(完整版)新人教版初一下册数学实际问题与二元一次方程组经典例题

合集下载

人教版七年级下《实际问题与二元一次方程组》习题精选及答案

人教版七年级下《实际问题与二元一次方程组》习题精选及答案

再探实际问题与二元一次方程组习题精选(一)一、选择题1.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x,乙数为y,由题意可得方程组()A.B.C.D.2.甲、乙两条绳共长17 m,如果甲绳减去,乙绳增加1 m,两条绳长相等,求甲、乙两条绳各长多少?若设甲绳长x m,乙绳长y m,则得方程组()A.B.C.D.3.一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是()A.3∶1B.2∶1C.1∶1D.5∶24.甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个数.如果甲数为x,乙数为y,则得方程组是()A.B.C.D.5.学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3张信笺.结果,总务处用掉了所有的信封,但余下50张信笺;而教务处用掉了所有信笺,但余下50个信封.则两处所领的信笺张数、信封个数分别为()A.150,100B.125,75C.120,70D.100,150二、填空题6.两数之差为7,又知此两数各扩大3倍后的和为45,则这样的两个数分别为________。

7.武炜购买8分与10分邮票共16枚,花了一元四角六分,购买8分和10分的邮票的枚数分别为_________。

8.在1996年全国足球甲级A组的前11轮(场)比赛中,大连万达队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了________场。

9.某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12只或螺母18只,要求一个螺栓配两个螺母,应分配______人生产螺栓,____人生产螺母,才能使螺栓与螺母恰好配套。

10.已知甲、乙两人从相距18千米的两地同时出发,相向而行,小时相遇。

人教版七年级下册数学实际问题与二元一次方程组应用题(行程问题)

人教版七年级下册数学实际问题与二元一次方程组应用题(行程问题)

人教版七年级下册数学8.3 实际问题与二元一次方程组应用题(行程问题)1.一艘轮船在相距120千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,从乙地到甲地逆流航行用10小时.(请列方程或方程组解答)(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?2.某体育场的环行跑道长400m,甲、乙分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30s相遇一次.如果同向而行,那么每隔80s乙就追上甲一次.甲、乙的速度分别是多少?3.A,B两地相距80km.一艘船从A出发,顺水航行4h到B,而从B出发逆水航行5h到A,已知船顺水航行、逆水航行的速度分别是船在静水中的速度与水流速度的和与差,求船在静水中的速度和水流速度.4.某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟,如果他以每小时70千米的速度行驶,则可提前24分钟到达乙地,求甲乙两地间的距离.5.小明和小丽两人相距8千米,小明骑自行车,小丽步行.两人同时出发相向而行,0.8小时相遇:若两人同时出发同向而行,小明2小时可以追上小丽,求小明、小丽每小时各前行多少千米?6.从甲地到乙地,先下坡然后是平路,某人骑自行车从甲地以12千米/时的速度下坡,而以9千米/时的速度通过平路,到乙地共用了55分钟,他回来时以8千米/时的速度通过平路,以4千米/时的速度上坡,回到甲地又用了112小时,求甲、乙两地的距离.7.甲、乙两班同时从学校A出发去距离学校75km的军营B军训,甲班学生步行速度为4km/h,乙班学生步行速度为5km/h,学校有一辆汽车,该车空车速度40km/h,载人时的速度为20km/h,且这辆汽车一次恰好只能载一个班的学生,现在要求两个班的学生同时到达军营,问他们至少需要多少时间才能到达?8.A、B两地相距36千米,甲从A地步行到B地,乙从B地步行到A地,两人同时相向出发,4小时后两人相遇,6小时后,甲剩余的路程是乙剩余路程的2倍,求二人的速度.(用方程解)9.小颖家到学校的距离为1200m,其中有一段为上坡路,另一段为下坡路,她去学校共用去16min,假设小颖在上坡路的平均速度为3km/h,下坡路的平均速度为5km/h,小颖家到学校的上坡路和下坡路各有多少米?10.A,B两地相距20km,甲从A地向B地前进,同时乙从B地向A地前进,2h后两人在途中相遇;如果两人同时从A地出发到B地,2h后两人相距2km,求甲、乙两人的速度.11.甲、乙两人同时从A ,B 两地出发赶往目的地B ,A ,甲骑摩托车,乙骑自行车,沿同一条路线相向匀速行驶,出发后经2.5小时两人相遇. 已知在相遇时甲比乙多行驶了75千米,相遇后经过1小时甲到达B 地.(1)求甲、乙两人行驶的速度.(2)在整个行程中,问甲、乙行驶多少小时,两车相距35千米.12.小明家离学校2120米,其中有一段为上坡路,另一段为下坡路.他跑步去学校共用了16分钟,已知小明在上坡路上的平均速度是4.8千米/时,而他在下坡路上的平均速度是12千米/时,小明上坡、下坡各用了多长时间?13.A ,B 两地相距3千米,甲从A 地出发步行到B 地,乙从B 地出发步行到A 地.两人同时出发,20分钟后相遇,又经过10分钟后,甲所余路程为乙所余路程的2倍.求两人的速度.14.从A 地到B 地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60/km h ,在高速公路上行驶的速度为100/km h ,一辆客车从A 地开往B 地一共行驶了3.5h .求A 、B 两地间国道和高速公路各多少千米?15.为了参加2011年国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.16.从夏令营地到学校先下山后走平路,某人骑自行车以12千米/时速度下山,再以9千米/时速度通过平地,用了1小时,返回时以8千米/时通过平路,6千米/时速度上山回到原地,共用1小时15分钟,求营地到学校有多远?17.小杰、小明两人同时绕400米的环形跑道行走,已知小杰比小明速度快,如果他们同时由同一点同向而行12分30秒首次相遇,如果他们同时从同一点起背向而行2分首次相遇,求小杰、小明两人每分钟各走多少米?18.甲乙二人相距18千米,二人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可以追上乙.求二人的平均速度各是多少?19.列方程组解应用题:甲、乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可追上乙.(1)根据题意画出示意图,分为相向而行、同向而行两种;(2)求两人的平均速度各是多少?20.甲、乙两人在东西方向的公路上行走,甲在乙的西边300米处.若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,问甲、乙两人的速度各是多少?。

人教版七年级下册数学实际问题与二元一次方程组应用题(利润问题)

人教版七年级下册数学实际问题与二元一次方程组应用题(利润问题)

人教版七年级下册数学8.3 实际问题与二元一次方程组应用题(利润问题)1.一商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏损20元,而按标价的8折出售将赚40元.问:(1)每件服装的标价、成本各多少元?(2)为了保证不亏本,最多能打几折?2.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的利润(利润=收入-支出)为12000元,今年菠萝的收入比去年增加了20%,支出减少了10%,预计今年的利润比去年多11400元.请计算:(1)今年的利润是________元;(2)列方程组计算小明家今年种植菠萝的收入和支出.3.近期某高校为保护学生和教师的健康,进行了“抗疫物资”储备,用19000元购进甲、乙两种医用口罩共计900盒,且甲、乙两种口罩的售价分别是20元/盒,25元/盒.求甲、乙两种口罩各购进了多少盒?4.元旦期间,某超市第一次用3800元购进了甲、乙两种商品,其中甲种商品40件,乙种商品160件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为25元/件.(1)甲、乙两种商品每件进价各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完,可获得多少利润?(3)该超市第二次又购进同样数量的甲,乙两种商品,其中甲种商品每件的进价不变,乙种商品每件的进价少3元,甲种商品按原售价提价m%销售,乙种商品按原售价降价m%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多160元,求m的值.5.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解1辆A型汽车和1辆B型汽车的进价共计18万元;2辆A型汽车和4辆B型汽车的进价共计56万元.求A、B两种型号的汽车每辆进价分别为多少万元?6.某同学在A,B两家网店发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是492元,且随身听的单价比书包单价的3倍少108元.(1)求该同学看中的随身听和书包的单价各是多少元.(2)某一天恰好赶上商家促销,网店A所有商品打八折销售,网店B全场每购满100元减25元销售,怎样购买更省钱?写出必要的理由过程.7.在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.(1)求每只A型口罩和B型口罩的销售利润;(2)在销售时,该药店开始时将B型口罩提价100%,当收回成本后,为了让利给消费者,把B型口罩的售价调整为进价的15%,求B型口罩降价的百分率.8.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?9.经营户小熊在蔬菜批发市场上了解到以下信息内容:他共用320元钱从市场上批发了红辣椒和西红柿共60公斤到菜市场去卖,当天卖完.请你计算出小熊能赚多少钱?10.某花卉超市准备购进甲、乙两种盆栽,甲种盆栽每盆进价15元,售价20元;乙种盆栽每盆进价25元,售价40元.元旦前夕,超市共购进甲、乙两种盆栽60盆,总进价为1100元.(1)超市购进甲、乙两种盆栽各多少盆?(2)如果把甲种盆栽的售价提高20%,乙种盆栽按售价打八折销售,将这些盆栽全部售完可获利多少元?11.某玻璃制品销售公司职工的月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售件数),如表是甲、乙两位职工某月的工资情况.(1)求职工的月基本保障工资和销售每件产品的奖励金额各是多少元?(用二元一次方程组解决问题)(2)若职工丙今年5月份的工资为2000元,那么丙该月销售了多少件产品?12.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?13.为了响应“阳光运动一小时”校园体育活动,我校计划再购买一批篮球,已知购买2个A品牌的篮球和3个B品牌的篮球共需380元;购买4个A品牌的篮球和2个B品牌的篮球共需360元.(1)求A、B两种品牌的篮球的单价.(2)我校打算网购20个A品牌的篮球和3个B品牌的篮球,“双十一”期间,京东购物打折促销,其中A品牌打八折,B品牌打九折,问:打折后学校购买篮球需用多少钱?14.某超市计划购买甲、乙两种玩具,已知购买2件甲种玩具与1件乙种玩具共需87元,购买1件甲种玩具与2件乙种玩具共需84元.(1)求甲、乙两种玩具每件的价格分别是多少元;(2)如果卖方仅给予甲种玩具优惠,优惠方案为:购进甲种玩具超过a件时,超出部分可以享受7折优惠.若购买30件甲种玩具需支付855元,求a的值.15.某一天,蔬菜经营户王大叔花270元从蔬菜批发市场批发了黄瓜和茄子共70千克,到菜市场按零售价卖,黄瓜和茄子当天的批发价和零售价如下表所示:(1)王大叔当天批发了黄瓜和茄子各多少千克?(2)他卖完这些黄瓜和茄子共赚了多少元?16.某社区超市第一次用6000元购进甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,甲、乙两种商品的进价和售价如表:(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品销售一部分后出现滞销,于是超市决定将剩余的乙商品五折促销,若在本次销售过程中超市共获利2350元,则以五折售出的乙商品有多少件?17.目前,新型冠状病毒在我国虽可控可防,但不可松懈,某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液共400瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶.(1)如果购买这两种消毒液共7500元,求甲、乙两种消毒液各购买多少瓶?(2)在(1)的条件下,若该校在校师生共1800人,平均每人每天都需使用10ml的免洗手消毒液,则这批消毒液可使用多少天?18.列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如表所示:(1)该大型超市购进A 、B 品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?19.某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如表:用36000元购进A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种型号手机的数量.20.体育与健康是学校素质教育的重要组成部分,为了活跃校园气氛,增强学生的集体观念,培养学生团队合作的精神.某学校将于11月份举办学生趣味运动会,计划用7380元购买足球和篮球共43个,分别作为运动会团体一、二等奖的奖品.已知足球的单价为180元,篮球的单价为160元.(1)学校计划购买足球和篮球各多少个?(列二元一次方程组解决该问题)(2)某老师按计划到商场购买足球和篮球时,正好赶上商场对商品价格进行调整,足球单价下降了%a ,篮球单价上涨了2%3a ,最终经费比计划节省了774元,求a 的值.。

