高三高考数学总复习《概率与统计》题型归纳与训练

合集下载

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。

2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。

本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。

一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。

尤其是古典概率和条件概率的计算,需要学生熟练掌握。

对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。

2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。

对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。

3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。

对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。

对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。

4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。

二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。

2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。

3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。

4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。

三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。

高三《概率与统计》专题复习

高三《概率与统计》专题复习

高三《概率与统计》专题复习一、常用知识点回顾 1、概率:古典概型nm=p (枚举法、列表法);几何概型。

2、特征数:众数、中位数、平均数、方差得概念及其求法。

3、频率分布直方图、茎叶图。

(1)在频率分布直方图中,各小组得频率等于小长方形得面积,且各小长形得面积之与等于1;(2)在频率分布直方图中,求众数、中位数、平均数得方法;频率频数样本容量,样本容量频率,频数样本容量频数)频率(÷=⨯==34、回归分析。

(1)回归直线必过样本中心点),(y x ;(2)求回归直线方程。

(3)求相关系数,判断拟合效果。

5、独立性检验。

填写22⨯列联表,并根据22⨯列联表求随机变量K 2,判断“两个随机变量有关”可能性大小。

二、题型训练【例1】、某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出得酸奶降价处理,以每瓶2元得价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份得订购计划,统计了前三年六月份各天得最高气温数据,得下面得频数分布表:(1)求六月份这种酸奶一天得需求量不超过300瓶得概率;(2)设六月份一天销售这种酸奶得利润为Y (单位:元),当六月份这种酸奶一天得进货量为450瓶时,写出Y 得所有可能值,并估计Y 大于零得概率.【练习1】、某汽车美容公司为吸引顾客,推出优惠活动:对首次消费得顾客,按200元/次收费, 并注册成为会员, 对会员逐次消费给予相应优惠,标准如下:该公司从注册得会员中, 随机抽取了100位进行统计, 得到统计数据如下:消费次第第1次第2次第3次第4次第5次频数60201055假设汽车美容一次, 公司成本为150元, 根据所给数据, 解答下列问题:(1)估计该公司一位会员至少消费两次得概率;(2)某会员仅消费两次, 求这两次消费中, 公司获得得平均利润;(3) 设该公司从至少消费两次, 求这得顾客消费次数用分层抽样方法抽出8人, 再从这8人中抽出2人发放纪念品, 求抽出2人中恰有1人消费两次得概率、【练习2】、2017年春节前,有超过20万名广西、四川等省籍得外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年得摩托车驾驶人有一个停车休息得场所。

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。

高考数学概率统计知识点总结(文理通用)

高考数学概率统计知识点总结(文理通用)

概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。

高考文科数学《概率与统计》题型归纳与训练.pptx

高考文科数学《概率与统计》题型归纳与训练.pptx
书山有路
2020 年高考文科数学《概率与统计》题型归纳与训练
【题型归纳】
题型一 古典概型
例 1 从甲、乙等5名学生中随机选出2 人,则甲被选中的概率为( ).
A. 1
5 9 25
B. 2
5
C. 8
D.
25
【答案】 B
【解析】 可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方
法有:
一次随机摸出2 只球,则这2 只球颜色不同的概率为

【答案】 P 5
6
8
书山有路
【解析】1只白球设为 a ,1只红球设为b , 2 只黄球设为 c , d ,
则摸球的所有情况为a,b,a,c, a,d, b,c ,b,d,c,d,共 6 件, 满足题意的事件为a,b , a,c,a,d, b,c , b,d,共 5 件,故概率为P 5 .
参考数据: 7 yi 9.32 , 7 ti yi 40.17 , 7 ( yi y) 2 0.55 , 7 2.646.
i1
i1
i1
参考公式:相关系数r
n
(ti t )( yi y)
i1

n
n
(ti t )2 (yi y)2
i1
i1
回归方程 y a bt 中斜率和截距的最小二乘估计公式分别为:
(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),
(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前 4 种是甲被选中, 所以所求概率为 4 2 .故选 B.
10 5
例 2 将 2 本不同的数学书和 1 本语文书在书架上随机排成一行,则 2 本数学书

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练高考文科数学概率与统计题型归纳与训练近年来,随着高考评价重点的转变,我国高考数学概率与统计所占的比重越来越大,也极大地影响了学生的试题解答,特别是对文科类学生而言。

