5WFM调频发射机的制作

合集下载

调频发射机电路设计

调频发射机电路设计

调频发射机电路设计
调频发射机电路设计是一项关键性的工程任务,它涉及到无线通讯系统中发射
机的设计和构建。

在调频(Frequency Modulation,FM)通信中,确保发射机电路
的正常运行和高质量的信号传输至关重要。

为了实现调频发射机的设计,首先需要确定合适的调频器件。

调频电路中最重
要的组件是电感、电容和晶体管。

电感和电容用于形成谐振电路,晶体管则负责信号放大与调制。

根据设计要求,选择适当的电感和电容值,并确保所选的晶体管具备足够的功率输出和频率响应。

在调频发射机电路的设计中,还需要考虑到整体电路的稳定性和抗干扰能力。

通过添加适当的滤波电路、功率放大器和限制器,可以有效提高电路的稳定性,并减少不必要的信号干扰。

另外,为了满足信号传输的要求,调频发射机电路还需要采用合适的调制技术。

调频通信系统常用的调制方式有直接频率调制和间接频率调制。

根据设计需求和系统性能要求,选择适当的调制方式,并确保调制电路的可靠性和精确性。

还有一点需要注意的是,调频发射机电路设计中必须遵循相应的通信法规和标准。

确保电路符合相关的无线电频率和功率规定,以及其他相关的技术标准,以保证系统的合法性和安全性。

总之,调频发射机电路设计是一项复杂而细致的工作。

通过合理选择电子元器件,设计滤波器和调制电路,并严格遵循通信法规和标准,可以实现高质量和高性能的调频发射机电路。

这将为无线通讯系统的稳定运行和高质量的信号传输提供坚实的基础。

无线调频发射机设计

无线调频发射机设计

目录1 绪论 (2)2总体设计框图 (2)2.1电路工作原理 (2)2.2元器件选择 (3)2.2.1三端稳压器7806的有关信息 (3)2.2.2 2SC3357三极管的有关信息 (3)2.3安装与调试 (4)3转印、腐蚀、焊接及调试 (4)3.1 转印腐蚀 (4)3.2焊接及调试 (4)3.3 焊接调试的注意事项: (4)3.4 整体调试中出现的问题 (5)4心得体会 (5)5设计总结 (6)5.1 经验总结 (6)5.2展望未来 (6)参考文献 (8)附录一 (9)附录二 (10)无线调频FM 发射器摘要 论文设计了一个FM 调频发射机,它由专用的高性能高频发射管D40,专用的88—108MHz 的调频发射皮天线(30cm ),配以必要的外围电路组成。

电路由音频信号处理、调频调制和功率放大发射三部分组成。

音频信号可以由麦克风或者音频线输入,经过音频信号处理电路的预加重、限幅、低通滤波和混合后,得到立体声复合信号。

复合信号经调频调制电路调制后,通过功率放大器放大,经发射电路,从天线发射出去。

关键词 调频发射,2SC3357三极管,专用调频发射天线1 绪论简单实用无线调频FM 发射器,电路取材容易,工作稳定可靠,发射距离远,安装调试方便,很适合广大城镇地区使用,也可用于通信、报警、防汛等。

工作频率为88—108MHz 。

2总体设计框图图 1 总体设计框图2.1电路工作原理无线调频FM 发射机的电路,如附录图1所示。

电路由稳压电路、音频放大电路和高频振荡电路三部分组成。

三极管V2为高性能高频发射专用管。

三极管V1等组成共射极音频放大器,在其输入端可连接话筒、音响等,也可以输入警报信号。

放大后的音频信号输送至由V2组成的高频振荡电路,警告频调制后的FM 信号,在经天线W 向天空中发射出去,有远方的FM 收音机接收,并释放出音频信号。

为了使电路工作稳定,电路中设臵了稳压电路,使整机工作电压保持在6V 。

自制FM发射器教程

自制FM发射器教程

自制FM发射器教程
需要材料:
面包板1个可调电感1个
3.5音频接口1个电子电池盒1个
MIC 1个9018三极管1个
天线1个瓷片电容30pf 3个
瓷片电容10pf 1个瓷片电容103 1个
瓷片电容104 2个电阻220 1个
电阻2.2k 1个电阻22K 1个
跳线(短)4个跳线(长)2个
(经测有效范围15米,加上前面广播站的天线可达到60多米)
虽然大家都知道,但还是要给小白科普一下:
FM发射器就是一个个人微型广播电台,能将Discman、MD、MP3(包括苹果iPod)等各种便携式音、音频信号转换成高保真的无线FM调频立体声信号发射出去,汽车或者家里的收音机作为接收,就能享受立体声音乐。

扩展了您手里的这些播放器的应用功能和应用环境。

电路图
首先按照面包板排一下跳线
安装话筒
放上9018三极管
放上瓷片电容。

5WFM调频发射机的制作

5WFM调频发射机的制作

声明:本文电路仅供爱好者参考,如果需要动手制作实验,请先与当地无线电管理部门联系批准。

本站要求大家进行无线电实验必须遵守法律,如有任何违法行为本站概不负责!Veronica FM发射机容易制作,性能稳定,信号纯净, 不使用专业零件和IC, 并有辅助测试功能使您在没有专业设备的情况下轻易地进行调试。

它有两个版本, 1瓦和5瓦。

1瓦版本适用于3公里发射距离,所需的电源是12-16V 200mA;5瓦版本适用于8公里发射距离,所需的电源是12-16V 900mA。

本文档主要介绍5瓦版本。

图1: 5W Veronica 线路图该发射器自带一个混音器,使您同时发射来自CD和话筒的音频信号。

晶体管T 1是话筒放大器,可变电阻R1和R2调节音量大小(参见调试部分)。

在R8和C 21之间是振荡器,是产生无线电射频信号的部件。

二极管D1是一个所谓的“变容管”,相当于一个可调电容,它由音频信号控制,改变振荡器的振荡频率,起到变频的作用。

C12,C13,和L1决定振荡器的频率。

这个振荡器实际上是由两个反相振荡器组成,每个运行在50MHz附近,当两个信号结合时,便成了一个100MHz的信号。

这种电路比单个100MHz振荡器稳定很多。

振荡器的信号由T 4、T6放大到5W。

在T4右边的电路包括天线阻抗匹配和低通滤波功能。

D2、D3、T5组成的电路是辅助调试用的,它将射频输出的信号取样,控制发光二极管D5,输出高时,D5也明亮一些。

此电路本身不带立体声调制器,你若需要播放立体声节目,请参照这里制作立体声调制器。

元件清单电阻:R1+2 10k 可调R3 820k R4 4.7k R5-7 220 R8 1.5k R9 15k R10+11 1k R12 33k R13+14 56 R15+16 68k R17 47 R18 270 R19 10 R20 22 R21 1.5k R2 2 270电容:除特殊指定外,用瓷介或云母电容。

