数据分析测试题
数据分析基础测试题含答案
数据分析基础测试题含答案一、选择题1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.2.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:品种甲乙丙平均产量/(千克/棵)9090方差10.224.88.5若从这三个品种中选择一个在该地区推广,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可.【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.3.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A.8,9 B.8,8 C.8,10 D.9,8【答案】B【解析】分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的那个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.详解:由条形统计图知8环的人数最多,所以众数为8环,由于共有11个数据,所以中位数为第6个数据,即中位数为8环,故选B.点睛:本题主要考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个,则找中间两个数的平均数.4.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.5.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.6.某青年排球队12名队员的年龄情况如下:年龄(单位:岁)1819202122人数14322则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.7.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩()A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,方差:S2=110[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,方差:S2=112[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=73,平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].8.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同【答案】D【解析】【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.【详解】∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为67889106+++++=8,中位数为882+=8、众数为8,方差为16×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=53,∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为7788896+++++=476,中位数为882+=8、众数为8,方差为16×[2×(7﹣476)2+3×(8﹣476)2+(9﹣476)2]=1736,则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选D.【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6【答案】A【解析】【分析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A 【解析】试题分析:根据众数和中位数的定义求解可得. 解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252+=25, 故选:A .12.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变 C .增大 D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.13.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.14.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.15.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70,1.75 B.1.70,1.70 C.1.65,1.75 D.1.65,1.70【答案】A【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A 【解析】 【分析】利用众数和中位数的定义求解. 【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分. 故选A . 【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.18.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( )A.10 B.10C.2D.2【答案】D【解析】【分析】【详解】∵3、a、4、6、7,它们的平均数是5,∴15(3+a+4+6+7)=5,解得,a=5S2=15[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.。
数据分析基础测试题附答案解析
数据分析基础测试题附答案解析一、选择题1.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.2.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.3.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.4.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对【答案】B【解析】【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.5.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数6.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分【答案】A【解析】【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:64⨯+⨯=(分)8090841010故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.7.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.8.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次s=.后来小亮进行了补测,集体测试,因此计算其他39人的平均分为90分,方差239成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.11.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.12.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】+=,由众数是3知a、b中一个数据为3、另一个数据为先根据平均数为5得出a b107,再根据中位数的定义求解可得.【详解】解:数据3,a,4,b,8的平均数是5,3a4b825∴++++=,即a b10+=,又众数是3,a∴、b中一个数据为3、另一个数据为7,则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.13.在去年的体育中考中,某校6名学生的体育成绩统计如下表:则下列关于这组数据的说法错误的是()A.众数是18 B.中位数是18 C.平均数是18 D.方差是2【答案】D【解析】【分析】根据众数、中位数的定义和平均数、方差的计算公式分别进行解答即可.【详解】A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;D、这组数据的方差是:16[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故本选项说法错误.故选D.【点睛】本题考查了众数、中位数、平均数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数是所有数据的和除以数据总数;一般地设n个数据,x1,x2,…x n的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].14.甲、乙两位运动员在相同条件下各射击10次,成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10.根据上述信息,下列结论错误的是( ) A .甲、乙的众数分别是8,7 B .甲、乙的中位数分别是8,8 C .乙的成绩比较稳定 D .甲、乙的平均数分别是8,8【答案】C 【解析】 【分析】分别根据众数,平均数,中位数和方差的概念以及计算方法计算出结果,然后进行判断. 【详解】在甲的10次射击成绩中8环出现次数最多,有4次,故众数是8,而乙的10次射击成绩中7环出现次数最多,故众数是7,因此选项A 说法正确,不符合题意;甲的10次射击成绩按大小顺序排列为:5,7,7,8,8,8,8,9,10,10,故其中位数为:8+8=82; 乙的10次射击成绩按大小顺序排列为:5,7,7,7,8,8,9,9,10,10,故其中位数为:8+8=82,所以甲、乙的中位数分别是8,8,故选项B 说法正确,不符合题意; 甲的平均数为:5+72+84+9+102=810⨯⨯⨯;乙的平均数:5+73+82+92+102=810⨯⨯⨯⨯,所以,甲、乙的平均数分别是8,8,故选项D 不符合题意;甲组数据的方差为:2222221=[(58)2(78)4(88)(98)2(108)]10S -+⨯-+⨯-+-+⨯-甲=2; 乙组数据的方差为:2222221=[(58)3(78)2(88)2(98)2(108)]10S -+⨯-+⨯-+⨯-+⨯-乙=2.2;所以甲乙两组数据的方差不相等,甲的成绩更稳定,故选项C 符合题意. 故选:C. 【点睛】本题考查了平均数、中位数、众数和方差的定义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.16.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键. 17.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.18.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A.平均数是58 B.中位数是58 C.极差是40 D.众数是60【答案】A【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是: 62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A .19.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 比赛成绩/分 9.5 9.6 9.7 9.8 9.9 参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是( ) A .9.7,9.5 B .9.7,9.9C .9.6,9.5D .9.6,9.6【答案】C 【解析】 【分析】根据众数和中位数的定义求解可得. 【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C . 【点睛】考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.20.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是( )A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1++++++=,(26282826242122)257故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.。
数据分析经典测试题含答案解析
95
90
85
80
人数
4
6
8
2
那么20名学生决赛成绩的众数和中位数分别是( )
A.85,90B.85,87.5C.90,85D.95,90
【答案】B
【解析】
试题解析:85分的有8人,人数最多,故众数为85分;
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分.
故选B.
故选A.
【点睛】
此题考查了中位数、众数和平均数的概念等知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:
D、方差为 ×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
故选:D.