因此,归纳与训练概率与统计的题型对提升高考成绩非常有效。

一、高考概率与统计试题类型1、概率题:(1)概率概念题:要求判断某事件的可能性大小、求概率大小、比较概率大小,以及用中文描述概率大小等概念性问题。

(2)条件概率及贝叶斯公式:求两事件同时发生的条件概率,用贝叶斯公式求解概率问题。

(3)随机变量和概率分布:讨论正态分布、泊松分布等随机变量的概率分布。

2、统计学题:(1)数据的勘误析:把调查所得原始数据准确地归类编单,以便找出这些数据中蕴含的结论。

(2)图表分析:分析调查对象之间的关系,从折线图、饼形图、柱形图等图表中获取相应的数据。

二、概率与统计的训练方法1、理论思考训练:多看有关概率、统计的权威论文和教材,把基本概念牢牢掌握,把常见的概率公式及统计公式及推导式脱口而出。

2、示范练习:对常考的知识点补充示范练习,可以通过复现例题和大量习题来熟悉该知识点,从而深入理解,提高解题能力。

3、联系模拟考试:利用模拟考试把学过的知识点和技巧联系起来,在试题中能够驾轻就熟地掌握各试题技巧,大大提升实力。

4、强化记忆:记忆知识点、公式要选择相应的方法,通过反复记忆和熟习,把重点内容融会贯通,熟练记忆几个重点的式子和结论有助于考试的取得好成绩。

总之,学习概率与统计,除了要用心去理解之外,还需要不断的训练,把一些重点的知识点、公式强化记忆,加深理解,才能在考试中取得较好的成绩。

2020年高考理科数学《概率与统计》题型归纳与训练

2020年高考理科数学《概率与统计》题型归纳与训练
例 1、某大学艺术专业 400 名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽 取了100 名学生,记录他们的分数,将数据分成 7 组:[20,30),[30,40),,[80,90], 并整理得到如下频率分
布直方图:
(Ⅰ)从总体的 400 名学生中随机抽取一人,估计其分数小于 70 的概率; (Ⅱ)已知样本中分数小于 40 的学生有 5 人,试估计总体中分数在区间[40,50) 内的人数; (Ⅲ)已知样本中有一半男生的分数不小于 70 ,且样本中分数不小于 70 的男女生人数相等.试估计总体
100 (Ⅲ)由题意可知,样本中分数不小于 70 的学生人数为 (0.02 0.04) 10 100 60 ,所以样本中分数不 小于 70 的男生人数为 60 1 30 .所以样本中的男生人数为 30 2 60 ,女生人数为100 60 40 ,男生
2 和女生人数的比例为 60 : 40 3 : 2 ,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为 3: 2 .
【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应
注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1 ,当小矩形等高时,说明
频率相等,计算时不要漏掉其中一个. 【思维点拨】 1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少. 2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数 较多. 3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数 利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的; (3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中 点的横坐标之和. 5.求回归直线方程的关键

高考数学概率统计题型归纳

高考数学概率统计题型归纳

高考数学概率统计题型归纳高考数学中的概率统计是一个重要的考点,其题型多样,涵盖了众多知识点。

为了帮助同学们更好地应对高考中的概率统计题目,下面对常见的题型进行归纳和分析。

一、古典概型古典概型是概率统计中最基本的题型之一。

其特点是试验中所有可能的结果有限,且每个结果出现的可能性相等。

例如,从装有 5 个红球和 3 个白球的袋子中随机取出 2 个球,求取出的 2 个球都是红球的概率。

解决这类问题的关键是要准确计算基本事件的总数和所求事件包含的基本事件数。

在上述例子中,基本事件的总数可以通过组合数计算,即从 8 个球中取出 2 个球的组合数;所求事件包含的基本事件数为从 5 个红球中取出 2 个球的组合数。

然后用所求事件包含的基本事件数除以基本事件的总数,即可得到所求概率。

二、几何概型几何概型与古典概型的区别在于试验的结果是无限的。

通常会涉及到长度、面积、体积等几何度量。

比如,在区间0, 5上随机取一个数,求这个数小于 2 的概率。

解决几何概型问题时,需要确定几何区域的度量,并计算出所求事件对应的几何区域的度量,最后用所求事件对应的几何区域的度量除以总的几何区域的度量,得到概率。

三、相互独立事件与条件概率相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响。

例如,甲、乙两人分别独立射击,甲击中目标的概率为 08,乙击中目标的概率为 07,求两人都击中目标的概率。

条件概率则是在已知某个事件发生的条件下,求另一个事件发生的概率。

比如,已知某班级男生占 60%,女生占 40%,男生中优秀的比例为30%,女生中优秀的比例为 20%,现从班级中随机抽取一名学生为优秀,求这名学生是男生的概率。

对于相互独立事件,其概率的计算使用乘法公式;对于条件概率,使用条件概率公式进行计算。

四、离散型随机变量离散型随机变量是指取值可以一一列出的随机变量。

常见的离散型随机变量有二项分布、超几何分布等。

二项分布是指在 n 次独立重复试验中,某事件发生的次数 X 服从二项分布。

高中数学必修一概率与统计概念知识点总结及练习题

高中数学必修一概率与统计概念知识点总结及练习题

高中数学必修一概率与统计概念知识点总结及练习题概率的基本概念- 事件:指某个特定的结果或情况。

- 样本空间:所有可能结果的集合。

- 随机试验:具有确定结果但无法预知的试验。

- 事件发生的概率:一个事件发生的可能性大小。

概率的计算方法频率定义法- 通过大量重复试验来估计某个事件发生的概率。

古典定义法- 对于具有确定结果的试验,通过分析样本空间和事件的个数来计算概率。

几何定义法- 通过几何形状的面积或长度来计算概率。

组合计数法- 通过组合的方法计算某个事件发生的概率。

概率的性质- 概率的取值范围:[0,1]- 必然事件的概率:1- 不可能事件的概率:0- 互斥事件的概率:两个事件不可能同时发生,概率为两个事件概率之和。

统计的基本概念- 总体:研究对象的全体。

- 样本:从总体中选取的一部分。

- 参数:总体的某个数值特征。

- 统计量:样本的某个数值特征。

抽样方法- 随机抽样:每个样本都有相同的机会被选中。

- 系统抽样:按照一定的规则抽取样本。

- 分层抽样:将总体划分成几个层次,然后从每个层次中随机抽取样本。

- 整群抽样:将总体划分成若干个互相独立的群组,然后随机选择某些群组作为样本。

统计的应用- 描述统计:通过图表和指标等方式描述数据特征。

- 推断统计:通过样本的统计量推断总体参数。

练题1. 一个骰子掷一次,计算以下事件的概率:- 出现奇数的概率- 出现大于4的概率2. 甲、乙、丙三个班级参加校运动会,根据每个班级报名人数的统计数据,计算以下事件的概率:- 一个学生随机选中是甲班的概率- 一个学生随机选中是丙班的概率3. 一名学生参加数学竞赛,根据往年的统计数据,该学生获奖的概率为0.4。