(完整版)七年级下二元一次方程组应用题含答案

(完整版)七年级下二元一次方程组应用题含答案

新人教版数学七年级下册 8. 3 实际问题与二元一次方程组课时练习、选择题1.成渝路内江至成都全长 170 千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过 1 小时 10 分钟相遇. 相遇时, 小汽车比小客车多行驶 20 千米. 设小汽车和客车的平均速度分别为x千米 /时和 y 千米 /时,则下列方程组正确的是()答案: B知识点: 二元一次方程组的应用 解析:解答:先找出题目中的两个相等关系: 程=170 千米, 1小时 10 分钟小汽车走的路程- 1小时 10分钟小客车走的路程 =20 千米,再列出方 程组.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.2.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购 1 副羽毛球拍和 1 副乒乓球拍共需 50 元,小强一共用 320 元购买了 6 副同样的羽毛球拍和 10 副同样的乒 乓球拍,若设每副羽毛球拍为 x 元,每副乒乓球拍为 y 元,列二元一次方程组得( )答案: B知识点: 二元一次方程组的应用 解析:解答:先找出题目中的两个相等关系:购 同样的羽毛球拍和 10 副同样的乒乓球拍,再列出方程组.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出方程组.B .C .D .1 小时 10 分钟小汽车走的路程 +1 小时 10 分钟小客车走的路1 副羽毛球拍和 1 副乒乓球拍共需 50 元,320 元购买 6 副3.现有 190 张铁皮做盒子,每张铁皮可做 8 个盒身或 22 个盒底,一个盒身与两个盒底配成一个完答案: D知识点: 二元一次方程组的应用解析: 套,得方程 2 8x 22y ,故选 D . 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.4.把一根长 100cm 的木棍锯成两段,使其中一段的长比另一段的 2 倍少 5cm, 则锯出的木棍的长不 可能为( ) A . 70cmB . 65cmC .35cmD . 35cm 或 65cm答案: A知识点: 二元一次方程组的应用 解析:解答:不妨设其中一段的长为 x ,另一段的长为 y ,根据题意有,解这个二元一次方程组得 ,因为这两段没有顺序,所以锯出的木棍的长可能为 65cm 或 35cm ,不可能为 70cm , 故选 A . 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.5.一套《少儿百科全书》总价为 270 元,张老师只用 20 元和 50 元两种面值的人民币正好全额付 清了书款,则他可能的付款方式一共有( )A .5 种B .4 种C .3 种D .2种答案: C 知识点: 二元一次方程组的应用 解析:解答:设 20元面值的为 x 张,50 元面值的为 y 张,可列方程 20x +50 y =270 .因为 x 、y 均为正整数, x 1 x 6 x11所以满足条件的解为 , , ,所以可能的付款方式一共有 3 种,故选 C .y 5 y 3 y 1分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出整的盒子,设用 x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A .x 2y 190 2×8x 22y B . 2y x 190 C.8x 22yx y 190 2 22y 8x D .x y 190 2 8x 22y解答:根据共有 190 张铁皮,得方程 x y 190 ;根据做的盒底数等于盒身数的2 倍时才能正好配方程组.各有多少?( )A . 150,350B .250,200 答案: D知识点: 二元一次方程组的应用 解析:x y 400 ,解这个二元1000x 1200 y 45x 150次方程组得 x y 125500,所以甲乙债券分别有 150 元与 250 元,故选 D .分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.7.一种饮料大小包装有 3 种,1 个中瓶比 2 小瓶便宜 2 角,1 个大瓶比 1个中瓶加 1 个小瓶贵 4 角, 大、中、小各买 1 瓶,需 9 元 6 角,若设小瓶单价为 x 角,大瓶为 y 角,可列方程为()3xy983xy982xy983x y 98 A .B .C .D .y3x 2y3x 2y3x 42xy4答案: A知识点: 二元一次方程组的应用 解析:解答:根据 1 个中瓶比 2 小瓶便宜 2 角可知中瓶价格为 (2x - 2)角,大、中、小各买 1 瓶,需 9 元 6 角可列方程x +(2 x - 2)+ y =96 即得 3x + y =98 ,根据 1 个大瓶比 1 个中瓶加 1 个小瓶贵 4 角可列方程 y - (2x - 2+ x )=4 即 y -3x =2 ,联立后选 A .分析:可以设大、中、小瓶中的任意两个为未知数,另一个用其中一个未知数表示出来,根据题目 中的相等关系列出方程组并整理得.8.某品牌服装店一次同时售出两件上衣, 每件售价都是 135 元,若按成本计算, 其中一件盈利 2500 ,另一件亏损 2500 ,则这家商店在这次销售过程中()A .盈利为 0B .盈利为 9 元C .亏损为 8 元答案: D知识点: 二元一次方程组的应用 解析: 解答:设盈利的上衣售价为 x 元,亏损的上衣为 y 元,根据题意有 ((11 2255%%))x y 113355,解这个二元 (1 25%)y 135x 108次方程组得 ,所以这两件的利润为 135×2- (108+180)= - 18,所以亏损 18 元. y 180 分析:售价 =进价 +利润,亏损即利润为负.9.某校体操队和篮球队的人数之比是 5:6,篮球队的人数与体操队的人数的 3 倍的和等于 42 人,若设体操队的人数是 x 人,篮球队的人数为 y 人,则可列方程组为()6.有甲乙两种债券,年利率分别是10%与 12%,现有 400 元债券,一年后获利 45 元,问甲乙债券C . 350,150D .150,250解答:不妨设甲乙债券分别有多少x 元与 y 元,根据题意有 D .亏损为 18 元5x6y 6x5y5x6y6x5y A.B.C.D.3x y 42 3x y 42x y 423x y 42答案:B知识点:二元一次方程组的应用解析:解答:根据题目中的相等关系:体操队和篮球队的人数之比是5:6,篮球队的人数与体操队的人数的3 倍的和等于42 人,可列方程组为B.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出方程组.10.李勇购买80 分与100 分的邮票共16 枚,花了14 元6 角,购买80 分与100 分的邮票的枚数分别是( ) A.6,10 B.8,8 C.7,9 D.9,7答案:C知识点:二元一次方程组的应用解析:x y 16解答:设李勇购买80 分与100 分的邮票的枚数分别是x 与y,根据题意有,解这个0.8x y 14.6x7二元一次方程组得,所以李勇购买80 分与100 分的邮票的枚数分别是7 与9.y9分析:本题目中的相等关系是:购买的邮票共16枚,花了14 元6角,再利用相等关系列出方程组;注意单位要统一.11.已知甲、乙两种商品的原价和为200 元,因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%,求甲、乙两种商品的原单价分别是( ) A.50 元,150 元B.150 元,50 元C.80 元,120 元D.120 元,80 元答案:A知识点:二元一次方程组的应用解析:x y 200解答:设甲、乙两种商品的原单价分别是x元与y元,则有(x1 1y0%2)0x0(1 10%)y 200 (1 5%)x 50解这个二元一次方程组得x y 15500,所以甲、乙两种商品的原单价分别是 50 元与 150 元.分析:本题目中的相等关系是:甲、乙两种商品的原价和为 200 元,调价后甲、乙两种商品的单价 和比原单价和提高了5%,再利用相等关系列出方程组.12. 2辆大卡车和 5辆小卡车工作 2小时可运送垃圾 36吨,3 辆大卡车和 2 辆小卡车工作 5小时可 运输垃圾 80吨,那么 1辆大卡车和 1 辆小卡每小时分别运 x 吨与 y 吨垃圾,则可列方程组( )A.2x 5y36B.2 2x5y 363x 2y805 3x 2y 80C.2 2x 25y 36D.2x 2 5y 365 3x 52y 803x 5 2y 80答案: C知识点: 二元一次方程组的应用 解析:解答:根据题目中的相等关系: 2 辆大卡车和 5 辆小卡车工作 2 小时可运送垃圾 36 吨, 3 辆大卡车 和 2 辆小卡车工作 5 小时可运输垃圾 80 吨,可列方程组为 C .分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.xy 50xy 50 C .D .xy90xy90答案: D知识点: 二 元一 次方程组的应用解析:解答:根据题目中的相等关系: ∠1 的度数比 ∠2 的度数大 50°,从图中可知 ∠1与∠2 的和为 90°, 可列方程组为D .13.一副三角板按如图摆放,且∠1的度数比 ∠2的度数大 50°,若设 1=x o,2=y o ,则可得到x y 50x y 180 x y 180分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.14.某公司向银行申请了甲、乙两种贷款共计 68 万元,每年需付出 8.42 万元利息,已知甲种贷款每年的利率为 12%,乙种贷款每年的利率为 13%,则该公司甲、乙两种贷款的数额分别为()A .26 万元, 42 万元B .40 万元, 28 万元C .28 万元, 40 万元D .42 万元, 26 万元答案: D知识点: 二元一次方程组的应用 解析:x y 68解答:设该公司甲、乙两种贷款的数额分别为x 万元与 y 万元,则有 ,解这个12%x 13%y 8.42x 42元一次方程组得y x 4226,所以该公司甲、乙两种贷款的数额分别为 42 万元与 26 万元.分析:本题目中的相等关系是:甲、乙两种贷款共计 68 万元,每年需付出 8.42 万元利息,再利用 相等关系列出方程组.15.甲、乙二人按 2:5 的比例投资开办了一家公司,约定除去各项开支外,所得利润按投资比例分 成.若第一年所得利润为 14000 元,那么甲、乙二人分别应分得( )A . 2000 元, 5000 元B .4000 元, 10000 元C .5000 元, 2000 元D .10000 元, 4000 元 答案: B 知识点: 二元一次方程组的应用 解析:5x 2yx 元与 y 元,则有 x y 14000,解这个二元一次方程组得所以甲、乙二人分别应分得 4000 元与 14000 元. 分析:本题目中的相等关系是:所得利润按投资比例分成,第一年所得利润为 等关系列出方程组. 二、填空题1.在一次知识竞赛中,学校为获得一等奖和二等奖共 30名学生购买奖品,共花费 528 元,其中一等奖奖品每件 20 元,二等奖奖品每件 16 元,求获得一等奖和二等奖的学生各有多少名?设获得一 等奖的学生有 x 名,二等奖的学生有 y 名,根据题意可列方程组为 . 答案: 知识点: 二元一次方程组的应用 解析:x y 30 解答:解:设获得一等奖的学生有 x 名,二等奖的学生有 y 名,由题意得 2x 0x y 163y 0 528 故答案x 4000 y 10000解答:设甲、乙二人分别应分得 14000 元,再利用相为x y 3020x 16y 528分析:设获得一等奖的学生有 x 名,二等奖的学生有 y 名,根据 “一等奖和二等奖共 30 名学生,一 等奖和二等奖共花费 528 元”列出方程组即可.2.一只船在 A 、 B 两码头间航行,从 A 到 B 顺流航行需 2 小时,从 B 到 A 逆流航行需 3 小时,那么 一只救生圈从 A 顺流漂到 B 需要 小时. 答案: 12知识点: 二元一次方程组的应用 解析:a ,船在静水中的速度为 x ,水流的速度为 y ,根据航行问题的数a 1 a 12 (小时).12与计算.3.某公园 “六 ·一 ”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他 们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3 个大人和4 个小孩,共花了 38 元钱;李利说他家去了 4 个大人和 2 个小孩,共花了 44 元钱,王 斌家计划去 3 个大人和 2 个小孩,请你帮他计算一下,需准备 元钱买门票. 答案: 34知识点: 二元一次方程组的应用解析: 解答:设大人门票为 x 元,小孩门票为 y 元,由题意,得 3x 4y 38 ,解得4x 2y 44即王斌家计划去 3个大人和 2 个小孩,需要 34 元的门票.分析:设大人门票为 x 元,小孩门票为 y 元,根据题目给出的等量关系建立方程组,然后解出x 、y的值,再代入计算即可.4.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克 力的质量为 .g解答:设 A 、 B 两码头间的距离为 量关系建立方程组2(x 3(x y) y)解得5a 1212,所以一只救生圈从 A 顺流漂到 B 需要1a 12分析: ① 一只救生圈从 A顺流漂到 B 即求水流速度, ② 很多时候解实际问题可以借助一个字母参x 10x y 120,则 3x 2y34答案: 20知识点: 二元一次方程组的应用 解析:答案: 6 秒知识点: 二元一次方程组的应用 解析:巧克力果冻解答:设每块巧克力的质量是 x g ,每个果冻的质量是 y g ,则 3x 2y,解得x y 50x 20 y 30分析:设每块巧克力的质量是 x g ,每个果冻的质量是 yg ,根据题目给出的等量关系建立方程组,然后解出 x 、y 的值,再代入计算即可.5.如下图所示,高速公路上,一辆长为 4 米,速度为 110 千米/时的轿车准备超越一辆长为 12 米,速度为 100 千米 / 时的卡车, 则轿车从开始追赶到超越卡车, 需要花费的时间约是 秒(结果保留整数)知识点: 二元 次方程组的应用解析:解答:设整个超越过程历时x 小时,在这一过程中卡车行驶了 y 千米,则轿车行驶了( y +0.012 +100x 0.004)千米,则 110100x xyy 0.012 0.004,解得 x =0.0016(小时),0.0016 小时=5.76秒≈6秒.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组. 三、解答题 1.为表彰在某活动中表现积极的同学, 老师决定购买文具盒与钢笔作为奖品.已知 5 个文具盒、 2支钢笔共需 100 元;3 个文具盒、 1 支钢笔共需 57 元.那么每个文具盒、每支钢笔各多少元?答案: 每个文具盒 14 元,每支钢笔15 元50g 砝码解答:解:设每个文具盒 x 元,每支钢笔 y 元,则 5x 2y 100,解得 x 14 ,所以每个文具盒3x y 57 y 1514 元,每支钢笔 15 元.分析:设每个文具盒 x 元,每支钢笔 y 元,然后根据花费 100 元与 57元分别列出方程组,解二元一 次方程组即可.2.小林在某店购买 A 、B 商品共三次,只有一次购买时,商品A 、B 同时打折,其余两次均按标价购买,三次购买商品 A 、B 的数量和费用如下表:( 1)小林以折扣价购买商品 A 、B 是第 次购物;(2)求出商品 A 、B 的标价;( 3)若商品 A 、B 的折扣相同,问商店是打几折出售这两种商品的? 答案:(1)三;(2)商品 A 的标价为 90元,商品 B 的标价为 120 元;(3)6折 知识点: 二元一次方程组的应用 解析:解答:解:( 1)因为第三次购物较多但是价格较便宜,所以小林以折扣价购买商品A 、B 是第三次购物;6x5y 1140 x 90( 2)设商品 A 的标价为 x 元,商品 B 的标价为 y 元,根据题意,得,解得3x 7y 1110y120答:商品 A 的标价为 90 元,商品 B 的标价为 120 元;(3)设商店是打 a 折出售这两种商品,由题意得, 9 90 8 120a 1062 ,解得 a 6.10答:商店是打 6 折出售这两种商品的. 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.3.已知该公司每天能精加工蔬菜6 吨或粗加工蔬菜 16 吨(两种加工不能同时进行) ,某蔬菜公司收 购蔬菜进行销售的获利情况如下表所示:(1)现在该公司收购了 吨蔬菜,如果要求在 天内全部销售完这 吨蔬菜,请完成下列表格:( )如果先进行精加工,然后进行粗加工,要求天刚好加工完 吨蔬菜,则应如何分配加工时间?答案:(1)依次填:14000,35000,518000;(2)10 天进行精加工,5 天进行粗加工知识点:二元一次方程组的应用解析:解答:解:(1)当全部直接销售时140 ×100=14000 (元);当全部粗加工后销售时250×140=35000(元);当尽量精加工,剩余部分直接销售时18 6 450 140 18 6 100 51800 (元);所以)依次填:14000,35000,518000 ;x y 15 x 10(2)设应安排x 天进行精加工,y天进行粗加工,根据题意得:,解得:,6x 16y 140 y 5答:应安排10 天进行精加工,5 天进行粗加工.分析:(1)按已知把已知表中的数据1和2都乘以140 完成表格;而3中18天只能精加工6×18=108(吨),所以为108 450 140 108 100 51800(元);(2)由题意列二元一次方程组求解.4.“下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351 元,又知B型洗衣机售价比A 型洗衣机售价多500 元.求:(1)A 型洗衣机和B 型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?答案:(1)A型与B型洗衣机的售价分别为1100 元与1600 元;(2)实际各付款957元和1392 元知识点:二元一次方程组的应用解析:解答:解:(1)设A 型洗衣机的售价为x元,B型洗衣机的售价为y 元;根据题意可列方程组:解得:答:A型洗衣机的售价为1100 元,B型洗衣机的售价为1600 元.(2 )小李实际付款为:1100×(1-13%)=957 (元);小王实际付款为:1600 ×(1-13%)=1392 (元).答:小李和小王购买洗衣机各实际付款957 元和1392 元.分析:(1)可根据:“两人一共得到财政补贴351 元;又知B型洗衣机售价比A 型洗衣机售价多500元”来列出方程组求解;(2)根据(1)得出的A,B 洗衣机的售价根据补贴的规定来求出两人实际的付款额.5.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1 支签字笔和2 个笔记本共8.5 元,2 支签字笔和3 个笔记本共13.5 元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类且定价为15 元的图书.书店出台如下促销方案:购买图书总数超过50 本可以享受8 折优惠,学校如果多买12 本,则可以享受优惠且所花钱数与原来相同,问学校获奖的同学有多少人?答案:(1)签字笔和笔记本的单价分别是 1.5 元与3.5元;(2)学校获奖的同学有48 人知识点:二元一次方程组的应用;一元一次方程的应用解析:x 2y 8.5解答:解:(1)设签字笔和笔记本的单价分别是x 元与y 元,由题意可得,解得2x 3y 13.5x 1.5y 3.5 答:签字笔和笔记本的单价分别是1.5元与3.5 元(2)设学校获奖的同学有z 人,由题意可得15 0.8 z 12 15z解得z 48 答:学校获奖的同学有48 人.分析:(1)可根据“1支签字笔和2个笔记本共8.5元,2 支签字笔和3 个笔记本共13.5 元”列方程组并解方程组;(2)可根据“购买图书总数超过50本可以享受8 折优惠,学校如果多买12本,则可以享受优惠且所花钱数与原来相同”列一元一次方程,并解方程即可.。

