过理论推导和实验,理解动量定理,能用动量定理解释生产生活中的有关现象。
动量守恒定律是高考命题的重点和热点,常常与牛顿运动定律、能量守恒定律等知识综合考查。
常见的考查形式有:(1)动量定理在流体中的应用;(2)满足动量守恒定律条件的分析判断,对单一过程进行简单应用;(3)在碰撞、反冲等问题中,综合应用动量守恒定律、动量定理、能量守恒定律和牛顿运动定律。
1。
在学生初步形成的运动与相互作用观念和能量观念的基础上,引导学生通过研究碰撞现象拓展对物理世界的认识和理解。
2。
通过探究碰撞过程中的守恒量,进一步发展学生运动与相互作用观念和能量观念,使其了解物理规律具有适用范围和条件。
3。
通过实验探究和理论推导,让学生经历科学论证过程,理解动量定理的物理实质与牛顿第二定律的一致性.4.能从理论推导和实验验证的角度,理解动量守恒定律,深化对物体之间相互作用规律的理解。
5.能用动量和机械能的知识分析和解释机械运动现象,解决一维碰撞问题。
动量守恒定律及其应用1.通过理论推导和实验,理解动量守恒定律,能用动量守恒定律解释生产生活中的有关现象。
2.知道动量守恒定律的普适性.3.通过实验,了解弹性碰撞和非弹性碰撞的特点。
4.定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象。
动量和能量的综合1。
能从牛顿运动定律、动量守恒定律、能量守恒定律思考物理问题.2.体会用守恒定律分析物理问题的方法,体会自然界的和谐与统一.【真题探秘】基础篇固本夯基【基础集训】考点一动量、动量定理1。
(多选)为了进一步探究课本中的迷你小实验,某同学从圆珠笔中取出轻弹簧,将弹簧一端固定在水平桌面上,另一端套上笔帽,用力把笔帽往下压后迅速放开,他观察到笔帽被弹起并离开弹簧向上运动一段距离。
不计空气阻力,忽略笔帽与弹簧间的摩擦,在弹簧恢复原长的过程中()A。
《第三节 动量守恒定律》(同步训练)高中物理选择性必修 第一册_粤教版_2024-2025学年
《第三节动量守恒定律》同步训练(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、在一个完全弹性碰撞中,两物体碰撞前后的动量变化量大小相等,方向相反。
以下说法正确的是:A. 两物体的质量相等B. 两物体的速度相等C. 碰撞前后的系统总动量不变D. 碰撞前后的系统总动能增加2、一个质量为m的物体以速度v0水平抛出,不计空气阻力。
以下关于该物体运动的说法正确的是:A. 物体的水平速度v0会随时间逐渐减小B. 物体的垂直速度vy会随时间逐渐减小C. 物体的合速度v会随时间逐渐增大D. 物体的动量P会随时间逐渐增大3、一质量为m的物体以速度v向右运动,与静止在光滑水平面上的另一质量为2m 的物体相撞。
碰撞后,第一个物体以速度v/2向左运动,第二个物体以速度v/3向右运动。
根据动量守恒定律,碰撞前的总动量为:A. mvB. 3mv/2C. 2mvD. mv/34、一个质量为m的物体以速度v0向右运动,与一个质量为2m的物体在光滑水平面上相撞。
碰撞后,两个物体以相同的速度v向左运动。
根据动量守恒定律,碰撞前后的总动能分别为:A. mv0^2B. 2mv0^2C. mv0^2/2D. 4mv0^25、在一个完全非弹性碰撞中,两物体碰撞后的共同速度是(v),如果碰撞前两物体的速度分别为(v1)和(v2),则下列哪个关系是正确的?A.(v=v1+v2))B.(v=v1+v22)C.(v=12√2D.(v=√v12+v22)6、一个质量为(m)的物体在水平面上以速度(v)向东运动,与一个质量为(2m)的物体发生正碰。
如果碰撞后两物体以相同的速度(v′)向东运动,则碰撞过程中系统所受的合外力做的功为:A.(0)mv2)B.(12C.(mv2)D.(2mv2)7、在以下哪种情况下,系统的动量守恒?A. 系统内两个物体发生完全非弹性碰撞B. 系统内两个物体发生完全弹性碰撞C. 系统受到外力作用D. 系统内两个物体相互推离二、多项选择题(本大题有3小题,每小题6分,共18分)1、一个物体在水平方向上受到两个力的作用,这两个力的合力为零。
动量守恒定律10个模型最新模拟题精选训练
动量守恒的十种模型精选训练动量守恒定律是自然界中最普遍、最根本的规律之一,它不仅适用于宏观、低速领域,而且适用于微观、高速领域。
通过对最新高考题和模拟题研究,可归纳出命题的十种模型。
一.碰撞模型【模型解读】碰撞的特点是:在碰撞的瞬间,相互作用力很大,作用时间很短,作用瞬间位移为零,碰撞前后系统的动量守恒。
无机械能损失的弹性碰撞,碰撞后系统的动能之和等于碰撞前系统动能之和,碰撞后合为一体的完全非弹性碰撞,机械能损失最大。
例1. 如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间。
A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态。
现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞。
设物体间的碰撞都是弹性的。
针对训练题1.如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m 。
两物块与地面间的动摩擦因数均相同。
现使a 以初速度v 0向右滑动。
此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞。
重力加速度大小为g 。
求物块与地面间的动摩擦因数满足的条件。
2. 如下列图,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。
现让A 球以v 0=2 m/s 的速度向B 球运动,A 、B 两球碰撞后粘在一起继续向右运动并与C 球碰撞,C 球的最终速度v C =1 m/s 。
问:3.如图,小球a 、b 用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:4.水平光滑轨道AB 与半径为R=2m 竖直面内的光滑圆弧轨道平滑相接,质量为m=0.2kg 的小球从图示位置C(C 点与圆弧圆心的连线与竖直方向的夹角为60°)自静止开始滑下,与放在圆弧末端B 点的质量为M =13kg 的物体M 相碰时,每次碰撞后反弹速率都是碰撞前速率的11/12,设AB 足够长,那么m 与M 能够发生多少次碰撞?5.如下列图,质量均为M =lkg 的A 、B 小车放在光滑水平地面上,A 车上用轻质细线悬挂质量m =0.5kg 的小球。
动量守恒练习题碰撞与弹性问题