【点睛】
本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
14.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:
考点:1.众数;2.中位数
5.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
第一次
第二次
第三次
第四次
第五次
第六交
甲
9
8
6
7
8
10
乙
8
7
9
7
8
8
数据分析考试题
数据分析考试题一、选择题1. 数据分析的目的是什么?A. 发现数据中的模式和趋势B. 验证假设和推断数据之间的关系C. 帮助管理决策和业务优化D. 所有选项都是正确的2. 哪种图表最适合用于展示时间序列数据?A. 饼图B. 条形图C. 散点图D. 折线图3. 以下哪个指标可以用于衡量数值型数据的集中趋势?A. 方差B. 标准差C. 中位数D. 相关系数4. 以下哪个指标可以用于衡量分类变量之间的关联性?A. 方差分析B. 卡方检验C. 盖尔回归D. 多元回归5. 如果数据集中有缺失值,下面哪个方法可以用来处理缺失值?A. 删除包含缺失值的观测B. 用平均值或中位数填充缺失值C. 使用回归模型预测缺失值D. 所有选项都是正确的二、简答题1. 请说明数据清洗的步骤或过程。
数据清洗的步骤包括以下几个方面:1) 检查数据的完整性,确保数据集没有缺失值或错误的数据项。
2) 处理数据中的异常值,通常采用删除或替换的方法对异常值进行处理。
3) 对缺失值进行处理,可以选择删除包含缺失值的观测,或者用平均值、中位数等填充缺失值。
4) 标准化数据,将数据统一按照一定规则进行转换,以提高数据的比较性和可解释性。
5) 去除重复值,确保数据集中不含有重复的数据项。
6) 对数据进行转换和处理,如对时间数据进行格式化、对分类数据进行编码等。
2. 请说明相关系数的作用和计算方法。
相关系数用于衡量两个数值型变量之间的线性关系强度,其取值范围为-1到1。
相关系数越接近于1或-1,表示两个变量之间的线性关系越强;相关系数接近于0则表示两个变量之间无线性关系。
计算相关系数的方法常用的有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于两个连续变量之间的关系,并假设数据呈正态分布;斯皮尔曼相关系数适用于两个有序变量或者两个非连续变量之间的关系。
3. 请简述回归分析的原理及其在数据分析中的应用。
回归分析用于研究一个或多个自变量对一个因变量的影响程度。
数据分析测试题完整版
数据分析测试题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数据分析测试题一、选择题(每小题3分,共30分)1.有19位同学参加歌咏比赛,所得的分数互不相同,取前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差2.某特警部队为了选拔“神枪手”,举行了1 000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是环,甲的方差是,乙的方差是,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定3.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确结论的个数为()4.综合实践活动中,同学们做泥塑工艺制作.小明将活动组各同学的作品完成情况绘成了下面的条形统计图.根据图表,我们可以知道平均每个学生完成作品()件.5.某公司员工的月工资如下表:A. B.C. D.6.下列说法中正确的有()①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数.个个个个7.某同学在本学期的前四次数学测验中得分依次是95,82,76,88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得()分.8.样本方差的计算公式中,数字20和30分别表示样本的()A.众数、中位数B.方差、偏差C.数据个数、平均数D.数据个数、中位数9.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出的平均数与实际平均数的差是()10.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是()A.甲运动员得分的方差大于乙运动员得分的方差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定二、填空题(每小题3分,共24分)11.某果园有果树200棵,从中随机抽取5棵,每棵果树的产量如下:(单位:kg)98 102 97 103 105这棵果树的平均产量为 kg,估计这棵果树的总产量为 kg. 12.在航天知识竞赛中,包括甲同学在内的6•名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分.13.已知一组数据它们的中位数是,则______.14.有个数由小到大依次排列,其平均数是,如果这组数的前个数的平均数是,后个数的平均数是,则这个数的中位数是_______.15.若已知数据的平均数为,则数据的平均数(用含的表达式表示)为_______.16.某超市招聘收银员一名,对三名应聘者进行了三项素质测试.下面是三名应聘者的素质测试成绩:测试成绩素质测试小李小张小赵计算机70 90 65商品知识50 75 55语言80 35 804,3,2,则这三人中将被录用.年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是_____cm.18.某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:班级参加人数平均字数中位数方差甲55 135 149 191乙55 135 151 110①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).三、解答题(共46分)19.(6分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件数如下:加工零件数/件540 450 300 240 210 120人数 1 1 2 6 3 2(1(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理?为什么?20.(6分)为调查八年级某班学生每天完成家庭作业所需时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:)分别为60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数.(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?21.(6分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类型的人数绘制成扇形统计图(如图①)和条形统计图(如图②),经确认扇形统计图是正确的,而条形统计图尚有一处错误. 回答下列问题:(1)写出条形统计图中存在的错误,并说明理由. (2)写出这20名学生每人植树量的众数、中位数.(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是12nx x x x n+++=;第二步:在该问题中,n =4,x 1=4,x 2=5,x 3=6,x 4=7; 第三步:4567554x .+++==(棵). ②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵? 22.(7分)某校在一次数学检测中,八年级甲、乙两班学生的数学成绩统计如下表:分数 50 60 70 80 90 100 人数 甲班1 6 12 11 15 5 乙班351531311(1)甲班的众数是多少分,乙班的众数是多少分,从众数看成绩较好的是哪个班?(2)甲班的中位数是多少分,乙班的中位数是多少分,甲班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,乙班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,从中位数看成绩较好的是哪个班?(3)甲班的平均成绩是多少分,乙班的平均成绩是多少分,从平均成绩看成绩较好的是哪个班?23.(7分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(分)测试项目甲乙丙笔试75 80 90面试93 70 68进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分.(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么谁将被录用?24.(7分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理男生序号①②③④⑤⑥⑦⑧⑨⑩身高163 171 173 159 161 174 164 166 169 164(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?25.(7分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):为参考.请你回答下列问题:(1)计算两班的优秀率.(2)求两班比赛成绩的中位数.(3)估计两班比赛数据的方差哪一个小.(4)根据以上三条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.九年级数学数据分析专题检测试卷参考答案解析:19位同学参加歌咏比赛,所得的分数互不相同,取前10位同学进入决赛,中位数就是第10位同学的成绩,因而要判断自己能否进入决赛,他只需知道这19位同学成绩的中位数就可以.故选B .解析:本题考查了方差的意义,方差越小,数据越稳定.在甲、乙两名战士总成绩相同的条件下,∵ >,∴ 乙的成绩比甲的成绩稳定.解析:将这组数据从小到大排列为:2,2,3,3,3,3,3,3,6,6,10,共11个数,所以第6个数据是中位数,即中位数为3.因为数据3的个数为6,所以众数为3.平均数为,由此可知①正确,②③④均错误,故选A. 解析:625.862412610692481276=+++⨯+⨯+⨯+⨯.解析:元出现了次,出现的次数最多,所以这组数据的众数为元;将这 组数据按从大到小的顺序排列,中间的(第5个)数是元,即其中位数为元; ,即平均数为2 200元.解析:一组数据的中位数和平均数只有一个,但出现次数最多的数即众数,可以有多个,所以①②对,③错;由于一组数据的平均数是取各数的平均值,中位数是将原数据按由小到大顺序排列后,进行计算得来的,所以平均数与中位数不一定是原数据里的数,故④错; 一组数据中的一个数大小发生了变化,它的平均数一定发生变化,众数、中位数可能发生改变,也可能不发生改变,所以⑤错.解析:利用求平均数的公式解决.设第五次测验得分,则588768295x++++, 解得.解析:设其他29个数据的和为,则实际的平均数为,而所求出的平均数为,故.11. 解析:抽取的5棵果树的平均产量为; 估计这棵果树的总产量为. 解析:13. 解析:将除外的五个数从小到大重新排列后为中间的数是,由于中位数是,所以应在20和23中间,且21220=+x,解得. 14. 解析:设中间的一个数即中位数为,则,所以中位数为. 15. 解析:设的平均数为,则31)(21)(21)(2321+++++x x x 13233)2(321321+++⨯=+++=xx x x x x .又因为3321x x x ++=x ,于是y . 16.小张 解析:∵ 小李的成绩是:9565234280350470=++⨯+⨯+⨯,小张的成绩是:9772234235375490=++⨯+⨯+⨯,小赵的成绩是:65234280355465=++⨯+⨯+⨯,∴ 小张将被录用.解析:众数是在一组数据中,出现次数最多的数据,这组数据中168出现了3次,出现的次数最多,故这组数据的众数为168.18. ①②③ 解析:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确. 19.解:(1)平均数:540450300224062103120226015++⨯+⨯+⨯+⨯=(件);中位数:240件,众数:240件.(2)不合理,因为表中数据显示,每月能完成件以上的一共是4人,还有11人不能达到此定额,尽管是平均数,但不利于调动多数员工的积极性.因为既是中位数,又是众数,是大多数人能达到的定额,故定额为件较为合理.20.解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40,43,55,55,55,60,65,75,其中最中间的两个数据都是55,即这组数据的中位数是55. (2)这8个数据的平均数是,所以这8名学生完成家庭作业的平均时间为.