2020届高考物理回归复习—力学选择之爆炸与反冲问题
人教版高三物理总复习优质课件 碰撞与动量守恒 第二节 碰撞 反冲和爆炸

F都向右运动,即3个小球静止,3个小球运动。
2.有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向
水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小
为v,方向水平向右,则另一块的速度大小是多少?
身的质量为 m,则船的质量为(
( + )
A.
C.
( - )
B.
( + )
D.
B
)
解析:画出如图所示的草图,设人走动时船的速度大小为 v,人的速度大小为 v′,船
′
≥
+
′
(3)速度要合理:如果碰前两物体同向运动,则后面的物体速度必大于前面物
体的速度,即v后>v前,否则无法实现碰撞。碰撞后,原来在前面的物体的速度
一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,
即v前′≥v后′,否则碰撞没有结束。如果碰前两物体相向运动,则碰后两物
动量规律:系统总动量为零;系统或系统在某方向上动量守恒。
涉及速度:m1v1-m2v2=0(v1、v2为速度大小)。
涉及位移:m1x1=-m2x2。
[例题] 有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测
量它的质量。他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上
船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离 d 和船长 L。已知他自
机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加,所以有
+
高考物理动量冲量精讲精练爆炸及反冲问题

爆炸及反冲问题1.爆炸现象的三条规律(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于系统受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位置不变:爆炸和碰撞的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸或碰撞后仍然从爆炸或碰撞前的位置以新的动量开始运动.2.反冲的两条规律(1)总的机械能增加:反冲运动中,由于有其他形式的能量转变为机械能,所以系统的总机械能增加.(2)平均动量守恒若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1-m2v2=0,得m1x1=m2x2.该式的适用条件是:①系统的总动量守恒或某一方向的动量守恒.②构成系统的m1、m2原来静止,因相互作用而运动.③x1、x2均为沿动量守恒方向相对于同一参考系的位移.例题1.我国发现的“神舟十一号”飞船与“天宫二号”空间站实现了完美对接.假设“神舟十一号”到达对接点附近时对地的速度为v,此时的质量为m;欲使飞船追上“天宫二号”实现对接,飞船需加速到v1,飞船发动机点火,将质量为Δm的燃气一次性向后喷出,燃气对地向后的速度大小为v2.这个过程中,下列各表达式正确的是( ) A.mv=mv1-Δmv2B.mv=mv1+Δmv2C.mv=(m-Δm)v1-Δmv2D.mv=(m-Δm)v1+Δmv2解析:选 C.飞船发动机点火喷出燃气,由动量守恒定律,mv=(m-Δm)v1-Δmv2,选项C正确.例题2.在静水中一条长l的小船,质量为M,船上一个质量为m的人,当他从船头走到船尾,若不计水对船的阻力,则船移动的位移大小为( )A.mMl B.mM+mlC.MM+ml D.mM-ml解析:选B.船和人组成的系统水平方向动量守恒,人在船上行进,船将后退,即mv 人=Mv 船,人从船头走到船尾,设船后退的距离为x ,则人相对地面行进的距离为l -x ,有m l -xt=M x t ,则m (l -x )=Mx ,得x =mlM +m,故选项B 正确. 例题3.一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )解析:选B.弹丸爆炸过程遵守动量守恒,若爆炸后甲、乙同向飞出,则有 2m =34mv 甲+14mv 乙①若爆炸后甲、乙反向飞出,则有 2m =34mv 甲-14mv 乙②或2m =-34mv 甲+14mv 乙③爆炸后甲、乙从同一高度做平抛运动,由选项A 中图可知,爆炸后甲、乙向相反方向飞出,下落时间t =2hg=2×510 s =1 s ,速度分别为v 甲=x 甲t =2.51m/s =2.5 m/s ,v 乙=x 乙t =0.51m/s =0.5 m/s ,代入②式不成立,A 项错误;同理,可求出选项B 、C 、D 中甲、乙的速度,分别代入①式、②式、③式可知,只有B 项正确.例题4.以初速度v 0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别为m 和2m 的两块.其中质量大的一块沿着原来的方向以2v 0的速度飞行.求:(1)质量较小的另一块弹片速度的大小和方向; (2)爆炸过程有多少化学能转化为弹片的动能.解析:(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v 1=v 0cos 60°=12v 0.设v 1的方向为正方向,如图所示,由动量守恒定律得:3mv 1=2mv 1′+mv 2其中爆炸后大块弹片速度v 1′=2v 0,解得v 2=-2.5v 0,“-”号表示v 2的速度与爆炸前速度方向相反.(2)爆炸过程中转化为动能的化学能等于系统动能的增量,ΔE k =12×2mv 1′2+12mv 22-12(3m )v 21=274mv 20.答案:(1)2.5v 0 方向与爆炸前速度的方向相反 (2)274mv 20。
2020年高考物理新课标第一轮总复习讲义:第六章 第二讲 碰撞、反冲与动量守恒定律 Word版含答案

能力提升课第二讲 碰撞、反冲与动量守恒定律热点一 碰撞问题 (师生共研)1.碰撞的特点和分类(1)特点:①作用时间极短,内力远大于外力,满足动量守恒.②满足能量不增加原理.③必须符合一定的物理情境. (2)分类2.(1)动量守恒定律. (2)机械能不增加.(3)速度要合理:①若碰前两物体同向运动,则应有v 后>v 前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v 前′≥v 后′.②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.[典例1] [弹性碰撞] (2016·全国卷Ⅲ) 如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动.此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.解析:设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有 12m v 20>μmgl ① 即μ<v 202gl ②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1.由能量守恒有 12m v 20=12m v 21+μmgl ③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v 1′、v 2′,由动量守恒和能量守恒有m v 1=m v 1′+34m v 2′④ 12m v 21=12m v 1′2+12(34m )v 2′2⑤ 联立④⑤式解得v 2′=87v 1⑥由题意知,b 没有与墙发生碰撞,由功能关系可知 12(34m )v 2′2≤μ34mgl ⑦ 联立③⑥⑦式,可得μ≥32v 2113gl ⑧联立②⑧式,a 与b 发生弹性碰撞,但b 没有与墙发生碰撞的条件为 32v 20113gl ≤μ<v 202gl . 答案:32v 20113gl ≤μ<v 202gl [反思总结]碰撞问题的解题策略1.抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解. 2.可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v 1=m 1-m 2m 1+m 2v 0、v 2=2m 1m 1+m 2v 0.3.熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度;当m 1≫m 2,且v 20=0时,碰后质量大的速率不变,质量小的速率为2v .当m 1≪m 2,且v 20=0时,碰后质量小的球原速率反弹.1-1.[碰撞现象的分析](多选)如图所示,动量分别为p A=12 kg·m/s、p B=13 kg·m/s的两个小球A、B在光滑的水平面上沿一直线向右运动,经过一段时间后两球发生正碰,分别用Δp A、Δp B表示两小球动量的变化量,则下列选项中可能正确的是()A.Δp A=-3 kg·m/s,Δp B=3 kg·m/sB.Δp A=-2 kg·m/s,Δp B=2 kg·m/sC.Δp A=-24 kg·m/s,Δp B=24 kg·m/sD.Δp A=3 kg·m/s,Δp B=-3 kg·m/s答案:AB1-2.[非弹性碰撞]如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹簧分离的过程中:(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.解析:(1)从A压缩弹簧到A与B具有相同速度v1时,对A、B与弹簧组成的系统,由动量守恒定律得m v0=2m v1①此时B与C发生完全非弹性碰撞,设碰撞后的瞬时速度为v2,损失的机械能为ΔE.对B、C组成的系统,由动量守恒定律和能量守恒定律得m v1=2m v2②12m v 21=ΔE+12(2m)v22③联立①②③式得ΔE=116m v2.④(2)由②式可知v2<v1,A将继续压缩弹簧,直至A、B、C三者速度相同,设此速度为v3,此时弹簧被压缩至最短,其弹性势能为E p.由动量守恒定律和能量守恒定律得m v 0=3m v 3⑤12m v 20-ΔE =12(3m )v 23+E p ⑥ 联立④⑤⑥式得E p =1348m v 20. 答案:(1)116m v 20 (2)1348m v 201-3.[弹性碰撞] (2015·全国卷Ⅰ)如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.解析:A 向右运动与C 发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A 的速度为v 0,第一次碰撞后C 的速度为v C 1,A 的速度为v A 1.由动量守恒定律和机械能守恒定律得 m v 0=m v A 1+M v C 1① 12m v 20=12m v 2A 1+12M v 2C 1② 联立①②式得 v A 1=m -M m +M v 0③v C 1=2m m +M v 0④如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有 v A 2=m -M m +M v A 1=(m -M m +M )2v 0⑤根据题意,要求A 只与B 、C 各发生一次碰撞,应有v A2≤v C1⑥联立④⑤⑥式得m2+4mM-M2≥0解得m≥(5-2)M另一解m≤-(5+2)M舍去.所以,m和M应满足的条件为(5-2)M≤m<M.答案:(5-2)M≤m<M热点二反冲、爆炸问题(自主学习)1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒;④反冲运动中机械能往往不守恒.2-1.[水平方向的反冲问题]一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行.若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为()A.v0-v2 B.v0+v2C .v 0-m 2m 1v 2D .v 0+m 2m 1(v 0-v 2)答案:D2-2.[竖直方向的反冲问题] 将静置在地面上、质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.mM v 0 B .Mm v 0 C.M M -m v 0 D .mM -m v 0答案:D2-3.[爆炸问题] 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量之比为3∶1,不计质量损失,取重力加速度g =10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )解析:弹丸爆炸瞬间爆炸力远大于外力,故爆炸瞬间动量守恒.因两弹片均水平飞出,飞行时间t =2h g =1 s .取向右为正方向,由水平速度v =x t 知,A 中,v甲=2.5 m/s ,v 乙=-0.5 m/s ;B 中,v 甲=2.5 m/s ,v 乙=0.5 m/s ;C 中,v 甲=1 m/s ,v 乙=2 m/s ;D 中,v 甲=-1 m/s ,v 乙=2 m/s.因爆炸瞬间动量守恒,故m v =m 甲v 甲+m 乙v 乙,其中m 甲=34m ,m 乙=14m ,v =2 m/s ,代入数值计算知B 正确. 答案:B热点三 动量与能量综合问题 (师生共研)1.解动力学问题的三个基本观点(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.2.利用“动量和能量”观点解题的技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.[典例2](2016·全国卷Ⅱ)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?解析:(1)规定向右为速度正方向.冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.由水平方向动量守恒和机械能守恒定律得m2v20=(m2+m3)v①12m2v 220=12(m2+m3)v2+m2gh②式中v20=-3 m/s为冰块推出时的速度.联立①②式并代入题给数据得m3=20 kg③(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v20=0④代入数据得设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v20=m2v2+m3v3⑥12m2v 220=12m2v22+12m3v23⑦联立③⑥⑦式并代入数据得v2=1 m/s由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.答案:见解析3-1.[动量定理与动能定理综合]某快递公司分拣邮件的水平传输装置如图所示,皮带在电动机的带动下保持v=1 m/s的恒定速度向右运动,现将一质量为m=2 kg的邮件轻放在皮带上,邮件和皮带间的动摩擦因数μ=0.5.设皮带足够长,取g=10 m/s2,在邮件与皮带发生相对滑动的过程中,求:(1)邮件滑动的时间t;(2)邮件对地的位移大小x;(3)邮件与皮带间的摩擦力对皮带做的功W.解析:(1)设邮件放到皮带上与皮带发生相对滑动过程中受到的滑动摩擦力为F,则F=μmg①取向右为正方向,对邮件应用动量定理,有Ft=m v-0②由①②式并代入数据得t=0.2 s③(2)邮件与皮带发生相对滑动的过程中,对邮件应用动能定理,有Fx=12m v2-0④由①④式并代入数据得(3)邮件与皮带发生相对滑动的过程中,设皮带相对地面的位移为s ,则 s =v t ⑥摩擦力对皮带做的功 W =-Fs ⑦由①③⑥⑦式并代入数据得 W =-2 J.答案:(1)0.2 s (2)0.1 m (3)-2 J3-2.[动量守恒与动能定理综合] 在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ,B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度大小.解析:以A 碰前速度方向为正方向.设发生碰撞前瞬间A 的速度大小为v ,在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2,由动量守恒定律和能量守恒定律,得m v =m v 1+(2m )v 2① 12m v 2=12m v 21+12(2m )v 22② 由①②式得 v 1=-v 22③设碰后A 和B 运动的距离分别为d 1和d 2,由动能定理有 μmgd 1=12m v 21④ μ(2m )gd 2=12(2m )v 22⑤ 由题意得d =d 1+d 2⑥设A 的初速度大小为v 0,由动能定理得 μmgd =12m v 20-12m v 2⑦ 联立②至⑦式得v 0=285μgd .答案:285μgd1.(2017·全国卷Ⅰ)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( A )A.30 kg·m/s B.5.7×102 kg·m/sC.6.0×102 kg·m/s D.6.3×102 kg·m/s2.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则( A )A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶103.(多选)(2019·莆田一中月考)向空中发射一物体(不计空气阻力),当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a的速度方向仍沿原来的方向,则( CD )A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达地面D.炸裂的过程中,a、b的动量变化大小一定相等解析:在炸裂过程中,由于重力远小于内力,系统的动量守恒.炸裂前物体的速度沿水平方向,炸裂后a的速度沿原来的水平方向,根据动量守恒定律判断出来b的速度一定沿水平方向,但不一定与原速度方向相反,取决于a的动量与物体原来动量的大小关系,A错误;a、b都做平抛运动,飞行时间相同,由于初速度大小关系无法判断,所以a飞行的水平距离不一定比b的大,B错误;a、b 都做平抛运动,竖直方向做自由落体运动,由于高度相同,飞行时间一定相同,a 、b 一定同时到达水平地面,C 正确;在炸裂过程中,a ,b 受到爆炸力大小相等,作用时间相同,则爆炸力的冲量大小一定相等,即炸裂的过程中,a 、b 的动量变化大小一定相等,D 正确.4.如图所示,固定的圆弧轨道与水平面平滑连接,轨道与水平面均光滑,质量为m 的物块B 与轻质弹簧拴接静止在水平面上,弹簧右端固定.质量为3m 的物块A 从圆弧轨道上距离水平面高h 处由静止释放,与B 碰撞后推着B 一起运动但与B 不粘连.求:(1)弹簧的最大弹性势能;(2)A 与B 第一次分离后,物块A 沿圆弧面上升的最大高度.解析:(1)A 下滑与B 碰撞前,根据机械能守恒得3mgh =12×3m v 21A 与B 碰撞,根据动量守恒得3m v 1=4m v 2弹簧最短时弹性势能最大,系统的动能转化为弹性势能,根据能量守恒得E pmax =12×4m v 22=94mgh(2)根据题意,A 与B 分离时A 的速度大小为v 2A 与B 分离后沿圆弧面上升到最高点的过程中,根据机械能守恒得3mgh ′=12×3m v 22解得h ′=916h .答案:(1)94mgh (2)916h。
爆炸与反冲现象问题