动量守恒练习题碰撞与弹性问题动量守恒练习题:碰撞与弹性问题动量守恒是物理学中一个重要的基本原理,用于描述各种碰撞和相互作用过程中动量的守恒特性。
本文将通过几个练习题来阐述碰撞和弹性问题中的动量守恒原理。
1. 两个小球的弹性碰撞假设有两个质量分别为m1和m2的小球,在一维情况下,它们以速度v1和v2相向运动,发生完全弹性碰撞。
我们需要求解碰撞之后两个小球的速度。
解析:根据动量守恒定律,碰撞前后总动量守恒,即m1v1 + m2v2 =m1v1' + m2v2',其中v1'和v2'分别是碰撞之后两个小球的速度。
根据动能守恒定律,碰撞前后总动能守恒,即(m1v1^2 + m2v2^2) / 2 = (m1v1'^2 + m2v2'^2) / 2。
由于发生完全弹性碰撞,动能守恒条件表示为(m1v1^2 + m2v2^2) = (m1v1'^2 + m2v2'^2)。
通过求解以上两个方程组,可以得到碰撞后两个小球的速度v1'和v2'。
2. 弹簧碰撞问题现假设有一个质量为m的小球以速度v撞向一个静止的质量为M 的小球。
两个小球之间通过弹簧连接,并假设弹簧的劲度系数为k。
求解两个小球碰撞后的速度。
解析:根据动量守恒定律,碰撞前后总动量守恒,即mv = mv' + Mv',其中v和v'分别为碰撞前和碰撞后小球的速度。
由于两个小球通过弹簧连接,在碰撞过程中弹簧发生变形,因此弹簧的势能产生了改变。
根据能量守恒定律,碰撞前后总机械能守恒,即1/2mv^2 = 1/2mv'^2 + 1/2Mv'^2 + 1/2kx'^2,其中x'表示弹簧伸长的距离。
通过求解以上两个方程组,可以得到碰撞后两个小球的速度v'。
3. 斜面上的碰撞问题考虑一个质量为m的小球以速度v沿着一个倾斜角度为α的光滑斜面滑下,在斜面底部与一个质量为M的小球碰撞,假设碰撞是完全弹性的。
高中物理经典:动量守恒定律的应用(碰撞) 经典例题
动量守恒定律应用(碰撞)授课内容:例题1、在光滑的水平面上有A、B两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为p A=5㎏·m/s,p B=7㎏·m/s,如图所示。
若两球发生正碰,则碰后两球的动量增量Δp A、Δp B可能是( )A、Δp A=3㎏·m/s,Δp B=3㎏·m/sB、Δp A=-3㎏·m/s,Δp B=3㎏·m/sC、Δp A=3㎏·m/s,Δp B=-3㎏·m/sD、Δp A=-10㎏·m/s,△p B=10㎏·m/s图一例题2、质量相同的三个小球,在光滑水平面上以相同的速度运动,分别与原来静止的三个小球A、B、C、相碰(a碰A,b碰B,c碰C).碰后a球继续沿原来方向运动;b球静止;c球被反弹而向后运动。
这时A、B、C三球中动量最大的是( )A、A球B、B球C、C球D、条件不足,无法判断例题3、在一条直线上相同运动的甲、乙两个小球,它们的动能相等,已知甲球的质量大于乙球的质量。
它们正碰后可能发生的情况是( )A、甲球停下,乙球反向运动B、甲球反向运动,乙球停下C、甲、乙两球都反向运动D、甲、乙两球都反向运动,且动能仍相等例题4、在光滑水平面上,动能为E0、动量的大小为p0的小钢球l与静止小钢球2发生碰撞.碰撞前后球l的运动方向相反。
将碰撞后球l的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2,则必有( )A、E1<E0B、p1<p0C、E2>E0D、p2>p0例题5、在光滑的水平导轨上有A、B两球,球A追卜并与球B正碰,碰前两球动量分别为p A=5㎏·m/s,p B=7㎏·m/s,碰后球B的动量p ’B=10㎏·m/s,则两球质量m A、m B的关系可能是( )A、m B=m AB、m B=2m AC、m B=4m AD、m B=6m A例题6、质量为m的小球A在光滑的水平面上以速度v与静止在光滑水平面上的质量为2m的小球B发生正碰,碰撞后,A球的动能变为原来的1/9,那么碰撞后B球的速度大小可能是( )A、13v B、23v C、49v D、89v例题7、如图所示,运动的球A在光滑水平面上与一个原来静止的球B 发生弹性碰撞,A、B质量关系如何,可以实现使B球获得(1)最大的动能;(2)最大的速度;(3)最大的动量。
有关动量守恒定律的综合应用(原卷版)-2023年高考物理压轴题专项训练(全国通用)
压轴题11有关动量守恒定律的综合应用考向一/计算题:与碰撞模型有关的动量守恒定律的综合应用考向二/计算题:与板块模型有关的动量守恒定律的综合应用考向三/计算题:与弹簧模型有关的动量守恒定律的综合应用要领一:弹性碰撞和完全非弹性碰撞基本规律(一)弹性碰撞1.碰撞三原则:(1)动量守恒:即p 1+p 2=p 1′+p 2′.(2)动能不增加:即E k1+E k2≥E k1′+E k2′或p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2.(3)速度要合理①若碰前两物体同向运动,则应有v 后>v 前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v 前′≥v 后′。
②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。
2.“动碰动”弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m 1和m 2,碰前速度为v 1,v 2,碰后速度分别为v 1ˊ,v 2ˊ,则有:''11221112m v m v m v m v +=+(1)22'2'21122111211112222m v m v m v m v +=+(2)联立(1)、(2)解得:v 1’=,v 2’=.特殊情况:若m 1=m 2,v 1ˊ=v 2,v 2ˊ=v 1.3.“动碰静”弹性碰撞的结论两球发生弹性碰撞时应满足动量守恒和机械能守恒。