《调频发射机设计》word文档

《调频发射机设计》word文档

实习报告课程:课题:调频发射机设计专业:班级:座号:姓名:指导老师:2011年1月18日目录前言一、设计内容 (3)1.1进程安排 (3)1.2设计目的 (3)1.3设计要求 (4)二、发射机原理 (4)2.1 设计整体思路 (4)2.2 基本原理 (4)2.3 调频发射机的原理图 (8)2.4、各个元器件说明 (8)三、模块说明 (9)3.1 输入信号模块 (9)3.2 振荡模块 (9)3.3 放大和发射模块 (9)3.4 调频发射机的主要技术指标 (10)四、PCB板的制作 (10)五、电路的调试及调试结果结果 (11)5.1 电路的调试 (11)5.2 调试结果 (11)六、实验总结及心得体会 (12)元器件清单附页前言调频发射机作为一种简单的通信工具,由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎。

目前它广泛的用于生产、保安、野外工程等领域的小范围移动通信工程中。

本课题重点在于设计能给发射机电路提供稳定频率的振荡调制电路。

课题首先用两级电压并联负反馈放大电路,适当放大语音信号,以配合调制级工作;然后用石英晶体构成振荡电路为发射机提供稳定的基准频率载波,接着通过变容二极管完成语音信号对载波信号的频率调制,并通过LC并联谐振网络选出三倍频信号;最终利用两级功率放大,使已调制信号功率大大提高,经过串联滤波网络滤除高次谐波,最后通过拉杆天线发射出去。

通过后续的电路仿真和部分电路的调试,可以证明本课题的电路基本成熟,基本能完成语音信号的电压放大、频率调制和功率放大,达到发射距离的要求。

发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

通常,发射机包括三个部分:高频部分,低频部分,和电源部分。

高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。

主振器的作用是产生频率稳定的载波。

调频发射机设计.

调频发射机设计.

惠州学院HUIZHOU UNIVERSITY高频电子线路课程设计设计题目调频发射机系别专业班级姓名学号一、设计题目:调频发射机的设计 二、设计的技术指标与要求:1工作电压:Vcc =+12V ; (天线)负载电阻:R L =51欧; 3发射功率:Po ≥500mW ; 4工作中心频率:f 0=5MHz ; 5最大频偏:kHz f m 10=∆; 6总效率:%50≥Aη;7频率稳定度:小时/10/400-≤∆f f ; 8调制灵敏度S F ≥30KH Z /V ;三、设计目的:设计一个采用直接调频方式实现的工作电压为12V 、输出功率在500mW 以上、工作频率为5MHz 的无线调频发射机,可用于语音信号的无线传输、对讲机中的发射电路等。

四、设计框图与分析:(一)总设计方框图与调幅电路相比,调幅系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用。

(二)实用发射电路方框图 ( 实际功率激励输入功率为 1.56mW)变容二极管直接调频电路 调制信号 调频信号 载波信号 图3-1 变容二极管直接调频电路组成方框图拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。

单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。

由于本题要求的发射功率P o 不大,工作中心频率f 0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图3-2所示,各组成部分的作用是:(1)LC 调频振荡器:产生频率f 0=5MHz 的高频振荡信号,变容二极管线性调频,最大频偏kHz f m 10=∆,整个发射机的频率稳定度由该级决定。

(2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。

因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。

高频课程方案设计方案调频(FM)发射机方案

高频课程方案设计方案调频(FM)发射机方案

高频课程设计论文题目:高频(FM>发射机的设计系别:电子信息与电气工程系专业:通信工程班级:通信0802姓名:***学号:**********指导老师:***2018年1月17日摘要:作为通信系统的重要组成部分,无线电技术越来越重要。

本文研制一种调频发射机,介绍了调频发射机的制作方法及其工作原理,同时给出了系统的组成框图及系统各部分功能,设计了PCB电路板,并且对所设计的发射机的功能进行了安装与调试。

本文中的发射机发射的频率可在66-109MHz频段内进行调制,并可用普通的调频收音机接收。

关键词:小功率调频发射机音频信号调制波载波目录1设计课题2实践目的3设计要求4基本原理4.1 系统方案选择4.2 整体系统描述4.3 单元电路设计4.3.1 音频放大电路4.3.2 高频振荡电路4.3.3 高频功率放大电路5系统调试5.1 PCB板的设计5.2 系统调式6结论7参考文献8附录1设计课题调频发射机设计2实践目的无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等必不可少的设备。

本次设计要求达到以下目的:1.进一步认识射频发射与接收系统;2.掌握调频无线电发射机的设计;3.学习无线电通信系统的设计与调试。

3设计要求1.发射机采用FM的调制方式;2.发射频率覆盖范围为88-108MHz,传输距离大于10m;3.为了加深对调制系统的认识,发射机采用分立元件设计;4.已调信号采用通用的AM/FM多波段收音机进行接收测试。

4 基本原理4.1 系统方案选择方案一:以晶体振荡器做成高精度高稳定度的调频发射机以晶体振荡器做成高精度高稳定度的调频电路,这完全可以达到我们的要求,但是这种方案比较复杂,能过搜索我们有另外一种方案,见方案二。

方案二:以调频方式做成三级发射机这种方案的性能是比较好的,这种发射机主要由三个模块组成,第一级是音频放大电路;第二级是高频振荡电路;第三级是高频功率放大电路。

浅谈调频发射机的制作及调试

浅谈调频发射机的制作及调试

浅谈调频发射机的制作及调试摘要:调频发射机也就是调频广播发射机,其主要应用于将广播电台和音乐节目通过无线电方式发射出去。

调频发射机在广播系统中扮演着重要的角色,为了实现广播信号的高效传输和覆盖,需要对调频发射机的制作步骤具备清晰的认识,从而更深刻地了解调频发射机的结构和工作原理,在后期的调试及维护工作中能够更得心应手。

本文介绍了调频发射机的原理,并对其制作方法和调试过程进行了阐述,进一步分析了调频发射机的常见故障及维修维护措施,以使其更好地在广播系统中发挥作用。

关键词:调频发射机;制作;调试;维护引言调频发射机负责将广播节目的音频信号经过调频调制,转换成高频信号,并放大后发射出去,广播节目就能通过无线电波传播到接收设备,如收音机、汽车收音机等。