爆炸与反冲现象问题1.爆炸现象的三个规律(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸的位置以新的动量开始运动.2.反冲现象(1)系统内的不同部分在强大内力作用下向相反方向运动,通常用动量守恒来处理.(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总动能增加.(3)反冲运动中平均动量守恒.若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用中均发生运动,则由m1v1-m2v2=0,得m1s1=m2s2,该式的适用条件是:①系统的总动量守恒或某一方向的动量守恒.②构成系统的m1、m2原来静止,因相互作用而运动.③s1、s2均为沿动量守恒方向相对于同一参考系的位移.3.人船模型知识(1)人船模型的适用条件:物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为0.(2)人船模型的特点:两物体速度大小、位移大小均与质量成反比,方向相反,两物体同时运动,同时停止.(3)人船模型的动量与能量规律:遵从动量守恒定律,系统或每个物体动能均发生变化.力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化.例题精选1. 质量为m的人站在质量为M,长为L的静止小船的右端。
小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?解:人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。
从图中可以看出,人、船的位移大小之和等于L。
设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L,∴应该注意到:1、人走船走,人停船停;人加速船加速,人减速船减速;人前进船后退。
2020届高考物理二轮复习能量与动量微专题突破 爆炸问题和反冲问题(带解析)

爆炸问题和反冲问题1、一个人在地面上立定跳远的最好成绩是(m)s ,假设他站立在船的右端处于静止状态要跳到距离(m)L 的岸上(设船与岸边同高,忽略水的阻力),则( ) A.L s <,他一定能跳上岸 B.L s <,他有可能跳上岸 C.L s =,他有可能跳上岸D.L s =,他一定能跳上岸2、将质量为1.00 g 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)() A .30/kg m s gB .5.7102/kg m s ⨯gC .6.0102/kg m s ⨯gD .6.3102/kg m s ⨯g3、质量为m 的炮弹以一定的初速度发射,其在水平地面上的射程为d ,若当炮弹飞行到最高点时炸裂成质量相等的两块,其中一块自由下落,则另一块的射程为( ) A.1. 5d B.2d C. d D.3d4、如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员在船尾,相对小船静止。
若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )A.0mv v M+B.0mv v M-C.()00m v v v M ++ D.()00mv v v M+-5、向空中发射一炮弹,不计空气阻力,当炮弹的速度恰好沿水平方向时,炮弹炸裂为质量相等的a b、两块。
若a的速度方向仍沿原来的方向,且速度小于炸裂前瞬间的速度,则( )A.b的速度方向一定与炸裂前瞬间的速度方向相反B.从炸裂到落地这段时间内,a飞行的水平距离一定比b的大C.a b、一定同时到达地面D.炸裂的过程中,a b、动量的变化量大小一定不相等6、如图所示,一枚手榴弹开始时在空中竖直向下落,到某位置时爆炸成a、b两块同时落地,其中a落地时飞行的水平距离OA大于b落地时飞行的水平距离OB,下列说法正确的是()A.爆炸瞬间a、b两块的速度大小相等B.爆炸瞬间a、b两块的速度变化量大小相等C. a、b两块落地时的速度大小相等D.爆炸瞬间a、b两块的动量变化大小相等7、一弹丸在飞行到距离地面5m高时仅有水平速度2m/sv ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3:1,不计质量损失,重力加速度g取210m/s,则下列图中两块弹片飞行的轨迹可能正确的是()A. B.C. D.8、“世界航天第一人”是明朝的士大夫万户,他把47个自制的火箭绑在椅子上,自己坐在椅子上,双手举着大风筝,设想利用火箭的推力,飞上天空,然后利用风筝平稳着陆。
(课标通用版)2020版高考物理总复习第六章02第2讲动量守恒定律碰撞爆炸反冲运动课件

。
C.速度要合理
a.若碰前两物体同向运动,则应有v后>v前;碰后原来在前的物体速度一定
增大,若碰后两物体同向运动,则应有v前'≥v后'。
b.碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。
2.爆炸 (1)爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量 ⑦ 守恒 。 (2)爆炸过程中有其他形式的能量转化为动能,所以爆炸后系统的总动 能增加。 (3)爆炸过程中物体的位移很小,一般可忽略不计。
3.(2019安徽名校联考)如图所示,小车与木箱紧挨着静止放在光滑的水 平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。关于上述过 程,下列说法中正确的是 ( C ) A.男孩和木箱组成的系统动量守恒 B.小车与木箱组成的系统动量守恒 C.男孩、小车与木箱三者组成的系统动量守恒 D.木箱的动量增量与小车(包含男孩)的动量增量相同
弹性碰撞 非弹性碰撞 完全非弹性碰撞
动量是否守恒 守恒 守恒 守恒
机械能是否守恒 守恒 有损失
损失最大
(3)分析碰撞现象的三个依据
A.动量守恒:p1+p2=p1'+p2'。
B.动能不增加:即Ek1+Ek2≥Ek1'+Ek2'
或
p12 2m1
p22 2m2
≥
p1 '2 2m1
p2 '2 2m2
普适性 动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统
2.动量守恒定律常用的四种表达形式 (1)p=p':即系统相互作用前的总动量p和相互作用后的总动量p'大小相 等,方向相同。 (2)Δp=p'-p=0:即系统总动量的增加量为零。 (3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增 加量等于另一部分动量的减少量。 (4)m1v1+m2v2=m1v1'+m2v2',即相互作用前后系统内各物体的动量都在同一 直线上时,作用前总动量与作用后总动量相等。
高三物理碰撞爆炸与反冲