以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有m 1v 1=m 1v 1′+m 2v 2′(1)12m 1v 21=12m 1v 1′2+12m 2v 2′2(2)解得:v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2结论:(1)当m 1=m 2时,v 1′=0,v 2′=v 1(质量相等,速度交换)(2)当m 1>m 2时,v 1′>0,v 2′>0,且v 2′>v 1′(大碰小,一起跑)(3)当m 1<m 2时,v 1′<0,v 2′>0(小碰大,要反弹)v 1v 2v 1’ˊv 2’ˊm 1m 2(4)当m 1≫m 2时,v 1′=v 0,v 2′=2v 1(极大碰极小,大不变,小加倍)(5)当m 1≪m 2时,v 1′=-v 1,v 2′=0(极小碰极大,小等速率反弹,大不变)(二)完全非弹性碰撞碰后物体的速度相同,根据动量守恒定律可得:m 1v 1+m 2v 2=(m 1+m 2)v 共(1)完全非弹性碰撞系统损失的动能最多,损失动能:ΔE k =½m 1v 12+½m 2v 22-½(m 1+m 2)v 共2(2)联立(1)、(2)解得:v 共=;ΔE k =要领二:与板块模型有关的动量守恒定律的综合应用要领三:与弹簧模型有关的动量守恒定律的综合应用条件与模型v 1v 2v 共m 1m 2①m A =m B(如:m A =1kg ;m B =1kg )②m A >m B(如:m A =2kg ;m B =1kg )③m A <m B(如:m A =1kg ;m B =2kg )规律与公式情况一:从原长到最短(或最长)时①()v m m v m B A A +=0;②()2201122A A B pm m v m m v E =++情况二:从原长先到最短(或最长)再恢复原长时①'2'10v m v m v m B A A +=;②2'2'2012111222A A B m v m v m v =+1.如图所示,9个完全相同的滑块静止在水平地面上,呈一条直线排列,间距均为L ,质量均为m ,与地面间的动摩擦因数均为μ,现给第1个滑块水平向右的初速度,滑块依次发生碰撞(对心碰撞),碰撞时间极短,且每次碰后滑块均粘在一起,并向右运动,且恰好未与第9个滑块发生碰撞。
弹性碰撞练习题研究物体之间的动量守恒和动能守恒
弹性碰撞练习题研究物体之间的动量守恒和动能守恒在物理学中,碰撞是研究物体之间相互作用的重要概念。
在许多碰撞问题中,动量守恒和动能守恒是常用的方法。
本文将通过几道弹性碰撞练习题,探讨物体间碰撞时动量和能量守恒的应用。
练习题一:两个物体A和B,质量分别为mA和mB,以速度vA和vB相对运动,它们碰撞后分别以v'A和v'B的速度继续运动。
假设碰撞为完全弹性碰撞,请计算碰撞前后物体的动量和能量。
解析:根据动量守恒定律,碰撞前后物体的总动量保持不变,即mA*vA + mB*vB = mA*v'A + mB*v'B。
根据动能守恒定律,碰撞前后物体的总动能保持不变,即0.5*mA*vA² + 0.5*mB*vB² = 0.5*mA*v'A² + 0.5*mB*v'B²。
通过以上两个方程,我们可以解得碰撞后物体的速度v'A和v'B。
通过动量和能量的计算,我们可以得到碰撞前后物体的状态。
练习题二:一个静止的物体A质量为mA,与一个运动物体B质量为mB发生完全弹性碰撞,碰撞后A和B的速度分别为v'A和v'B,请计算碰撞前物体B的速度vB。
解析:根据动量守恒定律,碰撞前后物体的总动量保持不变,即mA*0 + mB*vB = mA*v'A + mB*v'B。
根据以上方程,我们可以解得物体B的速度vB。
通过动量守恒定律,我们可以计算出碰撞前物体B的速度。
练习题三:两个相同质量的物体A和B以相反的方向以相同的速度v运动,它们发生完全弹性碰撞,碰撞后A和B的速度分别为v'A和v'B。
请计算碰撞前后系统的总动量和总动能。
解析:根据动量守恒定律,碰撞前后物体的总动量保持不变,即mA*v + mB*(-v) = mA*v'A + mB*v'B,即0 = mA*(v'A - v) + mB*(v'B + v)。
牛顿力学中的动量守恒与碰撞练习题及
牛顿力学中的动量守恒与碰撞练习题及解答牛顿力学中的动量守恒与碰撞练习题及解答1. 问题描述:一辆小汽车以20 m/s的速度行驶,质量为1500 kg。
它与一个质量为2500 kg的卡车发生碰撞,小汽车和卡车以10 m/s和15 m/s的速度相向运动,求碰撞前小汽车和卡车的动量以及碰撞后两者的动量。
2. 解答:在牛顿力学中,动量守恒原理指出,当系统内没有外力作用时,系统的总动量保持不变。
利用动量守恒原理,我们可以解题如下:碰撞前,小汽车和卡车的总动量为:p1 = m1 * v1 + m2 * v2其中,m1为小汽车的质量,v1为小汽车的速度,m2为卡车的质量,v2为卡车的速度。
代入已知数值,有:p1 = (1500 kg) * (20 m/s) + (2500 kg) * (-10 m/s)因为小汽车和卡车以相向运动,所以卡车的速度取负值。
计算得到碰撞前的总动量为:p1 = 30000 kg·m/s - 25000 kg·m/s = 5000 kg·m/s碰撞后,根据动量守恒原理,小汽车和卡车的总动量仍然保持不变。
设碰撞后小汽车和卡车的速度分别为v3和v4,有:p2 = m1 * v3 + m2 * v4代入已知数值,有:p2 = (1500 kg) * (10 m/s) + (2500 kg) * (-15 m/s)计算得到碰撞后的总动量为:p2 = 15000 kg·m/s - 37500 kg·m/s = -22500 kg·m/s值得注意的是,在这个问题中,我们可以发现p1和p2之和为0,即碰撞前和碰撞后的总动量之和为零,这符合动量守恒的原理。
通过以上计算,我们得出了碰撞前和碰撞后的总动量。
在实际问题中,我们可以进一步研究碰撞的细节,比如撞击力、碰撞时间等,以深入理解碰撞过程中的物理现象。
3. 结论:根据牛顿力学中的动量守恒原理,当没有外力作用于系统时,系统的总动量保持不变。
碰撞与动量守恒 答案
碰撞与动量守恒1. (2)在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d.现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ,B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.(2)从碰撞时的能量和动量守恒入手,运用动能定理解决问题.设在发生碰撞前的瞬间,木块A 的速度大小为v ;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量和动量守恒定律,得12m v 2=12m v 21+12(2m )v 22 ① m v =m v 1+(2m )v 2 ②式中,以碰撞前木块A 的速度方向为正.由①②式得v 1=-v 22 ③设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得μmgd 1=12m v 21④ μ(2m )gd 2=12(2m )v 22⑤ 据题意有d =d 1+d 2 ⑥设A 的初速度大小为v 0,由动能定理得μmgd =12m v 20-12m v 2⑦ 联立②至⑦式,得v 0= 285μgd .