数学人教版七年级下册实际问题与二元一次方程组典型例题

数学人教版七年级下册实际问题与二元一次方程组典型例题

数学人教版七年级下册实际问题与二元一次方程组典型例题实际问题与二元一次方程组经典例题一教学目标:1.通过解决实际问题,体会二元一次方程组与现实生活的联系和作用;2.进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性;3.掌握列方程组解应用题的一般步骤;4.培养化实际问题为数学问题的能力和分析问题、解决问题的能力。

教学重点:1.体会方程(组)是刻画现实世界的有效数学模型;2.经历和体验用二元一次方程组解决实际问题的过程。

教学难点:正确找出问题中的两个等量关系。

教学过程:引入:XXX顺风探妖踪,XXX只行四分钟,归时四分行六百,风速多少才称雄?知识要点梳理:知识点一:列方程组解实际问题的方法和步骤列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系。

列方程解决实际问题的一般步骤:1.审题,理清题意;2.合理设未知数;3.根据等量关系列方程(组);4.解方程(组);5.验证解是否符合实际,并作答。

知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:包括追击问题、相遇问题和航行问题;2.工程问题;3.商品销售利润问题;4.配套问题;5.增长率问题;6.优化方案问题;7.储蓄问题;8.和差倍分问题;9.数字问题;10.浓度问题;11.几何问题;12.年龄问题。

分类讨论,典型例题讲解:1.行程问题:1) 追击问题:同向而行,两者的行程差等于开始时两者相距的路程;2) 相遇问题:相向而行,双方所走的路程之和等于总路程;3) 航行问题:①船在静水中的速度加上水速等于船的顺水速度;②船在静水中的速度减去水速等于船的逆水速度;③顺水速度减去逆水速度等于2倍的水速。