因为,所以估计该班学生每天完成家庭作业的平均时间符合学校的要求.21.分析:(1)A 类型人数为20×20%=4,B 类型人数为20×40%=8,C 类型人数为20×30%=6,D 类型人数为20×10%=2,所以条形统计图中D 类型数据有错.(2)这20个数据中,有4个4,8个5,6个6,2个7,所以每人植树量的众数是5棵,中位数是5棵.(3)小宇的分析是从第一步出现错误的,公式不正确,应该使用4458667220x ⨯+⨯+⨯+⨯=计算出正确的平均数.把这个平均数乘260可以估计这260名学生共植树的棵数. 解:(1)D 有错. 理由:10%×20=2≠3. (2)众数为5棵. 中位数为5棵. (3)①第一步. ②4458667220x ⨯+⨯+⨯+⨯==(棵).估计这260名学生共植树:×260=1 378(棵).点拨:(1)众数是一组数据中出现次数最多的数据.(2)求一组数据的中位数时,一定要先把这组数据按照大小顺序排列.(3)在求一组数据的平均数时,如果各个数据都重复出现若干次,应选用加权平均数公式112212(=)k kk x w x w x w x n w w w n+++=+++求出平均数.22.解:(1)甲班中分出现的次数最多,故甲班的众数是分; 乙班中分出现的次数最多,故乙班的众数是分. 从众数看,甲班成绩好.(2)两个班都是人,甲班中的第名的分数都是分,故甲班的中位数是分; 乙班中的第名的分数都是分,故乙班的中位数是分.甲班成绩在中位数以上(包括中位数)的学生所占的百分比为 ;乙班成绩在中位数以上(包括中位数)的学生所占的百分比为 .从中位数看,成绩较好的是甲班. (3)甲班的平均成绩为 ;乙班的平均成绩为 . 从平均成绩看,成绩较好的是乙班. 23.分析:通过阅读表格获取信息,再根据题目要求进行平均数与加权平均数的计算.解:(1)甲、乙、丙的民主评议得分分别为:50分、80分、70分.(2)甲的平均成绩为:75935021872.6733++=≈(分), 乙的平均成绩为:80708023076.6733++=≈(分),丙的平均成绩为:90687022876.0033++==(分).由于76.677672.67>>,所以乙将被录用.(3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么 甲的个人成绩为:472.9433⨯75+3⨯93+3⨯50=++(分), 乙的个人成绩为:477433⨯80+3⨯70+3⨯80=++(分), 丙的个人成绩为:477.4433⨯90+3⨯68+3⨯70=++(分), 由于丙的个人成绩最高,所以丙将被录用.24.解:(1)平均数为()163171173159161174164166169164166.4cm 10+++++++++=, 中位数为166164165cm 2+=(), 众数为164cm ().(2)选平均数作为标准:身高x 满足166.412%166.412%x ⨯-⨯+()≤≤(),即163.072169.728x ≤≤时为“普通身高”,此时⑦、⑧、⑨、⑩男生的身高为“普通身高”.(3)以平均数作为标准,估计全年级男生中“普通身高”的人数约为428011210⨯=.25.解:(1)甲班的优秀率:52, 乙班的优秀率:53. (2)甲班5名学生比赛成绩的中位数是97个;乙班5名学生比赛成绩的中位数是100个.(3)甲班的平均数=100597+118+96+100+89=(个), 甲班的方差;乙班的平均数=1005104+91+110+95+100 (个), 乙班的方差.∴ .即乙班比赛数据的方差小.(4)冠军奖杯应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好.。
数据分析精选练习50题
(1)他们一共调查了多少人?
(2)若该校共有1560名学生,估计全校学生捐款多少元?
学号
3003
3008
3012
3016
3024
3028
3042
3048
3068
3075
等第
A
C
B
C
D
B
A
B
B
A
学号
3079
3088
3091
3104
3116
3118
3122
3136
3144
3154
等第
B
B
B
C
A
C
B
A
A
B
学号
3156
3163
3172
3188
3193
3199
3201
3208
3210
3229
10
0.20
89.5—99.5
18
79.5—89.5
69.5—79.5
3
0.06
合计
1.00
请你根据给出的图标解答:
(1)填写频率分布表中未完成部分的数据;
(2)指出在这个问题中的总体和样本容量;
(3)求出在频率分布直方图中直角梯形ABCD的面积;
12.某百货商场经理对新进某一品牌几种号码的男式跑步鞋的销售情况进行了一周的统计,得到一组数据后,绘制了频数(双)频率统计表与频数分布直方图如下:
数据分析经典测试题附解析
数据分析经典测试题附解析一、选择题1.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.2.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.3.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数5.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.对于一组统计数据:1,1,4,1,3,下列说法中错误的是( ) A .中位数是1 B .众数是1 C .平均数是1.5D .方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.7.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.10.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.11.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.12.某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.14.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.15.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.16.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.17.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.18.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C .【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x <,221s s =B .1x x =,221s s >C .1x x =,221s s <D .1x x =,221s s = 【答案】B【解析】【分析】根据平均数和方差的公式计算比较即可.【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n ,第i 个同学没登录,第一次计算时总分是(n−1)x ,方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n -+=x , 方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n -s 2, 故221s s >,故选B .【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.20.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差239s =.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。
数据分析基础测试题及答案
数据分析基础测试题及答案一、选择题1.某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()A.15岁,14岁B.15岁,15岁C.15岁,156岁D.14岁,15岁【答案】A 【解析】【分析】根据众数、平均数的定义进行计算即即可.【详解】观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.这12名队员的年龄的平均数是:1231311421551611412⨯+⨯+⨯+⨯+⨯=故选:A【点睛】本题主要考查众数、平均数,熟练掌握众数、平均数的定义是解题的关键.3.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.4.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.5.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10. 故选C . 【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.6.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.8.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A .中位数为1 B .方差为26C .众数为2D .平均数为0【答案】B 【解析】 【分析】 【详解】A .∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B .4121205x -++-+== ,()()()()222224010102022655s --+--+-+-⨯==,故不正确;C .∵众数是2,故正确;D .4121205x -++-+==,故正确;故选B.13.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为( ) A .1.70,1.75B .1.70,1.70C .1.65,1.75D .1.65,1.70【答案】A【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.6 D.3【答案】A【解析】【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.16.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.17.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数【答案】B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.18.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.19.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.20.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()A.这些体温的众数是8 B.这些体温的中位数是36.35 C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.。
数据分析经典测试题附答案