答案:(2) 285μgd2. (2)如图,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C .、B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹簧;当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,求从A 开始压缩弹簧直至与弹簧分离的过程中,(ⅰ)整个系统损失的机械能;(ⅱ)弹簧被压缩到最短时的弹性势能.(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大. (ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得m v 0=2m v 1 ①此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得m v 1=2m v 2 ②12m v 21=ΔE +12(2m )v 22 ③联立①②③式得ΔE =116m v 20. ④(ⅱ)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得m v 0=3m v 3 ⑤12m v 20-ΔE =12(3m )v 23+E p ⑥ 联立④⑤⑥式得E p =1348m v 20.⑦ 答案:(2)(ⅰ)116m v 20 (ⅱ)1348m v 203.我国女子短道速滑队在今年世锦赛上实现女子3 000 m 接力三连冠.观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( )A .甲对乙的冲量一定等于乙对甲的冲量B .甲、乙的动量变化一定大小相等方向相反C .甲的动能增加量一定等于乙的动能减少量D .甲对乙做多少负功,乙对甲就一定做多少正功 选 B.乙推甲的过程中,他们之间的作用力大小相等,方向相反,作用时间相等,根据冲量的定义,甲对乙的冲量与乙对甲的冲量大小相等,但方向相反,选项A 错误;乙推甲的过程中,遵守动量守恒定律,即Δp 甲=-Δp 乙,他们的动量变化大小相等,方向相反,选项B 正确;在乙推甲的过程中,甲、乙的位移不一定相等,所以甲对乙做的负功与乙对甲做的正功不一定相等,结合动能定理知,选项C 、D 错误.5.如图所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg.开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 发生碰撞.求A 与C 碰撞后瞬间A 的速度大小.(2)因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量定恒定律得m A v 0=m A v A +m C v C ①A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得 m A v A +m B v 0=(m A +m B )v AB ②A 与B 达到共同速度后恰好不再与C 碰撞,应满足v AB =v C ③联立①②③式,代入数据得v A =2 m/s.④答案:(2)2 m/s 6.如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m . P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L . 物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;(2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得m v 0=2m v 1解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得 2m v 1+2m v 0=4m v 2解得v 2=34v 0,方向向右.(2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大12×2m v 21+12×2m v 20=12×4m v 22+Q +E p 从P 1与P 2碰撞后到P 停在A 点12×2m v 21+12×2m v 20=12×4m v 22+2Q 联立以上两式解得E p =116m v 20,Q =116m v 20根据功能关系有Q =μ·2mg (L +x )解得x =v 2032μg -L .答案:(1)v 1=12v 0,方向向右 v 2=34v 0,方向向右(2)v 2032μg -L 116m v 207.水平面上,一白球与一静止的灰球碰撞,两球质量相等.碰撞过程的频闪照片如图所示,据此可推断,碰撞过程中系统损失的动能约占碰撞前动能的( )A .30%B .50%C .70%D .90%选A.根据v =x t 和E k =12m v 2解决问题.量出碰撞前的小球间距与碰撞后的小球间距之比为12∶7,即碰撞后两球速度大小v ′与碰撞前白球速度v 的比值,v ′v =712.所以损失的动能ΔE k =12m v 2-12·2m v ′2,ΔE k E k0≈30%,故选项A 正确. 8.如图所示,进行太空行走的宇航员A 和B 的质量分别为80 kg 和100 kg ,他们携手远离空间站,相对空间站的速度为0.1 m/s.A 将B 向空间站方向轻推后,A 的速度变为0.2 m/s ,求此时B 的速度大小和方向.(3)根据动量守恒定律,(m A +m B )v 0=m A v A +m B v B ,代入数值解得v B =0.02 m/s ,离开空间站方向.答案:(3)0.02 m/s ,离开空间站方向9.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。
验证动量守恒定律实验报告及对应练习