注意:飞机航行问题与船顺水航行、逆水航行问题类似。

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案) (27)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案) (27)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)某中学体育组因教学需要本学期购进篮球和排球共100个,共花费2600元,已知篮球的单价是20元/个,排球的单价是30元/个.()1篮球和排球各购进了多少个(列方程组解答)?()2因该中学秋季开学成立小学部,教学资源实现共享,体育组提出还需购进同样的篮球和排球共30个,但学校要求花费不能超过800元,那么排球最多能购进多少个(列不等式解答)?【答案】(1)购进篮球40个,购进排球60个;(2)最多购进排球20个. 【解析】 【分析】()1根据购进篮球和排球共100个,共花费2600元,进而分别得出方程求出即可;()2利用篮球和排球共30个,学校要求花费不能超过800元,得出不等式求出即可.【详解】() 1设购进篮球x 个,购进排球y 个,根据题意可得:x y 10020x 30y 2600+=⎧+=⎨⎩, 解得:{x 40y 60==,答:购进篮球40个,购进排球60个;()2设购进排球z 个,购进篮球()30z -个,根据题意可得:()+-≤,30z2030z800≤,解得:z20答:最多购进排球20个.【点睛】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,利用已知排球与篮球的数量总和和总费用得出等式是解题关键.62.为了解决小区停车难的问题,某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.5万元,新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)根据实际情况,该小区新建地上停车位不多于33个,且预计投资金额不超过11万元,共有几种建造方式?【答案】(1)新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元.(2)有4种建造方式.【解析】【分析】(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元,可列出方程组求解.(2)设新建m个地上停车位,根据小区预计投资金额超过10万元而不超过11万元,可列出不等式求解.【详解】(1)设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元,0.532 1.1x y x y ==+⎧⎨+⎩, 解得0.10.4x y ⎧⎨⎩==,答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元. (2)设新建m 个地上停车位,则新建(50-m )个地下停车位, 由题意可知,0.1m+0.4(50-m )≤11且m ≤33, 解得30≤m ≤33,因为m 为整数,所以m=30或m=31或m=32或m=33, 对应的50-m=20或50-m=19或50-m=18或50-m=17, 答:有4种建造方式. 【点睛】此题考查二元一次方程组与不等式组的实际运用,找出题目蕴含的等量关系于不等关系,建立不等式组于方程组解决问题.63.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a ,b 的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨? 【答案】(1)a 的值是2.2,b 的值是4.4;(2)小王家6月份用水量40吨. 【解析】 【分析】(1)根据题意和表格可以列出相应的二元一次方程组,从而可以求出a 、b 的值;(2)根据题意可以列出相应的方程,从而可以求得小王家本月用水量为多少吨.【详解】解:(1)根据题意可得,173200.866178250.891a b a b ++⨯=⎧⎨++⨯=⎩, 解得, 2.24.2a b =⎧⎨=⎩,即a 的值是2.2,b 的值是4.4;(2)设小王家6月份用水x吨,根据题意知,30吨的水费为:17×2.2+13×4.2+30×0.8=116,∵184>116,∴小王家6月份计划用水超过了30吨∴6.0(x﹣30)+116+0.80×(x﹣30)=184,解得,x=40即小王家6月份用水量40吨.【点睛】本题考查二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组.64.某商场元旦期间举行优惠活动,对甲、乙两种商品实行打折出售,打折前,购买5间甲商品和1件乙商品需要84元,购买6件甲商品和3件乙商品需要108元,元旦优惠打折期间,购买50件甲商品和50件乙商品仅需960元,这比不打折前节省多少钱?【答案】比不打折前节省40元.【解析】【分析】设甲商品单价为x元,乙商品单价为y元,根据购买5间甲商品和1件乙商品需要84元,购买6件甲商品和3件乙商品需要108元,列出方程组,继而可计算购买50件甲商品和50件乙商品需要的花费,也可得出比不打折前少花多少钱.【详解】设打折前甲商品每件x元,乙商品每件y元.根据题意,得584 63108x yx y+⎧⎨+⎩==,解方程组,164 xy==⎧⎨⎩打折前购买50件甲商品和50件乙商品共需50×16+50×4=1000元,比不打折前节省1000-960=40元.答:比不打折前节省40元.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.65.对于有理数x,y,定义新运算:x•y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算.例如,3×4=3a+4b,则若3×4=8,即可知3a+4b=8.已知1×2=1,(﹣3)×3=6,求2×(﹣5)的值.【答案】﹣7.【解析】【分析】根据运算关系得出关于a,b的等式,进而求出a,b的值,即可得出答案.【详解】根据题意可得:212a ba b+⎧⎨-+⎩=①=②,则①+②得:b=1,则a=-1,故方程组的解为:11ab-⎧⎨⎩==,则原式=2a-5b=-2-5=-7.【点睛】此题主要考查了解二元一次方程组,正确得出关于a,b的方程组是解题关键.66.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于30042=507(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值范围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为1712 184x yx y=-⎧⎨=+⎩,解得:16284xy=⎧⎨=⎩,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于30042=507(取整为8)辆,综合起来可知汽车总数为8辆,故答案为8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:⨯+⨯=方案一:租用甲种客车3辆,乙种客车5辆,租车费用为30034005 2900元;⨯+⨯=方案二:租用甲种客车2辆,乙种客车6辆,租车费用为30024006 3000元;⨯+⨯=方案三:租用甲种客车1辆,乙种客车7辆,租车费用为30014007 3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.67.据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把一块长100m、宽80m的长方形土地分为两块小长方形土地,分别种植这两种作物,怎样划分这块土地,使甲、乙两种作物的总产量的比是2:1?请你设计两种不同的种植方案.【答案】见解析 【解析】 【分析】先设计出两种方案图,然后根据甲、乙两种作物的总产量的比是2:1列出方程组,求出方程的解即可.【详解】 方案1:如图,设AE=x ,EB=y ,则80:2802:1100x y x y ()()⨯=⎧⎨+=⎩, 解得:8020x y =⎧⎨=⎩,即将原长方形的长分为80m 和20m 两部分;方案2:如图,设AE=a ,EC=b ,则80100:21002:1a b a b +=⎧⎨⨯=⎩()(), 解得:6416a b =⎧⎨=⎩,即将原长方形的宽分为64m 和16m 两部分。

人教版数学七年级下册:8.3 《实际问题与二元一次方程组应用题》练习含答案

人教版数学七年级下册:8.3 《实际问题与二元一次方程组应用题》练习含答案

二元一次方程组应用题目练习一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有() .A.12只B.6只C.112只D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组( ) .A.5105662 x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3. 3.(2015•绵阳模拟)十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元B.310元C.320元D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他() .A.赔了10元B.赚了10元C.赔了约7元D.赚了约7元5. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是().A.甲池21吨,乙池19吨 B.甲池22吨,乙池18吨C. 甲池23吨,乙池17吨D.甲池24吨,乙池16吨6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:捐款(元) 1 2 3 4人数 6 7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.(2015春•孝南区期末)根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三、解答题13.某厂第二车间人数比第一车间人数的45少30人,如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34,这两个车间各有多少人?14.(2015•黄冈)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?15. 2010年春季我国西南大旱,导致大量农田减产,如图所示是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?16.古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩乙:128x y x y ⎧+=⎪⎨+=⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x 、y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示________,y 表示________;乙:x 表示________,y 表示________.(2)求A 、B 两工程队分别整治河道多少米.(写出完整的解答过程)【答案与解析】一、选择题1. 【答案】D ;【解析】设这些苹果箱共x 只,则有254030(20)x x +=-,解得128x =.2. 【答案】A ;3.【答案】C .【解析】设大人门票为x ,小孩门票为y ,由题意,得:,解得:,则3x+2y=320.即王斌家计划去3个大人和2个小孩,需要320元的门票.4. 【答案】C ;【解析】设一件的原价为x 元,另一件的原件为y 元,则:(120%)80x +=,(120%)80y -=解得2663x =,100y = ∵ 22280(66100)6733⨯-+=-≈-(元) 5. 【答案】B ;【解析】设甲、乙水池原来各储水的吨数是x 吨、y 吨,则:4048x y x y +=⎧⎨+=+⎩,解得2218x y =⎧⎨=⎩. 6. 【答案】A ;【解析】根据捐2元和3元的同学总人数和这些学生捐款总金额列方程组.二、填空题7. 【答案】204372x y x y +=⎧⎨+=⎩; 8.【答案】20,2.【解析】设每件T 恤价格和每瓶矿泉水的价格分别为x 元,y 元,则,解得. 故每件T 恤和每瓶矿泉水的价格分别是20元和2元.9.【答案】19;【解析】设做对了道题,做错了道题,由题意列方程组 ,解得 .10.【答案】2304320x y x y -=⎧⎨-=⎩;35,40;11.【答案】106;【解析】设1个纸杯的高度为x cm ,纸杯叠放在一起纸杯之间的距离为y cm ,则有: (31)9(81)14x y x y +-=⎧⎨+-=⎩,解得71x y =⎧⎨=⎩, 100个纸杯整齐叠放在一起的高度:(1001)7991106x y +-=+⨯=(cm ).12.【答案】900, 2100.三、解答题13.【解析】解:设第一车间x 人,第二车y 人,则430,5310(10).4y x y x ⎧=-⎪⎪⎨⎪+=-⎪⎩ 解得250,170.x y =⎧⎨=⎩ 答:第一车间250人,第二车间170人.14.【解析】解:设A 服装成本为x 元,B 服装成本y 元,由题意得:50030%20%130x y x y +=⎧⎨+=⎩, 解得:300200x y =⎧⎨=⎩,答:A 服装成本为300元,B 服装成本200元.15.【解析】解:法一:间接设元设去年第一块田的花生产量为x 千克,第二块田的花生产量为y 千克,根据题意, 得470(180%)(190%)57x y x y +=⎧⎨-+-=⎩ 解得100370x y =⎧⎨=⎩, 100×(1-80%)=20,370×(1-90%)=37.答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克.法二:直接设元设今年第一块田的花生产量为x 千克,第二块田的花生产量为y 千克, 根据题意,得57,470,180%190%x y x y +=⎧⎪⎨+=⎪--⎩ 解得20,37.x y =⎧⎨=⎩ 答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克.16.【解析】解:(1)甲:20 180 乙:180 20A 工程队整治河道的天数,B 工程队整治河道的天数;A 工程队整治河道的长度,B 工程队整治河道的长度.(2)选甲同学所列方程组解答如下:20128180x y x y +=⎧⎨+=⎩, 解得515x y =⎧⎨=⎩, A 工程队整治河道:12x=60 (米),B 工程队整治河道:8y=120 (米).答:A 工程队整治河道60米,B 工程队整治河道120米.。

新人教版初一下册数学实际问题与二元一次方程组经典例题

新人教版初一下册数学实际问题与二元一次方程组经典例题

新人教版初一下册数学实际问题与二元一次方程组经典例题经典例题透析类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

分析:船顺流速度=静水中的速度+水速船逆流速度=静水中的速度-水速类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。

设甲组单独做一天商店应付x元,乙组单独做一天商店应付y 元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.举一反三:【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。