同时,调频发射机可以控制广播信号的功率和频率,从而实现不同范围的广播覆盖。

调频发射机的稳定性能够保证广播系统正常运行,而调频发射机由高频部分、低频部分和电源部分三部分构成,每一部分都包括不同的配件,并对应不同的功能。

因此要保证调频发射机能够稳定运行,就需对其熟练进行安装和调试,并做好日常的维护和保养。

1调频发射机的原理调频发射机的原理基于频率调制(FM)技术,将音频信号转换为高频载波信号,并通过调制载波信号的频率来携带音频信息。

调频发射机接收音频信号作为输入,将音频信号经过放大和预处理,以确保足够的幅度和清晰度。

调频发射机中的频率合成器产生一个稳定的高频载波信号,而这个载波信号通常是一个固定的频率。

音频信号经过调频调制器,它会改变载波信号的频率,从而携带音频信息,而调频调制后的高频信号经过功率放大器进行放大,以增加发射功率,此时需要滤波器去除调制信号中的杂散频率成分,以确保发射信号的质量和合法频率范围。

调频发射机通过连接天线将调制后的高频信号辐射到空间中,就实现了音频信号的无线传输。

2调频发射机的制作和调试调频发射机制作前需要先将调频发射机的电路设计好,选择适当的频率合成器、制器、功率放大器和滤波器等电路元件,并对电路元件的质量和参数进行仔细检测,从而合理布局电路板。

调频(FM)无线话筒制作3例

调频(FM)无线话筒制作3例

300m FM无线话筒电路概述:这里向各位介绍的一部袖珍发射机,十分适合初学者,电路简单易制,造价低廉,输出功率不超过8mW,发射范围在房屋区可至300米左右,用一部普通的FM收音机接收,显示其灵敏度和清晰度俱佳,电路设计中最富挑战性的部份就是只用3V电源和半波天线便有如此的发射能力.电路的电流损耗少于5mA,用两枚干电池可连续工作80至100小时.电路在正常工作下非常稳定,频率漂移极小.测试:工作8小时之后,仍不需再校接收机.唯一影响输出频率是电池的状况,当电池老化时,频率有轻微改变.工作原理:从电路图可见,该电路分两级,一级音频放大器和一级RF振荡器.驻极体话筒内实际藏有一枚FET,如您喜欢的话,可视之为一级,FET将话筒前振膜之电容变化放大,这就是驻极休话筒很灵敏的原因.音频放大级乃由其射极晶休管Q1担任,增益20~50,将放大的讯号送往振荡级之基极.振荡级Q2工作于约88MHz,这频率是由振荡线圈(共5圈)和?47pF电容器调整的,该频率也决定于晶体管,18pF回输电容器及还有少数偏压元件,例如470Ω射极电阻和22K基极电阻.电源接通时,1nF基极电容器通过22K电阻逐渐充电,而18pF则经振荡线圈的470Ω电阻充电,但更加之快,47pF电容也充电(其两端虽仅得小的电压),线圈产生磁场.基极电压渐渐上升时,晶体管导通,并有效地将内阻并接在18pF两侧.当1nF电容充电至该极的工作电压时,就会发生好几个杂乱的周波,故我们假定讨论在靠近工作电压之时基极电压继续上升,18nF电容试图阻止射极用压的移动,到电容器内的能量耗尽及再不阻止射级移动之时,基一射极电压降低,晶体管截止,流人线圈的电流也停止,磁场衰溃.磁场衰溃,产生一个相反方向的电压,集极电压反过来从原本的2.9V上升至超过3V,并以相反方向47pF电容充电,这电压也影响到对18pF电容充电,及470Ω射极电阻上的电压降使到晶休管进入更深的截止.18pF电容充电时,射电压下跌,并跌到某一晶休管开始导通,电流流入线圈,与衰溃磁场对抗.线圈上之电压反转,形成集极电压下降,这个变化通过18pF电容传送到射极上,结果晶休管进入更深的导通,把18pF电容短路,周期再开始重复,故此,Q2在此形成一个振荡,产生88MHz的交流讯号.放大后之音频讯号经0.1uF电容溃入到Q2之基极,改变振荡频率,产生所需的FM电磁波.制作过程:现在将所有零件放在工作桌上,逐个零件分清楚其数值,然后分类按次序排列好,这佯做很有条理,避免焊错零件.锡线方面最好采用特细0.6lmm的树脂(松香)锡线,因其身细,焊接起来很快并易上锡, 15~20 W小型电烙铁已足够,使用前用海绵将烙铁咀抹干净,唯一须自制的是线圈,需用一段22号BS(Ф0.5mm)或24号BS(Фm.71mm)的漆包铜线或者包锡铜线,在3mm直径的线圈架上绕5圈,如在中型螺丝起子上绕亦可,然后将圈与圈之间分隔开的5.5mm左右.到最后调整频率的时候,就要接着将线圈前后压缩或者拉长,改变输出频率.如您的线圈用漆包线做的话,须把线的两头上的漆皮剥掉,然后上一点锡.电路调试:所有零件都焊接完毕后,最好先用肉眼检视一切焊接点,是否有假焊,或者焊料用得太多而造成与临近短路,彻底查清楚后,才可进行校准和测试性能,测试步骤是加一条短的天线(5~10cm长)于底板的A点上调谐-部FM收音机于整个波段上,寻找该信号.最好令发射机与收音机保持一定距离,以防止检拾到任何谐波或者侧波.如收音机未能检到载波,表示频率可能太低,将振荡线圈稍为拉长,及再次尝试.如果采用包锡铜线绕制线圈,注意圈与圈之间不应彼此碰到.如采用漆皮铜线,则须要知道圈的连通性,可用万用表之低阻挡去量度它,或者量度电路电流,应约4~6mA.一旦检到载波,话筒的负载电阻R1决定灵敏度,可将之减至10k或者加至47k,视所需求的灵敏度而定.要确定发射之频率完全远离开您本地任何FM广播电台,因为电台发出之信号强大.将线圈压缩,频率便降低;将之拉长,频率便上升,这样免用到微调电容,节省本机的造价,不过,如您喜欢亦可用微调电容.顺道一提, C4最好用一枚39pF陶瓷电容,将另一个10pF或22pF微调电容并于共上,这样可更仔细调整电路.用线圈调整很容易偏离FM波段.理论上,用感器也应调节至维持调谐电路的L/C比,但我们需要的范围很小,故并没有限制。