〔一〕课本标准实验点拨实验目的:1.验证小球碰撞前后动量守恒;2.学会调整使用碰撞实验仪器,使其满足一维碰撞条件.实验原理:利用图的装置验证碰撞中的动量守恒,让小球从斜槽上滚下来,跟另一个小球发生碰撞,两球均做平抛运动.由于下落高度相同,因而飞行时间相等,所以可以用它们平抛射程的大小代替其碰撞后的飞出速度.实验器材:两个小球〔r1____r2,m1____m2〕、斜槽、重锤线、白纸、复写纸、刻度尺、_______、________、________实验步骤:①按图安装好斜槽,注意使其末端_____________,并在地面适当的位置放上白纸和复写纸,并在白纸上记下___________________________;②首先在不放被碰小球的前提下,让入射小球从斜槽上___________从静止滚下,重复数次,便可在复写纸上打出多个点,___________________________________________,则________就是不发生碰撞时入射小球的平均位置P点〔图4-2〕;③将被碰小球放在________上,适当调节使得两小球相碰时处于___________,使入射小球与被碰小球能发生_____________;④让入射小球由___________从静止开始滚下,重复数次,使两球相碰,按照步骤③的办法求出入球落地点的平均位置M和被碰小球落地点的平均位置N;⑤测出水平槽到落地点的竖直高度.⑥测出各球平抛的水平位移.⑦代入公式计算.⑧⑨思考一:上述实验步骤是否正确?如完整,请直接写出验证公式:___________________________________如不正确,请指出并写出验证公式:___________________________________________________________________________________________________________________________误差分析:①被碰小球被碰时难免受到支柱的摩擦力,支柱质量虽小,但在两球碰撞时还是带走了一些动量.②难做到准确的正碰,则误差较大;斜槽末端若不水平,则得不到准确的平抛运动而造成误差.③O、O′、P、M、N各点定位不准确.④测量和作图有偏差.⑤仪器和实验操作的重复性不好,使得每次做实验时不是统一标准.〔如入射球每次不是从同一高度下落、斜槽或白纸位置发生变动〕思考二:水平槽与小球之间有摩擦,为什么不考虑摩擦力对小球碰撞前后的动量守恒的影响?_________________________________________________________________________________<课本实验改良版>某同学用图实-11-7甲所示的装置通过半径相同的A、B两球<m A>m B>的碰撞来验证动量守恒定律.图中PQ是斜槽,QR为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹.重复这种操作10次.图甲中O点是水平槽末端R在记录纸上的垂直投影点.B球落点痕迹如图乙所示,其中米尺水平放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐.<1>碰撞后B球的水平射程应取为________cm;<2>在以下选项中,哪些是本次实验必须进行的测量?答:________.<填选项字母>A.水平槽上未放B球时,测量A球落点位置到O点的距离B.A球与B球碰撞后,测量A球落点位置到O点的距离C.测量A球或B球的直径D.测量A球和B球的质量<或两球质量之比>E.测量O点相对于水平槽面的高度<3>实验中,对入射小球在斜槽上释放点的高低对实验影响的说法中正确的是<>A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小解析:<1>用一尽可能小的圆把小球落点圈在里面,由此可见圆心的位置是64.7 cm,这就是小球落点的平均位置.<2>本实验中要测量的数据有:两个小球的质量m1、m2,三个落点的距离x1、x2、x3,所以应选A、B、D.<3>入射小球的释放点越高,入射小球碰前速度越大,相碰时内力越大,阻力的影响相对减小,可以较好地满足动量守恒的条件,也有利于减少测量水平位移时的相对误差,从而使实验的误差减小,选项C正确.答案:<1>64.7<64.5~64.9均可><2>A、B、D<3>C验证动量守恒实验气垫导轨版:利用图〔a〕所示的装置验证动量守恒定律.在图〔a〕中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与打点计时器〔图中未画出〕的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器〔未完全画出〕可以记录遮光片通过光电门的时间.实验测得滑块A质量m1=0.310kg,滑块B的质量m2=0.108kg,遮光片的宽度d=1.00cm;打点计时器所用的交流电的频率为f=50H Z.将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰;碰后光电计时器显示的时间为3500.Bt ms,碰撞前后打出的纸带如图〔b〕所示.若实验允许的相对误差绝对值100()碰撞前后量之差碰前量总动总动最大为5℅,本实验是否在误差X围内验证了动量守恒定律?写出运算过程.练习一:用天平、气垫导轨<带光电计时器和两个滑块>探究物体间发生相互作用时的不变量,本实验可用自动照相机代替打点计时器<闪光频率为10 Hz>,步骤方法如下:<1>用天平称出两滑块的质量.m A=0.10kg,m B=0.20kg,放在水平的气垫导轨上<导轨上标尺的最小分度为1cm,滑块可看做质点>;<2>碰撞前后连续三次闪光拍照得图中a、b、c所示的照片;请你根据图示数据探究物体间发生相互作用时的不变量.答案:m A v A+m B v B=m A v′A+m B v′B,即碰撞前后mv之和保持不变.解析:由题图a、b可确定A的速度为v A=错误!m/s=0.6m/s则m A v A=0.1×0.6kg·m/s=0.06kg·m/s从题图b、c看出滑块A与B靠近到发生碰撞需t2=错误!s=2.5×10-2s所以A与B碰后回到7.0cm位置,历时<0.1-2.5×10-2>s=7.5×10-2s因此,求出v′A=错误!m/s=-0.2m/sv′B=错误!m/s=0.4m/s所以碰撞后:m A v A′+m B v′B=6×10-2 kg·m/s由以上计算可得:m A v A+m B v B=m A v′A+m B v′B.练习二:某同学把两块大小不同的木块用细线连接,中间夹一被压缩了的轻质弹簧,如图实-11-8所示,将这一系统置于光滑的水平桌面上,烧断细线,观察木块的运动情况,进行必要的测量,验证物体间相互作用时动量守恒.<1>该同学还必须有的器材是________________.<2>需要直接测量的数据是___________________________________________________________________________________________________.<3>用所得数据验证动量守恒的关系式是_______________________________________.