碰撞、爆炸与反冲要点一 碰撞即学即用1.如图所示,在光滑水平面上有直径相同的a 、b 两球,在同一直线上运动.选定向右为正方向, 两球的动量分别为p a =6 kg ·m/s 、p b =-4 kg ·m/s.当两球相碰之后,两球的动量可能是( )=-6 kg ·m/s 、p b =4 kg ·m/s =-6 kg ·m/s 、p b =8 kg ·m/s =-4 kg ·m/s 、p b =6 kg ·m/s=2 kg ·m/s 、p b =0答案 C#要点二 爆炸与反冲即学即用2.抛出的手雷在最高点时的水平速度为10 m/s,这时突然炸成两块,其中大块质量300 g 仍按原方向飞行,其速度测得为50 m/s,另一小块质量为200 g,求它的速度的大小和方向. 答案 50 m/s与原飞行方向相反题型1 反冲问题【例1】如图所示(俯视图),一玩具车携带若干质量为m 1的弹丸,车和弹丸的总质量为m 2,在 半径为R 的水平光滑固定轨道上以速率v 0做匀速圆周运动.若小车每运动一周便沿运动方向}相对地面以恒定速度u 发射一枚弹丸.求:(1)至少发射多少颗弹丸后小车开始反向运动(2)小车反向运动前发射相邻两枚弹丸的时间间隔的表达式. 答案 (1)um m 102v(2)Δt=u km m km m R 10212)(π2--v (k=1,2,3,…且k<um m 102v)题型2 碰撞问题【例2】某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如图所示.用完全相同的轻 绳将N 个大小相同、质量不等的小球并列悬挂于一水平面,球间有微小间隔,从左到右,球的编 号依次为1、2、3……N,球的质量依次递减,每球质量与其相邻左球质量之比为k (k <1).将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所有碰撞皆为无机械能损失的正~碰.(不计空气阻力,忽略绳的伸长,g 取10 m/s 2)(1)设与n+1号球碰撞前,n 号球的速度为v n ,求n+1号球碰撞后的速度.(2)若N=5,在1号球向左拉高h 的情况下,要使5号球碰撞后升高16h (16h 小于绳长),问k 值为多少 答案 (1)12+k v n(2)2-1题型3 碰撞模型【例3】如图甲所示,A 球和木块B 用细绳相连,A 球置于平台上的P 点,木块B 置于斜面底端的Q 点上,均处于静止,细绳呈松驰状态.一颗水平射来的子弹击入A 球中没有穿出,在极短时间内细绳被绷紧,A 球继续向右紧贴平台运动,然后滑入半径R 的半圆形槽中,当A 球沿槽壁滑至槽的最低点C 时,木块B 沿斜面向上的位移大小为L,如图乙;设所有接触面均光滑且空气阻力可忽略,平台表面与槽底C 的高度差为H,子弹质量为m,射入A 球前速度为v 0,木块B 的质量为2m,A 球的质量为3m,A 、B 均可视为质点,求:《(1)子弹击入A 球过程,子弹的动能损失了多少 (2)细绳绷紧时,木块具有多少动能 (3)A 球滑至最低点C 时,木块具有多少动能 答案 (1)3215mv 02(2)361mv 02 (3)30)4(1220v m mg L H +-1.如图所示,木块A静止于光滑的水平面上,其曲面部分MN光滑,水平部分NP是粗糙的,现有一物体B自M点由静止下滑,设NP足够长,则以下叙述正确的是()、B物体最终以不为零的速度共同运动~物体先做加速运动,后做减速运动,最终做匀速运动C.物体A、B构成的系统减少的机械能转化为内能物体减少的机械能等于A物体增加的动能答案C2.(2009·岳阳模拟)如图甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m1和m2.图乙为它们碰撞前后的s-t图象.已知m1= kg.由此可以确定下列正确的是()A.碰前m2静止,m1向右运动B.碰后m2和m1都向右运动—C.由动量守恒可以算出m2= kgD.碰撞过程中系统损失了J的机械能答案AC3.如图所示,在光滑的水平面上,有两块质量均为200 g的木块A、B靠在一起,现有质量为20 g的子弹以700 m/s的速度水平射入木块A,在穿透木块A的过程中,木块A与B是紧靠着的.已知子弹穿出B 后的速度为100 m/s,假定子弹分别穿透A和B时克服阻力做功完全相等.求:(1)子弹穿透A时的速度多大(2)最终A、B的速度各多大答案(1)500 m/s (2)10 m/s 50 m/s4.在光滑水平面上有一质量m1=20 kg的小车,通过一根不可伸长的轻绳与另一质量为m2=25 kg的拖车相连接,拖车的平板上放一质量为m 3=15 kg 的物体,物体与平板间的动摩擦因数为μ=.开始时拖车静止,绳没拉紧,如图所示.$当小车以v 0=3 m/s 的速度前进后,带动拖车运动,且物体不会滑下拖车.求:(1)m 1、m 2、m 3最终的运动速度. (2)物体在拖车平板上滑动的距离. 答案 (1)1 m/s(2)31m1.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上, 底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑 ( )!A.在以后的运动过程中,小球和槽的动量始终守恒B.在下滑过程中小球和槽之间的相互作用力始终不做功C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处 答案 C2.如图所示,一根足够长的水平滑杆SS ′上套有一质量为m 的光滑金属圆环,在滑杆的正下方与其平行放置一足够长的光滑水平的绝缘轨道PP ′,PP ′穿过金属环的圆心.现使质量为M 的条形磁铁以水平速度v 0沿绝缘轨道向右运 动,则( )>A.磁铁穿过金属环后,两者将先、后停下来B.磁铁将不会穿越滑环运动C.磁铁与圆环的最终速度nM M +0v D.整个过程最多能产生热量)(2m M Mm+v 02答案 CD3.一个质量为M 的物体从半径为R 的光滑半圆形槽的边缘A 点由静止开始下滑,如图所示. 下列说法正确的是( )A.半圆槽固定不动时,物体M 可滑到半圆槽左边缘B 点B.半圆槽在水平地面上无摩擦滑动时,物体M 可滑到半圆槽左边缘B 点C.半圆槽固定不动时,物体M 在滑动过程中机械能守恒D.半圆槽与水平地面无摩擦时,物体M 在滑动过程中机械能守恒【答案 ABC4.矩形滑块由不同材料的上下两层粘结在一起组成,将其放在光滑的水平面上,如图所示,质量 为m 的子弹以速度v 水平射入滑块,若射击上层,则子弹刚好不穿出;若射击下层,整个子弹刚 好嵌入,则上述两种情况相比较( )A.两次子弹对滑块做的功一样多B.两次滑块受的冲量一样大C.子弹嵌入下层过程中克服阻力做功较少D.子弹射入上层过程中系统产生的热量较多答案 AB5.(2009·常德模拟)如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物体B 以速度v 向A 运动并与弹簧发生碰撞.A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是 ( )、开始运动时的速度等于v 时 的速度等于零时和B 的速度相等时答案 D6.一小型爆炸装置在光滑、坚硬的水平钢板上发生爆炸,所有碎片均沿钢板上方的倒圆锥面(圆锥的顶点在爆炸装置处)飞开.在爆炸过程中,下列关于爆炸装置的说法中正确的是( ) A.总动量守恒B.机械能守恒C.水平方向动量守恒D.竖直方向动量守恒答案 C7.在光滑水平地面上有两个相同的弹性小球A 、B,质量都为m,现B 球静止,A 球向B 球运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E p ,则碰前A 球的速度等于( ) A.mE p B.mE p 2mE pmE p 2答案 C。
高考物理动量冲量精讲精练爆炸及反冲问题

爆炸及反冲问题1.爆炸现象的三条规律(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于系统受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位置不变:爆炸和碰撞的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸或碰撞后仍然从爆炸或碰撞前的位置以新的动量开始运动.2.反冲的两条规律(1)总的机械能增加:反冲运动中,由于有其他形式的能量转变为机械能,所以系统的总机械能增加.(2)平均动量守恒若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m 1v 1-m 2v 2=0,得m 1x 1=m 2x 2.该式的适用条件是:①系统的总动量守恒或某一方向的动量守恒.②构成系统的m 1、m 2原来静止,因相互作用而运动.③x 1、x 2均为沿动量守恒方向相对于同一参考系的位移.例题1.我国发现的“神舟十一号”飞船与“天宫二号”空间站实现了完美对接.假设“神舟十一号”到达对接点附近时对地的速度为v ,此时的质量为m ;欲使飞船追上“天宫二号”实现对接,飞船需加速到v 1,飞船发动机点火,将质量为Δm 的燃气一次性向后喷出,燃气对地向后的速度大小为v 2.这个过程中,下列各表达式正确的是( )A .mv =mv 1-Δmv 2B .mv =mv 1+Δmv 2C .mv =(m -Δm)v 1-Δmv 2D .mv =(m -Δm)v 1+Δmv 2解析:选C.飞船发动机点火喷出燃气,由动量守恒定律,mv =(m -Δm)v 1-Δmv 2,选项C 正确. 例题2.在静水中一条长l 的小船,质量为M ,船上一个质量为m 的人,当他从船头走到船尾,若不计水对船的阻力,则船移动的位移大小为( )A.m Ml B .m M +m l C.M M +m l D.m M -ml 解析:选B.船和人组成的系统水平方向动量守恒,人在船上行进,船将后退,即mv 人=Mv 船,人从船头走到船尾,设船后退的距离为x ,则人相对地面行进的距离为l -x ,有m l -x t =M x t,则m(l -x)=Mx ,得x=mlM+m,故选项B正确.例题3.一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g取10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是( )解析:选B.弹丸爆炸过程遵守动量守恒,若爆炸后甲、乙同向飞出,则有2m=34mv甲+14mv乙①若爆炸后甲、乙反向飞出,则有2m=34mv甲-14mv乙②或2m=-34mv甲+14mv乙③爆炸后甲、乙从同一高度做平抛运动,由选项A中图可知,爆炸后甲、乙向相反方向飞出,下落时间t=2hg=2×510s=1 s,速度分别为v甲=x甲t=2.51m/s=2.5 m/s,v乙=x乙t=0.51m/s=0.5 m/s,代入②式不成立,A项错误;同理,可求出选项B、C、D中甲、乙的速度,分别代入①式、②式、③式可知,只有B项正确.例题4.以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别为m和2m的两块.其中质量大的一块沿着原来的方向以2v0的速度飞行.求:(1)质量较小的另一块弹片速度的大小和方向;(2)爆炸过程有多少化学能转化为弹片的动能.解析:(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v1=v0cos 60°=1 2v0.设v1的方向为正方向,如图所示,由动量守恒定律得:3mv1=2mv1′+mv2其中爆炸后大块弹片速度v 1′=2v 0,解得v 2=-2.5v 0,“-”号表示v 2的速度与爆炸前速度方向相反.(2)爆炸过程中转化为动能的化学能等于系统动能的增量,ΔE k =12×2mv 1′2+12mv 22-12(3m)v 21=274mv 20. 答案:(1)2.5v 0 方向与爆炸前速度的方向相反(2)274mv 20高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2020年高中物理选修3-5(人教旧版)反冲运动一火箭(教师版)

反冲运动一火箭知识集结知识元反冲运动知识讲解爆炸与反冲1.爆炸与反冲的特点(1)内力远大于外力,动量守恒.(2)由其他形式的能转化为机械能,动能增加.2.爆炸:两物体间由于炸药的作用均受到巨大作用力,而作用力远大于外力,一般情况下近似认为动量守恒.由于爆炸力做功,所以物体系统的动能增加.3.反冲:反冲运动是相互作用的物体之间的作用力与反作用力产生的效果.反冲运动过程中,一般满足系统的合外力为零,或内力远大于外力的条件,因此可用动量守恒定律进行分析.例题精讲反冲运动例1.运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是()【解析】题干解析:由于反冲运动的作用,火箭燃料燃烧产生的气体给火箭一个反作用力使火箭加速运动,这个反作用力并不是空气给的,故C正确,BCD错误。
例2.(2020春∙马关县校级月考)下列所描述的事例或应用中,利用反冲原理的是()【解析】题干解析:A.喷灌装置的自动旋转是利用水流喷出时的反冲作用而运动的,故属于反冲运动,故A正确;B.章鱼在水中前行和转向是利用喷出的水的反冲作用,故B正确;C.火箭的运动是利用喷气的方式而获得动力,利用了反冲运动,故C正确;D.码头边的轮胎的作用是延长碰撞时间,从而减小作用力,不是利用了反冲作用,故D错误;例3.(2020春∙如皋市月考)下列说法正确的是()【解析】A.按照爱因斯坦的光量子理论知,光子能量为E=hv,即光的频率越高,光的能量就越大,粒子性越明显,A正确;B.根据反冲运动的特点与应用可知,火箭靠喷出气流的反冲作用而获得巨大速度,故B正确;C.为了减轻撞车时对司乘人员的伤害程度,由I=Ft可知,就要延长碰撞的时间,位于车体前部的发动机舱不能太坚固,故C错误;D.体操运动员在落地的过程中,动量变化一定。
由动量定理可知,运动员受到的冲量I一定;由I=Ft可知,体操运动员在着地时屈腿是延长时间t,可以减小运动员所受到的平均冲力F,故D错误;例4.(2020春∙孝感期末)今年春节上映的国产科幻大片《流浪地球》中有这样的情节:为了自救,人类提出一个名为“流浪地球”的大胆计划,即倾全球之力在地球表面建造上万座发动机和转向发动机,推动地球离开太阳系,用2500年的时间奔往另外一个栖息之地。
2020年高考物理一轮复习专题6.2 碰撞、反冲与动量守恒定律的应用(精讲)(解析版)