调频发射机电路设计资料

调频发射机电路设计资料

调频发射机电路设计资料一、调频发射机电路设计的基本原理:晶体振荡器常用于产生高稳定性的参考频率。

频率乘法器则可以将其乘以所需的倍数,以获得所需的射频信号频率。

滤波器用于消除锯齿波形,以及对射频信号进行滤波,以保证信号质量。

二、调频发射机电路设计的步骤:1.确定射频信号频率范围:根据应用需求,确定射频信号的频率范围。

常见的FM广播频率范围是88-108MHz。

2.设计VCO电路:根据射频信号频率范围,设计合适的VCO电路。

VCO电路一般采用压控型振荡器,通过改变其电压来改变频率输出。

可以使用压控电容二极管或压控电感等元件来实现电压对频率的控制。

3.频率乘法器设计:根据需要提高射频信号输出频率,设计合适的频率乘法器电路。

常用的频率乘法器电路包括倍频器、三重频器等。

4.射频滤波器设计:为了保证射频信号质量,需要设计合适的射频滤波器。

射频滤波器可以通过使用LC电路、微带线滤波器等来实现。

滤波器的设计需要考虑频率范围和带宽等因素。

5.功率放大器设计:为了提高输出功率,可以在射频信号输出之前添加功率放大器。

功率放大器一般采用晶体管、功率放大模块等。

放大器设计需要考虑输出功率和频率响应等因素。

6.其他辅助电路设计:在调频发射机电路中,还需要包含其他辅助电路,如音频输入电路、频率稳定电路、限幅器电路、调制电路等。

三、调频发射机电路设计的应用:在广播电台中,调频发射机电路用于将音频信号转化为对应的射频信号,并发送到天线中进行传输。

在无线电对讲机中,调频发射机电路用于将话音信号转化为无线射频信号,并发送到其他对讲机中进行通信。

在无线数传系统中,调频发射机电路用于将数字信号转化为对应的射频信号,并发送到接收端进行数据传输。

总之,调频发射机电路设计是无线通信领域的重要组成部分,它的设计需要考虑频率稳定性、信号品质、功率输出、射频滤波等因素,以满足不同应用的需求。

调频发射器的制作要点

调频发射器的制作要点

调频发射器的制作要点50MHz~150MHz频率范围的调频发射器具有天线简易、调制方便、辐射性能好和效率高等优点。

而87MHz~108MHz的调频广播波段可利用现成的收音机作接收机,因而此波段发射器的制作尤其受到爱好者的青睐。

笔者在诸多电子刊物上经常看到关于此类发射器制作的文章,有的很好,也有存在某些问题的。

笔者想就专业知识和实际制作体会,谈一下本人对调频发射器制作中某些要点与误区的看法。

(一)高频振荡器振荡器的主要指标是输出波形失真度与频率稳定度。

对于后者,晶体振荡器是最好的,但业余应用中有其缺点,一是频点固定且不易购买;二是直接调制时频偏太小,因而不得不多次倍频,使电路复杂且波形变坏,影响发射器的效果。

其实一般采用电容三点式或克拉泼振荡电路完全能够胜任,频率稳定度与波形失真已能满足要求。

电容三点式电路(见图1左)的正反馈量由C1、C2决定,而C1、C2并联在三极管的结电容上,能减小结电容变化对频率的影响,微调L可在较大范围内改变频率。

attachment_5356" class="wp-caption aligncenter" style="width: 272px;">图1 高频振荡电路克拉泼振荡电路(见图1右)的频率更稳定,但正反馈量变小,当改变频率时.容易在频率高端停振,故改变C3或L只能在较小的范围内改变振荡频率,该电路宜采用fT较高的振荡管以利于起振。

提高振荡器频稳度和改善输出波形的方法有:晶体管结电容要小,fT要高.供电要稳压.使用低损耗的高频电容,与外界要弱耦合,另外,在保证起振的条件下,工作点可选得低一些,有利于改善波形。

(二)频率调制器要求失真小,灵敏度高。

常见的调频方法有直接调制三极管结电容和变容二极管调频。

直接调制结电容电路虽简单.但频偏较小且伴有较大的寄生调幅。

由调幅原理可知,调幅波的边频极靠近载频(仅差一个音频),发射器后级的LC选频电路不易将其滤除,因而使发时频谱变坏,影响后级电路制作并干扰接收。

调频发射机的小制作

调频发射机的小制作

调频发射机的小制作
电台调频发射机制作
作为一名电子工程师,制作个人电台调频发射机确实是一件很有趣的事情,同时还可以提升我的技术水平。

在此,我以制作调频发射机为例,由浅入深地介绍一下制作过程,以及该电路如何工作。

首先,需要准备调频发射机所需的元件。

在市面上,我们可以买到不同型号的半导体元件,例如NPN晶体管和PPM晶体管。

其他元件也非常重要,例如电容、电阻、变压器、发射枪等。

对于电子元件,我们有很多种选择,价格也不同,因此在采购过程中要谨慎,以免浪费资金。

其次,现在我们可以开始组装调频发射机的电路了。

相对于组装其他普通电子电路来说,调频发射机的电路组装更加复杂,由于部分元件之间具有高度耦合,因此排布起来尤为繁琐。

所以,在这个阶段我们需要更多的耐心和细心,以避免出现设计差错。

最后,当调频发射机组装完成后,我们就可以根据设计要求进行校准和测试了。

基本的校准可以通过发射机自带的电路板实现,对于发射机的性能,可以使用数字调谐器或示波器来测量电压和频率,来实现准确的发射频率和功率。

完成调试后,调频发射机就可以正常工作了。

自制小功率调频广播发射机

自制小功率调频广播发射机

自制小功率调频广播发射机笔者采用手头现有的元器件,综合参考<<北京电子报>>等报刊相关的制作文章,做了一台远距离调频广播发射机,工作于88--108MHZ频段内,业余时间用来播放音乐。

电路原理现见附图。

图(1) 为电源部分,将市电降压整流后再加以稳压,获得稳定的12V直流电供射频电路使用。

射频电路由高频振荡器、缓冲放大器、末级功率放大器及天线组成。

高频振荡器用来产生载频信号,频点落在88--108MHZ内,并完成频率感量即可改变发射频率。

射频信号由VT1的发射极输出,送到VT2、L2、C22、R4等组成的缓冲放大器进行功率提升,并可减轻末级放大电路对振荡器的影响。

末级为高频率丙窄带放大,对射频功率再进一步放大,经C25耦合到发射天线向周围空间辐射。

所驳接的音源若输出信号幅度过大时,需串入衰弱电阻,以免声音失真。

电路板可用敷铜板制作,布线时要注意分布电容影响。

图中电容无单位标注的数字,一律以“pF”为单位,要和高频瓷片电容。

VT1--VT3用超高频NPN型硅管,如9018,B>60、Icm=50mA.fr>=600MHZ.VT3还可用中功率发射管C2053、BF96S 等,发射距离可能会更远。