七年级数学下册第八章二元一次方程组8.3实际问题与二元一次方程组练习卷含解析新版新人教版202005

七年级数学下册第八章二元一次方程组8.3实际问题与二元一次方程组练习卷含解析新版新人教版202005

8.3 实际问题与二元一次方程组一.选择题(共5小题)1.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.B.C.D.2.甲乙两人在一环形跑道上同时从A点匀速跑步,已知甲的速度比乙的速度快,若两人同向出发,则两人在6分钟时第1次相遇;若两人背向出发,两人在3分钟时第1次相遇,则甲的速度是乙的速度的()倍.A.2 B.3 C.4 D.53.成书早于《九章算术》的江陵张家山竹简《算术》记载,“方程”是“程禾”算法发展而来的.在《九章算法》的方程章,有一道题,原文是:“今有甲乙二人持钱不计其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有里有多少钱.若乙把一半的钱给甲,则甲的钱数为50;而甲把的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲有钱为x,乙有钱为y.依题意可列方程组为()A.B.C.D.4.用8块相同的长方形地砖拼成一块大长方形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长与宽分别是()A.25和20 B.30和20 C.40和35 D.45和155.一个班级,若分成12个小组,则余3人,若每组人数增加2人,则可分成8组,仍余3人,这个班的人数是()A.39 B.43 C.51 D.59二.填空题(共5小题)6.小明的爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:00 13:00 14:30碑上的数是一个两位数,数字之和是6是一个两位数,十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00时看到的两位数是多少?设12:00时看到的两位数的个位数为y,十位数为x,列出的二元一次方程组为.7.在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为.8.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D得82分,则他答对了道题.参赛者答对题数答错题数得分A20 0 100B19 1 94C14 6 649.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶对.10.将一箱书分给若干同学,若每人分5本,还剩12本;若每人分8本,还缺6本.则这箱书一共有本.三.解答题(共10小题)11.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.12.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.13.(列二元一次方程组求解)一、二两班共有100名学生,他们的体育达标率(达到标准的百分率)为81%.如果一班学生的的体育达标率为87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?14.某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.15.某校规划在一块长AD为18m.宽AB为13m的长方形场地ABCD上,设计分别与AD、AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN =8:9,问通道的宽是多少.16.某专卖店有A、B两种商品,已知在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B商品共用了840元,A、B两种商品打相同折以后,某人买500件A商品和450件B商品一共花了7840元,请你计算A、B商品打了多少折?17.某花店计划购进一批新的花束以满足市场需求,三款不同品种的花束,进价分别是A 款180元/束,B款60元/束,C款120元/束.店铺在经销中,A款花束可赚20元/束,B 款花束可赚10元/束,C款花束可赚12元/束.(1)若商场用6000元同时购进两种不同款式的花束共40束,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该店铺同时购进三款花束共20束,共用去1800元,问这次店铺共有几种可能的方案?利润最大是多少元?18.某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.(1)求甲,乙两木工组单独修理这批桌凳的天数;(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.19.甲、乙两人一起去检修300长的自来水管道,已知甲比乙每小时少修10m,两人从管道的两端同时开始检修,3小时后完成任务.问:甲、乙每小时各检修多少m?20.篝火晚会前夕,德强学校附近一超市从厂家购进了甲、乙两种发光道具,甲种道具的每件进价比乙种道具的每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?(2)若该超市从厂家购进了甲乙两种道具共50件,所用资金恰好为440元.在销售时,甲种道具的每件售价为10元,要使得这50件道具所获利润率为20%,乙道具的每件售价为多少元?人教新版七年级下学期《8.3 实际问题与二元一次方程组》2020年同步练习卷参考答案与试题解析一.选择题(共5小题)1.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.B.C.D.【分析】设小明和他妈妈现在分别是x岁和y岁,分别表示出十年前和十年后他们的年龄,根据题意列方程组即可.【解答】解:设小明和他妈妈现在分别是x岁和y岁.由题意得,,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.2.甲乙两人在一环形跑道上同时从A点匀速跑步,已知甲的速度比乙的速度快,若两人同向出发,则两人在6分钟时第1次相遇;若两人背向出发,两人在3分钟时第1次相遇,则甲的速度是乙的速度的()倍.A.2 B.3 C.4 D.5【分析】设乙的速度为x米/分钟,甲的速度为kx米/分钟,环形跑道的长为S米,根据路程=速度×时间,即可得出关于k,x的二元一次方程组(S和x是设而不求),解之即可得出k值.【解答】解:设乙的速度为x米/分钟,甲的速度为kx米/分钟,环形跑道的长为S米,依题意,得:,解得:k=3.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.成书早于《九章算术》的江陵张家山竹简《算术》记载,“方程”是“程禾”算法发展而来的.在《九章算法》的方程章,有一道题,原文是:“今有甲乙二人持钱不计其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有里有多少钱.若乙把一半的钱给甲,则甲的钱数为50;而甲把的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲有钱为x,乙有钱为y.依题意可列方程组为()A.B.C.D.【分析】设甲有钱为x,乙有钱为y.根据“若乙把一半的钱给甲,则甲的钱数为50;而甲把的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲有钱为x,乙有钱为y.依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.用8块相同的长方形地砖拼成一块大长方形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长与宽分别是()A.25和20 B.30和20 C.40和35 D.45和15【分析】设每块地砖的长为xcm,宽为ycm,根据图中关系可得x+y=60,x=3y,求两方程的解即可.【解答】解:设每块地砖的长为xcm,宽为ycm,根据题意得,解这个方程组,得,答:每块地砖的长为45cm,宽为15cm,故选:D.【点评】本题考查了二元一次方程的应用,正确理解图意并列出方程组是解题的关键.5.一个班级,若分成12个小组,则余3人,若每组人数增加2人,则可分成8组,仍余3人,这个班的人数是()A.39 B.43 C.51 D.59【分析】设这个班的人数是x,每组人数为y,根据题意列出方程解答即可.【解答】解:设这个班的人数是x,每组人数为y,可得:,解得:,故选:C.【点评】此题考查二元一次方程组的应用,关键是根据题意得出两个方程解答.二.填空题(共5小题)6.小明的爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:00 13:00 14:30碑上的数是一个两位数,数字之和是一个两位数,十位与个位数字与12:00时所看比12:00时看到的两位数中间多了个0是6 到的正好颠倒了则12:00时看到的两位数是多少?设12:00时看到的两位数的个位数为y,十位数为x,列出的二元一次方程组为.【分析】设12:00时看到的两位数的个位数为y,十位数为x,根据车的速度不变及12:00时看到的两位数的数字之和为6,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设12:00时看到的两位数的个位数为y,十位数为x,依题意,得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为3x+(11﹣x)=23 .【分析】直接设A队胜了x场,则平(11﹣x)场,再利用胜一场得3分,平一场得1分,得出等式求出答案.【解答】解:设A队胜了x场,由题意可列方程为:3x+(11﹣x)=23.故答案为:3x+(11﹣x)=23.【点评】此题主要考查了由实际问题抽象出二元一次方程,正确得出等式是解题关键.8.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D得82分,则他答对了17 道题.参赛者答对题数答错题数得分A20 0 100B19 1 94C14 6 64 【分析】设答对一题得a分,答错一题得b分,根据参赛者B,C的得分情况,可得出关于a,b的值,设参赛者D答对了x道题,则答错了(20﹣x)道题,根据参赛者D的得分=5×答对题目数﹣1×答错题目数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设答对一题得a分,答错一题得b分,依题意,得:,解得:.设参赛者D答对了x道题,则答错了(20﹣x)道题,依题意,得:5x﹣(20﹣x)=82,解得:x=17.故答案为:17.【点评】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.9.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶22 对.【分析】卖出物品的总售价等于所有货物总进价的90%,可列出方程,根据x、a的取值范围分别讨论求适合题意的解即可.【解答】解:设购进暖瓶x对,则有2x只暖瓶,衬衫2x件,留下的17件物品中有a只暖瓶,(17﹣a)件衬衫,∵每件衬衣的进价是40元,每对暖瓶的进价是60元,商店将这批物品以高出进价10%的价格售出,∴暖瓶每只售价为30×(1+10%)=33(元),衬衫每件售价为40×(1+10%)=44(元),∴总售价为=33×(2x﹣a)+44(2x﹣17+a)=154x+11a﹣748(元),根据题意得:154x+11a﹣748=90%(40×2x+60x),整理得:28x+11a=748,∵a为偶数,且17﹣a≥0,∴a为2,4,6,8,10,12,14,16,当a=2,x的值为分数,不合题意;当a=4,x的值为分数,不合题意;当a=6,x的值为分数,不合题意;当a=8,x的值为分数,不合题意;当a=10,x的值为分数,不合题意;当a=12,x=22,当a=14,x的值为分数,不合题意;当a=16,x的值为分数,不合题意;∴即只有当a=12,x=22时符合题意.答:最初购进这批暖瓶22对,故答案为:22.【点评】本题考查了二元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再根据实际情况求解.10.将一箱书分给若干同学,若每人分5本,还剩12本;若每人分8本,还缺6本.则这箱书一共有42 本.【分析】设这箱书一共有x本,共y个同学参与分书,根据“若每人分5本,还剩12本;若每人分8本,还缺6本”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设这箱书一共有x本,共y个同学参与分书,依题意,得:,解得:.故答案为:42.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组解题的关键.三.解答题(共10小题)11.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.【分析】(1)设学校购进黑色文化衫x件,白色文化衫y件,根据购进黑、白两种颜色的文化衫100件共需2400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=每件的利润×数量,即可求出结论.【解答】解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.【分析】(1)由方阵图中每行的3个数、每列的3个数、斜对角的3个数之和均相等,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据方阵图中每行的3个数、每列的3个数、斜对角的3个数之和均相等,求出空缺中的数字,补充完整方阵图即可得出结论.【解答】解:(1)根据题意得:,解得:.(2)∵x=﹣1,y=2,∴3+4+x=6,2y﹣x=5.∵每行的3个数、每列的3个数、斜对角的3个数之和均相等,∴6﹣(﹣2)﹣y=6;6﹣4﹣y=0;6﹣3﹣y=1.完成方阵图,如图所示.【点评】本题考查了二元一次方程组,根据方阵图中每行的3个数、每列的3个数、斜对角的3个数之和均相等,列出关于x、y的二元一次方程组是解题的关键.13.(列二元一次方程组求解)一、二两班共有100名学生,他们的体育达标率(达到标准的百分率)为81%.如果一班学生的的体育达标率为87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?【分析】设一班有x名同学,二班有y名同学,根据两班共100名学生且体育达标的同学有100×81%名,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设一班有x名同学,二班有y名同学,依题意,得:,解得:.答:一班有48名同学,二班有52名同学.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一个A型足球x元,一个B型足球y元,根据“一个A型足球和三个B 型足球共需275元;三个A型足球和两个B型足球共需300元”列方程组求解即可;(2)设A型足球a个,总费用w元,可得w=6000﹣25a,由一次函数的性质可求解.【解答】解:(1)设一个A型足球x元,一个B型足球y元,根据题意可得:解得:答:一个A型足球50元,一个B型足球75元.(2)设A型足球a个,总费用w元,根据题意可得:w=50a+75(80﹣a)=6000﹣25a,且a≤60,∵﹣25<0,∴w随着z的增大而减小,∴当a=60时,w的最小值为4500元.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键,难度不大.15.某校规划在一块长AD为18m.宽AB为13m的长方形场地ABCD上,设计分别与AD、AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN =8:9,问通道的宽是多少.【分析】利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9y,进而利用AD为18m,宽AB为13m得出等式求出即可.【解答】解:设通道的宽为xm,AM=8ym,∵AM:AN=8:9,∴AN=9y,∴.解得,答:通道的宽是1m.【点评】考查了二元一次方程组的应用,解题的关系是找到关键描述语,列出等量关系.16.某专卖店有A、B两种商品,已知在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B商品共用了840元,A、B两种商品打相同折以后,某人买500件A商品和450件B商品一共花了7840元,请你计算A、B商品打了多少折?【分析】设打折前A商品的单价为x元/件,B商品的单价为y元/件,根据“在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B商品共用了840元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,利用总价=单价×数量可求出打折前购买500件A商品和450件B商品所需费用,再利用所打折扣=打折后的总价÷打折前的总价,即可求出结论.【解答】解:设打折前A商品的单价为x元/件,B商品的单价为y元/件,依题意,得:,解得:,16×500+4×450=9800(元),=0.8.答:A、B商品打了八折.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.某花店计划购进一批新的花束以满足市场需求,三款不同品种的花束,进价分别是A 款180元/束,B款60元/束,C款120元/束.店铺在经销中,A款花束可赚20元/束,B 款花束可赚10元/束,C款花束可赚12元/束.(1)若商场用6000元同时购进两种不同款式的花束共40束,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该店铺同时购进三款花束共20束,共用去1800元,问这次店铺共有几种可能的方案?利润最大是多少元?【分析】(1)设进货方案:A款a束,B款b束,C款c束,由题意列出方程组,解方程组即可;(2)求出两种进货方案的盈利,即可得出答案;(3)设购进三款花束A款x束,B款y束,C款z束,x、y、z为正整数,由题意列出方程组,解方程组即可.【解答】解:(1)设进货方案:A款a束,B款b束,C款c束,方案一:,解得:;方案二:,解得:;方案三:,解得:,不合题意舍去;∴进货方案为购进A款30束、B款10束或购进A款20束、C款20束;(2)购进A款30束、B款10束盈利:30×20+10×10=700(元),购进A款20束、C款20束盈利:20×20+20×12=640(元),∵700元>640元,∴盈利最多的进货方案为购进A款30束,B款10束;(3)设购进三款花束A款x束,B款y束,C款z束,x、y、z为正整数,则,当x=1时,y=11,z=8,利润:20+11×10+8×12=226;当x=2时,y=12,z=6,利润:2×20+12×10+6×12=232;当x=3时,y=13,z=4,利润:3×20+13×10+4×12=238;当x=4时,y=14,z=2,利润:4×20+14×10+2×12=224;当x≥5时,不合题意舍去;∴这次店铺共有4种可能的方案:方案1:购进三款花束A款1束,B款11束,C款8束;方案2:购进三款花束A款2束,B款12束,C款6束;方案3:购进三款花束A款3束,B款13束,C款4束;方案4:购进三款花束A款4束,B款14束,C款2束;利润最大为 238 元.【点评】本题考查了二元一次方程组的应用以及三元一次方程组的应用;由题意列出方程组是解题的关键.18.某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.(1)求甲,乙两木工组单独修理这批桌凳的天数;(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.【分析】(1)关键描述语为:“甲小组单独修理这批桌凳比乙小组多用20天”;等量关系为:甲小组单独修理这批桌凳的时间=乙小组单独修理这批桌凳的时间+20.(2)必须每种情况都考虑到,求出每种情况下实际花费,进行比较.【解答】解:(1)设甲甲木工组单独修理这批桌凳的天数为x天,则乙木工组单独修理这批桌凳的天数为(x﹣10)天;根据题意得,=×,解得:x=30,经检验:x=30是原方程的解.∴x﹣10=20.答:甲,乙两木工组单独修理这批桌凳的天数分别为30天,20天;(2)方案一:甲木工组单独修理这批桌凳的总费用:600×30=18000(元).方案二,乙小组单独修理,则需总费用:800×20=16000(元).方案三,甲,乙两个木工组共同合作修理需12(天)总费用:(600+800)×12=16800(元)通过比较看出:选择第二种方案学校付的修理费最少.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,根据题目中关键语句找出等量关系,再列出分式方程即可,关键是在解分式方程后不要忘记检验.19.甲、乙两人一起去检修300长的自来水管道,已知甲比乙每小时少修10m,两人从管道的两端同时开始检修,3小时后完成任务.问:甲、乙每小时各检修多少m?【分析】设甲每小时检修x米,乙每小时检修y米,根据题意列出x和y的二元一次方程组,解出x和y的值即可.【解答】解:设甲每小时检修x米,乙每小时检修y米,根据题意得:,解得:.答:甲每小时检修45米,乙每小时检修55米.【点评】本题主要考查二元一次方程组的应用的知识点,解答本题的关键是读懂题意,由题干条件列出二元一次方程组,此题难度一般.20.篝火晚会前夕,德强学校附近一超市从厂家购进了甲、乙两种发光道具,甲种道具的每件进价比乙种道具的每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?(2)若该超市从厂家购进了甲乙两种道具共50件,所用资金恰好为440元.在销售时,甲种道具的每件售价为10元,要使得这50件道具所获利润率为20%,乙道具的每件售价为多少元?【分析】(1)设甲种道具的每件进价是x元,则乙种道具的每件进价是(x+2)元,根据购进甲种道具7件、乙种道具2件共需要76元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设购进甲种道具m件,购进乙种道具n件,根据购进两种道具50件共花费440元,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,设乙道具的售价为y 元,根据总利润=单件利润×数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设甲种道具的每件进价是x元,则乙种道具的每件进价是(x+2)元,依题意,得:7x+2(x+2)=76,解得:x=8,∴x+2=10.答:甲种道具的每件进价是8元,乙种道具的每件进价是10元.(2)设购进甲种道具m件,购进乙种道具n件,。