专题6.2 碰撞、反冲与动量守恒定律的应用1.理解动量守恒定律的确切含义,知道其适用范围。
2.掌握动量守恒定律解题的一般步骤。
3.会应用动量守恒定律解决一维运动有关问题。
知识点一 动量守恒定律及其应用1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.(2)动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′或Δp 1=-Δp 2.2.系统动量守恒的条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.知识点二 碰撞1.概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类 种类动量是否守恒 机械能是否守恒 弹性碰撞守恒 守恒 非弹性碰撞守恒 有损失 完全非弹性碰撞守恒 损失最大 【拓展提升】1.弹性碰撞后速度的求解根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2 ②解得v 1′=1212212()2m m v m v m m -++ v 2′=2121112()2m m v m v m m -++ 2.弹性碰撞分析讨论当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度。
当碰前物体2的速度为零时,v 2=0,则:v 1′=12112()m m v m m -+,v 2′=2m 1v 1m 1+m 2, (1)m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度。
(课标通用)2020新高考物理二轮复习选择题逐题突破第五道选择题涉及的命题点5.3碰撞、爆炸和反冲课件

碰撞、爆炸和反冲
备考精要
1.碰撞过程遵循的“三原则”
碰撞时间极短,内力远大于外力,动量可看作守 动量守恒
恒,有 m1v1+m2v2=m1v1′+m2v2′ 碰撞后系统的总能量不大于碰撞前系统的总能
动能不增
量
。
系
统
动
能
满
足
关
系
式
:
1 2
m1v12
+
1 2
m2v22≥
1 2
加
m1v1′2+12m2v2′2
到达最高点时(速度水平向东)立即爆炸成质量相等的三块
பைடு நூலகம்
碎片,前面一块碎片速度水平向东,后面一块碎片速度水
平向西,前、后两块碎片的水平速度(相对地面)大小相等、
方向相反。以下说法正确的是
()
A.爆炸后的瞬间,中间那块碎片的速度大于爆炸前瞬间爆竹 的速度
B.爆炸后的瞬间,中间那块碎片的速度可能水平向西 C.爆炸后,三块碎片将同时落到水平地面上,并且落地时的
A.2m
B.4m
C.8m
D.10m
解析:选 v1 方向为正方向,根据动量守恒定律可得:mv1=mv2 +mv,代入数据解得 v=4 m/s,由能量守恒得:ΔE=12mv12 -12mv22-21mv2=8m,故 C 正确。 答案:C
3 “爆竹声中一岁除,春风送暖入屠苏”,燃放爆竹是我国传
统民俗。春节期间,某人斜向上抛出一个爆竹,假设爆竹
B.1.0 m/s D.2.0 m/s
解析:碰撞后 B 做匀减速运动,由动能定理得:-μ·2mgx=0 -12·2mv2。代入数据得:v=1 m/s,碰撞的过程中 A 与 B 组成 的系统在水平方向的动量守恒,选取向右为正方向,则:mv0 =mv1+2mv,由于没有机械能的损失,则:12mv02=12mv12+ 12·2mv2,联立可得:v0=1.5 m/s,故 A、B、D 错误,C 正确。 答案:C
《爆炸、反冲问题》 知识清单

《爆炸、反冲问题》知识清单一、爆炸问题1、爆炸的特点爆炸过程中,内力远大于外力,系统动量守恒。
由于爆炸时间极短,往往可忽略重力、摩擦力等外力的作用。
爆炸时,系统的动能会增加。
这是因为爆炸过程中,化学能转化为机械能,从而使系统的总动能增加。
2、爆炸中的动量守恒以一个简单的例子来说,比如一个静止的炸弹突然爆炸分裂成两块。
设炸弹原来的质量为 M,爆炸后分成质量为 m1 和 m2 的两块,速度分别为 v1 和 v2。
根据动量守恒定律,爆炸前系统的总动量为 0,爆炸后系统的总动量也为 0,即:m1v1 + m2v2 = 0。
3、爆炸中的能量变化爆炸过程中,化学能转化为机械能,总能量保持不变,但机械能增加。
假设炸弹爆炸前的机械能为 0,爆炸后的机械能为 E1 和 E2,则总机械能为 E = E1 + E2。
由于爆炸后系统的动能增加,所以机械能增加。
4、爆炸问题的常见类型(1)已知爆炸前系统的状态,求爆炸后各部分的速度和能量。
(2)已知爆炸后部分物体的状态,求其他物体的速度和能量。
5、解决爆炸问题的思路(1)明确研究对象:确定爆炸所涉及的物体组成的系统。
(2)分析系统内力和外力:判断内力是否远大于外力,以确定能否使用动量守恒定律。
(3)列出动量守恒方程:根据动量守恒定律,列出方程。
(4)分析能量变化:考虑化学能的转化以及机械能的增加。
二、反冲问题1、反冲的定义反冲是指当一个物体向某一方向射出(或抛出)一部分物质时,剩余部分将向相反方向运动的现象。
2、反冲的特点系统内力远大于外力,动量守恒。
反冲过程中,有能量的转化和转移。
3、反冲中的动量守恒例如,一个静止的火箭,向外喷射气体,设火箭原来的质量为 M,喷射出气体的质量为 m,速度为 v,火箭剩余部分的质量为 M m,速度为 V。
根据动量守恒定律:mv +(M m)V = 04、反冲中的能量变化反冲过程中,燃料燃烧产生的化学能转化为机械能。
5、常见的反冲现象(1)火箭发射:火箭通过燃烧燃料,向后喷出高温高压气体,从而获得向前的推力。
《爆炸、反冲问题》 知识清单

《爆炸、反冲问题》知识清单一、爆炸问题(一)爆炸的特点1、动量守恒:由于爆炸过程中内力远大于外力,系统所受合外力为零,所以爆炸过程动量守恒。
2、动能增加:爆炸过程中,化学能转化为机械能,系统的总动能增加。
3、时间极短:爆炸过程发生的时间非常短,往往在瞬间完成。
(二)爆炸过程的分析1、明确研究对象:通常将爆炸前的物体作为一个整体进行研究。
2、确定初末状态:分析爆炸前系统的动量和动能,以及爆炸后各部分的速度和动量。
3、运用动量守恒定律:根据动量守恒定律列出方程,求解爆炸后各部分的速度。
(三)爆炸问题的实例例如,一个静止的炸弹爆炸成两块,质量分别为 m1 和 m2,爆炸后m1 的速度为 v1,求 m2 的速度 v2。
根据动量守恒定律:0 = m1v1 + m2v2,可得 v2 = m1v1 / m2 。
二、反冲问题(一)反冲的定义当一个物体向某一方向射出(或抛出)一部分物质时,剩余部分将向相反方向运动,这种现象叫做反冲。
(二)反冲现象的特点1、系统内力远大于外力,系统动量守恒。
2、有其他形式的能转化为机械能,系统的动能增加。
(三)反冲运动的应用1、火箭:火箭是利用反冲原理工作的典型例子。
火箭燃料燃烧产生高温高压气体,从尾部喷出,从而使火箭获得向上的推力。
2、喷气式飞机:通过向后喷气获得向前的动力。
3、农田灌溉用的喷水器:水向后喷出,喷水器向前运动。
(四)反冲问题的分析方法1、确定系统:明确参与反冲运动的物体组成的系统。
2、分析动量:判断系统在反冲过程中是否满足动量守恒条件。
3、列方程求解:根据动量守恒定律列出方程,求解相关物理量。
三、爆炸与反冲的区别和联系(一)区别1、爆炸是在瞬间发生的,能量转化剧烈;反冲过程相对较缓慢。
2、爆炸通常是一次性的,而反冲可能是持续的过程。
(二)联系1、两者都是内力远大于外力的情况,系统动量守恒。
2、都有能量的转化,机械能增加。
四、解决爆炸、反冲问题的注意事项(一)动量守恒定律的应用在分析问题时,首先要确定系统是否满足动量守恒条件,即系统所受合外力为零。
2020版高考物理总复习第十二章2第2节动量守恒定律碰撞爆炸反冲练习(含解析)

动量守恒定律 碰撞 爆炸 反冲【随堂检测】1.一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,取重力加速度g =10 m/s 2.则下列图中两块弹片飞行的轨迹可能正确的是( )解析:选B.弹丸爆炸瞬间爆炸力远大于外力,故爆炸瞬间动量守恒.因两弹片均水平飞出,飞行时间t = 错误!=1 s ,取向右为正,由水平速度v =错误!知,选项A 中,v 甲=2.5 m/s ,v 乙=-0。
5 m/s;选项B 中,v 甲=2。
5 m/s ,v 乙=0。
5 m/s ;选项C 中,v 甲=1 m/s,v 乙=2 m/s ;选项D 中,v 甲=-1 m/s ,v 乙=2 m/s.因爆炸瞬间动量守恒,故mv =m 甲v 甲+m 乙v 乙,其中m 甲=34m ,m 乙=错误!m ,v =2 m/s ,代入数值计算知选项B 正确.2.(2019·金华质检)如图所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动;设甲同学和他的车的总质量为150 kg,碰撞前向右运动,速度的大小为4。
5 m/s,乙同学和他的车的总质量为200 kg,碰撞前向左运动,速度的大小为4。
25 m/s,则碰撞后两车共同的运动速度为(取向右为正方向)( )A.1 m/s B.0。
5 m/sC.-1 m/s D.-0。
5 m/s解析:选D.两车碰撞过程动量守恒m1v1-m2v2=(m1+m2)v得v=错误!=错误!m/s=-0。
5 m/s,故D正确.3.(2019·绍兴联考)如图所示,两小车A、B置于光滑水平面上,质量分别为m和2m,一轻质弹簧两端分别固定在两小车上,开始时弹簧处于拉伸状态,用手固定两小车.现在先释放小车B,当小车B的速度大小为3v时,再释放小车A,此时弹簧仍处于拉伸状态;当小车A的速度大小为v时,弹簧刚好恢复原长.自始至终弹簧都未超出弹性限度.求:(1)弹簧刚恢复原长时,小车B的速度大小;(2)两小车相距最近时,小车A的速度大小;(3)求两小车相距最近时,弹簧弹性势能大小.解析:(1)设弹簧刚恢复原长时,小车B速度为v B,以A、B两车和弹簧为研究对象,小车B速度为3v开始到小车A速度为v过程,此系统动量守恒,列方程有:2m·3v=2m·v B+m(-v)解得v B=3.5v;(2)两小车相距最近时速度相同,由动量守恒定律有:2m×3v=(2m+m)v A解得v A=2v;(3)从弹簧刚恢复原长到两小车相距最近过程用能量守恒定律有E弹=错误!×2mv错误!+错误!mv2-错误!×3m·v错误!解得E弹=错误!mv2。
2020届高考回归复习—力学选择之爆炸与反冲问题