如果该学生连续参加了5次数学竞赛,计算以下事件的概率:- 至少获奖一次的概率- 恰好获奖3次的概率4. 某商品以正态分布的价格出售,平均价格为100元,标准差为10元。

计算以下事件的概率:- 价格大于90元的概率- 价格在90元到110元之间的概率5. 一组学生的考试成绩服从正态分布,平均分为80分,标准差为5分。

数学高三数学概率与统计知识总结与题型解析

数学高三数学概率与统计知识总结与题型解析

数学高三数学概率与统计知识总结与题型解析概率与统计是高中数学中的一个重要部分,也是数学高考中的一个重点考点。

掌握好概率与统计的知识对于高三学生来说非常重要。

本文将对高三数学概率与统计的知识进行总结,并解析一些常见的题型。

一、概率的基本概念和性质概率是研究随机试验结果出现的可能性的数学理论。

在概率的研究中,有几个基本概念和性质需要掌握。

1.1 试验、样本空间和事件随机试验是指具有以下三个特点的试验:可以在相同的条件下重复进行,每次试验的结果不确定,且试验的结果有多种可能性。

样本空间是指一个随机试验的所有可能结果的集合。

事件是样本空间的一个子集,表示随机试验中我们关心的一些结果。

1.2 概率的定义和性质概率的定义可以通过两种方式来描述:频率定义和古典定义。

频率定义是指当试验重复进行很多次时,事件发生的频率趋近于概率值。

古典定义是指在满足条件的情况下,事件发生的可能性与样本空间中元素个数的比值。

概率具有以下几个性质:非负性、规范性、可列可加性、互斥性和独立性。

1.3 条件概率和乘法定理条件概率是指在另一个事件已经发生的条件下,某个事件发生的概率。

条件概率可以通过乘法定理来计算。

二、离散型随机变量离散型随机变量是指在有限或可数无限个取值中取一个确定值的变量。

离散型随机变量具有以下几个重要的性质:概率函数、分布函数、数学期望、方差等。

2.1 二项分布二项分布是指在n次独立的伯努利试验中,事件发生的次数所符合的概率分布。

如果事件发生的概率为p,不发生的概率为q=1-p,那么在n次试验中,事件发生k次的概率可以由二项分布来计算。

2.2 泊松分布泊松分布是在一定时间或空间范围内,某个事件发生的概率符合的分布。

泊松分布的参数λ表示单位时间或单位空间内事件的平均发生率。

三、连续型随机变量连续型随机变量是指在一个或者几个区间内取值的变量。

连续型随机变量具有以下几个重要的性质:概率密度函数、分布函数、数学期望、方差等。

高中数学概率与统计常考题型归纳

高中数学概率与统计常考题型归纳

高中数学概率与统计(理科)常考题型归纳题型一:常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列. 解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3) =C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i,这是本题求解的关键.(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【变式训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14, P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118,∴所求概率为P (B|A )=P (AB )P (A )=11813=16.题型二:离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=2 9,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=10 81,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=8 81 .故X的分布列为E(X)=2×59+3×29+4×1081+5×81=81.【类题通法】求离散型随机变量的均值和方差问题的一般步骤第一步:确定随机变量的所有可能值;第二步:求每一个可能值所对应的概率;第三步:列出离散型随机变量的分布列;第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【变式训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2 .②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×2=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X 1的数学期望为E(X1)=20×16+60×3+100×6=60(元),X 1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X 2的数学期望为E(X2)=40×16+60×3+80×6=60(元),X 2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.题型三:概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组75,80),第2组80,85),第3组85,90),第4组90,95),第5组95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5××40=12.第4组的人数为5××40=8.第5组的人数为5××40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11 .②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为E(X)=0×25+1×815+2×115=1015=3.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X服从超几何分布.【变式训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”, 则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2. P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=.题型四:统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值. 解 (1)由题意知n =10,x =1n∑ni =1x i =8010=8, y =1n∑ni =1y i =2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24,由此得b^=lxylxx=2480=,a^=y-b^x=2-×8=-,故所求线性回归方程为y^=-.(2)由于变量y的值随x值的增加而增加(b^=>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=×7-=(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【变式训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:K2=10060×40×55×45≈>,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i(i =0,1,2,3).X 的分布列为均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。