人教版七年级下册数学 8.3 实际问题与二元一次方程组 同步习题(含答案)

人教版七年级下册数学 8.3 实际问题与二元一次方程组 同步习题(含答案)

8.3 实际问题与二元一次方程组同步习题1.在社会主义新农村建设中,某村积极响应党的号召,大力发动农户扩大烟叶和蔬菜的种植面积,取得了较好的经济效益.今年该村的烟叶和蔬菜的种植面积比去年增加了800亩,其中烟叶种植面积增加了20%,蔬菜种植面积增加了30%,从而使该村的烟叶和蔬菜种植面积共达到了4 200亩.问该村去年种植烟叶和蔬菜的面积各是多少亩?2.在当地农业技术部门的指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.如图是小明、爸爸、妈妈的一段对话.请你用所学过的知识帮助小明算出他们家今年种植菠萝的收入.(收入-投资=净赚)3.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为多少元?4.某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)(2)全部售完500箱矿泉水,该商场共获得利润多少元?5.某商场购进甲、乙两种商品后,甲种商品加价50%、乙种商品加价40%作为标价,适逢元旦,商场举办促销活动,甲种商品打八折销售,乙种商品打八五折销售,某顾客购买甲、乙两种商品各1件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价各是多少元.6.张文以两种形式分别储蓄了2 000元和1 000元,一年后全部取出,所得利息为64.8元,已知当时这两种储蓄方式年利率的和为4.23%.问这两种储蓄方式的年利率各是百分之几?(不计利息税)7.某村粮食专业队去年计划生产水稻和小麦共150 t,实际生产了170 t.其中水稻超产15%,小麦超产10%.问该专业队去年实际生产水稻、小麦各为多少吨?8.下面是某一周甲、乙两种股票每股每天的收盘价(单位:元).(收盘价:股票每天交易结束时的价格)(不计手续费、税费等),该人星期二这一天获利200元,星期三这一天获利1 300元,试问该人持有甲、乙股票分别为多少股?9.某地生产一种绿色蔬菜,若在市场上直接销售,每吨的利润为 1 000 元;经粗加工后销售,每吨的利润可达4 500 元;经精加工后销售,每吨的利润涨至7 500 元.当地一家农工商公司收购这种蔬菜140 t,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16 t;如果进行精加工,每天可加工6 t,但两种加工方式不能同时进行.受季节条件的限制,公司必须在15天之内将这批蔬菜处理完毕,为此公司研制了三种加工方案:方案1:将蔬菜全部进行粗加工;方案2:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜在市场上直接销售;方案3:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天之内完成. 你认为选择哪种方案获利最多?10.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表:(1)若租用甲、,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?11.张明沿公路匀速前进,每隔4 min就遇到迎面开来的一辆公共汽车,每隔6 min 就有一辆公共汽车从背后超过他.假定公共汽车的速度不变,而且迎面开来的相邻两车的距离和从背后开来的相邻两车的距离都是1 200 m,求张明前进的速度和公共汽车的速度.12.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m,下坡路每分钟走80 m,上坡路每分钟走40 m,则他从家里到学校需10 min,从学校到家里需15 min.问:从小华家到学校的平路和下坡路各有多远?13.一列载客火车和一列运货火车分别在两条平行的铁轨上行驶,载客火车长150 m,运货火车长250 m.若两车相向而行.从车头相遇到车尾离开共需10 s;若载客火车从后面追赶运货火车,从车头追上运货火车车尾到完全超过运货火车共需100 s,试求两车的速度.14.甲、乙两地相距120 km,一艘船从甲地出发顺水航行6 h到达乙地,而从乙地出发逆水航行8 h到达甲地,已知船顺水航行、逆水航行的速度分别为船在静水中的速度与水流速度的和与差,求船在静水中的速度和水流速度.15.甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4 min两人首次相遇,此时乙还需要跑300 m才跑完第一圈,求甲、乙二人的速度及环形场地的周长.16.为了参加2015年国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600 m,跑步的平均速度为每分钟200 m,自行车路段和长跑路段共5 km,用时15 min.求自行车路段和长跑路段的长度.参考答案1.解:设该村去年种植烟叶和蔬菜的面积分别为x亩、y亩,依题意,得解这个方程组,得答:该村去年种植烟叶和蔬菜的面积分别是2 200亩、1 200亩.2.解:设小明家去年种植菠萝的收入为x元,投资为y元,依题意,得解得所以小明家今年种植菠萝的收入为(1+35%)×12 000=1.35×12 000=16 200(元).3.解:设该商品的进价为x元,标价为y元,由题意,得解得x=2 500,y=3750.则3 750×0.9-2 500=875(元).4.解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意,得解得答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36-24)+200×(48-33)=3 600+3 000=6 600(元).答:该商场共获得利润6 600元.5.解:设甲种商品的进价为x元,乙种商品的进价为y元.根据题意,得化简,得解得答:甲种商品的进价为250元,乙种商品的进价为200元.6.解:设存 2 000元和 1 000元的年利率分别是x%,y%,由题意,得解得答:存2 000元和1 000元的年利率分别为2.25%,1.98%.7.解:设该专业队去年计划生产水稻为x t,小麦为y t,依题意,得解得答:该专业队去年实际生产水稻、小麦各为115 t,55 t.8.解:设该人持有甲、乙股票分别为x股、y股,由题意,得解得答:该人持有甲、乙股票分别为1 000股、1 500股.解:观察表格可知:星期二甲种股票每股获利为(12.5-12)元,乙种股票每股获利为+(13.3-13.5)×股(13.3-13.5)元,则星期二这一天总获利为[(12.5-12)×股数甲]元,同理可表示星期三这一天的获利.数乙9.解:方案1获利为4 500×140=630 000(元).方案2获利为7 500×6×15+1 000×(140-6×15)=675 000+50 000=725 000(元). 方案3:设将x t蔬菜进行精加工,y t蔬菜进行粗加工,根据题意,得解得所以方案3获利为7 500×60+4 500×80=810 000(元).因为630 000<725 000<810 000,所以选择方案3获利最多.解:分别计算三种方案的获利情况,然后做出决策.10.解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:解得答:甲、乙两种型号的挖掘机各需5台、3台.(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.所以m=9-n.又因为m,n都是正整数,所以方程的解为当m=5,n=3时,支付租金:100×5+120×3=860(元)>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820(元)<850元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.11.解:设张明前进的速度是x m/min,公共汽车的速度是y m/min.根据题意,得解这个方程组,得答:张明前进的速度是50 m/min,公共汽车的速度是250 m/min.解:(1)“相向而遇”时,两者所走的路程之和等于两者原来的距离;(2)“同向追及”时,快者所走的路程减去慢者所走的路程等于两者原来的距离.12.解:设平路有x m,下坡路有y m,根据题意,得解得答:小华家到学校的平路和下坡路各为300 m,400 m.13.解:设载客火车的速度为x m/s,运货火车的速度为y m/s.由题意,得解得答:载客火车的速度是22 m/s,运货火车的速度是18 m/s.解:本题是一道特殊的相遇与追及结合的应用题.①两车相向而行是相遇问题,相遇时两车行驶的路程总和=两车车身长之和;②载客火车从后面追赶运货火车是追及问题,追上时两车所走的路程差=两车车身长之和.错车问题属于特殊的行程问题,它与行程问题的主要区别是:行程问题不考虑车本身的长,而错车问题要考虑车本身的长.与错车问题类似的还有过桥问题、过隧道问题等.14.解:设船在静水中的速度为x km/h,水流速度为y km/h,由题意,得解得答:船在静水中的速度为17.5 km/h,水流速度为2.5 km/h.15.解:设乙的速度为x m/min,环形场地的周长为y m,则甲的速度为2.5x m/min,由题意,得解得所以甲的速度为:2.5×150=375(m/min).答:甲的速度为375 m/min,乙的速度为150 m/min,环形场地的周长为900 m. 16.解:设自行车路段的长度为x m,长跑路段的长度为y m,则解得答:自行车路段的长度为3 000 m,长跑路段的长度为2 000 m.。