L1-L3用00.8mm的漆包线在04mm的螺丝笔上密绕4圈脱出而成。

天线为拉杆天线,其长度为频率波长的1/4(或者1/2)。

如发射频率为100MHZ时,天线长0.7m(或1.5m)制作时应逐级安装。

射频部分先装振荡器、缓冲器放大器、调节L1的匝间距离使频点落在无台处,用指针型万用表的黑表笔接触VT2的集电极,调节L2使指针偏转幅最大,(即功率最大)。

若发现有打表现象,可将表笔缠绕在一起,直到不打表为止。

再用同样方法调节L3,使末级输出功率最大。

用FM收音机在距发射机10米以上的地方搜寻发射信号,大约估计出发射频率,再接上天线,适当调节长度,即可投入使用。

实测该机电源电压12V时(其实6-15V内均可正常工作,电压愈高,距离愈远),工作电流仅45mA左右,发射频率约104MHZ,将其置于三楼阳台,在无过高建筑物阻挡的情况下,用普及机(内部芯片CXA1019M)接收,距离竟达1000米。

DIY简单的FM调频发射制作实验

DIY简单的FM调频发射制作实验

这是一个比较简单的实用型制作,本文打算从简到繁一步步深入,你若是愿意同步动手实验,不久你将能够制作适合正式场合使用的调频发射机。

当然,实验还是从最简单的做起,下图是一个最简单的振荡器,它是调频发射的基础。

图中的线圈用1.0mm的漆包线在3.2mm的钻头上绕6-8圈,可覆盖88-108MHz,7圈时在100MHz附近。

按上图连接好,其实就已经是一个简单的发射机了,通电即可发射,不过发射的是未经调制的等幅信号,附近的调频收音机接收到信号只会出现静音。

像下图那样加上调制信号,就可进入实用状态了.这时,假如你将随身听,影碟机等输出的音源信号连接上图发射机的音频输入端,在附近就可以用收音机来收听了。

上图虽能发射,却不实用,其一是发射能量很小,只能在室内使用,在室外开阔地也不过几十米。

其二是频率不稳,由于天线只是一段导线,通过100P电容与振荡回路相连,因此天线周围的环境均会影响发射频率。

若想使其达到能用的程度,应在其后再加两极放大,见下图。

这是应网友的要求搭出的一个功放电路,输出功率令人满意,但是也存在很多问题,将在下文详述。

振荡器与功放连在一起,就成了一个完整的调频发射机,见下图。

图中的发射机很容易制作成功,这里所说的成功是插上天线接通电源即可进入工作状态,若是希望发射机进入最佳工作状态还需要做一些调试。

其实,爱好者做实验最大的乐趣就是通过自己动手调试使作品更趋完善,获得最佳性能。

首先,这种输出电路工作于非甲类状态,对负载阻抗有更严格的要求,通常发射机多为50Ω输出,爱好者实验不一定容易找50Ω的射频电缆,而75Ω的射频电缆到处都能买到,况且75Ω的天线也容易制作,故此机采用75Ω输出,通电之前应在输出端接一个75Ω的电阻,调试完成以后再接75Ω的天线。

本机最大输出1W以上,不要用那种1/8W的小电阻,接上就烧。

烧个电阻倒没什么,可是电阻一烧放大器便相当于空载,管子就危险了。

通电以后所需要调试的最主要内容是发射管的工作点,工作点不同输出的谐波成分大大不同。

收藏!经典,双管,微型FM发射机电路图,简单到可自制

收藏!经典,双管,微型FM发射机电路图,简单到可自制

收藏!经典,双管,微型FM发射机电路图,简单到可自制这里介绍的微型FM调频发射机电路,是微型无线调频话筒的一种。

它使用双管推挽式发射电路,发射频率设定在88~108MHz民用调频广播频段,使用普通调频收音机就能够接收信号。

1、电路原理如下图所示,是微型FM调频发射机电路图。

微型FM调频发射机电路图电路中,包括音频转换和高频振荡调制两部分。

驻极体话筒BM拾取外界音频,并转换成电信号,经C1耦合到高频振荡电路进行调频调制。

两个三极管VT1和VT2的集电极与基极相互交叉连接,并与L、C2组成的谐振回路,构成高频振荡器。

振荡频率,由三极管的结电容、L、C2共同决定,经过C1耦合到来的音频信号,将改变三极管的结电容,引起谐振回路参数改变,从而将振荡频率调制,让频率的变化跟随音频信号而变化。

调制后的调频信号,经过C3耦合到天线,发射出去。

2、元器件选择与制作谐振电感L需要自制,如下图所示。

谐振电感的制作谐振电感L,用直接0.5mm漆包线在直径5mm钻头柄上,作为骨架绕制5匝,然后抽出,形成空心线圈,并适当拉长即可。

驻极体话筒的焊盘,一般没有安装引脚,可以根据自己的安装需要,用电线或者电阻的引脚作为安装引出线,如下图所示。

给驻极体话筒安装引脚对于发射天线,可以使用一根30cm~50cm的软导线。

3、电路调试调试第一步,要确定电路是否起振,如下图所示,无示波器时,可以使用万用表简单的检测是否起振。

无示波器时的振荡器起振的检测方法尽量使用指针万用表,放置直流10V档位,测量R2的压降,测量时,用导线短路L,点触即可,可以迫使电路在振荡和停振来回切换,以便判断是否起振。

调试第二步,调制发射频率,如下图所示。

发射频率的调整调整L的每匝间距,可以改变发射频率,用FM调频收音机,设定一个没有电台的频率,然后调节L的间距,直到收音机中收到信号即可。

内容来自今日头条。

调频发射机的制作原理及方法

调频发射机的制作原理及方法

调频发射机的制作原理及方法1)高频三极管V1和电容C3、C5、C6组成一个电容三点式的振荡器2)C4、L组成一个谐振器:谐振频率就是调频话筒的发射频率,根据图中元件的参数发射频率可以在88~108MHZ之间,正好覆盖调频收音机的接收频率,通过调整L的数值(拉伸或者压缩线圈L)可以方便地改变发射频率,避开调频电台。

发射信号通过C4耦合到天线上再发射出去。

3)R4是V1的基极偏置电阻,给三极管提供一定的基极电流,使V1工作在放大区。

4)R5是直流反馈电阻,起到稳定三极管工作点的作用。

5)话筒MIC采集外界的声音信号。

6)电阻R3为MIC提供一定的直流偏压,R3的阻值越大,话筒采集声音的灵敏度越弱,电阻越小话筒的灵敏度越高。

7)话筒采集到的交流声音信号通过C2耦合和R2匹配后送到三极管的基极。

8)电路中D1和D2两个二极管反向并联,主要起一个双向限幅的功能,二极管的导通电压只有0.7V,如果信号电压超过0.7V就会被二极管导通分流,这样可以确保声音信号的幅度可以限制在正负0.7V之间,过强的声音信号会使三极管过调制,产生声音失真甚至无法正常工作。