数学高三概率与统计章节重点知识梳理与习题攻略

数学高三概率与统计章节重点知识梳理与习题攻略

数学高三概率与统计章节重点知识梳理与习题攻略概率与统计是高中数学中的重要章节,也是高考中的热点内容。

精通概率与统计对于学生提高数学成绩、应对高考至关重要。

为此,本文将对高三概率与统计章节的重点知识进行梳理,并提供习题攻略,帮助学生更好地掌握这一知识点。

一、基本概念1.事件与样本空间在概率与统计中,我们需要了解事件和样本空间的概念。

事件是指一个我们感兴趣的结果或者结果的集合,而样本空间是所有可能结果的集合。

2.概率概率是指某个事件发生的可能性大小。

常见的概率有经典概率、几何概率和统计概率等。

3.条件概率条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。

它可以用公式表示为:P(B|A) = P(A∩B)/P(A)。

4.互斥事件与独立事件互斥事件是指两个事件不能同时发生的情况,独立事件是指两个事件的发生不会相互影响。

二、概率计算方法1.加法原理与乘法原理加法原理是指计算两个事件至少发生一个的概率。

乘法原理是指计算两个事件同时发生的概率。

2.全概率公式和贝叶斯定理全概率公式是指在一组互斥事件的基础上计算某个事件的概率。

贝叶斯定理是指在已知某个事件发生的条件下计算另一个事件发生的概率。

三、随机变量与概率分布1.随机变量随机变量是指随机试验结果的某个函数,它可以是离散型随机变量或连续型随机变量。

2.离散型随机变量的概率分布离散型随机变量的概率分布可以用概率函数、分布列和累积分布函数来表示。

3.连续型随机变量的概率密度函数和分布函数连续型随机变量的概率密度函数和分布函数可以用来描述其取值的概率。

四、常见的概率分布1.二项分布与泊松分布二项分布是指在一系列独立的、相同概率的伯努利试验中,成功次数的概率分布。

泊松分布是指在一个固定时间或空间内,随机事件发生的概率分布。

2.正态分布正态分布是指在自然界种种现象中,满足特定条件的随机变量的概率分布。

它是统计学中最重要的分布之一。

五、统计推断1.抽样与抽样分布抽样是指从总体中选取个体(样本),通过对样本的统计量进行分析推断出总体特征。

高考《概率与统计初步》知识点和高考题、配套练习题(很全面)

高考《概率与统计初步》知识点和高考题、配套练习题(很全面)

专题十:《概率与统计初步》I、考纲1.统计与统计案例(1)随机抽样① 理解随机抽样的必要性和重要性。

② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。

(2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。

② 理解样本数据标准差的意义和作用,会计算数据标准差。

③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。

④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。

⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。

(3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。

② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆线性回归方程系数公式)。

(4)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题。

①独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。

②假设检验了解假设检验的基本思想、方法及其简单应用。

③回归分析了解回归的基本思想、方法及其简单应用。

2.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。

② 了解两个互斥事件的概率加法公式。

(2)古典概型① 理解古典概型及其概率计算公式。

② 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率。

②了解几何概型的意义。

II、高考考情解读本章知识的高考命题热点有以下两个方面:1.概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查古典概型、几何概型、分层抽样、频率分布直方图、茎叶图的求解.2.预计在2014年高考中,概率统计部分的试题仍会以实际问题为背景,概率与统计相结合命题.II 、基础知识和题型 一、随机抽样1、简单随机抽样:(1).简单随机抽样的概念:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2).最常用的简单随机抽样方法有两种——抽签法和随机数法. 2、系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本: (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =Nn;(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本. 通常是将l 加上间隔k 得到第2个个体编号l +k , 再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本. 【提醒】系统抽样的最大特点是“等距”,利用此特点可以很方便地判断一种抽样方法是否是系统抽样. 3、分层抽样(1).分层抽样的概念:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.(2).当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法. (3).分层抽样时,每个个体被抽到的机会是均等的. 4(一)简单随机抽样 1. (2012·宁波月考)在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性最大B .与第几次抽样有关,第一次抽到的可能性最小C .与第几次抽样无关,每一次抽到的可能性相等D .与第几次抽样无关,与样本容量无关 2. 下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验 3.(2013年高考江西卷(文5))(2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08【总结】采用随机数法时,若重复出现或超出范围的要去掉。