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组单元测试题(含答案) (108)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组单元测试题(含答案) (108)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)已知关于x ,y 的二元一次方程组335x y m x y m +=+⎧⎨-=-⎩. (1)若x ,y 互为相反数,求m 的值;(2)若x 是y 的2倍,求原方程组的解.【答案】(1)m =-1;(2)63x y =⎧⎨=⎩. 【解析】【分析】(1)中方程①中33x y m +=+,再由x 、y 的值互为相反数则x+y=0,即可得出33m +=0,即关于m 的方程,求出m 的值即可;(2)再由x 是y 的2倍,即可得出x =2y ,代入原方程组,得到关于m 的方程,求出m 的值即可解答.【详解】(1)若x ,y 互为相反数,则x +y =0,所以有3m +3=0,解得m =-1.(2)若x 是y 的2倍,则x =2y ,原方程组可化为3335y m y m =+⎧⎨=-⎩解得32y m =⎧⎨=⎩所以方程组的解为63x y =⎧⎨=⎩. 【点睛】本题考查的是二元一次方程组的解,先根据题意得出x,y的代数式是解答此题的关键.32.如图所示,3×3的方格中每个方格内均有一个单项式(图中只列出了部分单项式),方格中每一行、每一列以及每一条对角线上的三个单项式的和均相等.求a的值.【答案】a=7.【解析】【分析】先由条件建立二元一次方程组求出x、y的值,就可以求出每一行或每一列的数的和,就可以求出中间这列的最后一个数,再建立关于a的方程就可以求出结论.【详解】由题意,得335555543y x x y xy x y-+=-+⎧⎨-+=++⎩解得23 xy=-⎧⎨=⎩所以5-3x+a=5+4+3y,所以a=7.【点睛】本题考查学生是图标的能力的运用,列二元一次方程组解实际问题的运用,解答时建立方程组求出各行或各列的和是关键.33.全球变暖,气候开始恶化,中国政府为了对全球气候变暖负责,积极推进节能减排,居民购买节能灯,国家补贴50%购灯费.某县推广财政补贴节能灯后,李阿姨买了4个8W 和3个24W 的节能灯,一共用了29元;王叔叔买了2个8W 和2个24W 的节能灯,一共用了17元.该县财政补贴50%后,一个8W 、24W 节能灯的价格各是多少元?【答案】一个8W 节能灯的价格为3.5元;一个24W 节能灯的价格为5元.【解析】【分析】两个等量关系为:4个8W 节能灯的总价钱+3个24W 的节能灯的总价钱=29,2个8W 节能灯的总价钱+2个24W 的节能灯的总价钱=17.【详解】设该县财政补贴50%后,一个8W 节能灯的价格为x 元,一个24W 节能灯的价格为y 元,则4329{2217x y x y +=+= 解得 3.5{5x y ==答:该县财政补贴50%后,一个8W 节能灯的价格为3.5元,一个24 W 节能灯的价格为5元.【点睛】此题主要考查了二元一次方程组的应用,关键是抓住题目中的关键语句,列出方程组.34.在括号内填写一个二元一次方程,使所组成方程组()521x y +=⎧⎨⎩的解是12x y =⎧⎨=-⎩. 【答案】x-y=3【解析】【分析】根据x 、y 的值,任意写一个关于x 、y 的二元一次方程即可.【详解】解:∵所组成方程组的解是12x y =⎧⎨=-⎩∴x-y=3,即方程组5213x y x y +=⎧⎨-=⎩的解是12x y =⎧⎨=-⎩. 故答案为:x-y=3【点睛】本题考查二元一次方程的解.此题是开放题,要学生理解方程组的解的定义,围绕解列不同的算式即可列不同的方程组.35.若方程组4322(3)3x y mx m y +=⎧⎨+-=⎩的解满足x =2y ,求m 的值. 【答案】m=32【解析】【分析】先把x=2y 代入第一个方程求出y=2,然后把x=4,y=2代入第二个方程即可求出m 的值.【详解】解:()432233x y mx m y +=⎧⎪⎨+-=⎪⎩①② 将x =2y 代入方程①,得8y +3y =22,解得y =2.将y =2代入方程x =2y ,得x =4.把x =4,y =2代入方程②,得4m +2(m -3)=3,解得m=32. 【点睛】本题考查的知识点是二元一次方程组的解,解题关键是利用代入法.36.已知关于x ,y 的二元一次方程组3522718x y a x y a -=⎧⎨+=-⎩(1)消去a ,试用含y 的代数式表示x ;(2)若方程组中的x ,y 互为相反数,求出方程组的解.【答案】(1) x =-19y -36;(2)22x y =⎧⎨=-⎩. 【解析】【分析】(1)把a 的系数变为相等,两个方程作差,即可解答;(2)根据x ,y 互为相反数,得到x+y=0,即x=-y ,代入方程组,即可解答.【详解】解:(1)352 2718x y a x y a -=⎧⎨+=-⎩①② ②×2-①,得(4x +14y)-(3x -5y)=-18×2,整理,得x=-19y-36.(2)∵x,y互为相反数,∴x+y=0,∴-19y-36+y=0,y=-2,∴x=2,∴方程组的解为22 xy=⎧⎨=-⎩.【点睛】本题考查的知识点是二元一次方程组的解,解题关键是利用加减消元法.37.某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【答案】这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【解析】【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:()()931413320x yx y⎧+-=⎪⎨+-=⎪⎩,解得:51.5xy=⎧⎨=⎩.答:这种出租车的起步价是5元,超过3km 后,每千米的车费是1.5元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.38.为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出980台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1254台.在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?【答案】销售给农户的Ⅰ型冰箱为580台,销售给农户的Ⅱ型冰箱为400台【解析】【分析】本题有两个相等关系:“启动活动前一个月Ⅰ型冰箱售出量+Ⅰ型冰箱售出量=980台”、“启动活动后的第一个月Ⅰ型冰箱售出量+Ⅰ型冰箱售出量=1254台”,据此设未知数列出方程组,解方程组即可求得结果.【详解】解:设销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为x 台、y 台,由题意得:980(130%)(125%)1254x y x y +=⎧⎨+++=⎩,解得580400x y =⎧⎨=⎩. 答:销售给农户的Ⅰ型冰箱为580台,销售给农户的Ⅱ型冰箱为400台.【点睛】本题考查了二元一次方程组的应用,属于基础题型,正确理解题意,找准相等关系列出方程组是求解的关键.39.(列二元一次方程组解应用题)甲、乙两家超市出售同样品牌的保温壶和水杯,保温壶和水杯在两家超市的售价分别相同.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.求一个保温壶和一个水杯售价各是多少元?【答案】一个保温壶50元,一个水杯10元.【解析】【分析】设一个保温壶的售价x元,一个水杯的售价y元,根据“买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】设一个保温壶x元,一个水杯y元.根据题意得:60 23130x yx y+=⎧⎨+=⎩解得5010 xy=⎧⎨=⎩答:一个保温壶50元,一个水杯10元【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.40.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个21人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费645元,两种客房各租住了多少间?【答案】租住三人间3间,两人间6间.【解析】【分析】设租住三人间x间,两人间y间,根据人数和住宿费用各列一个方程,组成方程组求解即可.【详解】设租住三人间x间,两人间y间,根据题意得:,解得:.答:租住三人间3间,两人间6间.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。

人教版数学七年级下册 8.3 实际问题与二元一次方程组 练习(含答案)

人教版数学七年级下册 8.3 实际问题与二元一次方程组 练习(含答案)

8.3 实际问题与二元一次方程组 练习一、选择题1. 某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )A. {x +y =3518x +24y =750B. {x +y =3524x +18y =750 C. {x −y =3524x −18y =750 D. {x −y =3518x −24y =750 2. 小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A. {x −y =y +4x −y =49+xB. {x −y =y +4x −y =49−x C. {x −y =y −4x −y =49+x D. {x −y =y −4x −y =49−x 3. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A. {7y =x +38y +5=xB. {7y =x −38y +5=xC. {7y =x +38y =x +5D. {7y =x −38y =x +5 4. 一辆汽车从A 地出发,向东行驶,途中要经过十字路口B ,在规定的某一段时间内,若车速为每小时60千米,就能驶过B 处2千米;若每小时行驶50千米,就差3千米才能到达B 处,设A 、B 间的距离为x 千米,规定的时间为y 小时,则可列出方程组是( )A. {60y −x =2x =3−50yB. {60y −x =250y −x =3C. {60y =x +250y =x −3D. {60y =x −250y =x +3 5. 已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为( )A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元6. 已知某座桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是( )A. 20米/秒,200米B. 30米/秒,300米C. 15米/秒,180米D. 25米/秒,240米7. 用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( )A. {x +y =12040y =16xB. {x +y =12040y =32xC. {x +y =12040y =20xD. {x +y =12020y =40x 8. 我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. {x +y =1003x +3y =100B. {x +y =100x +3y =100C. {x +y =1003x +13y =100D. {x +y =1003x +y =1009.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A. 9天B. 11天C. 13天D. 22天10.初一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排()A. 14B. 13C. 12D. 15二、填空题11.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,根据题意,得方程组______.12.某铁路桥长1750m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了80s,整列火车完全在桥上的时间共60s;设火车的速度为xm/s,火车的长度为ym,根据题意列方程组为______.13.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组______.14.今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组______.15.某校为住校生分宿舍,若每间7人,则余下3人;若每间8人,则有5个空床位,设该校有住校生x人,宿舍y间,则可列出方程组为______.16.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人,根据题意,所列方程组是______.17.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为______ .三、计算题18.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?19.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款地点票价(2)若学生都去参观历史博物馆,则能节省票款多少元?20.某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?参考答案1.【答案】B2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】A7.【答案】C8.【答案】C9.【答案】B10.【答案】C11.【答案】{x +y =1110x +y −(10y +x)=6312.【答案】{80x =1750+y60x =1750−y13.【答案】{3x +13y =100x +y =10014.【答案】{3x +2y =165x +3y =25 15.【答案】{7y +3=x8y −5=x16.【答案】{x +y =303x +2y =7817.【答案】12,2018.【答案】解:(1)设这批游客的人数是x 人,原计划租用45座客车y 辆.根据题意,得{45y +15=x 60(y −1)=x, 解这个方程组,得{x =240y =5. 答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元), 租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元). 答:租用4辆60座客车更合算.19.【答案】解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得{x +y =15010x +20y =2000, 解得{x =100y =50. 答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000−150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.20.【答案】解:(1)设每个篮球和每个足球的售价分别为x 元,y 元,根据题意得:{2x +y =3203x +2y =540,解得:{x =100y =120, 则每个篮球和每个足球的售价分别为100元,120元;(2)设足球购买a 个,则篮球购买(50−a)个, 根据题意得:120a +100(50−a)≤5500, 整理得:20a ≤500,解得:a ≤25,则最多可购买25个足球.。