3/7
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A.若锁定滑块,小球通过最高点 P 时对轻杆的作用力为 12N B.若解除对滑块的锁定,滑块和小球组成的系统动量守恒 C.若解除对滑块的锁定,小球通过最高点时速度为 3m/s
2
D.若解除对滑块的锁定,小球击中滑块右侧轨道位置点与小球起始位置点间的距离为 m
4/7
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A.炸药爆炸后,两物体分离瞬间物体甲的速度大小为 3m/s B.甲、乙两物体分离瞬间获得的总能量为 18J C.从分离到甲物体停止运动,经过的时间为 4s D.甲、乙两物体分离 2s 时,两物体之间的距离为 7.5m 15.如图所示,锁定的 A、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上,已知 A、B 两球质量分 别为 2m 和 m.过程一:只解除 B 球锁定,B 球被弹出落于距桌边水平距离为 s 的水平地面上;过程二: 同时解除 A、B 两球锁定,则(两种情况下小球离开桌面前,弹簧均已恢复原长)( )
细绳时,C 被释放,C 离开弹簧向 B 端冲去,并跟 B 端油泥粘在一起,忽略一切摩擦,以下说法正确的是
()
A.弹簧伸长过程中 C 向右运动,同时 AB 也向右运动 B.C 与 B 碰前,C 与 AB 的速率之比为 m:M C.C 与油泥粘在一起后,AB 继续向右运动 D.C 与油泥粘在一起后,AB 立即停止运动 14.如图所示,可视为质点且质量均为 1kg 的甲、乙两物体紧靠着放在水平地面,物体甲与左侧地面间的 动摩擦因数为 0.3,物体乙右侧地面光滑。两物体间夹有炸药,爆炸后两物体沿水平方向左右分离,分离 瞬间物体乙的速度大小为 3m/s,重力加速度 g 取 10m/s2。则( )
爆炸及反冲现象问题

爆炸与反冲现象问题1.爆炸现象的三个规律(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸的位置以新的动量开始运动.2.反冲现象(1)系统内的不同部分在强大内力作用下向相反方向运动,通常用动量守恒来处理.(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总动能增加.(3)反冲运动中平均动量守恒.若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用中均发生运动,则由m1v1-m2v2=0,得m1s1=m2s2,该式的适用条件是:①系统的总动量守恒或某一方向的动量守恒.②构成系统的m1、m2原来静止,因相互作用而运动.③s1、s2均为沿动量守恒方向相对于同一参考系的位移.3.人船模型知识(1)人船模型的适用条件:物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为0.(2)人船模型的特点:两物体速度大小、位移大小均与质量成反比,方向相反,两物体同时运动,同时停止.(3)人船模型的动量与能量规律:遵从动量守恒定律,系统或每个物体动能均发生变化.力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化.例题精选1. 质量为m的人站在质量为M,长为L的静止小船的右端。
小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?解:人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。
从图中可以看出,人、船的位移大小之和等于L。
设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L,∴应该注意到:1、人走船走,人停船停;人加速船加速,人减速船减速;人前进船后退。
2020版高考一轮复习:第6章 2 第2节 动量守恒定律 碰撞 爆炸 反冲