9)CK是外部信号输出插座,可以将电视机耳机插座或者随身听耳机插座等外部声音信号源通过专用的连接线引入调频发射机,外部声音信号通过R1衰减和D1、D2限幅后送到三极管基极进行频率调制。

10)电路中发光二极管D3用来指示工作状态,当调频话筒得电工作时就会点亮,R6是发光二极管的限流电阻。

C8、C9是电源滤波电容,因为大电容一般采用卷绕工艺制作的,所以等效电感比较大,并联一个小电容C8可以使电源的高频内阻。

11)电路中K1和K2是一个开关,它有三个不同的位置,拨到最左边时断开电源,最右边是K1、K2接通做调频话筒使用,中间位置是K1接通,K2断开,做无线转发器使用,因为做无线转发器使用是话筒不起作用,但是话筒会消耗一定的静态电流,所以断开K2可以降低耗电、延长电池的寿命。

调频发射机的设计和制作

调频发射机的设计和制作

调频发射机的设计和制作1.课程设计的目的(1)掌握小功率调频发射机整机电路的设计方法。

(2)学会如何将高频单元电路组合起来实现满足工程实际需要的整机电路。

(3)能够使用电路仿真软件进行电路调试。

2.设计方案论证2.1总体方案(1)调频发射机的整机电路的设计方法整机电路的设计计算顺序一般是从末级单元电路开始,向前逐级进行。

而电路的装调顺序一般从前级单元电路开始,想后级逐级进行。

电路的调试顺序先分级调整单元电路的静态工作点,测量其性能参数;然后在逐级进行联调,直到整机调试;最后进行整机技术指标测试。

由于功放运用的折线分析方法,其理论计算为近似值。

(2)高频电路由于受分布参数及各种耦合与干扰的影响,其稳定性比起低频电路来要差些,因此调试工作比较复杂,特别是整机调试,应前后级多次反复调整,直到满足技术指标要求。

⑶调频可以有两种实现的方法,一种是直接调频,就是用调制信号直接控制振荡器的频率使其按调制信号的规律呈线性变化。

另一种就是间接调频,先对调制信号进行积分,再对载波进行相位调制。

两种调频电路在性能上的一个重大差别是收到调频特性非线性限制的参数不同,间接调频电路提供的最大频偏较小,二直接调频可以得到比较大的频偏。

2.2各部分设计及原理分析2.2.1电路的基本原理通常小功率发射机采用直接调频方式,其组成框图如图1所示,电路原理图如图2所示。

图1 直接调频方式的组成框图沈阳大学图2 小型调频发射机参考电路其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

2.2.2选择各级电路形式和各级元器件参数的计算(1)频振荡级由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。

FM调频发射器制作资料

FM调频发射器制作资料

调频无线话筒电路图-调频无线话筒制作-自制无线话筒本文介绍一种简单的无线话筒。

可在调频广播波段实行无线发射。

本机可用于监听、信号转发和电化教学。

由于结构简单、装调容易,所以很适合初学者装置。

一、无线话筒的电路图和工作原理图1是调频无线话筒的电路图。

图1无线话筒的电路图驻极体话筒将声音转变为音频电流,加在由晶体管V、线圈L和电容器C1组成的高频振荡器上,形成调频信号由天线发射到空间。

在10米范围内,由具有调频广播波段(FM波段)的收音机接收,经扬声器还原成的声音,实现声音的无线传播。

二、元件的规格和检测方法本机结构简单,包括电池在内,一共才有8只元件。

C1为10PF瓷片电容器C2为10uF电解电容器R为lk 1/8W碳膜电阻k为拨动开关V为高频三极管9018日BM为小型驻极体话筒L为空心线圈。

驻极体话筒灵敏度越高,无线话筒的效果越好。

它的外形和测试方法见图2,对话筒吹气时,万用表指针摆动越大,驻极体话筒越灵敏。

图2 驻极体话筒检测L是空心电感线圈。

用?0.5毫米的漆包线在元珠笔芯上密绕10圈。

用小刀将线圈两端刮去漆皮后镀锡,可点上一些石蜡油固定线圈然后抽出元珠笔芯,形成空心线圈(如图3)。

三、焊接电路图4是调频无线话筒的印刷电路图。

图3 线圈L的绕法图4 印刷电路板1.将各元件引脚镀锡后插入印刷电路板对应位置。

各元件引脚应尽量留短一些。

2.逐个焊接各元件引脚。

焊点应小而圆滑不应有虚焊和假焊。

焊接线圈时,注意不能使线圈变形。

3.用一根长40-60厘米的多股塑皮软线做天线。

一端焊在印刷电路板上,另一端自然伸开。

四、电路的调试1.先检查印刷电路板和焊接情况,应元短路和虚、假焊现象。

然后可接通电源。

2.用万用表直流电压档测量晶体管V基极发射极问电压,应为0·7伏左右。

若将线圈L两端短路,电压应有一定变化,说明电路已经振荡。

3.打开收音机,拉出收音机天线,波段开关置于FM波段,(频率范围为88兆赫至108兆赫)将无线话筒天线搭在收音机上。

收音机调频(FM)发射机的小制作

收音机调频(FM)发射机的小制作

收音机调频(FM)发射机的制作摘要:无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。

关键词:调频、发射、接收、中心频率1.题目要求1)查阅调频发射机基本原理的资料;2)选择合理的方案,设计调频发射机电路(载波约100MHz);3)制作PCB电路板(须标注学号),焊接元器件;4)用收音机完成作品调试;5)撰写作品报告。

2.调频(FM)发射机原理首先将音频信号和高频载波调制为调频波,使高频载波的频率随音频信号发生变化,再对所产生的高频信号进行放大,激励,功放和一系列的阻抗匹配,使信号输出到天线,发送出去的装置.高频信号的产生现在有频率合成,PLL等方式。