数据分析经典测试题附答案一、选择题1.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数3.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.有甲、乙两种糖果,原价分别为每千克a 元和b 元.根据调查,将两种糖果按甲种糖果x 千克与乙种糖果y 千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则xy等于( ) A .34a b B .43a bC .34b aD .43b a【答案】D【解析】【分析】根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.【详解】解:∵甲、乙两种糖果,原价分别为每千克a元和b元,两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,∴两种糖果的平均价格为:ax byx y++,∵甲种糖果单价下降15%,乙种糖果单价上涨20%,∴两种糖果的平均价格为:1520 (1)(1)100100a xb yx y-•+++,∵按原比例混合的糖果单价恰好不变,∴ax byx y++=1520(1)(1)100100a xb yx y-•+++,整理,得15ax=20by∴43x by a =,故选:D.【点睛】本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)257++++++=,故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中出现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3出现了2次,为出现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中出现次数最多的数据.7.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.8.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.10.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单----,关于这组数据,下列结论不正确的是()位:℃):7,4,2,1,2,2A.平均数是B.中位数是C.众数是D.方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D.11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252=25,故选:A.12.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义依次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,∴班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10元,故D正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键.13.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.14.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.15.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A .中位数为1 B .方差为26C .众数为2D .平均数为0【答案】B 【解析】 【分析】 【详解】A .∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B .4121205x -++-+== ,()()()()222224010102022655s --+--+-+-⨯==,故不正确;C .∵众数是2,故正确;D .4121205x -++-+==,故正确;故选B.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差【答案】D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A 【解析】 【分析】利用众数和中位数的定义求解. 【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分. 故选A . 【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.18.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是()A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6【答案】C【解析】【分析】根据众数和中位数的定义求解可得.【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C.【点睛】考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.。
数据分析经典测试题附答案
数据分析经典测试题附答案一、选择题1.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:衬衫尺码3940414243平均每天销售件1012201212数该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中浮现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那末20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数3.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:普通地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.有甲、乙两种糖果,原价分别为每千克a 元和b 元.根据调查,将两种糖果按甲种糖果x 千克与乙种糖果y 千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则xy等于( )A .34a bB .43a bC .34b aD .43b a【答案】D【解析】【分析】根据已知条件表示出价格变化先后两种糖果的平均价格,进而得出等式求出即可.【详解】解:∵甲、乙两种糖果,原价分别为每千克a元和b元,两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,∴两种糖果的平均价格为:ax byx y++,∵甲种糖果单价下降15%,乙种糖果单价上涨20%,∴两种糖果的平均价格为:1520 (1)(1)100100a xb yx y-•+++,∵按原比例混合的糖果单价恰好不变,∴ax byx y++=1520(1)(1)100100a xb yx y-•+++,整理,得15ax=20by∴43x by a =,故选:D.【点睛】本题考查了加权平均数,解决本题的关键是表示出价格变化先后两种糖果的平均价格.5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)257++++++=,故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中浮现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3浮现了2次,为浮现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中浮现次数最多的数据.7.在创建安全校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序罗列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.8.某校在中国学生核心素质知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:甲乙丙丁平均分8.58.28.58.2方差 1.8 1.2 1.2 1.1最高分9.89.89.89.7如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A .极差是47B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月【答案】C 【解析】 【分析】根据统计图可得出最大值和最小值,即可求得极差;浮现次数最多的数据是众数;将这8个数按大小顺序罗列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月. 【详解】A 、极差为:83-28=55,故本选项错误;B 、∵58浮现的次数最多,是2次, ∴众数为:58,故本选项错误;C 、中位数为:(58+58)÷2=58,故本选项正确;D 、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误; 故选C .10.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----,关于这组数据,下列结论不正确的是( ) A .平均数是B .中位数是C .众数是D .方差是【答案】D 【解析】 【分析】一组数据中浮现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或者从大到小)的顺序罗列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.普通地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]. 【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9 故选D .11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是( )码(cm)23.52424.52525.5销售量(双)12252A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25浮现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252=25,故选:A.12.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义挨次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,∴班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10元,故D正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键.13.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5浮现2次,所以众数为5,此选项正确;B、数据重新罗列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.14.郑州某中学在备考2022河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数23245211则下列叙述正确的是( )A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或者从大到小)重新罗列后,最中间的那个数(或者最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.15.关于数据-4,1,2,-1,2,下面结果中,错误的是( )A.中位数为1 B.方差为26 C.众数为2 D.平均数为0【答案】B【解析】【分析】【详解】A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B.412125x-++-+==,()()()() 222224010102022655s--+--+-+-⨯==,故不正确;C.∵众数是2,故正确;D.412125x-++-+==,故正确;故选B.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7浮现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8浮现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以惟独D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A 【解析】 【分析】利用众数和中位数的定义求解. 【详解】98浮现了9次,浮现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分. 故选A . 【点睛】本题考查了众数:一组数据中浮现次数最多的数据叫做众数.也考查了中位数.18.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是( )A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6【答案】C【解析】【分析】根据众数和中位数的定义求解可得.【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C.【点睛】考查了众数和中位数的定义,一组数据中浮现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序罗列,位于最中间的一个数(或者两个数的平均数)为中位数;众数是一组数据中浮现次数最多的数据,注意众数可以不止一个.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那末它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据浮现的可能性的大小,中位数的计算方法,不可能事件的定义挨次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据浮现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.。