解析:这个实验的思路与课本上采用的实验的原理完全相同,也是通过测平抛运动的位移来代替它们作用完毕时的速度.答案:<1>刻度尺、天平<2>两木块的质量m1、m2和两木块落地点分别到桌子两侧边缘的水平距离x1、x2<3>m1x1=m2x2练习三.如图实-11-5所示是用来验证动量守恒的实验装置,弹性球1用细线悬挂于O点,O点正下方桌子的边沿有一竖直立柱.实验时,调节悬点,使弹性球1静止时恰与立柱上的球2接触且两球等高.将球1拉到A点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞.碰后球1向左最远可摆到B点,球2落到水平地面上的C点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A点离水平桌面的距离为a.B点离水平桌面的距离为b,C点与桌子边沿间的水平距离为c.此外:<1>还需要测量的量是______________、________________和________________.<2>根据测量的数据,该实验中动量守恒的表达式为________________________.<忽略小球的大小>解析:<1>要验证动量守恒必须知道两球碰撞前后的动量变化,根据弹性球1碰撞前后的高度a和b,由机械能守恒可以求出碰撞前后的速度,故只要再测量弹性球1的质量m1,就能求出弹性球1的动量变化;根据平拋运动的规律只要测出立柱高h和桌面高H就可以求出弹性球2碰撞前后的速度变化,故只要测量弹性球2的质量和立柱高h、桌面高H就能求出弹性球2的动量变化.<2>根据<1>的解析可以写出动量守恒的方程为2m1错误!=2m1错误!+m2错误! .答案:弹性球1、2的质量m1、m2立柱高h桌面高H<2>2m1错误!=2m1错误!+m2错误!练习四:气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C和D的气垫导轨和滑块A和B验证动量守恒定律,实验装置如图实-11-6所示<弹簧的长度忽略不计>,采用的实验步骤如下:a.用天平分别测出滑块A、B的质量m A、m B;b.调整气垫导轨,使导轨处于水平;c.在A和B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上;d.用刻度尺测出A的左端至挡板C的距离L1;e.按下电钮放开卡销,同时分别记录滑块A、B运动时间的计时器开始工作,当A、B滑块分别碰撞挡板C、D时计时结束,记下A、B分别到达C、D的运动时间t1和t2.<1>实验中还应测量的物理量与其符号是_______________________________________.<2>利用上述测量的实验数据,验证动量守恒定律的表达式是______________,上式中算得的A、B两滑块的动量大小并不完全相等,产生误差的原因有___________________ <至少答出两点>.解析:A、B两滑块被压缩的弹簧弹开后,在气垫导轨上运动时可视为匀速运动,因此只要测出A与C的距离L1、B与D的距离L2与A到C、B到D的时间t1和t2,测出两滑块的质量,就可以用m A错误!=m B错误!验证动量是否守恒.<1>实验中还应测量的物理量为B的右端至挡板D的距离,符号为L2.<2>验证动量守恒定律的表达式是m A错误!=m B错误!.产生误差的原因:①L1、L2、t1、t2、m A、m B的数据测量误差;②没有考虑弹簧推动滑块的加速过程;③滑块并不是做标准的匀速直线运动,滑块与导轨间有少许摩擦力.④气垫导轨不完全水平.答案:见解析练习五.用如图实-11-8所示的装置进行"验证动量守恒定律〞的实验:<1>先测出可视为质点的两滑块A、B的质量分别为m、M与滑块与桌面间的动摩擦因数μ.<2>用细线将滑块A、B连接,使A、B间的轻弹簧处于压缩状态,滑块B恰好紧靠桌边.<3>剪断细线,测出滑块B做平拋运动的水平位移x1,滑块A沿水平桌面滑行距离为x2<未滑出桌面>.为验证动量守恒定律,写出还需测量的物理量与表示它们的字母________________;如果动量守恒,需要满足的关系式为________________.解析:弹开后B做平拋运动,为求其弹开后的速度即平拋运动的初速度,必须测量下落高度h.h=错误!gt12,x1=v1t1v1=x1错误!.弹开后B做匀减速运动,由动能定理μmgx2=错误!mv22,v2=错误!由动量守恒定律Mv1-mv2=0即Mx1错误!=m错误!.答案:桌面离地高度hMx1错误!=m错误!6.<2008·##高考> 某同学利用如图实-11-9所示的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A、B两摆球均很小,质量之比为1∶2.当两摆均处于自由静止状态时,其侧面刚好接触.向右上方拉动B球使其摆线伸直并与竖直方向成45°角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成30°.若本实验允许的最大误差为±4%,此实验是否成功地验证了动量守恒定律?解析:设摆球A、B的质量分别为m A、m B,摆长为l,B球的初始高度为h1,碰撞前B球的速度为v B.在不考虑摆线质量的情况下,根据题意与机械能守恒定律得h1=l<1-cos45°>①错误!m B v B2=m B gh1②设碰撞前、后两摆球的总动量的大小分别为p1、p2.有p1=m B v B③联立①②③式得p1=m B错误!④同理可得p2=<m A+m B>错误!⑤联立④⑤式得错误!=错误!错误!⑥代入已知条件得错误!2≈1.03由此可以推出|错误!|≈1.4% <4%所以,此实验在规定的X围内验证了动量守恒定律.答案:见解析。
碰撞与动量守恒含答案经典题型总汇
1、(16分)如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB 是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。
可视为质点的物块从A 点正上方某处无初速度下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道沿街至轨道末端C 处恰好没有滑出。
已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。
求(1)物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍; (2)物块与水平轨道BC 间的动摩擦因数μ。
答案:(1)设物块的质量为m ,其开始下落处的位置距BC 的竖直高度为h ,到达B 点时的速度为v ,小车圆弧轨道半径为R 。