2020年高考理科数学《概率与统计》题型归纳与训练及答案解析

2020年高考理科数学《概率与统计》题型归纳与训练及答案解析

2020年高考理科数学《概率与统计》题型归纳与训练【题型归纳】题型一 古典概型与几何概型例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 . 【答案】【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为. 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同;(2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率. 【答案】(1)详见解析;(2)2011. 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为7564, ∵527564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高.(2) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有5840155408-=),(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(1514433323423222413121b a b a b a b a b a b a b a b a b a b a b a 共11个,∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率2011=P . 【易错点】求解古典概型问题的关键:先求出基本事件的总数,再确定所求目标事件包含基本事件的个数,结合古典概型概率公式求解.一般涉及“至多”“至少”等事件的概率计算问题时,可以考虑其对立事件的概率,从而简化运算. 【思维点拨】1. 求复杂互斥事件概率的方法一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式()()1P A P A =-,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.2.求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A ;几何概型的概率是几何度量之比,主要使用面积、体积之比与长度之比. 题型二 统计与统计案例例1、某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:],90,80[,),40,30[),30,20[Λ并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(Ⅰ)4.0;(Ⅱ)20;(Ⅲ)2:3.【解析】(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为6.010)04.002.0(=⨯+,所以样本中分数小于70的频率为4.06.01=-.(Ⅱ)根据题意,样本中分数不小于50的频率为,分数在区间内的人数为.所以总体中分数在区间内的人数估计为. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为6010010)04.002.0(=⨯⨯+,所以样本中分数不小于70的男生人数为302160=⨯.所以样本中的男生人数为60230=⨯,女生人数为4060100=-,男生和女生人数的比例为2:340:60=,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为2:3. 【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1,当小矩形等高时,说明频率相等,计算时不要漏掉其中一个. 【思维点拨】1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 5.求回归直线方程的关键①正确理解计算^^,a b 的公式和准确的计算.②在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关(0.010.020.040.02)100.9+++⨯=[40,50)1001000.955-⨯-=[40,50)540020100⨯=系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 6.独立性检验的关键①根据22⨯列联表准确计算2K ,若22⨯列联表没有列出来,要先列出此表. ②2K 的观测值k 越大,对应假设事件0H 成立的概率越小,0H 不成立的概率越大. 题型三 概率、随机变量及其分布例1、“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为; ②若,则, .【答案】(1) (2) (3)的分布列为;.【解析】(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为A x Z ()2,N μσZ ()14.55,38.45()10,30X X 11.95σ=≈()2~,Z N μσ()0.6826P Z μσμσ-<≤+=(22)0.9544P Z μσμσ-<≤+=26.5x =0.6826X ()2E X =x.(2)①∵服从正态分布,且, ,∴, ∴落在内的概率是. ②根据题意得, ; ; ; ; . ∴的分布列为∴. 50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=Z ()2,N μσ26.5μ=11.95σ≈(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=Z ()14.55,38.450.68261~4,2X B ⎛⎫ ⎪⎝⎭()404110216P X C ⎛⎫=== ⎪⎝⎭()41411124P X C ⎛⎫=== ⎪⎝⎭()42413228P X C ⎛⎫=== ⎪⎝⎭()43411324P X C ⎛⎫=== ⎪⎝⎭()444114216P X C ⎛⎫=== ⎪⎝⎭X ()1422E X =⨯=【思维点拨】1.条件概率的两种求解方法: (2)基本事件法,借助古典概型概率公式,先求事件A 包含的基本事件数)(A n ,再求事件AB 所包含的基本事件数()AB n ,得)()()|(A n AB n A B P =. 2.判断相互独立事件的三种常用方法:(1)利用定义,事件B A ,相互独立⇔)()()(B P A P AB P ⋅=.(2)利用性质,A 与B 相互独立,则A 与A B ,与B ,B A 与也都相互独立. (3)具体背景下,①有放回地摸球,每次摸球的结果是相互独立的. ②当产品数量很大时,不放回抽样也可近似看作独立重复试验.3. 求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.4. 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检验该概率模型是否满足公式k n k k n p p C k X P --==)1()(的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.5. 求离散型随机变量的均值与方差的基本方法有:(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量X 的均值、方差,求X 的线性函数b aX Y +=的均值、方差,可直接用均值、方差的性质求解,即b X aE b aX E +=+)()(,)()(2X D a b aX D =+(b a ,为常数).(3)如能分析所给随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,即若X 服从两点分布,则p X E =)(,)1()(p p X D -=;若),(~p n B X ,则np X E =)(,)1()(p np X D -=.【巩固训练】题型一 古典概型与几何概型1.已知,,则函数在区间上为增函数的概率是( )A .B .C .D . {}0 1 2a ∈,,{}1 1 3 5b ∈-,,,()22f x ax bx =-()1 +∞,512131416【答案】A【解析】①当时,,情况为符合要求的只有一种; ②当时,则讨论二次函数的对称轴要满足题意则产生的情况表示: ,8种情况满足的只有4种; 综上所述得:使得函数在区间为增函数的概率为:1251214=+=P .2.在区间上任取一数,则的概率是( )A .B .C .D . 【答案】C【解析】由题设可得,即;所以,则由几何概型的概率公式.故应选C .(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.【答案】(1) 0.4;(2) 45;(3)74. 【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为0a =()2f x bx =- 1 1 3 5b =-,,,1b =-0a ≠22b b x a a -=-=1ba≤() a b ,()()()1 1 1 1 1 3-,,,,,()()()()()1 5 2 1 2 1 2 3 2 5-,,,,,,,,,()22f x ax bx =-()1 +∞,()0,4x 1224x -<<12131434211<-<x 32<<x 4,1==D d 41=P考向二 统计与统计案例1.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只, (Ⅰ)求列联表中的数据,,,的值; (Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效? (Ⅲ)能够有多大把握认为疫苗有效?22⨯x y A B【答案】(Ⅰ),,,;(Ⅱ)详见解析;(Ⅲ)至少有%9.99的把握认为疫苗有效.【解析】(Ⅰ)设“从所有试验动物中任取一只,取到“注射疫苗”动物”为事件A, 由已知得,所以,,,.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率.10y =40B =40x =60A =302()1005y P A +==10y =40B =40x =60A =未注射 注射. 所以至少有%9.99的把握认为疫苗有效.2.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在市的区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程; (Ⅱ)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(Ⅰ)中的线性回归方程,估算该公司应在区开设多少个分店,才能使区平均每个分店的年利润最大? 参考公式:, , .【答案】(1);(2)公司应在区开设4个分店,才能使区平均每个分店的年利润最大.【解析】(1)10085)())(()(,4,42112121^=---=--===∑∑∑∑====x x y yx x x n xyx n yx b y x ni ini iini ini iiΘ,6.0^^=-=x b y a , ∴y 关于x 的线性回归方程6.085.0+=x y .(2) ,区平均每个分店的年利润 ,∴时, 取得最大值,故该公司应在区开设4个分店,才能使区平均每个分店的年利润最大.10000005016.6710.8285020603=≈>⨯⨯S A x y x y x y x A z ,x y 20.05 1.4z y x =--A A y b x a ∧∧∧=+1221ni i i nii x y nxyb x nx ∧==-==-∑∑()()()121niii n ii x x y y x x ==---∑∑a y b x ∧∧=-0.850.6y x =+A A 20.05 1.4z y x =--=20.050.850.8x x -+-A 0.80.050.85z t x x x ==--+800.0150.85x x ⎛⎫=-++ ⎪⎝⎭4x =t A A3. 某商场对商品30天的日销售量y (件)与时间t (天)的销售情况进行整理,得到如下数据,经统计分析,日销售量y (件)与时间t (天)之间具有线性相关关系.(1)请根据表中提供的数据,用最小二乘法求出y 关于t 的线性回归方程a t b y +=. (2)已知商品30天内的销售价格z (元)与时间t(天)的关系为,),200(,20),3020(,100⎩⎨⎧∈<<+∈≤≤+-=N t t t N t t t z 根据(1)中求出的线性回归方程,预测t 为何值时,商品的日销售额最大.参考公式:2121^)(t n tyt n yt b ni ini ii--=∑∑==,t b y a ^^-=.【答案】(1)40^+-=t y ;(2)预测当20=t 时,商品的日销售额最大,最大值为1600元. 【解析】(1)根据题意,6)108642(51=++++⨯=t ,34)3033323738(51=++++⨯=y , 980301033832637438251=⨯+⨯+⨯+⨯+⨯=∑=i i i y t ,22010864222222512=++++=∑=i i t ,所以回归系数为1652203465980)(22121^-=⨯-⨯⨯-=--=∑∑==t n tyt n yt b ni ini ii,406)1(34^^=⨯--=-=t b y a ,故所求的线性回归方程为40^+-=t y . (2)由题意得日销售额为,,3020),40)(100(,200),40)(20(⎩⎨⎧∈≤≤+-+-∈<<+-+=Nt t t t Nt t t t L当N t t ∈<<,200时,900)10(80020)40)(20(22+--=++-=+-+=t t t t t L , 所以当;90010max ==L t 时,当N t t ∈≤≤,3020时,900)70(4000140)40)(100(22--=+-=+-+-=t t t t t L , 所以当.160020max ==L t 时,综上所述,预测当20=t 时,A 商品的日销售额最大,最大值为1600元. 题型三 概率、随机变量及其分布A A A A1.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者654321,,,,,A A A A A A 和4名女志愿者4321,,,B B B B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含1A 但不包含的频率。