人教版七年级下第八章二元一次方程组(实际问题与二元一次方程组)同步练习题含答案

人教版七年级下第八章二元一次方程组(实际问题与二元一次方程组)同步练习题含答案
(2)第二档气量为每户每月超出30立方米以上部分,执行市场调节价格.
小明家5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,若小明7月份用气29立方米,则他家应交费________元.
6.植树节这天有 名同学共种了 棵树苗,其中男生每人种树苗 棵,女生每人种树苗 棵,则男同学的人数为______________人.
A. B. C. D.以上都不对
三、解答题
13.小明爸爸骑着摩托车带着小明在公路上匀速行驶,下面是小明每隔1h看到的里程情况.你能确定小明在12:00时看到的里程碑上的数吗?
12:00时,是一个两位数,它的两个数字之和为7
13:00时,十位与个位数字与12:00时所看到的正好互换了.
14:00时,比12:00时看到的两位数中间多了个0
2.一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作桌面50个,或制作桌腿300条,现有5立方米木料,请你设计一下,用________立方米木料做桌面,恰好使桌面与桌腿配套,二者均没有剩余.
3.已知两个有理数:-15和9.若再添一个有理数 ,且-15,9与 这三个数的平均数恰等于 ,则 的值为______.
A. B. C. D.
9.日历中同一列相邻的三个数的和一定是()
A.2的倍数B.3的倍数C.4的倍数D.5的倍数
10.为清理积压的库存,商场决定打折销售,已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是
A.200元,240元B.240元,200元C.280元,160元D.160元,280元
【详解】解:设用x立方米木料做桌面,y立方米木料做桌腿,

七年级数学(下)第八章《实际问题与二元一次方程组》练习题含答案

七年级数学(下)第八章《实际问题与二元一次方程组》练习题含答案

七年级数学(下)第八章《实际问题与二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组A.4243x yx y+=⎧⎨=⎩B.4234x yx y+=⎧⎨=⎩C.421134x yx y-=⎧⎪⎨=⎪⎩D.4243y xx y+=⎧⎨=⎩【答案】B【解析】设甲数为x,乙数为y,由题意得:4234x yx y+=⎧⎨=⎩,故选B.2.小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是A.5010()320x yx y+=⎧⎨+=⎩B.50610320x yx y+=⎧⎨+=⎩C.506320x yx y+=⎧⎨+=⎩D.50106320x yx y+=⎧⎨+=⎩【答案】B【解析】每幅羽毛球拍为x元,每幅乒乓球拍为y元,由题意得,50610320x yx y+=⎧⎨+=⎩,故选B.3.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是A.5510424x yx y y-=⎧⎨=+⎩B.5510424x yx y-=⎧⎨-=⎩C.5510424x yx x y-=⎧⎨-=⎩D.5105424x yx y+=⎧⎨-=⎩【答案】A4.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是A.1818x yy x x=-⎧⎨-=-⎩B.1818y xx y y-=⎧⎨-=+⎩C.1818x yy x y+=⎧⎨-=+⎩D.1818y xy y x=-⎧⎨-=-⎩【答案】D【解析】设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得1818y xy y x=-⎧⎨-=-⎩.故选D.5.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x+=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩【答案】B【解析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程可得2753x yx y+=⎧⎨=⎩,故选B.6.某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款/元 1 2 3 4人数 6 ▅▅7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组A .272366x y x y +=⎧⎨+=⎩B .2723100x y x y +=⎧⎨+=⎩C .273266x y y x +=⎧⎨+=⎩D .2732100x y y x +=⎧⎨+=⎩【答案】A【解析】根据九(2)班共有40名同学,可列方程x +y +6+7=40,即x +y =27; 根据共捐款100元,可列方程2x +3y +6+4×7=100,即2x +3y =66, 故可列方程组为:272366x y x y +=⎧⎨+=⎩,故选A .二、填空题:请将答案填在题中横线上.7.学生问老师:“您今年多大?”老师风趣地说:“我像你这么大时,你才出生;你到我这么大时,我已经37岁了.”老师今年__________岁. 【答案】25【解析】设学生现在年龄是x 岁,老师现在年龄是y 岁,根据题意列方程组得:137y x x x y x -=-⎧⎨-=-⎩,解得1325x y =⎧⎨=⎩.即老师今年25岁.故答案为:25. 8.如图所示,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少20°,则∠1的度数为__________.【答案】130°【解析】根据题意,得1218013220∠+∠=︒⎧⎨∠=∠-︒⎩,解得∠1=130°,∠2=50°,故答案为:130°.9.根据下图给出的信息,则每件T 恤价格和每瓶矿泉水的价格分别为__________.【答案】20元和2元【解析】设每件T 恤价格和每瓶矿泉水的价格分别为x 元和y 元,根据题意可列方程组2244326x y x y +=⎧⎨+=⎩,解得202xy=⎧⎨=⎩,所以每件T恤价格和每瓶矿泉水的价格分别为20元和2元.故答案为:20元和2元.10.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需__________元.【答案】1100故答案为:1100.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.油漆厂用白铁皮做圆柱形油漆小桶,一张铁皮可做侧面32个,或底面160个,现有铁皮140张,用多少张做侧面,多少张做底面,可以正好制成配套的油漆小桶?【解析】设x张做侧面,y张做底面,根据现有铁皮140张,根据题意可得,1401321602x yx y+=⎧⎪⎨=⨯⎪⎩,解得10040xy=⎧⎨=⎩,答:100张做侧面,40张做底面.12.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)【解析】设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,由题意得,5(30)(40)766(30)3(40)120x yx y-+-=⎧⎨-+-=⎩,解得4256 xy=⎧⎨=⎩,答:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元.13.目前节能灯在城市已基本普及,今年云南省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利润多少元?答:全部售完120只节能灯后,该商场获利润1000元.14.仔细观察下图,认真阅读对话:根据以上对话内容,可知小明买5元邮票多少张?【解析】设小明买2元邮票x张,1元邮票2x张,5元邮票y张,则根据题意得21822535x x yx x y++=⎧⎨++=⎩,解得53xy=⎧⎨=⎩.答:小明买5元邮票3张.。

最新人教版七年级数学下册第八章第三节实际问题与二元一次方程组

最新人教版七年级数学下册第八章第三节实际问题与二元一次方程组
以得几分吗?
二元一次方程组中两个方程的
公共解,叫做这个二元一次方程 组的解.

下列3组数值中,哪1组是二元一次方程

?2x? 3y ? ?8
? ?
x
?
2
y
?
3
的解?
x=2
x=1
x=-1
y=4
y=1
y=2
1、在(1)
x? 2 y ? 3 ,(2)
x? 2 y ? 3 ,(3)
x? 2 y? 3
这3对数中,
、如果
是方程组

Y=-3
2X-Y=N
解,则M=___,N=___.
拓展训练
1、写出解是
?x? 1
? ?
y
?
1
的二元一次方
程组。你能写出几个?
2、某动物园的门票价格如下:
票价
成人票
20元/人
儿童票
10元/人
请你编一道二元一次方程组的应用题。
m=______,n=______. (2). 已知3X-4Y=12,用X的代数式表示 Y=______,用Y的代数式表示X=______.
若二元一次方程4X-Y=5有一个解为, X=m 则m=______
y=3
(4)若 X=-2 是二元一次方程3X+aY=a+4的 y=3 一个解,则a=_____.
x ? 3 y ? 11(1)
3x ? 2 y ? 12(2) x? 2
方程( 1)的解是
y?3
x? 0
方程( 2)的解是
y? 6
x?5 y? 2 x? 2 y?3
x? 8
等等 .
y?1
x? 4 等等 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版初一下册数学实际问题与二元一次方程组经典例题经典例题透析类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

分析:船顺流速度=静水中的速度+水速船逆流速度=静水中的速度-水速类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。

设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.举一反三:【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。

价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率举一反三:【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(注:获利 = 售价—进价)求该商场购进A、B两种商品各多少件;类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)总结升华: 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来. 举一反三:【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)思路点拨:扣税的情况:本金×年利率×(1-20%)×年数=利息(其中,利息所得税=利息金额×20%).不扣税时:利息=本金×年利率×年数.类型五:列二元一次方程组解决——生产中的配套问题5.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.举一反三:【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?思路点拨:两个未知数是制盒身、盒底的铁皮张数,两个相等关系是:①制盒身铁皮张数+制盒底铁皮张数=190;②制盒身个数的2倍=制盒底个数.【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。

类型六:列二元一次方程组解决——增长率问题6. 某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?思路点拨:设去年的总产值为x万元,总支出为y万元,则有总产值(万元)总支出(万元)利润(万元)去年x y 200今年120%x 90%y 780根据题意知道去年的利润和今年的利润,由利润=总产值—总支出和表格里的已知量和未知量,可以列出两个等式。

举一反三:【变式1】若条件不变,求今年的总产值、总支出各是多少万元?【变式2】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。

思路点拨:由题意得两个等式关系,两个相等关系为:(1)城镇人口+农村人口=42万;(2)城镇人口×(1+0.8%)+农村人口×(1+1.1%)=42×(1+1%)类型七:列二元一次方程组解决——和差倍分问题7.(2011年北京丰台区中考一摸试题)“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?思路点拨:找出已知量和未知量,根据题意知未知量有两个,所以列两个方程,根据计划前后,倍数关系由已知量和未知量列出两个等式,即是两个方程组成的方程组。

举一反三:【变式1】 (2011年北京门头沟区中考一模试题) “地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分—21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.【变式2】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。

如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?思路点拨:本题关键之一是:小孩子看游泳帽时只看到别人的,没看到自己的帽子。

关键之二是:两个等式,列等式要看到重点语句,第一句:每位男孩看到蓝色与红色的游泳帽一样多;第二句:每位女孩看到蓝色的游泳帽比红色的多1倍。

找到已知量和未知量根据这两句话列两个方程。

类型八:列二元一次方程组解决——数字问题8. 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。

思路点拨:设较大的两位数为x,较小的两位数为y。

问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100x+y问题2:在较大数的左边写上较小的数,所写的数可表示为: 100y +x举一反三:【变式1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?【变式2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?类型九:列二元一次方程组解决——浓度问题9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?思路点拨:本题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:(1)甲种酒精溶液与乙种酒精溶液的质量之和=50;(2)混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;(3)混合前两种溶液所含水的质量之和=混合后溶液所含水的质量;(4)混合前两种溶液所含纯酒精之和与水之和的比=混合后溶液所含纯酒精与水的比。

总结升华:此题的第(1)个相等关系比较明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是:混合前后所含溶质相等或混合前后所含溶剂相等。

用它们来联系各量之间的关系,列方程组时就显得容易多了。

列方程组解应用题,首先要设未知数,多数题目可以直接设未知数,但并不是千篇一律的,问什么就设什么。

有时候需要设间接未知数,有时候需要设辅助未知数。

举一反三:【变式1】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?思路点拨:做此题的关键是找到配制溶液前后保持不变的量,即相等的量。

本题主要有两个等量关系,等量关系一:配制盐水前后盐的含量相等;等量关系二:配制盐水前后盐水的总重量相等。

相关文档
最新文档