数据分析测试题
数据分析测试题1. 您需要从员工信息表中筛选出所有在“市场部”工作并且年龄超过30岁的员工,应该1. 使用以下哪种Excel功能? [单选题] *A. 使用“排序”功能,先按部门排序,再按年龄排序B. 使用“查找重复项”功能C. 使用“高级筛选”功能,设置条件为“部门=市场部”和“年龄>30”(正确答案)D. 手动浏览表格,找到符合条件的员工2. 您需要从员工信息表中筛选出所有在“市场部”工作并且年龄超过30岁的员工,应该1. 使用以下哪种Excel功能? [单选题] *A. 使用“排序”功能,先按部门排序,再按年龄排序B. 使用“查找重复项”功能C. 使用“高级筛选”功能,设置条件为“部门=市场部”和“年龄>30”(正确答案)D. 手动浏览表格,找到符合条件的员工3. 为了找出客户订单表中重复录入的订单号,你应该使用以下哪个Excel功能? [单选题] *A. “条件格式”中的“突出显示单元格规则”B. “查找和选择”中的“替换”C. “查找和选择”中的“定位条件”选择“重复项”(正确答案)D. “数据”选项卡中的“合并单元格”4. 你发现一个销售数据表中所有的“折扣”字段都错误地使用了“Discount”作为标题,你需要将所有单元格中的“Discount”替换为“折扣”,以下哪个操作是正确的? [单选题] *A. 使用“查找和选择”中的“查找”,然后逐个手动更改B. 使用“查找和选择”中的“替换”,查找“Discount”,替换为“折扣”(正确答案)C. 重新输入正确的标题“折扣”,然后复制粘贴到所有需要的单元格D. 使用“条件格式”标记出“Discount”,然后手动更改5. 在一个包含多个产品名称的Excel表格中,有些产品名称由于录入错误而重复出现了多次。
为了删除这些重复项,你应该使用以下哪个功能? [单选题] *A. “数据”选项卡中的“排序”和“筛选”B. “数据”选项卡中的“删除重复项”(正确答案)C. “查找和选择”中的“替换”D. “查找和选择”中的“转到特定条件”并删除6. 你想要对销售数据表按“产品类别”进行汇总,计算每个类别的总销售额,应该使用以下哪个Excel功能? [单选题] *A. 分类汇总(正确答案)B. 高级筛选C. 数据透视表D. VLOOKUP函数7. 如果你需要快速查看特定地区的销售数据,而不希望看到其他地区的数据,你应该使用以下哪个功能? [单选题] *A. 分类汇总B. 筛选功能(正确答案)C. 高级筛选D. 数据透视表8. 当你在Excel中滚动数据时,想要保持表头始终可见,以便清楚地看到每列代表的数据,你应该使用以下哪个功能? [单选题] *A. 视图冻结窗口(正确答案)B. 条件格式C. 名称管理器D. VLOOKUP函数9. 在Excel中,如果你经常需要引用某些特定的单元格范围,并且想要给这个范围一个更易记的名字,你应该使用以下哪个功能? [单选题] *A. 名称管理器(正确答案)B. 条件格式C. VLOOKUP函数D. 数据透视表10. 假设你有一个包含员工信息的表格,需要根据员工的工号查找其对应的部门名称,你应该使用以下哪个函数? [单选题] *A. SUM函数B. VLOOKUP函数(正确答案)C. INDEX-MATCH函数组合D. AVERAGE函数11. 如果你需要根据单元格中的数据自动改变单元格的格式,比如将销售额超过平均值的单元格背景设为黄色,你应该使用以下哪个功能? [单选题] *A. 条件格式(正确答案)B. 格式刷C. 单元格样式D. 排序12. 当你在编辑一个较长的单元格数据时,为了换行而又不实际输入换行符,你可以使用以下哪个快捷键? [单选题] *A. Alt+Enter(正确答案)B. Ctrl+EnterC. Shift+EnterD. Tab。
数据分析精选专项试题(50题)
数据分析精选测试试题(50题)1、某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:写出A 品牌粽子在图7中所对应的圆心角的度数.2、甲学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)甲同学共调查了 名居民的年龄,扇形统计图中a = ,b = ;(2)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.3、为了了解学生课业负担情况,某初中在本校随机抽取50名学生进行问卷调查,发现被抽查的学生中,每天完成课外作业时间,最长不足120分钟,没有低于40分钟的,并将抽查结果绘制成了一个不完整的频数分布直方图,如图10所示若该校共有1200名学生,请估计该校大约有__________名学生每天完成课外作业时间在80分钟以上(包括80分钟)图 7图 60~14 15~40 41~59 60岁以上 年龄(每组数据含最低值,不含最高值) 时间(分钟)4、为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角 为36.体育成绩统计图已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数. 5、为了解九年级学生每周的课外阅读情况,某校语文组调查了该校九年级部分学生某周的课外阅读量(精确到千字),将调查数据经过统计整理后,得到如下频数分布直方图,回答下列问题: (1)填空:①该校语文组调查了 名学生的课外阅读量;②左边第一组的频数= ,频率= 。
(2)求阅读量在14千字及以上的人数。
(3)估计被调查学生在这一周的平均阅读量(精确到千字)。
6.为了解某品牌A ,B 两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的销售情况进行了7.某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.请回答:(1)本次活动共有 件作品参赛; (2)上交作品最多的组有作品 件;(3)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(4)对参赛的每一件作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出一张卡片,抽到第四组作品的概率是多少?8.为保护环境,节约资源,从今年6月1日起国家禁止超市、商场、药店为顾客提供免费塑料袋,为解决顾客购物包装问题,心连心超市提供了A .自带购物袋;B .租借购物篮;C .购买环保袋;D .徒手携带,四种方式供顾客选择.该超市把6月1日、2日两天的统计结果绘成如下的统计图和6月1日的扇形统计图,请你根据图形解答下列问题: (1)请将6月1日的扇形统计图补充完整.(2)根据统计图求6月1日在该超市购物总人次和6月1日自带购物袋的人次.9.某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:根据不完整的频率分布表. 解答下列问题:若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”,这次15000名学生中约有多少人评为“D ”?如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?请说明理由.成绩(分)49.5 59.5 79.510.某市体委为了解市民参加体育锻炼的情况,采取随机抽样方法抽查了部分市民每天参加体育锻炼的情况,分成A B C ,,三类进行统计:A .每天锻炼2小时以上;B .每天锻炼1~2小时(包括1小时和2小时);C .每天锻炼1小时以下.图一、图二是根据调查结果绘制的两幅不完整的统计图,请根据统计图提供的信息,答下列问题: (1)这次抽查中,一共抽查了多少名市民? (2)求“类型A ”在扇形图中所占的圆心角.11. 某校300名优秀学生,中考数学得分范围是70—119(得分都是整数),为了解该校这300名学生的中考数学成绩,从中抽查了一部分学生的数学分数,通过数据处理,得到如下频率分布表和频率分布直方图.请你根据给出的图标解答:(1)填写频率分布表中未完成部分的数据; (2)指出在这个问题中的总体和样本容量;(3)求出在频率分布直方图中直角梯形ABCD 的面积;12.某百货商场经理对新进某一品牌几种号码的男式跑步鞋的销售情况进行了一周的统计,得到一组数据后,绘制了频数(双)频率统计表与频数分布直方图如下:请你根据图表中提供的信息,解答以下问题: (1)写出表中a b c ,,的值;B50%C 15% A39 40 41 42 43 44 号(2)根据市场实际情况,该商场计划再进1000双这种跑步鞋,请你帮助商场经理估计一下需要进多少双41号的跑步鞋?13.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________;(2)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?14.某校从14000名学生中随机抽取了200名学生就安全知识的了解情况进行问卷调查,然后按“很好”、“较好”、“一般”、“较差”四类汇总分析,并绘制了扇形统计图(如图)。
数据分析基础测试题及解析
数据分析基础测试题及解析一、选择题1.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【答案】B【解析】【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.3.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m,故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.4.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是()A.20分,22分B.20分,18分C.20分,22分D.20分,20分【答案】D【解析】【分析】根据众数和中位数的概念求解可得.【详解】数据排列为18,20,20,20,22,23,25,则这组数据的众数为20,中位数为20.故选:D.【点睛】此题考查众数和中位数,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次s .后来小亮进行了补测,集体测试,因此计算其他39人的平均分为90分,方差239成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:若从这三个品种中选择一个在该地区推广,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可.【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.10.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据11.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.12.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.13.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:平均每月阅读本数45678人数26543这些同学平均每月阅读课外书籍本数的中位数和众数为( )A.5,5 B.6,6 C.5,6 D.6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.故选D.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.14.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.15.下列说法正确的是()A.要调查人们对“低碳生活”的了解程度,宜采用普查方式B.一组数据:3,4,4,6,8,5的众数和中位数都是3C.必然事件的概率是100%,随机事件的概率是50%D.若甲组数据的方差S甲2=0.128,乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定【答案】D【解析】A、由于涉及范围太广,故不宜采取普查方式,故A选项错误;B、数据3,4,4,6,8,5的众数是4,中位数是4.5,故B选项错误;C、必然事件的概率是100%,随机事件的概率是50%,故C选项错误;D、方差反映了一组数据的波动情况,方差越小数据越稳定,故D选项正确.故选D.16.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.17.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;为优秀)②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③【答案】A【解析】【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.18.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.19.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分,98分B.97分,98分C.98分,96分D.97分,96分【答案】A【解析】【分析】利用众数和中位数的定义求解.【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.故选A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.20.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.。