高中数学概率与统计(理科)常考题型归纳

高中数学概率与统计(理科)常考题型归纳

高中数学概率与统计(理科)常考题型归纳题型一:常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列. 解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3)=C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081, P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4)=C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题4个人中参加甲游戏的人数服从二项分布,由独立重复试验,4人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i ,这是本题求解的关键. (2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【变式训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝ ⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝ ⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14,P (ξ=3)=34×23×12=14, P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827, ∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118,∴所求概率为P (B|A )=P (AB )P (A )=11813=16.题型二:离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)· P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29, P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为E(X)=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤第一步:确定随机变量的所有可能值;第二步:求每一个可能值所对应的概率;第三步:列出离散型随机变量的分布列;第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【变式训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2.②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X1的数学期望为E(X1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.题型三:概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组75,80),第2组80,85),第3组85,90),第4组90,95),第5组95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5×0.06×40=12.第4组的人数为5×0.04×40=8.第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11.②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为E(X)=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X服从超几何分布.【变式训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48.题型四:统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i=720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2,又l xx =∑ni =1x 2i -n x 2=720-10×82=80,l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b^=l xy l xx=2480=0.3, a^=y -b ^x =2-0.3×8=-0.4,故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r 来确定,r 的绝对值越接近于1,表明两个变量的线性相关性越强,r 的绝对值越接近于0,表明两变量线性相关性越弱. (2)求线性回归方程的关键是正确运用b^,a ^的公式进行准确的计算.【变式训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ).解 (1)完成2×2列联表如下:K 2=100×(40×25-15×60×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25. 由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i(i =0,1,2,3).X 的分布列为均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解概率与统计作为高考数学中的重要部分,一直是考生们难以逾越的“坎”。

为了帮助广大考生更好地应对高考概率与统计部分的考题,本文将对高考数学2024年概率与统计题目进行全面解析,希望能够为考生们提供帮助和指导。

1. 选择题部分选择题是高考中概率与统计部分的常见题型,也是考生们容易出错的地方。

以下是2024年高考概率与统计选择题的解答:题目一:已知事件A发生的概率为P(A)=0.6,事件B发生的概率为P(B)=0.3,且事件A与事件B相互独立。

求事件A发生且事件B不发生的概率。

解答一:事件A发生且事件B不发生,表示为A发生的概率P(A)乘以B不发生的概率P(B'),即P(A且B')=P(A)×P(B')=0.6×(1-0.3)=0.6×0.7=0.42。

因此,事件A发生且事件B不发生的概率为0.42。

题目二:已知事件C发生的概率为P(C)=0.4,事件D发生的概率为P(D)=0.5,且事件C与事件D相互独立。

求事件C或事件D发生的概率。

解答二:事件C或事件D发生,表示为C发生的概率P(C)加上D发生的概率P(D),即P(C或D)=P(C)+P(D)=0.4+0.5=0.9。

因此,事件C或事件D发生的概率为0.9。

2. 计算题部分计算题是概率与统计部分的重要考察内容,需要考生们掌握一定的计算方法和技巧。

以下是2024年高考概率与统计计算题的解答:题目一:某班有40名学生,其中20名男生、20名女生。

现从该班级随机选取3名学生,求选出的3名学生全为男生的概率。

解答一:选出的3名学生全为男生的概率等于从20名男生中选取3名学生的概率除以从40名学生中选取3名学生的概率。

即P(全为男生)=C(20,3)/C(40,3)=[20×19×18]/[40×39×38]=0.0283。

因此,选出的3名学生全为男生的概率为0.0283。

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练2020年高考文科数学《概率与统计》题型归纳与训练题型归纳古典概型例1:从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()。

A。

55.B。

25.C。

9.D。

128解析:可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有:甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为4/10=2/5.故选B。

例2:将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________。

解析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数2;数2,数1,语;数2,语,数1;语,数2,数1;语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:p=4/6=2/3.易错点:列举不全面或重复,就是不准确。