第二节动量守恒定律碰撞爆炸反冲【基础梳理】提示:不受外力所受外力的矢量和为零m1v′1+m2v′2-Δp2所受合外力为零合力为零远大于守恒不增加守恒增加守恒可能增加【自我诊断】判一判(1)两物体相互作用时若系统不受外力,则两物体组成的系统动量守恒.( )(2)动量守恒只适用于宏观低速.( )(3)当系统动量不守恒时无法应用动量守恒定律解题.( )(4)物体相互作用时动量守恒,但机械能不一定守恒.( )(5)若在光滑水平面上两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相等.( )(6)飞船做圆周运动时,若想变轨通常需要向前或向后喷出气体,该过程中系统动量守恒.( )提示:(1)√(2)×(3)×(4)√(5)√(6)√做一做(2019·安徽名校联考)如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同提示:选C.当把男孩、小车与木箱看做整体时水平方向所受的合外力才为零,所以选项C正确.对动量守恒定律的理解和应用【知识提炼】1.动量守恒的条件(1)理想守恒:系统不受外力或所受外力的矢量和为零,则系统动量守恒.(2)近似守恒:系统受到的外力矢量和不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)某一方向上守恒:系统在某个方向上所受外力矢量和为零时,系统在该方向上动量守恒.2.动量守恒定律常用的四种表达形式(1)p=p′:即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同.(2)Δp=p′-p=0:即系统总动量的增加量为零.(3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量.(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等.3.动量守恒定律的“五性”4.【典题例析】(2018·高考全国卷Ⅰ)一质量为m 的烟花弹获得动能E 后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量.求(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度.[解析] (1)设烟花弹上升的初速度为v 0,由题给条件有E =12mv 2①设烟花弹从地面开始上升到火药爆炸所用的时间为t ,由运动学公式有0-v 0=-gt ② 联立①②式得t =1g2E m. ③(2)设爆炸时烟花弹距地面的高度为h 1,由机械能守恒定律有E =mgh 1 ④火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设炸后瞬间其速度分别为v 1和v 2.由题给条件和动量守恒定律有14mv 21+14mv 22=E ⑤ 12mv 1+12mv 2=0 ⑥由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动.设爆炸后烟花弹向上运动部分继续上升的高度为h 2,由机械能守恒定律有14mv 21=12mgh 2 ⑦联立④⑤⑥⑦式得,烟花弹向上运动部分距地面的最大高度为 h =h 1+h 2=2E mg .[答案] 见解析【迁移题组】迁移1 动量守恒的条件判断1.一颗子弹水平射入置于光滑水平面上的木块A 并留在其中,A 、B 用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A 及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( )A .动量守恒,机械能守恒B .动量不守恒,机械能守恒C .动量守恒,机械能不守恒D .无法判定动量、机械能是否守恒解析:选C.动量守恒的条件是系统不受外力或所受外力的合力为零,本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒.机械能守恒的条件是除重力、弹力对系统做功外,其他力对系统不做功,本题中子弹射入木块瞬间有部分机械能转化为内能(发热),所以系统的机械能不守恒,故C正确,A、B、D错误.迁移2 某一方向上的动量守恒问题2.(多选)(2019·佛山模拟)如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽上高h处由静止开始自由下滑( )A.在下滑过程中,小球和槽之间的相互作用力对槽不做功B.在下滑过程中,小球和槽组成的系统水平方向动量守恒C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球能回到槽上高h处解析:选BC.在下滑过程中,小球和槽之间的相互作用力对槽做功,选项A错误;在下滑过程中,小球和槽组成的系统在水平方向所受合外力为零,系统在水平方向动量守恒,选项B正确;小球被弹簧反弹后,小球和槽在水平方向不受外力作用,故小球和槽都做匀速运动,选项C正确;小球与槽组成的系统动量守恒,球与槽的质量相等,小球沿槽下滑,球与槽分离后,小球与槽的速度大小相等,小球被弹簧反弹后与槽的速度相等,故小球不能滑到槽上,选项D错误.迁移3 爆炸反冲现象中的动量守恒3.(2017·高考全国卷Ⅰ)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A.30 kg·m/s B.5.7×102 kg·m/sC.6.0×102 kg·m/s D.6.3×102 kg·m/s解析:选A.燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p,根据动量守恒定律,可得p-mv0=0,解得p=mv0=0.050 kg×600 m/s=30 kg·m/s,选项A正确.1.对反冲运动的三点说明2.对碰撞现象中规律的分析【知识提炼】1.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E ′k1+E′k2或p 212m 1+p 222m 2≥p′212m 1+p′222m 2.(3)速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v 后>v前,否则无法实现碰撞.碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,即v′前≥v′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.碰撞模型类型 (1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,有 m 1v 1=m 1v′1+m 2v′2 12m 1v 21=12m 1v′21+12m 2v′22 解得v′1=(m 1-m 2)v 1m 1+m 2,v′2=2m 1v 1m 1+m 2.结论:①当两球质量相等时,v′1=0,v′2=v 1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v′1>0,v′2>0,碰撞后两球都沿速度v 1的方向运动. ③当质量小的球碰质量大的球时,v′1<0,v′2>0,碰撞后质量小的球被反弹回来. ④撞前相对速度与撞后相对速度大小相等. (2)完全非弹性碰撞①撞后共速.②有动能损失,且损失最多.【典题例析】如图所示,在足够长的光滑水平面上,物体A、B、C 位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.[审题指导] 由于是弹性碰撞,则同时满足动量守恒和机械能守恒,并且物体间碰后速度还要满足实际情况,即前面的速度大于后面的速度.[解析] A向右运动与C发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A的速度为v0,第一次碰撞后C的速度为v C1,A的速度为v A1.由动量守恒定律和机械能守恒定律得mv0=mv A1+Mv C1 ①12mv 20=12mv 2A1+12Mv 2C1 ②联立①②式得 v A1=m -M m +M v 0③ v C1=2m m +Mv 0④如果m>M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m<M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A2,B 的速度为v B1,同样有v A2=m -M m +M v A1=⎝ ⎛⎭⎪⎫m -M m +M 2v 0⑤根据题意,要求A 只与B 、C 各发生一次碰撞,应有 v A2≤v C1⑥联立④⑤⑥式得m 2+4mM -M 2≥0 解得m≥(5-2)M另一解m≤-(5+2)M 舍去. 所以,m 和M 应满足的条件为 (5-2)M≤m<M. [答案] (5-2)M≤m<M【迁移题组】迁移1 碰撞的可能性分析1.两球A 、B 在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s.当A 追上B 并发生碰撞后,两球A 、B 速度的可能值是( )A .v′A =5 m/s ,v′B =2.5 m/s B .v′A =2 m/s ,v′B =4 m/sC .v′A =-4 m/s ,v′B =7 m/sD .v′A =7 m/s ,v′B =1.5 m/s解析:选B.虽然题中四个选项均满足动量守恒定律,但A 、D 两项中,碰后A 的速度v′A 大于B 的速度v′B ,必然要发生第二次碰撞,不符合实际;C 项中,两球碰后的总动能E ′k =12m A v′2A +12m B v′2B =57 J ,大于碰前的总动能E k =22 J ,违背了能量守恒定律;而B 项既符合实际情况,也不违背能量守恒定律,故B 项正确.迁移2 弹性碰撞规律求解2.(2016·高考全国卷Ⅲ)如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m.两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动,此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g.求物块与地面间的动摩擦因数满足的条件.解析:设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有12mv 20>μmgl ①即μ<v 22gl②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1,由能量守恒定律有12mv 20=12mv 21+μmgl③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v′1、v′2,由动量守恒定律和能量守恒定律有mv 1=mv′1+3m4v′2④ 12mv 21=12mv′21+12⎝ ⎛⎭⎪⎫3m 4v′22 ⑤ 联立④⑤式解得v′2=87v 1⑥由题意,b 没有与墙发生碰撞,由功能关系可知 12⎝ ⎛⎭⎪⎫3m 4v′22≤μ3m4gl ⑦ 联立③⑥⑦式,可得μ≥32v 2113gl⑧联立②⑧式,可得a 与b 发生弹性碰撞,但b 没有与墙发生碰撞的条件为32v 20113gl ≤μ<v 22gl.答案:32v 20113gl ≤μ<v 22gl迁移3 非弹性碰撞的分析3.(多选)(2019·宁夏银川模拟)A 、B 两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a 、b 分别为A 、B 两球碰前的位移随时间变化的图象,c 为碰撞后两球共同运动的位移随时间变化的图象,若A 球质量是m =2 kg ,则由图判断下列结论正确的是 ( )A .碰撞前、后A 球的动量变化量为4 kg ·m/sB .碰撞时A 球对B 球所施的冲量为-4 N ·sC .A 、B 两球碰撞前的总动量为3 kg ·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J解析:选ABD.根据题图可知,碰前A 球的速度v A =-3 m/s ,碰前B 球的速度v B =2 m/s ,碰后A 、B 两球共同的速度v =-1 m/s ,故碰撞前、后A 球的动量变化量为Δp A =mv -mv A =4 kg ·m/s ,选项A 正确;A 球的动量变化量为4 kg ·m/s ,碰撞过程中动量守恒,B 球的动量变化量为-4 kg ·m/s ,根据动量定理,碰撞过程中A 球对B 球所施的冲量为-4 N ·s ,选项B 正确;由于碰撞过程中动量守恒,有mv A +m B v B =(m +m B )v ,解得m B =43 kg ,故碰撞过程中A 、B 两球组成的系统损失的动能为ΔE k =12mv 2A +12m B v 2B -12(m +m B )v2=10 J ,选项D 正确;A 、B 两球碰撞前的总动量为p =mv A +m B v B =(m +m B )v =-103kg ·m/s ,选项C 错误.1.碰撞现象满足的三个规律2.碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解.(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足: v′1=m 1-m 2m 1+m 2v 1 v′2=2m 1m 1+m 2v 1(3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度.