小学数学数据分析练习题
小学数学数据分析练习题一、选择题1. 小明参加一次数学考试,他的成绩如下:75, 80, 85, 70, 90。
请问小明的平均分是多少?A. 70B. 75C. 80D. 852. 某班级有30名学生,其中男生20人,女生10人。
男生的人数占总人数的百分之几?A. 20%B. 30%C. 40%D. 50%3. 某餐厅一周的利润如下:200元, 300元, 400元, 500元, 600元。
请问这个餐厅一周的平均利润是多少?A. 300元B. 350元C. 400元D. 450元4. 某班级的学生身高如下:110cm, 120cm, 130cm, 140cm, 150cm,160cm,170cm。
请问这些学生的平均身高是多少?A. 130cmB. 140cmC. 150cmD. 160cm5. 某班级的学生体重如下:20kg, 25kg, 30kg, 35kg, 40kg,45kg,50kg。
请问这些学生的平均体重是多少?A. 30kgB. 35kgC. 40kgD. 45kg二、填空题1. 某果园中有100棵苹果树,每棵树平均产苹果50个,总共有________个苹果。
2. 小明每天上学需要步行1公里,一周共5天,他一共步行了________公里。
3. 某班级共有50名学生,其中男生占总人数的60%,女生占总人数的________%。
4. 某车站每天发车20趟,每趟车平均承载乘客50人,那么该车站每天发送的乘客总数为________人。
5. 某书店一天卖出15本科普书籍、20本小说书籍,共计售出________本书。
三、问题解决1. 某班级10位学生的体重如下(单位:kg):20, 25, 30, 30, 35, 35, 40, 45, 50, 55。
请问这10位学生的体重中,哪个体重出现的次数最多?有多少位学生体重相同?2. 某班级20位学生的身高如下(单位:cm):120, 130, 135, 140, 140, 145, 150, 155, 160, 160, 165, 165, 165, 170, 170, 175, 180, 185, 190, 200。
数据分析基础测试题含解析
数据分析基础测试题含解析一、选择题1.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据2.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:品种甲乙丙平均产量/(千克/棵)9090方差10.224.88.5若从这三个品种中选择一个在该地区推广,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可.【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.3.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352+=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.4.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()A.中位数是1 B.众数是1C.平均数是1.5 D.方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.5.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m,故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.6.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5【答案】D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;9.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.10.甲、乙两位运动员在相同条件下各射击10次,成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10.根据上述信息,下列结论错误的是()A .甲、乙的众数分别是8,7B .甲、乙的中位数分别是8,8C .乙的成绩比较稳定D .甲、乙的平均数分别是8,8【答案】C 【解析】 【分析】分别根据众数,平均数,中位数和方差的概念以及计算方法计算出结果,然后进行判断. 【详解】在甲的10次射击成绩中8环出现次数最多,有4次,故众数是8,而乙的10次射击成绩中7环出现次数最多,故众数是7,因此选项A 说法正确,不符合题意;甲的10次射击成绩按大小顺序排列为:5,7,7,8,8,8,8,9,10,10,故其中位数为:8+8=82; 乙的10次射击成绩按大小顺序排列为:5,7,7,7,8,8,9,9,10,10,故其中位数为:8+8=82,所以甲、乙的中位数分别是8,8,故选项B 说法正确,不符合题意; 甲的平均数为:5+72+84+9+102=810⨯⨯⨯;乙的平均数:5+73+82+92+102=810⨯⨯⨯⨯,所以,甲、乙的平均数分别是8,8,故选项D 不符合题意;甲组数据的方差为:2222221=[(58)2(78)4(88)(98)2(108)]10S -+⨯-+⨯-+-+⨯-甲=2; 乙组数据的方差为:2222221=[(58)3(78)2(88)2(98)2(108)]10S -+⨯-+⨯-+⨯-+⨯-乙=2.2;所以甲乙两组数据的方差不相等,甲的成绩更稳定,故选项C 符合题意. 故选:C. 【点睛】本题考查了平均数、中位数、众数和方差的定义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:小丁 51 53 58 56 57设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁C .x x >乙丁,22S S >乙丁 D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A .3,2 B .3,4C .5,2D .5,4【答案】B 【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.13.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:衬衫尺码3940414243平均每天销售件数1012201212该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.14.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.15.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.16.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了20名学生,调查结果如表所示:关于这20名学生课外阅读名著的情况,下列说法错误的是( )A.中位数是10 B.平均数是10.25 C.众数是11 D.阅读量不低于10本的同学点70%【答案】A【解析】【分析】根据中位数、平均数、众数的定义解答即可.【详解】解:A、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是=10.5,故本选项错误;B、平均数是:(8×3+9×3+10×4+11×6+12×4)÷20=10.25,此选项不符合题意;C、众数是11,此选项不符合题意;D、阅读量不低于10本的同学所占百分比为×100%=70%,此选项不符合题意;故选:A.【点睛】本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).众数是一组数据中出现次数最多的数.17.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A 错误,众数是28℃,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误, 平均数是:2022242628283032577++++++=℃,故选项D 错误, 故选B .点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.18.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5.【答案】D【解析】【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断.【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误; C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;.故选D .【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.19.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C 不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.20.回忆位中数和众数的概念;。
数据分析经典测试题及答案
数据分析经典测试题及答案一、选择题1.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()姓名小红小明小东小亮小丽小华成绩(分)110106109111108110A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.2.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.3.如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是()A.平均数是6B.中位数是6.5C.众数是7D.平均每周锻炼超过6小时的人数占该班人数的一半【答案】A【解析】【分析】根据中位数、众数和平均数的概念分别求得这组数据的中位数、众数和平均数,由图可知锻炼时间超过6小时的有20+5=25人.即可判断四个选项的正确与否.【详解】A、平均数为150×(5×7+18×6+20×7+5×8)=6.46,故本选项错误,符合题意;B、∵一共有50个数据,∴按从小到大排列,第25,26个数据的平均值是中位数,∴中位数是6.5,故此选项正确,不合题意;C、因为7出现了20次,出现的次数最多,所以众数为:7,故此选项正确,不合题意;D、由图可知锻炼时间超过6小时的有20+5=25人,故平均每周锻炼超过6小时的人占总数的一半,故此选项正确,不合题意;故选A.【点睛】此题考查了中位数、众数和平均数的概念等知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.4.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【答案】D【解析】【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.5.2018年国务院机构改革不再保留国家卫生和计划生育委员会,组建国家卫生健康委员会,在修正人口普查数据中的低龄人口漏登后,我们估计了1982-2030年育龄妇女情况.1982年中国15-49岁育龄妇女规模为2.5亿,到2011年达3.8亿人的峰值,2017年降至3.5亿,预计到2030年将降至3.0亿.则数据2.5亿、3.8亿、3.5亿、3.0亿的中位数、平均数、方差分别是( ) A .3.25亿、3.2亿、0.245 B .3.65亿、3.2亿、0.98 C .3.25亿、3.2亿、0.98 D .3.65亿、3亿、0.245【答案】A 【解析】 【分析】根据中位数、平均数的定义和方差公式分别进行解答即可. 【详解】把数据2.5亿、3.8亿、3.5亿、3.0亿按从小到大的顺序排列为:2.5亿,3.