思维点拨:直接列举,找出符合要求的事件个数。

几何概型例1:如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。

在正方形内随机取一点,则此点取自黑色部分的概率是()。

解析:不妨设正方形边长为a,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半。

由几何概型概率的计算公式得,所求概率为1/2πa^2=π/4a^2.故选B。

例2:在区间[0,5]上随机地选择一个数p,则方程x^2+2px-3p^2=0有两个负根的概率为________。

解析:方程x^2+2px-3p^2=0有两个负根的充要条件是Δ=4p^2-4(3p-2)x<0,即3p^2-x^2<2.因为x^2<p,所以3p^2-p^2<2,即p∈(0,1]∪[2,5],又因为p∈[0,5],所以使方程x^2+2px-3p^2=0有两个负根的p的取值范围为(√3,1]∪[2,5],故所求的概率为(5-√3)/5.220度,中位数是235度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总复习题型分类汇《概率与统计》篇经典试题大汇总目录【题型归纳】题型一古典概型 (3)题型二几何概型 (3)题型三抽样与样本数据特征 (4)题型四回归与分析 (7)题型五独立性检验 (8)【巩固训练】题型一古典概型 (9)题型二几何概型 (10)题型三抽样与样本数据特征 (11)题型四回归与分析 (13)题型五独立性检验 (16)高考数学《概率与统计》题型归纳与训练【题型归纳】题型一古典概型例1 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为().A. 15B. 25C. 825D. 925【答案】B【解析】可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有:(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为42105=.故选B.例2 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.【答案】23【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:4263p==.【易错点】列举不全面或重复,就是不准确【思维点拨】直接列举,找出符合要求的事件个数.题型二几何概型例 1 如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率D是( ).A.14 B. π8 C. 12 D. π4【答案】B【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为822122ππ=⎪⎭⎫⎝⎛⨯⨯a a .故选B.例2 在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 【答案】32【解析】方程22320x px p 有两个负根的充要条件是2121244(32)020320p p x x p x x p ⎧∆=--≥⎪+=-<⎨⎪=->⎩即21,3p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p 有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503-+-=-,故填:32. 【易错点】“有两个负根”这个条件不会转化.【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数p 的范围.在利用几何概型的计算公式计算即可. 题型三 抽样与样本数据特征例1 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ________件. 【答案】18【解析】按照分层抽样的概念应从丙种型号的产品中抽取60300181000⨯=(件).例2 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 . 【答案】11【解析】 因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,又样本数据121x +,221x +,⋅⋅⋅,21n x +的和为()122n x x x n ++++,所以样本数据的均值为21x +=11.例3 某电子商务公司对10000名网络购物者2018年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.30.9],内,其频率分布直方图如图所示. (1)直方图中的a = .(2)在这些购物者中,消费金额在区间[0.50.9],内的购物者的人数为. /万元a【答案】3a = 人数为0.6100006000⨯=【解析】 由频率分布直方图及频率和等于1,可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[]0.50.9,内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=, 所以消费金额在区间[]0.50.9,内的购物者的人数为0.6100006000⨯=.例4 某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图所示./度(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则从月平均用电量在[)220,240的用户中应抽取多少户? 【答案】见解析【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=, 得0.0075x =.(2)由图可知,月平均用电量的众数是2202402302+=. 因为()0.0020.00950.011200.450.5++⨯=<, 又()0.0020.00950.0110.0125200.70.5+++⨯=>, 所以月平均用电量的中位数在[)220,240内.设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=, 得224a =,所以月平均用电量的中位数是224.(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=(户); 月平均用电量为[)240,260的用户有0.00752010015⨯⨯=(户); 月平均用电量为[)260,280的用户有0.0052010010⨯⨯=(户); 月平均用电量为[]280,300的用户有0.0025201005⨯⨯=(户).抽取比例为11125151055=+++,所以从月平均用电量在[)220,240的用户中应抽取12555⨯=(户). 【易错点】没有读懂题意,计算错误.不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式;2牵涉到策略问题,一般可以转化为比较两个指标的大小. 题型四 回归与分析例1下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图y年生活垃圾无害化处理量年份代码t(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明 (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55= 2.646≈.参考公式:相关系数()()niit t y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得4t =,()27128i i t t =-=∑,0.55=,()()77711140.1749.32 2.89iii iii i i t t y y t y t y ===--=-=-⨯=∑∑∑, 2.890.990.552 2.646r ≈≈⨯⨯. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(1)变量y 与t的相关系数7777()()7iii i i it t y y t y t y r ---⋅==∑∑∑∑,又7128i i t ==∑,719.32i i y ==∑,7140.17i i i t y ==∑5.292==0.55=,所以740.17289.320.997 5.2920.55r ⨯-⨯=≈⨯⨯ ,故可用线性回归模型拟合变量y 与t 的关系.(2)4t=,y =7117i i y =∑,所以7172211740.17749.327ˆ0.10287i ii ii t y t yb tt ==-⋅-⨯⨯⨯===-∑∑, 1ˆˆ9.320.1040.937ay bx =-=⨯-⨯≈,所以线性回归方程为ˆ0.10.93y t =+. 当9t =时,ˆ0.190.93 1.83y =⨯+=.因此,我们可以预测2016年我国生活垃圾无害化处理1.83亿吨.【易错点】没有读懂题意,计算错误.【思维点拨】将题目的已知条件分析透彻,利用好题目中给的公式与数据. 题型五 独立性检验例1 甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现A、B两变量更强的线性相关性?()A.甲B.乙C.丙D.丁【答案】D【解析】D因为r>0且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数r的绝对值越趋向于1,相关性越强.残差平方和m越小相关性越强【巩固训练】题型一古典概型1.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【答案】56【解析】将先后两次点数记为(),x y,则基本事件共有6636⨯=(个),其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6,共6种,则点数之和小于10共有30种,所以概率为305366=.2.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是().A.112B.114C.115D.118【答案】C【解析】不超过30的素数有2、3、5、7、11、13、17、19、23、29,共10个,随机选取两数有45(种)情况,其中两数相加和为30的有7和23,11和19,13和17,共3种情况,根据古典概型得314515P ==.