当m 1≫m 2,且v 2=0时,碰后质量大的速率不变,质量小的速率为2v 1.当m 1≪m 2,且v 2=0时,碰后质量小的球原速率反弹.动量守恒定律的应用实例【知识提炼】1.“人船模型”(1)两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.(2)“人船模型”的特点①两物体满足动量守恒定律:m 1v 1-m 2v 2=0.②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1.③应用此关系时要注意一个问题:公式v 1、v 2和x 一般都是相对地面而言的. 2.“子弹打木块”模型(1)木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒. (2)两者发生的相对位移为子弹射入的深度x 相.(3)根据能量守恒定律,系统损失的动能等于系统增加的内能.(4)系统产生的内能Q =F f ·x 相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.(5)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f ·L(L 为木块的长度).【典题例析】如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)[解析] 设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,先选乙船、人和货物为研究系统,由动量守恒定律得12mv0=11mv1-mv min ①再选甲船、人和货物为研究系统,由动量守恒定律得10m×2v0-mv min=11mv2 ②为避免两船相撞应满足v1=v2 ③联立①②③式得v min=4v0.[答案] 4v0【迁移题组】迁移1 “人船模型”1.(2019·河南淮阳中学模拟)有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测量它的质量.他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离d 和船长L.已知他自身的质量为m ,则船的质量为( )A .m (L +d )dB .m (L -d )dC .mL dD .m (L +d )L解析:选B.画出如图所示的草图,设人走动时船的速度大小为v ,人的速度大小为v′,船的质量为M ,人从船尾走到船头所用时间为t.则v =d t ,v′=L -dt ;人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方向,根据动量守恒定律得Mv -mv′=0,解得船的质量M =m (L -d )d.迁移2 “子弹打木块”模型2.(多选)如图所示,质量为m 的子弹水平射入质量为M 、放在光滑水平地面上静止的木块,子弹未穿透木块,则从子弹接触木块到随木块一起匀速运动的过程中木块动能增加了5 J ,那么此过程中系统产生的内能可能为( )A .16 JB .11.2 JC .4.8 JD .3.4 J解析:选AB.法一:设子弹的初速度为v 0,与木块的共同速度为v ,则由动量守恒定律有mv 0=(M +m)v ;系统产生的内能Q =fd =12mv 20-12(m +M)v 2,木块得到的动能为E k1=fs =12Mv 2,其中,f 为子弹与木块间的摩擦力,d 为子弹在木块内运动的位移,s 为木块相对于地面运动的位移,变形可得Q =M +mm E k1>E k1,故选项A 、B 正确.法二:本题也可用图象法,画出子弹和木块的v -t 图象如图所示,根据v -t 图象与坐标轴所围面积表示位移,△OAt 的面积表示木块的位移s ,△OAv 0的面积表示子弹相对木块的位移d ,系统产生的内能Q =fd ,木块得到的动能E k1=fs ,从图象中很明显可以看出d>s ,故系统产生的内能大于木块得到的动能.迁移3 “弹簧类”模型3.(多选)光滑水平面上放有质量分别为2m 和m 的物块A 和B ,用细线将它们连接起来,两物块中间加有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x.现将细线剪断,此刻物块A 的加速度大小为a ,两物块刚要离开弹簧时物块A 的速度大小为v ,则( )A .物块B 的加速度大小为a 时弹簧的压缩量为 x2B .物块A 从开始运动到刚要离开弹簧时位移大小为 23xC .物块开始运动前弹簧的弹性势能为 32mv 2D .物块开始运动前弹簧的弹性势能为3mv 2解析:选AD.当物块A 的加速度大小为a 时,根据胡克定律和牛顿第二定律可得kx =2ma.当物块B 的加速度大小为a 时,有kx′=ma ,故x′=x2,选项A 正确;取水平向左为正方向,根据系统动量守恒得2m x A t -m x B t =0,又因为x A +x B =x ,解得物块A 的位移为x A =x3,选项B 错误;由动量守恒定律可得0=2mv -mv B ,得物块B 刚离开弹簧时的速度为v B =2v ,由系统机械能守恒可得物块开始运动前弹簧的弹性势能为E p =12·2mv 2+12mv 2B =3mv 2,选项C 错误,D 正确.动量守恒定律的应用(多选)在冰壶比赛中,某队员利用红壶去碰撞对方的蓝壶,两者在大本营中心发生对心碰撞如图(a)所示,碰后运动员用冰壶刷摩擦蓝壶前进方向的冰面来减小阻力,碰撞前后两壶运动的v-t图线如图(b)中实线所示,其中红壶碰撞前后的图线平行,两冰壶质量均为19 kg,则( )A .碰后蓝壶速度为0.8 m/sB .碰后蓝壶移动的距离为2.4 mC .碰撞过程两壶损失的动能为7.22 JD .碰后红、蓝两壶所受摩擦力之比为5∶4 答案:AD(2019·河南郑州模拟)如图所示,光滑水平地面上有一小车,车上有固定的光滑斜面和连有轻弹簧的挡板,弹簧处于原长状态,自由端恰在C 点,小车(包括光滑斜面和连有弹簧的挡板)总质量为M =2 kg.物块从斜面上A 点由静止滑下,经过B 点时无能量损失.已知物块的质量m =1 kg ,A 点到B 点的竖直高度为h =1.8 m ,BC 的长度为L =3 m ,BD 段光滑.g 取10 m/s 2.求在运动过程中:(1)弹簧弹性势能的最大值; (2)物块第二次到达C 点的速度.解析:(1)物块由A 点到B 点的过程中,由动能定理得mgh =12mv 2B -0,代入数据解得v B =6 m/s.物块由B 点运动到将弹簧压缩到最短的过程中,系统动量守恒,取v B 的方向为正方向,mv B =(M +m)v ,弹簧压缩到最短时弹簧的弹性势能最大,由能量守恒可得E pmax =12mv 2B -12(M +m)v 2,由以上两式可得E pmax =12 J.(2)物块由B 点运动到第二次到达C 点的过程中,系统动量守恒,取v B 方向为正方向,则有mv B =mv C+Mv′,物块由B 点运动到第二次到达C 点的整个过程中,根据机械能守恒,有12mv 2B =12mv 2C +12Mv′2,联立以上两式并结合题意可解得v C =-2 m/s ,即物块第二次到达C 点的速度大小为2 m/s ,方向水平向左.答案:见解析(建议用时:40分钟)一、单项选择题1.如图所示,甲木块的质量为m 1,以v 的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m 2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )A .甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒解析:选C.两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故选项A、B错误,选项C正确;甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,选项D错误.2.(2019·泉州检测)有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向右,则另一块的速度是( )A.3v0-v B.2v0-3vC.3v0-2v D.2v0+v解析:选C.在最高点水平方向动量守恒,由动量守恒定律可知,3mv0=2mv+mv′,可得另一块的速度为v′=3v0-2v,对比各选项可知,答案选C.3.如图所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是( )A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动解析:选D.选向右为正方向,则A的动量p A=m·2v0=2mv0,B的动量p B=-2mv0.碰前A、B的动量之和为零,根据动量守恒,碰后A、B的动量之和也应为零,可知四个选项中只有选项D符合题意.4.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A .m M v 0B .M m v 0C .M M -mv 0 D .m M -mv 0 解析:选D.应用动量守恒定律解决本题,注意火箭模型质量的变化.取向下为正方向,由动量守恒定律可得:0=mv 0-(M -m)v′故v′=mv 0M -m,选项D 正确.5.如图所示,小车(包括固定在小车上的杆)的质量为M ,质量为m 的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O 点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是( )A .2LM M +mB .2Lm M +mC .ML M +mD .mL M +m解析:选B.分析可知小球在下摆过程中,小车向左加速,当小球从最低点向上摆动过程中,小车向左减速,当小球摆到右边且与O 点等高时,小车的速度减为零,此时小车向左的位移达到最大,小球相对于小车的位移为2L.小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v 1、v 2,有mv 1=Mv 2,故ms 1=Ms 2,s 1+s 2=2L ,其中s 1代表小球的水平位移大小,s 2代表小车的水平位移大小,因此s 2=2LmM +m,选项B 正确.6.(2019·江西赣州信丰模拟)如图所示,B 、C 、D 、E 、F ,5个小球并排放置在光滑的水平面上,B 、C 、D 、E ,4个球质量相等,而F 球质量小于B 球质量,A 球的质量等于F 球质量.A 球以速度v 0向B 球运动,所发生的碰撞均为弹性碰撞,则碰撞之后( )A.3个小球静止,3个小球运动B.4个小球静止,2个小球运动C.5个小球静止,1个小球运动D.6个小球都运动解析:选A.因A、B质量不等,M A<M B.A、B相碰后A速度向左运动,B向右运动.B、C、D、E质量相等,弹性碰撞后,不断交换速度,最终E有向右的速度,B、C、D静止.E、F质量不等,M E>M F,则E、F 都向右运动.所以碰撞后B、C、D静止;A向左,E、F向右运动.故A正确,B、C、D错误.7.2017年7月9日,斯诺克世界杯在江苏无锡落下帷幕,由丁俊晖和梁文博组成的中国A队在决赛中1比3落后的不利形势下成功逆转,最终以4比3击败英格兰队,帮助中国斯诺克台球队获得了世界杯三连冠.如图所示为丁俊晖正在准备击球,设在丁俊晖这一杆中,白色球(主球)和花色球碰撞前、后都在同一直线上运动,碰前白色球的动量p A=5 kg·m/s,花色球静止,白色球A与花色球B发生碰撞后,花色球B的动量变为p′B=4 kg·m/s,则两球质量m A与m B间的关系可能是( )A .mB =m A B .m B =14m AC .m B =16m AD .m B =6m A解析:选A.由动量守恒定律得p A +p B =p′A +p′B ,解得p′A =1 kg ·m/s ,根据碰撞过程中总动能不增加,则有p 2A 2m A ≥p′2A 2m A +p′2B 2m B ,代入数据解得m B ≥23m A ,碰后两球同向运动,白色球A 的速度不大于花色球B的速度,则p′A m A ≤p′B m B ,解得m B ≤4m A ,综上可得23m A ≤m B ≤4m A ,选项A 正确.二、多项选择题8.如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg ·m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg ·m/s ,则( )A .该碰撞为弹性碰撞B .该碰撞为非弹性碰撞C .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10解析:选AC.由m B =2m A ,p A =p B 知碰前v B <v A ,若右方为A 球,由于碰前动量都为6 kg ·m/s ,即都向右运动,两球不可能相碰;若左方为A 球,设碰后二者速度分别为v′A 、v′B ,由题意知p′A =m A v′A =2 kg ·m/s ,p ′B =m B v′B =10 kg ·m/s ,解得v′A v ′B =25.碰撞后A 球动量变为2 kg ·m/s ,B 球动量变为10 kg ·m/s ,又m B =2m A ,由计算可知碰撞前后A 、B 两球动能之和不变,即该碰撞为弹性碰撞,选项A 、C 正确.9.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则。
2020届高三高考物理一轮复习知识点专项练习:爆炸、反冲和人船模型