由机械能守恒定律,有221mv mgh =① 根据牛顿第二定律,有Rv m mg mg 29=-②解得h =4R③即物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的4倍。
(2)设物块与BC 间的滑动摩擦力的大小为F ,物块滑到C 点时与小车的共同速度为 v ′,物块在小车上由B 运动到C 的过程中小车对地面的位移大小为s 。
依题意,小车的质量为3m ,BC 长度为10R 。
由滑动摩擦定律,有mg F μ= ④ 由动量守恒定律,有'+=v m m mv )3( ⑤对物块、小车分别应用动能定理,有222121)10(mv mv s R F -'=+- ⑥ 0)3(212-'=v m Fs ⑦ 解得3.0=μ⑧2、(16分)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。
物块与车面间的动摩擦因数μ=0.5,取g=10 m/s 2,求(1) 物块在车面上滑行的时间t;(2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。
弹性碰撞模型(解析版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习
动量守恒的八种模型解读和针对性训练弹性碰撞模型模型解读1.碰撞过程的四个特点(1)时间短:在碰撞现象中,相互作用的时间很短。
(2)相互作用力大:碰撞过程中,相互作用力先急剧增大,后急剧减小,平均作用力很大。
(3)位移小:碰撞过程是在一瞬间发生的,时间极短,在物体发生碰撞的瞬间,可忽略物体的位移,认为物体在碰撞前后仍在同一位置。
(4)满足动量守恒的条件:系统的内力远远大于外力,所以即使系统所受合外力不为零,外力也可以忽略,系统的总动量守恒。
(5).速度要符合实际(i)如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞。
碰撞后,原来在前的物体的速度一定增大,且原来在前的物体的速度大于或等于原来在后的物体的速度v′前≥v′后。
(ii)如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。
若碰后沿同向运动,则前面物体的速度大于或等于后面物体的速度,即v′前≥v′后。
2. 动动弹性碰撞已知两个刚性小球质量分别是m1、m2,m1v1+m2v2=m1v1’+m2v2’,1 2m1v21+12m2v22=12m2v’22+12m乙v2乙,3. 一动一静"弹性碰撞模型如图所示,已知A、B两个刚性小球质量分别是m1、m2,小球B静止在光滑水平面上,A以初速度v0与小球B发生弹性碰撞,取小球A初速度v0的方向为正方向,因发生的是弹性碰撞,碰撞前后系统动量守恒、动能不变,有m1v0=m1v1+m2v21 2m1v20=12m1v21+12m2v22联立解得v1=(m1―m2)v0m1+m2,v2=2m1v0m1+m2讨论:(1)若m1>m2,则0<v1<v0、v2>v0,物理意义:入射小球质量大于被碰小球质量,则入射小球碰后仍沿原方向运动但速度变小,被碰小球的速度大于入射小球碰前的速度。
(2)若m1=m2,则v1=0、v2=v0,物理意义:入射小球与被碰小球质量相等,则碰后两球交换速度。
力学练习题弹性碰撞与动量守恒的应用
力学练习题弹性碰撞与动量守恒的应用力学练习题:弹性碰撞与动量守恒的应用在力学领域中,弹性碰撞与动量守恒是两个重要的概念。
本文将通过一系列练习题来探讨这些概念的应用。
请注意,为了方便阅读,本文将分为三个部分:弹性碰撞问题、动量守恒问题和综合应用问题。
一、弹性碰撞问题1. 两个质量相同的小球A和B以相等的速度相向运动,并发生完全弹性碰撞,速度不变。
求碰撞前后小球的速度变化。
解析:根据动量守恒定律,碰撞前后系统的总动量保持不变。
由于小球A和B的质量相同,碰撞后它们的速度也应该相同。
2. 在水平桌面上,质量为m1的小球A以速度v1与质量为m2的小球B以速度v2相向运动,发生完全弹性碰撞。
求碰撞后两个小球的速度。
解析:根据动量守恒定律,碰撞前后系统的总动量保持不变。
设碰撞后小球A的速度为v'1,小球B的速度为v'2。
根据动量守恒定律可得:m1 * v1 + m2 * v2 = m1 * v'1 + m2 * v'2由于是完全弹性碰撞,动能守恒定律也成立。
根据动能守恒定律可得:(1/2) * m1 * v1^2 + (1/2) * m2 * v2^2 = (1/2) * m1 * v'1^2 + (1/2) * m2 * v'2^2解上述方程组即可得到碰撞后两个小球的速度。
二、动量守恒问题1. 一辆质量为M的火车以速度v1匀速行驶,在车厢内有一物体以速度v2相对于车厢静止。
物体受到一个作用力F,求物体离开火车后的速度。
解析:在火车内,火车和物体构成一个封闭系统,且没有外力做功。
根据动量守恒定律,系统的总动量保持不变。
设物体离开火车后的速度为v',根据动量守恒定律可得:M * v1 + 0 = (M + m) * v'其中m为物体的质量。
解上述方程即可求得物体离开火车后的速度。
2. 一枪弹射出子弹,枪和子弹构成一个封闭系统,没有外力做功。
子弹的质量为m1,枪的质量为m2,子弹的初速度为v1,枪的初速度为v2,求子弹和枪的共同速度。
动量守恒计算专题(学生版)
动量守恒计算专题(学生版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图所示,水平面上一轻弹簧左端固定,右端与一质量m B =2kg 的物体B 连接。
开始时物体B 静止在O 点,此时弹簧为原长,O 点左侧光滑,右侧粗糙。
另一质量m A =1kg 的物体A 在O 点右侧距O 点s =1.625m 处以v 0=3.5m/s 的速度向左运动并与B 发生碰撞,碰后A 、B 立即一起向左运动,A 、B 与O 点右侧水平面的动摩擦因数均为µ=0.1,物块A 、B 均看成质点,重力加速度大小g =10m/s 2。
求:(1)A 、B 碰后瞬间速度多大;(2)A 停止时与O 点的距离。
2.在一次冰壶运动训练中使用的红冰壶和蓝冰壶的质量都是20kg m =,开始时蓝冰壶静止在冰面上,红冰壶以一定速度向右运动并和蓝冰壶发生碰撞,碰撞时间极短,碰撞后瞬间红冰壶速度向右为10.5m s v =,蓝冰壶速度为21m v =。
求:(1)红冰壶碰撞前瞬间的速度大小;(2)两冰壶在碰撞过程中损失的机械能。
3.如图所示,用不可伸长的轻绳将小球A 悬挂于O 点,轻绳的长度为L 。