与调幅电路相比,调频系统由于高频振荡器的输出的振幅不变,因而具有较强狂干扰能力与较高的效率,所以在无线通讯,广播电视,控制检测某些方面得到广泛应用。

现在我国的商业调频广播的频率范围为88-108MHZ,校园为76-87MHZ,西方国家为70-90MHZ。

调频发射的基本组成方框图:3.方案选择1.1.调频方式选择实现调频的方法很多,大致可分为两类,一类是直接调频,另一类是间接调频。

直接调频是用调制信号电压直接去控制自激振荡器的振荡频率,变容二极管调频便属于此类。

间接调频则是利用频率和相位之间的关系,将调制信号进行适当处理后,再对高频振荡进行调相,以达到调频的目的。

两种调频法各有优缺点。

直接调频的稳定性较差,但得到的频偏大,线路简单,故应用较广;间接调频稳定性较高,但不易获得较大的频偏。

考虑到电路的复杂度故采用直接调频的方案。

1.2.直接调频方案选择直接调频最常见有变容二极管调频,使用VCO实现变容二极管直接调频。

许多中小功率的调频发射机都采用变容二极管直接调频技术,即在工作于发射载频的LC振荡回路上直接调频,采用晶体振荡器和锁相环路来稳定中心频率。

电子管做的5W中短波调幅发射电台

电子管做的5W中短波调幅发射电台

电子管做的5W中短波调幅发射电台本实验的电路见下图:其中用了很多拆机品比如B1、B2、G、R1、R2、C2、C3、C4、C5。

考虑到拆机后的电源滤波电容体积太大,于是用一个彩电滤波电容替换。

L1选用22mm的漆包线在MX-2000的磁环上绕100匝,L2决定电台的发射频率。

C5为空气双联,其容量为360pFx2。

B1为原机电源变压器。

本电台可以发射较多波段的电波如果频率选在中波AM波段时,L2可选用35mm的漆包线在中波磁棒上30+50匝,或选用13mm的漆包线在25mm的纸筒上密绕90匝。

这样发射频率会落在550-1650kHz之间。

如果选用短波波段时,L2可用0.5mm的漆包线在16mm的纸筒上间绕9匝。

这样构成的振荡器频率就落在6~18MHz 之间。

高压部分整流改用4只IN4007。

B2为原输出变压器。

C2、C3、以为机内拆得的云母电容,其中C2、C3耐压以大于400V为佳。

R1、R2也可自己购水泥电阻。

因牦散功率较大,其功率选≥1W。

TX为1/4天线,可用一段粗导线代替,长度约为发射波长的1/4。

本实验选用的是3mm、8m长的漆包线。

整个电路安装无需使用敷铜板,直接用一块胶木板,在其上钻孔,搭棚焊接即可。

只要元件良好,装好后电路即会起振,起振时G内能看到浅蓝色的电子流,并伴有“咝咝”的声音。

如果有条件,可做一个简单的场强仪,通过调节R2使发射场强达到最大。

天线可通过绝缘子垂直安装在墙上。

接上天线后在B2处输入5W左右的音频信号,将一个收音机和发射机的距离拉远,收音机应能清晰地收到信号,失真度也不应很明显。

若发射时交流声太大,接地便能解决。

接下来就慢慢享受无线电的乐趣吧!经实测,发射功率有5W之大,所以实验时务必遵守国家无委会的有关规定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

声明:本文电路仅供爱好者参考,如果需要动手制作实验,请先与当地无线电管理部门联系批准。

本站要求大家进行无线电实验必须遵守法律,如有任何违法行为本站概不负责!Veronica FM发射机容易制作,性能稳定,信号纯净, 不使用专业零件和IC, 并有辅助测试功能使您在没有专业设备的情况下轻易地进行调试。

它有两个版本, 1瓦和5瓦。

1瓦版本适用于3公里发射距离,所需的电源是12-16V 200mA;5瓦版本适用于8公里发射距离,所需的电源是12-16V 900mA。

本文档主要介绍5瓦版本。

图1: 5W Veronica 线路图该发射器自带一个混音器,使您同时发射来自CD和话筒的音频信号。

晶体管T 1是话筒放大器,可变电阻R1和R2调节音量大小(参见调试部分)。

在R8和C 21之间是振荡器,是产生无线电射频信号的部件。

二极管D1是一个所谓的“变容管”,相当于一个可调电容,它由音频信号控制,改变振荡器的振荡频率,起到变频的作用。

C12,C13,和L1决定振荡器的频率。

这个振荡器实际上是由两个反相振荡器组成,每个运行在50MHz附近,当两个信号结合时,便成了一个100MHz的信号。

这种电路比单个100MHz振荡器稳定很多。

振荡器的信号由T 4、T6放大到5W。

在T4右边的电路包括天线阻抗匹配和低通滤波功能。

D2、D3、T5组成的电路是辅助调试用的,它将射频输出的信号取样,控制发光二极管D5,输出高时,D5也明亮一些。

此电路本身不带立体声调制器,你若需要播放立体声节目,请参照这里制作立体声调制器。

元件清单电阻:R1+2 10k 可调R3 820k R4 4.7k R5-7 220 R8 1.5k R9 15k R10+11 1k R12 33k R13+14 56 R15+16 68k R17 47 R18 270 R19 10 R20 22 R21 1.5k R2 2 270电容:除特殊指定外,用瓷介或云母电容。

C1,2,7, 16,17,19, 24,29及31 1n C3-5及8 10u 16V 电解C6, 18及30 220u 1 6V 电解C9, 10及20 10n C11 22p* C12 47p* C13 22p 微调C14及15 15p* C21,25及26 65p 微调C22 100p C23 15p C24 33p C27 1.8p C28 5.6p C32及34 47p C33 22p C35及38 1n C36 220n C37 100p*C11, 12, 14 和15 决定振荡频率,最好用高质量云母电容。

线圈:用无骨架空心型。

以直径1mm的导线密绕在笔芯或其它圆棒上,然后小心地拉长到正确的长度,并确定线圈的两末端如图2所示。

图2A: 线圈的正确绕法图2B: L4,MRF237的管脚和天线假负载L1 6个线圈, 每个2匝内直径5mm,长5mm L2 3匝,内直径7mm,长7mm L3 3匝,内直径6mm,长8mm L4 在2.2k碳棒电阻(直径约2mm)上饶14匝直径0.2mm的漆包线,将漆包线的末端焊电阻的接头上。

电阻的两个接头上各套一个磁珠,如图2B。

L5 5匝,内直径6mm,长11mm L6 4匝,内直径6 mm,长9mm射频扼流器(RF choke):扼流器(H1-4)可用直径0.5mm的漆包线在直径4mm、长5mm的磁珠上饶制。