爆炸、反冲及人船模型1.如图所示,A 、B 两物体质量之比m A ∶m B =3∶2,原来静止在平板车C 上,A 、B 间有一根被压缩的弹簧,地面光滑.当弹簧突然被释放后,以下系统动量不守恒的是( )A .若A 、B 与C 上表面间的动摩擦因数相同,A 、B 组成的系统 B .若A 、B 与C 上表面间的动摩擦因数相同,A 、B 、C 组成的系统 C .若A 、B 所受的摩擦力大小相等,A 、B 组成的系统D .若A 、B 所受的摩擦力大小相等,A 、B 、C 组成的系统2.A 、B 两船的质量均为m ,都静止在平静的湖面上,现A 船中质量为12m 的人,以对地的水平速度v 从A 船跳到B船,再从B 船跳到A 船……经n 次跳跃后,人停在B 船上,不计水的阻力,则( ) A .A 、B 两船速度大小之比为2∶3 B .A 、B (包括人)两船动量大小之比为1∶1 C .A 、B (包括人)两船的动能之比为2∶3 D .A 、B (包括人)两船的动能之比为1∶13.一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )4.如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,下列说法正确的是( )A .弹簧伸长过程中C 向右运动,同时AB 也向右运动 B .C 与B 碰前,C 与AB 的速率之比为M ∶m C .C 与油泥粘在一起后,AB 立即停止运动D .C 与油泥粘在一起后,AB 继续向右运动5.光滑水平面上放有质量分别为2m 和m 的物块A 和B ,用细线将它们连接起来,两物块中间加有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x .现将细线剪断,此刻物块A 的加速度大小为a ,两物块刚要离开弹簧时物块A 的速度大小为v ,则( )A .物块B 的加速度大小为a 时弹簧的压缩量为 x2B .物块A 从开始运动到刚要离开弹簧时位移大小为 23xC .物块开始运动前弹簧的弹性势能为 32mv 2D .物块开始运动前弹簧的弹性势能为3mv 26.如图所示,小车(包括固定在小车上的杆)的质量为M ,质量为m 的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O 点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是( )A .2LM M +mB .2LmM +mC .ML M +mD .mL M +m7.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( ) A .m M v 0B .M m v 0C .M M -m v 0D .m M -m v 08.如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A .mh M +mB .Mh M +mC .αtan )(m M mh+D .αtan )(m M Mh+9.如图所示,光滑的水平面AB 与半径为R =0.32 m 的光滑竖直半圆轨道BCD 在B 点相切,D 为轨道最高点.用轻质细线连接甲、乙两小球(图中细线未画出),中间夹一轻质弹簧,弹簧与甲、乙两球不拴接.甲球的质量为m 1=0.1 kg ,乙球的质量为m 2=0.3 kg ,甲、乙两球静止在光滑的水平面上.现固定甲球,烧断细线,乙球离开弹簧后进入半圆轨道恰好能通过D 点.重力加速度g 取10 m/s 2,甲、乙两球可看做质点. (1)求细线烧断前弹簧的弹性势能;(2)若甲球不固定,烧断细线,求乙球离开弹簧后进入半圆轨道能达到的最大高度;(3)若给甲、乙两球一向右的初速度v0的同时烧断细线,乙球离开弹簧后进入半圆轨道仍恰好能通过D点,求v0的大小.10.(2019·四川双流中学模拟)如图所示,A、B两个物体粘在一起以v0=3 m/s的速度向右运动,物体中间有少量炸药,经过O点时炸药爆炸,假设所有的化学能全部转化为A、B两个物体的动能且两物体仍然在水平面上运动,爆炸后A物体的速度依然向右,大小变为v A=2 m/s,B物体继续向右运动进入光滑半圆轨道且恰好通过最高点D,已知两物体的质量m A=m B=1 kg,O点到半圆轨道最低点C的距离x OC=0.25 m,物体与水平轨道间的动摩擦因数为μ=0.2,A、B两个物体均可视为质点,求:(1)炸药的化学能E;(2)半圆轨道的半径R.参考答案1.如图所示,A 、B 两物体质量之比m A ∶m B =3∶2,原来静止在平板车C 上,A 、B 间有一根被压缩的弹簧,地面光滑.当弹簧突然被释放后,以下系统动量不守恒的是( )A .若A 、B 与C 上表面间的动摩擦因数相同,A 、B 组成的系统 B .若A 、B 与C 上表面间的动摩擦因数相同,A 、B 、C 组成的系统 C .若A 、B 所受的摩擦力大小相等,A 、B 组成的系统D .若A 、B 所受的摩擦力大小相等,A 、B 、C 组成的系统 【答案】:A【解析】:如果A 、B 与C 上表面间的动摩擦因数相同,弹簧被释放后,A 、B 分别相对C 向左、向右滑动,它们所受的滑动摩擦力F A 向右,F B 向左,由于m A ∶m B =3∶2,所以F A ∶F B =3∶2,则A 、B 组成的系统所受的外力之和不为零,故其动量不守恒;对A 、B 、C 组成的系统,A 与C 、B 与C 间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒;若A 、B 所受的摩擦力大小相等,则A 、B 组成的系统所受的外力之和为零,故其动量守恒.综上所述,A 正确.2.A 、B 两船的质量均为m ,都静止在平静的湖面上,现A 船中质量为12m 的人,以对地的水平速度v 从A 船跳到B船,再从B 船跳到A 船……经n 次跳跃后,人停在B 船上,不计水的阻力,则( ) A .A 、B 两船速度大小之比为2∶3 B .A 、B (包括人)两船动量大小之比为1∶1 C .A 、B (包括人)两船的动能之比为2∶3 D .A 、B (包括人)两船的动能之比为1∶1 【答案】:B【解析】:人和两船组成的系统动量守恒,两船原来静止,总动量为0,A 、B (包括人)两船的动量大小相等,选项B 正确;经过n 次跳跃后,A 船速度为v A 、B 船速度为v B ,则0=mv A -(m +m 2)v B ,解得v A v B =32,选项A 错误;A 船最后获得的动能为E k A =12mv A 2,B 船(包括人)最后获得的动能为E k B =12(m 2+m )v B 2=12(m 2+m )(23v A )2=23E k A ,所以E k A E k B =32,选项C 、D 错误.3.一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )【答案】:B【解析】:由h =12gt 2可知,爆炸后甲、乙两块做平抛运动的时间t =1 s ,爆炸过程中,爆炸力对沿原方向运动的一块的冲量沿运动方向,故这一块的速度必然增大,即v >2 m/s ,因此水平位移大于2 m ,C 、D 项错误;甲、乙两块在爆炸前后,水平方向不受外力,故水平方向动量守恒,即甲、乙两块的动量改变量大小相等,两块质量比为3∶1,所以速度变化量之比为1∶3,由平抛运动水平方向上,x =v 0t ,所以A 图中,v 乙=-0.5 m/s ,v 甲=2.5 m/s ,Δv 乙=2.5 m/s ,Δv 甲=0.5 m/s ,A 项错误;B 图中,v 乙=0.5 m/s ,v 甲=2.5 m/s ,Δv 乙=1.5 m/s ,Δv 甲=0.5 m/s ,B 项正确.4.如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,下列说法正确的是( )A .弹簧伸长过程中C 向右运动,同时AB 也向右运动 B .C 与B 碰前,C 与AB 的速率之比为M ∶m C .C 与油泥粘在一起后,AB 立即停止运动D .C 与油泥粘在一起后,AB 继续向右运动 【答案】:BC【解析】:AB 与C 组成的系统在水平方向上动量守恒,C 向右运动时,AB 应向左运动,故A 错误;设碰前C 的速率为v 1,AB 的速率为v 2,则0=mv 1-Mv 2,得v 1v 2=Mm,故B 正确;设C 与油泥粘在一起后,AB 、C 的共同速度为v共,则0=(M +m )v 共,得v 共=0,故C 正确,D 错误.5.光滑水平面上放有质量分别为2m 和m 的物块A 和B ,用细线将它们连接起来,两物块中间加有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x .现将细线剪断,此刻物块A 的加速度大小为a ,两物块刚要离开弹簧时物块A 的速度大小为v ,则( )A .物块B 的加速度大小为a 时弹簧的压缩量为 x2B .物块A 从开始运动到刚要离开弹簧时位移大小为 23xC .物块开始运动前弹簧的弹性势能为 32mv 2D .物块开始运动前弹簧的弹性势能为3mv 2 【答案】AD.【解析】:当物块A 的加速度大小为a 时,根据胡克定律和牛顿第二定律可得kx =2ma .当物块B 的加速度大小为a 时,有kx ′=ma ,故x ′=x 2,选项A 正确;取水平向左为正方向,根据系统动量守恒得2m x A t -m x Bt =0,又因为x A +x B =x ,解得物块A 的位移为x A =x3,选项B 错误;由动量守恒定律可得0=2mv -mv B ,得物块B 刚离开弹簧时的速度为v B =2v ,由系统机械能守恒可得物块开始运动前弹簧的弹性势能为E p =12·2mv 2+12mv 2B =3mv 2,选项C 错误,D 正确.6.如图所示,小车(包括固定在小车上的杆)的质量为M ,质量为m 的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O 点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是( )A .2LM M +mB .2LmM +mC .ML M +mD .mL M +m【答案】B.【解析】:分析可知小球在下摆过程中,小车向左加速,当小球从最低点向上摆动过程中,小车向左减速,当小球摆到右边且与O 点等高时,小车的速度减为零,此时小车向左的位移达到最大,小球相对于小车的位移为2L .小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v 1、v 2,有mv 1=Mv 2,故ms 1=Ms 2,s 1+s 2=2L ,其中s 1代表小球的水平位移大小,s 2代表小车的水平位移大小,因此s 2=2Lm M +m ,选项B 正确.7.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( ) A .m M v 0B .Mm v 0C .M M -m v 0D .m M -m v 0【答案】D.【解析】:应用动量守恒定律解决本题,注意火箭模型质量的变化.取向下为正方向,由动量守恒定律可得:0=mv 0-(M -m )v ′故v ′=mv 0M -m,选项D 正确. 8.如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A .mh M +mB .Mh M +mC .αtan )(m M mh+D .αtan )(m M Mh+【答案】C【解析】: 此题属“人船模型”问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考回归复习—力学选择之爆炸与反冲问题1.如图所示,一枚手榴弹在空中竖直下落,一段时间后爆炸成a 、b 两块,又过了一段时间,a 、b 两块同时落到水平地面上,其中a 飞行的水平距离OA 是b 飞行的水平距离OB 的2倍,忽略空气阻力,则a 、b 两块在爆炸前后( )A .动量增加量之比是1:2B .动量增加量之比是2:1C .动能增加量之比是1:2D .动能增加量之比是2:12.一质量为m 的炮弹在空中飞行,运动至最高点时炸裂成质量相等的a 、b 两块,爆炸前瞬间炮弹速度为v ,方向水平向右,爆炸后a 的速度为2v ,方向水平向左.爆炸过程中转化为动能的化学能是( ) A .212mv B .2mvC .292mv D .25mv3.如图所示,半径为R 、质量为M 的1/4 光滑圆槽置于光滑的水平地面上,一个质量为m 的小木从槽的顶端由静止滑下.则木块从槽口滑出时的速度大小为( )A BCD 4.一弹丸在飞行到距离地面5 m 高时仅有水平速度 v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度 g =10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )A .B .C .D .5.用如图所示实验能验证动量守恒定律,两块小木块A 和B 中间夹着一轻质弹簧,用细线捆在一起,放在光滑的水平台面上,将细线烧断,木块A 、B 被弹簧弹出,最后落在水平地面上落地点与平台边缘的水平距离分别为1m A l =,2m B l =.实验结果表明下列说法正确的是( )v v=A.木块A、B离开弹簧时的速度大小之比:1:4A Bm m=B.木块A、B的质量之比:1:2A BW W=C.弹簧对木块A、B做功之比:1:1A BE E=D.木块A、B离开弹簧时的动能之比:1:2A B6.向空中发射一枚炮弹,不计空气阻力,当此炮弹的速度恰好沿水平方向时,炮弹炸裂成a、b两块,若质量较大的a的速度方向仍沿原来的方向,则有()A.b的速度方向一定与原来速度方向相反B.从炸裂到落地的这段时间内,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的爆炸力的冲量一定相同7.如图所示,光滑水平面上A、B、C三个质量均为1 kg的物体紧贴着放在一起,A、B之间有微量炸药。
炸药爆炸过程中B对C做的功为4 J,若炸药爆炸过程释放的能量全部转化为三个物体的动能,则炸药爆炸过程中释放出的能量为()A.8 JB.16 JC.24 JD.32 J8.在水平地而的某点斜向上成60°抛出一物体,在物体速度方向刚变为水平方向时,在极短时间内炸裂成v,a块的速度方向与刚炸裂时物块的方向相同.在不计空气阻a、b两块.已知物体离开地而的速率为2力的情况下,则()A.b的速度方向一定与炸裂时物块的方向相反B.a、b均做平抛运动,且一定同时到达地面C.a的平抛初速一定大于ν0,b的平抛初速一定小于ν0D.炸裂过程中,a、b中受到的爆炸力的冲量一定相同9.如图所示,某中学航天兴趣小组的同学将静置在地面上的质量为M(含水)的自制“水火箭”释放升空,在极短的时间内,质量为m的水以相对地面为0v的速度竖直向下喷出。
已知重力加速度为g,空气阻力不计,下列说法正确的是()A .火箭的推力来源于火箭外的空气对它的反作用力B .水喷出的过程中,火箭和水机械能守恒C .火箭获得的最大速度为Mv M m-D .火箭上升的最大高度为22022()m v g M m - 10.在垂直于纸面的匀强磁场中,有一原来静止的氡核22286R ,该原子核发生α衰变,放出一个速度为0v 、质量为m 的α粒子和一个质量为M 的反冲核钋(Po ),若氡核发生衰变时,释放的能量全部转化为α粒子和钋核的动能(涉及动量问题时, 亏损的质量可忽略不计),以下说法正确的是( )A .衰变后α粒子和反冲核钋(Po )在匀强磁场中的运动轨迹如图甲所示,小圆表示α粒子的运动轨迹B .衰变后α粒子和反冲核钋(Po )在匀强磁场中的运动轨迹如图乙所示,大圆表示α粒子的运动轨迹C .衰变过程α粒子和反冲核钋(Po )组成的系统能量守恒,动量不守恒D .衰变过程中,质量亏损为22()2M m Mv m mc +∆=11.如图所示,质量M =2kg 的滑块套在光滑的水平轨道上,质量m =1kg 的小球通过L =0.5m 的轻质细杆与滑块上的光滑轴O 连接,小球和轻杆可在竖直平面内绕O 轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度v 0=4m/s ,g 取10m/s 2。
则( )A .若锁定滑块,小球通过最高点P 时对轻杆的作用力为12NB .若解除对滑块的锁定,滑块和小球组成的系统动量守恒C .若解除对滑块的锁定,小球通过最高点时速度为3m/sD .若解除对滑块的锁定,小球击中滑块右侧轨道位置点与小球起始位置点间的距离为23m 12.光滑水平面上放有一上表面光滑、倾角为α的斜面A ,斜面质量为M ,底边长为 L ,如图所示。
将一质量为m 的可视为质点的滑块B 从斜面的顶端由静止释放,滑块B 经过时间t 刚好滑到斜面底端。
此过程中斜面对滑块的支持力大小为N F ,则下列说法中正确的是( )A .cos αN F mg =B .滑块下滑过程中支持力对B 的冲量大小为cos αN F tC .滑块到达斜面底端时的动能为tan αmgLD .此过程中斜面向左滑动的距离为mL M m+13.如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,以下说法正确的是( )A .弹簧伸长过程中C 向右运动,同时AB 也向右运动 B .C 与B 碰前,C 与AB 的速率之比为m :M C .C 与油泥粘在一起后,AB 继续向右运动D .C 与油泥粘在一起后,AB 立即停止运动14.如图所示,可视为质点且质量均为1kg 的甲、乙两物体紧靠着放在水平地面,物体甲与左侧地面间的动摩擦因数为0.3,物体乙右侧地面光滑。
两物体间夹有炸药,爆炸后两物体沿水平方向左右分离,分离瞬间物体乙的速度大小为3m/s ,重力加速度g 取10m/s 2。
则( )A .炸药爆炸后,两物体分离瞬间物体甲的速度大小为3m/sB .甲、乙两物体分离瞬间获得的总能量为18JC .从分离到甲物体停止运动,经过的时间为4sD .甲、乙两物体分离2s 时,两物体之间的距离为7.5m15.如图所示,锁定的A 、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上,已知A 、B 两球质量分别为2m 和m .过程一:只解除B 球锁定,B 球被弹出落于距桌边水平距离为s 的水平地面上;过程二:同时解除A 、B 两球锁定,则(两种情况下小球离开桌面前,弹簧均已恢复原长)( )A .两种情况下B 小球机械能增量均相同B .两过程中,在B 球落地前A 、B 两小球及弹簧组成的系统机械能均守恒C .过程二中,BD .过程一和过程二中,弹簧对B 球做功之比为3:216.如图所示,质量为2m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升到距B 点所在水平线的最大高度为34h 处(不计空气阻力,小球可视为质点),则( )A .小球和小车组成的系统动量守恒B .小球离开小车后做斜上抛运动C .小车向左运动的最大距离为23R D .小球第二次在空中能上升到距B 点所在水平线的最大高度大于2h 17.如图所示,物体A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为R ,将物体A 从圆槽的右侧最顶端由静止释放,一切摩擦均不计,则( )A.B向右运动的最大位移大小为2 3 RB.A不能到达B圆槽的左侧最高点C.A运动到圆槽的最低点时AD.A运动到圆槽的最低点时B18.如图所示,小车的立柱上O点固定有长L的不可伸长的轻绳,绳的末端拴有小球A(可视为质点).小车静止在光滑的水平面上且OA水平,此时将小球由静止释放.小车的质量是小球的5倍.小球在摆动时不计空气和摩擦阻力.下面说法中正确的是()A.小球和小车组成的系统总动量守恒B.摆动过程中小球和小车组成系统的机械能守恒C.小球向右最大位移为5 3 LD19.电推进系统(俗称“电火箭”)是利用电能加热、电离和加速带电粒子,形成向外发射的高速粒子流从而对飞行器产生反冲力。
某飞行器的质量为M,“燃料”电离后产生2价氧离子,经电压为U的电场加速后发射出去,发射功率为P。
已知每个氧离子的质量为m,元电荷为e,假设飞行器原来静止,不计发射氧离子后飞行器质量的变化,下面说法中正确的是()AB.电推进系统每秒钟射出的氧离子数为2PNeUCD.在推进器工作过程中,氧离子和飞行器组成的系统动量守恒20.如图所示,在光滑的水平面上静止放置A、B、C三个物体,A、B、C的质量分别为m A=1kg,m B=3kg,m C=2kg。
物体C为一光滑的圆弧轨道,弧面足够长,物体A、B之间有一根轻质弹簧(弹簧和物体A、B均未栓接),现用力把弹簧压缩后再用绳子把物体A、B固定,使A、B处于静止。
现剪断绳子,之后弹簧把A向左弹出,已知A离开弹簧后的速度大小为3m/s,A、B分开后把弹簧撤去(重力加速度g=10m/s2)。
下说法正确的是()A.弹簧把A、B弹开的过程中释放出的弹性势能为4.5JB.A滑上C上表面的最大离地高度为0.3mC.A从C上离开后不能追上BD.A从C上离开后能追上B参考答案。