现将轻绳拉至水平并刚好伸直,将小球A 由静止释放,当小球A 运动至最低点时,与静止在水平面上的物块B 发生弹性正碰,碰撞后物块B 无能量损失地滑上不固定斜面体C ,到达的最高点未超出斜面。
已知小球A 的质量为m ,物块B 的质量为2m ,斜面体C 的质量也为2m ,A 、B 均可视为质点,重力加速度为g ,水平面与斜面均光滑,斜面底端与水平面之间由小圆弧平滑衔接,不计空气阻力。
求:(1)碰撞后瞬间,绳子对小球A 的拉力大小;(2)物块B 在斜面体C 上面上升的最大高度。
4.在水平面有一长木板A ,A 通过轻弹簧连接滑块B ,刚开始,弹簧处于原长,滑块B 、长木板A 都处于静止状态,现有一个滑块C 以8m/s v =的速度从长木板左端向右运动,与滑块B 发生碰撞,碰后粘在一起,碰撞时间极短。
4.弹性碰撞模型 专题练习-高二物理人教版3-5《动量守恒定律》
弹性碰撞模型一、弹性碰撞如果碰撞过程中机械能守恒,这样的碰撞叫做弹性碰撞,即E K1=E K2(能够完全恢复形变);二、碰撞模型情景1:动碰动【问题】如图,在光滑水平面上,A 、B 两个钢性小球质量分别是1m 、2m ,小球A 以初速度10v 与前面以速度20v 运动的小球B 发生弹性碰撞,求碰撞后小球A 的速度1v 和小球B 的速度2v 的大小。
【解读】取小球A 运动的方向为正方向,以两球为系统,由动量守恒定律、机械能守恒定律有:1102201122m v m v m v m v +=+ ①2222110220112211112222m v m v m v m v +=+ ② 对上面的二元二次方程组计算时先降次:整理 ① 、②式为③、④式 11012220()()m v v m v v -=- ③222211012220()()m v v m v v -=- ④由④/③得:101220v v v v +=+ ⑤在将③⑤式组成二元一次方程组解出碰后小球A 、B 的速度分别为:1210220112()2m m v m v v m m -+=+ , 2120110212()2m m v m v v m m -+=+以上计算过程较为繁琐,若能记住最终结果有时会给解题带来很大的方便。
情景2:动碰静当100v ≠,200v =时,1210112()m m v v m m -=+,1102122m v v m m =+结论:(1)当m 1=m 2时,v 1=0,v 2=v 0,显然碰撞后A 静止,B 以A 的初速度运动,B BAA v 2v 1v 10v 20两球速度交换,并且A 的动能完全传递给B ,因此m 1=m 2也是动能传递最大的条件;(2)当m 1>m 2时,v 1>0,即A 、B 同方向运动,因 <,所以速度大小v 1<v 2,即两球不会发生第二次碰撞;若m 1>>m 2时,v 1= v 0,v 2=2v 0 即当质量很大的物体A 碰撞质量很小的物体B 时,物体A 的速度几乎不变,物体B 以2倍于物体A 的速度向前运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傲翔教育—碰撞与动量守恒
1、如图,小球a、b用等长细线悬挂于同一固定点O。
让球a静止下垂,将球b向右拉起,使细线水平。
从静止释放球b,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°。
忽略空气阻
力,求:
(1)两球a、b的质量之比;
(2)两球在碰撞过程中损失的机械能与球b在碰前的最大动能之比。
2、如图所示,滑块A、C质量均为m,滑块B质量为3/2m,开始时A、B分别以v1、v2的速度沿光滑水平轨
道向固定在右侧的挡板运动,现将C无初速地放在A上,并与A粘合不再分开,此时A与B相距较近,B
与挡板相距足够远,若B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起,为使B能与挡板碰撞两
次,v1、v2应满足什么关系?
3、如图所示,装置的左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量 M=2kg的小物块A。
装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。
传送带始终以u="2m/s" 的速率逆时针转动。
装置的右边是一光滑的曲面,质量m=1kg的小物块B从其上距水平台面h=1.0m处由静止释放。
已知物块B 与传送带之间的摩擦因数μ=0.2,l=1.0m。
设物块A、B中间发生的是对心弹性碰撞,第一次碰撞前物块A静止且处于平衡状态。
取g=10m/s2。
(1)求物块B与物块A第一次碰撞前速度大小;
(2)通过计算说明物块B与物块A第一次碰撞后能否
运动到右边曲面上?
(3)如果物块A、B每次碰撞后,物块A再回到平衡位
置时都会立即被锁定,而当他们再次碰撞前锁定被解除,
试求出物块B第n次碰撞后的运动速度大小。
4、如图甲所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系。
(1)实验中,直接测定小球碰撞前后的速度是不容易的,但是,可以通过仅测量_ ___(填选项前的符号),间接地解决这个问题。
A.小球开始释放高度h
B.小球抛出点距地面的高度H
C.小球做平抛运动的射程
(2)图甲中O点是小球抛出点在地面上的垂直投影。
实验时,先让入射球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP。
然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复,接下来要完成的必要步骤是__ _(填选项前的符号)
A.用天平测量两个小球的质量m1、m2
B.测量小球m1开始释放高度h
C.测量抛出点距地面的高度H
D.分别找到m1、m2相碰后平均落地点的位置M、N
E.测量平抛射程OM,ON
(3)若两球相碰前后的动量守恒,其表达式可表示为__ _(用(2)中测量的量表示);
若碰撞是弹性碰撞,那么还应满足的表达式为__ _(用(2)中测量的量表示)。
(4)经测定,m1=45.0 g,m2=7.5 g,小球落地点的平均位置距O点的距离如图乙所示。
碰撞前、后m1的动量分别为P1与P1',则P1:P1'=____:11;若碰撞
结束时m2的动量为P2',则P1':P2'=11:____。
实验结果说明,碰撞前、
后总动量的比值为_ ___。
(5)有同学认为,在上述实验中仅更换两个小球的材质,其他条件不变,可以使被碰小球做平抛运动的射程增大。
请你用(4)中已知的数据,分析和计算出被碰小球m2平抛运动射程ON的最大值为___ _cm。