亿,3.5亿,3.8亿,最中间的两个数是3.0亿和3.5亿,所以,这组数据的中位数为:3.0+3.5=3.252亿 平均数为:2.5+3.8+3.5+3.0=3.24亿;方差为:S 2=14×[(2.5-3.2)2+(3.8-3.2)2+(3.5-3.2)2+(3.0-3.2)2]= 14×(0.49+0.36+0.09+0.04)=0.245 故选A. 【点睛】本题考查了中位数、平均数和方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是( ) A .20分,22分 B .20分,18分 C .20分,22分 D .20分,20分【答案】D 【解析】 【分析】根据众数和中位数的概念求解可得. 【详解】数据排列为18,20,20,20,22,23,25, 则这组数据的众数为20,中位数为20. 故选:D . 【点睛】此题考查众数和中位数,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.8.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.一组数据3、2、1、2、2的众数,中位数,方差分别是:()A.2,1,2 B.3,2,0.2 C.2,1,0.4 D.2,2,0.4【答案】D【解析】【分析】根据众数,中位数,方差的定义计算即可.【详解】将这组数据重新由小到大排列为:12223、、、、平均数为:1222325++++=2出现的次数最多,众数为:2中位数为:2方差为:()()()()()22222212222222320.45s-+-+-+-=+-=故选:D【点睛】本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.10.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( ) A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定【答案】A【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s2甲=0.002<s2乙=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252=25,故选:A.12.下列说法正确的是()A.要调查人们对“低碳生活”的了解程度,宜采用普查方式B.一组数据:3,4,4,6,8,5的众数和中位数都是3C.必然事件的概率是100%,随机事件的概率是50%D.若甲组数据的方差S甲2=0.128,乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定【答案】D【解析】A、由于涉及范围太广,故不宜采取普查方式,故A选项错误;B、数据3,4,4,6,8,5的众数是4,中位数是4.5,故B选项错误;C、必然事件的概率是100%,随机事件的概率是50%,故C选项错误;D、方差反映了一组数据的波动情况,方差越小数据越稳定,故D选项正确.故选D.13.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是()A.众数是2.3 B.平均数是2.4C.中位数是2.5 D.方差是0.01【答案】B【解析】【分析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】这组数据中出现次数最多的是2.4,众数是2.4,选项A不符合题意;∵(2.3+2.4+2.5+2.4+2.4)÷5=12÷5=2.4∴这组数据的平均数是2.4,∴选项B符合题意.14.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.某中学篮球队12名队员的年龄如表:关于这12名队员年龄的数据,下列说法正确的是()A.中位数是14.5 B.年龄小于15岁的频率是5 12C.众数是5 D.平均数是14.8【答案】A【解析】【分析】根据表中数据,求出这组数据的众数、频率、中位数和平均数即可.【详解】解:A、中位数为第6、7个数的平均数,为14152+=14.5,此选项正确;B、年龄小于15岁的频率是151122+=,此选项错误;C、14岁出现次数最多,即众数为14,此选项错误;D、平均数为:131145154162175=1212⨯+⨯+⨯+⨯,此选项错误;【点睛】本题考查了众数、中位数、平均数与频率的计算问题,是基础题.解题的关键是掌握众数、中位数、平均数与频率的定义进行解题.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4, 23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A .平均数是58B .中位数是58C .极差是40D .众数是60【答案】A 【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是:62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A .18.一组数据-2,3,0,2,3的中位数和众数分别是( )A .0,3B .2,2C .3,3D .2,3【答案】D【解析】【分析】根据中位数和众数的定义解答即可.【详解】将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2; 在这一组数据中3是出现次数最多的,故众数是3.故选D .【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x <,221s s =B .1x x =,221s s >C .1x x =,221s s <D .1x x =,221s s = 【答案】B【解析】【分析】根据平均数和方差的公式计算比较即可.【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n ,第i 个同学没登录,第一次计算时总分是(n−1)x ,方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n -s 2, 故221s s >,故选B .【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.20.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( )A .3,2B .3,4C .5,2D .5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.。
数据分析真题汇编附答案
数据分析真题汇编附答案一、选择题1.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义依次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,∴班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10元,故D正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键. 2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对【答案】B【解析】【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.4.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中出现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3出现了2次,为出现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中出现次数最多的数据.5.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;6.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.7.在去年的体育中考中,某校6名学生的体育成绩统计如下表:成绩171820人数231则下列关于这组数据的说法错误的是()A.众数是18 B.中位数是18 C.平均数是18 D.方差是2【答案】D【解析】【分析】根据众数、中位数的定义和平均数、方差的计算公式分别进行解答即可.【详解】A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;D、这组数据的方差是:16[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故本选项说法错误.故选D.【点睛】本题考查了众数、中位数、平均数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数是所有数据的和除以数据总数;一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].8.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据9.一组数据3、2、1、2、2的众数,中位数,方差分别是:()A.2,1,2 B.3,2,0.2 C.2,1,0.4 D.2,2,0.4【答案】D【解析】【分析】根据众数,中位数,方差的定义计算即可.【详解】将这组数据重新由小到大排列为:12223、、、、平均数为:1222325++++=2出现的次数最多,众数为:2中位数为:2方差为:()()()()()22222212222222320.45s-+-+-+-=+-=故选:D【点睛】本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.10.下列说法正确的是()A.要调查人们对“低碳生活”的了解程度,宜采用普查方式B.一组数据:3,4,4,6,8,5的众数和中位数都是3C.必然事件的概率是100%,随机事件的概率是50%D.若甲组数据的方差S甲2=0.128,乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定【答案】D【解析】A、由于涉及范围太广,故不宜采取普查方式,故A选项错误;B、数据3,4,4,6,8,5的众数是4,中位数是4.5,故B选项错误;C、必然事件的概率是100%,随机事件的概率是50%,故C选项错误;D、方差反映了一组数据的波动情况,方差越小数据越稳定,故D选项正确.故选D.11.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D .“用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形”这一事件是不可能事件 【答案】D 【解析】 【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可. 【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形” 这一事件是不可能事件,正确, 故选:D. 【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.12.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变 C .增大 D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.13.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:2022242628283032577++++++=℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.14.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分,98分B.97分,98分C.98分,96分D.97分,96分【答案】A【解析】【分析】利用众数和中位数的定义求解.【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.故选A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.15.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.16.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A .平均数是58B .中位数是58C .极差是40D .众数是60【答案】A 【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是: 62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A .17.一组数据-2,3,0,2,3的中位数和众数分别是( ) A .0,3 B .2,2C .3,3D .2,3【答案】D 【解析】 【分析】根据中位数和众数的定义解答即可. 【详解】将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2; 在这一组数据中3是出现次数最多的,故众数是3. 故选D . 【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.18.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是()A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6【答案】C【解析】【分析】根据众数和中位数的定义求解可得.【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C.【点睛】考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:这些同学平均每月阅读课外书籍本数的中位数和众数为( )A.5,5 B.6,6 C.5,6 D.6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.故选D.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.。