故选C .3.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 【答案】56P =【解析】1只白球设为a ,1只红球设为b ,2只黄球设为c ,d , 则摸球的所有情况为(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,(),c d ,共6件, 满足题意的事件为(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,共5件,故概率为56P =.题型二 几何概型1.某公司的班车在7:00,8:00,8:30发车,学.小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ).A .13B .12C .23D .34【答案】B【解析】 如图所示,画出时间轴.D C A小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟. 根据几何概型,所求概率10101402P +==.故选B . 2. 从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为().A .4nm B .2n mC .4m nD .2mn【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41m n=,所以4πmn =.故选C .3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则 A .12p p = B .13p p = C .23p p = D .123p p p =+【答案】A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可.设直角三角形ABC 的三个角A ,B ,C 所对的边长分别为a ,b ,c ,则区域Ⅰ的面积为112S ab =,区域Ⅱ的面积为222211111111πππ22222222S c b ab a ab ⎛⎫⎛⎫⎛⎫=++-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 区域Ⅲ的面积为22231111111πππ2222282S c b ab a ab ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭. 显然12p p =.故选A .题型三 抽样与样本的数据特征1.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 . 【答案】10【解析】平均数()146587666x =+++++=.2.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】3;6000【解析】频率和等于1可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)0,0.5, [)0.5,1,⋅⋅⋅,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,请说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由. 【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在[)00.5,中的频率为0.080.50.04⨯=,同理,在[)0.5,1,[)1.5,2,[)22.5,, [)33.5,,[)3.54,,[)44.5,中的频率分别为0.08,0.20,0.26, 0.06, 0.04, 0.02.由0.04+0.08+0.50.200.260.50.060.040.021a a ⨯+++⨯+++=,解得0.30a =.(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为3000000.1236000⨯=.(3)因为前6组的频率之和为0.040.080.150.200.260.15=0.880.85----->, 而前5组的频率之和为0.04+0.08+0.150.200.26=0.730.85--<,所以2.5 3.x < 由()0.3 2.50.850.73x ⨯-=-,解得 2.9x =. 题型四 回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 【答案】B【解析】由已知得8.28.610.011.311.9105x ++++==(万元),6.27.58.08.59.885y ++++==(万元),故ˆ80.76100.4a=-⨯=, 所以回归直线方程为ˆ0.760.4y x =+.当社区一户收入为15万元,家庭年支出为ˆ0.7615y =⨯+0.411.8=(万元).故选B .2.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为( ).A . 160B . 163C . 166D .170 【答案】C 【解析】 22.5x =,160y =,所以160422.570a =-⨯=,24x =时,42470166y =⨯+=.故选C .3.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量()1,2,,8i y i =⋅⋅⋅数据作了初步处理,得到下面的散点图及一些统计量的值.年宣传费/千元表中i w =8118i i w w ==∑,(1)根据散点图判断,y abx =+与y c =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系式为0.2z y x =-,根据(2)的结果回答下列问题:(ⅰ)年宣传费49x =时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据()11,u v ()22,u v ,⋅⋅⋅,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i nii uu v v uuβ==--=-∑∑,ˆˆv u αβ=-. 【答案】见解析【解析】(1)由散点图变化情况可知选择y c =+较为适宜.(2)由题意知()()()81821108.8681.6iii ii w w y y d w w ==--===-∑∑.又y c =+一定过点(),y ω,所以c y d ω=-=56368 6.8100.6-⨯=, 所以y 与x 的回归方程为100.6y =+(3)(ⅰ)由(2)知,当49x =时,()100.668576.6t y =+=,0.2576.649z =⨯-=66.32(千元),所以当年宣传费为49x =时,年销售量为()576.6t ,利润预估为66.32千元.(ⅱ)由(2)知,(0.20.2100.6z y x x =-=+-=x +20.12=)226.8 6.820.12-++ 6.8=时,年利润的预估值最大,即26.846.24x ==(千元). 题型五 独立性检验1.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H :“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的K 2≈3.918,则下列表述中正确的是( ) A .有95℅的把握认为“这种血清能起到预防感冒的作用” B .若有人未使用该血清,那么他一年中有95℅的可能性得感冒 C .这种血清预防感冒的有效率为95℅ D .这种血清预防感冒的有效率为5℅ 【答案】A【解析】由题可知,在假设H 成立情况下,)841.3(2≥K P 的概率约为0.05,即在犯错的概率不错过0.05的前提下认为“血清起预防感冒的作用”,即有95℅的把握认为“这种血清能起到预防感冒的作用”.这里的95℅是我们判断H 不成立的概率量度而非预测血清与感冒的几率的量度,故B 错误.C ,D 也犯有B 中的错误.故选A2.观察下面频率等高条形图,其中两个分类变量x y ,之间关系最强的是( )A .B .C .D . 【答案】D【解析】在频率等高条形图中,a ab +与cc d+相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中12,x x 所占比例相差越大,则分类变量,x y 关系越强,故选D .3.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.频率频率组距箱产量/kg新养殖法旧养殖法箱产量/kg(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg , 新养殖法的箱产量不低于50kg ,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:22()()()()()n ad bc K a b c d a c b d -=++++ .【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B ,“新养殖法的箱产量不低于50kg ”为事件C ,由题图并以频率作为概率得()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯0.62=,()0.06850.04650.01050.0085P C =⨯+⨯+⨯+⨯0.66=,()()()0.4092P A P B P C ==.(2)由计算可得2K的观测值为()222006266383415.70510010096104k ⨯⨯-⨯==⨯⨯⨯,因为15.705 6.635>,所以()2 6.6350.001P K ≈≥,从而有99%以上的把握认为箱产量与养殖方法有关.(3)150.2÷=,()0.10.0040.0200.0440.032-++=,80.0320.06817÷=,85 2.3517⨯≈,50 2.3552.35+=,所以中位数为52.35.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。

相关文档
最新文档