注意,漆包线应从磁珠的孔中穿过,磁珠应该用工作频率在100MHz材料(通常是43号)。

如果找不到磁珠,也可用方法制作:在33k碳棒电阻器上饶长0.5m 直径0.2mm的漆包线,将漆包线的末端焊电阻的接头上。

H1 磁珠上饶5匝H2 磁珠上饶1匝H3 磁珠上饶2匝H4 磁珠上饶3匝二极管:D1最好用变容管对,即两个对称的变容管背靠背连在一起,中间是负极;但这并不十分重要,两个一般的变容管也可以。

D1 KV1310 D2+3 1N4148 D4 一般的放光二极管D5 1N4001三级管:T1+5 BC548,一般小信号三极管T2+3 BF494,高频小信号三极管T4射频功率管2W,12V,10dB@175MHz 2N4427,C2538,C1970 3DA190,3DA1 94 等T6 射频功率管4W 18V >=10dB@150MHz MRF237,2N3926,C1971, C1947,MRF630,BLU99, 3DA21,3DA106,3DA56 3DA192,3DA22,等注意:其它信号的功率管的管脚位置可能与图8不同。

图3: 三级管管脚的俯视图稳压器:I1是一个5伏稳压器,给D1提供恒定电压,以保持发射器的频率稳定。

I1: 78L05 (或7805) 其它:电路盒BNC 射频输出插口 2 x 3.5 mm 音频输入插口电源插口9-16V电源天线话筒CD机或录音机装配Veronica 发射机用的印刷电路板(PCB)如图4。

射频电路对粗劣的电路板(包括布线、接地、部件的位置等)是相当敏感的。

应避免使用面包板;使用一面接地的双面电路板最好,但图4的设计采用接地导体填充了一般走线周围的空当,这样的设计即使用单面电路板效果也很好。

元件应该尽可能用最短的导线平展地安置在电路板上。

发射机应该装在金属屏蔽盒内(如铸铝盒),而金属盒连接电路的地极。

可使用3mm粗的螺栓与5-10mm长的支撑柱,来达到金属盒于电路板件的良好连接。

晶体管T4、T6需要散热器冷却。

T 4的散热器可以用内径比晶体管略小、2cm长的金属管来做。

在管子上切开一个槽,使孔可以变大并套在晶体管上。

输出管T6需要的散热器可用一个大约14cm长、2.5cm 宽、3mm厚的L形铝条制作(参见图10),也可用专门的5W散热器。

为固定T6的孔应尽可能准确;你可依照图示在散热器上开一个槽,小心地把散热器向外弯一些,将晶体管插进去,散热器的弹性将保证晶体管和散热器的良好接触。

在晶体管和散热器中间可以涂一些导热胶,如硅油。

散热器用螺丝固定在PCB上,并在PCB和散热器之间夹两个垫片。

注意:有的射频功率管的管壳和集电极是连通的(与三级管的型号有关),在这种情况下,散热器应和地线或屏蔽盒绝缘(离大约5mm距离)。

其它型号的功率管的管脚位置可能与图2、图3不同。

在盒盖上转些孔, 以保证空气流通。

话筒和光盘输入接口可用3.5mm的耳机插座, 电源也可以用类似的插座。

对于天线输出,我们推荐BNC插座或电视机用的那种F型插座(原产品用N型插座)。

插座的地极应该与金属屏蔽盒连接好, 并且内部导线应该尽可能短。

可把D5嵌在盒盖上,这样你能经常检查这个发射机是否正常工作。

图5: 元件装配位置图电源Veronica 5W发射机使用由9到16伏的直流电源;用12V较佳,会得到5W的功率,耗电约900mA(与射频功率放大管T6有关)。

如果电源质量低劣,电台的发射频率会不稳或会发射“嗡嗡”的交流声。

如果你打算用电池或粗劣的电源, 应该增加一个额外的稳压电路,如用781 2或7815代替D4(见图1的上方)。

对78XX型稳压电路,XX是输出电压,如7815为15V,并联的电容大于10nF即可。

天线电台的发射天线尤为重要,请参阅这里的专门介绍。

调试为了使发射机正常高效率工作,需要进行一些简单的调试。

调试时用一个天线“假负载”代替天线,它可帮助你区别主要发射信号和微弱的谐波信号,同时保证你不把调试信号大范围地发射出去。

假负载的制作办法是:将一个47或68欧姆的碳棒电阻(与你打算使用的天线阻抗相对应)焊接到一个BNC或N型天线插座上;确定此电阻能够承受来自发射机的功率(5W),并且不是线绕型的。

如果你找不到一个50欧姆5W的碳棒电阻(不能用线绕型电阻),可用3个150欧姆2W的电阻或5个250欧姆1W的电阻并联,如图2B。

将所有的微调电容调到中间位置(上部板覆盖住下部的一半), 将天线假负载接到天线输出插口,将一台光盘播放机接到CD输入插口。

这时开机,发光二极管D5应该是亮的(如果不是,尝试调整C21),并且发射机应工作在98MHz左右。

用一把带绝缘把的小螺丝刀来调整C21,25和2 6,使发光二极管达到最亮。

然后按如下步骤调整发射频率:慢慢地调整C13(朝靠近你要使用的频率的方向)直到发光二极管黯淡,但不是完全灭掉;然后调整C21,25 和26直到发光二极管再到最亮;这样重复直到你获得你想要的频率。

现在用一个FM收音机来检查一下你是否只在一个频率上发射信号,如果不是,你可能必须重新从头调整。

如果你不能调到FM广播频段(8 8-108MHz)的末端,你需要改变L1:小心地压紧线圈来调低频率,或增加线圈的间距来调高频率;并尽可能保证L1的六个线圈是相同的,否则会影响发射信号的纯度。

根据我们的测试结果,该电路的发射频率在发射器开机到内部温度稳定的过程中可能变化50-70KHz,因此,发射频率的调整要等到发射器温度稳定后(约需要10-30分钟)才能准确。

现在调整R2直到从光盘播放机发射的声音象一般专业电台一样大。

应该注意,有些电台使用“压缩” 技术来达到使声音听起来比它实际声音大的效果,如果你也设置那么大的声音, 你也许会导致过度调制并干扰到附近频道,这是应该避免的。

你必须同样小心地不要设置话筒声音太大,最好用一个带自动增益控制的外接声音混和器。

调整完毕后,将假负载换成发射天线,一般情况下发射器会正常工作,但也可小幅度地调整C2 1,25和26和改变天线的长度、位置、角度以达到最大发射功率,小幅度地调整C13使发射频率准确。

为了避免被发现,测试天线时可用一个FM收音机的耳机输出接到发射机的CD输入口,用当地的一个FM电台的信号作测试信号。

不要试图打开一个没有接天线负载的发射机,那样会损坏输出晶体管;将假负载换成发射天线时也要先把电源关掉。

相关文档
最新文档