数据分析经典测试题含答案
数据分析经典测试题含答案一、选择题1.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】先根据平均数为5得出a b10+=,由众数是3知a、b中一个数据为3、另一个数据为7,再根据中位数的定义求解可得.【详解】解:数据3,a,4,b,8的平均数是5,3a4b825∴++++=,即a b10+=,又众数是3,a∴、b中一个数据为3、另一个数据为7,则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.2.一组数据3、2、1、2、2的众数,中位数,方差分别是:()A.2,1,2 B.3,2,0.2 C.2,1,0.4 D.2,2,0.4【答案】D【解析】【分析】根据众数,中位数,方差的定义计算即可.【详解】将这组数据重新由小到大排列为:12223、、、、平均数为:1222325++++=2出现的次数最多,众数为:2中位数为:2方差为:()()()()()22222212222222320.45s-+-+-+-=+-=故选:D 【点睛】本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.3.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80859095人数/人3421那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.4.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.5.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分【答案】A【解析】【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:64⨯+⨯=(分)8090841010故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.6.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()A .队员1B .队员2C .队员3D .队员4【答案】B 【解析】 【分析】根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案. 【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定, 但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定. 故选B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93【答案】D 【解析】 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选:D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.8.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5【答案】D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ) A .25,25 B .24.5,25C .25,24.5D .24.5,24.5【答案】A 【解析】 【分析】 【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26, 数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25. 故选:A .11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变C .增大D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.14.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是( ) A .这些运动员成绩的众数是 5 B .这些运动员成绩的中位数是 2.30 C .这些运动员的平均成绩是 2.25 D .这些运动员成绩的方差是 0.0725 【答案】B 【解析】 【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案. 【详解】由表格中数据可得:A 、这些运动员成绩的众数是2.35,错误;B 、这些运动员成绩的中位数是2.30,正确;C 、这些运动员的平均成绩是 2.30,错误;D 、这些运动员成绩的方差不是0.0725,错误; 故选B . 【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.15.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.16.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150为优秀)③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③【答案】A【解析】【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.17.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C.【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.18.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分,98分B.97分,98分C.98分,96分D.97分,96分【答案】A【解析】【分析】利用众数和中位数的定义求解.【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.故选A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.19.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B C D.2【答案】D【解析】【分析】【详解】∵3、a、4、6、7,它们的平均数是5,∴15(3+a+4+6+7)=5,解得,a=5S2=15[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.20.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;。
数据分析测试题
2017-2018学年度莘县翰林学校数学试卷满分120分;考试时间:100分钟一、单选题36分1.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩x及其方差S2如下表所示:如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A. 甲 B. 乙 C. 丙 D. 丁2.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和众数分别是()A. 94分,96分B. 96分,96分C. 96分,98分D. 96分,94分3.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )A. 最高分B. 平均数C. 中位数D. 方差4.下列说法正确的是( )A. 中位数就是一组数据中最中间的一个数B. 8,9,9,10,10,11这组数据的众数是10C. 如果x1,x2,x3的方差是1,那么2x1,2x2,2x3的方差是4D. 为了了解生产的一批节能灯的使用寿命,应选择全面调查5.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是()A. 3,2B. 3,4C. 5,2D. 5,46.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名同学所捐款的数额,下列说法正确的是()A. 众数是100B. 平均数是30C. 极差是20D. 中位数是20 7.九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是()A. 8,8B. 8,8.5C. 9,8D. 9,8.58.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:则关于这20名学生阅读小时数的说法正确的是()A. 众数是8B. 中位数是3C. 平均数是3D. 方差是0.349.某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是()A. 中位数B. 众数C. 方差D. 平均数10.下列说法正确的是()A. 某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖.B. 为了解全国中学生的睡眠情况,应该采用普查的方式.C. 若甲数据的方差s甲2 =0.05,乙数据的方差s乙2 =0.1,则乙数据比甲数据稳定.D. 一组数据3,5,4,5,5,6,10的众数和中位数都是5.11.一组数据:a-1,a,a, a+1,若添加一个数据a,下列说法错误的是( ) A. 平均数不变 B. 中位数不变 C. 众数不变 D. 方差不变12.若一组数据2,3,4,5,x的方差与另一组数据25,26,27,28,29的方差相等,则x的值为()A. 1B. 6C. 1或6D. 5或6二、填空题40分13.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)经计算,x甲=10,x乙=10,试根据这组数据估计_____中水稻品种的产量比较稳定.14.某校六个绿化小组一天植树的棵树如下:10,11,12,13,8,x.若这组数据的平均数是11,则这组数据的众数是_____.15.一组数据的方差为S2,将该数据每一个数据,都乘以4,所得到的一组新数据的方差是_________。
数据分析能力测评试卷(6月)-数据分析能力测试-范本模板
数据分析能力测评试卷(6月)-数据分析能力测试-范本模板一、选择题1. 下列哪个选项是数据分析的定义?- A. 将数据转化为可视化的图表- B. 使用统计方法对数据进行解释和推断- C. 采集数据并整理成报告- D. 分析数据得到有用的见解2. 在数据分析中,下列哪种图表最适合用于展示不同产品的销售量?- A. 折线图- B. 饼图- C. 柱状图- D. 散点图3. 数据清洗是指什么?- A. 将数据转化为可视化的图表- B. 从数据集中移除缺失值和异常值- C. 按照一定的规则对数据进行分类- D. 分析数据得到有用的见解二、填空题1. 数据可视化是通过将数据转换成图表或图形来帮助人们理解数据的可视化方法。
可视化方法。
2. 在数据分析过程中,数据清洗是一项重要的预处理步骤。
预处理步骤。
3. 在数据分析中,假设检验用于确定给定样本的统计指标是否与总体相同。
假设检验用于确定给定样本的统计指标是否与总体相同。
三、简答题1. 请简要描述数据分析的过程。
数据分析的过程主要包括数据收集、数据清洗、数据探索、数据建模和结果解释五个步骤。
首先,需要收集相关的数据,并确保数据的准确性和完整性。
然后,对数据进行清洗,去除缺失值和异常值,以保证数据的质量。
接下来,进行数据探索,使用统计方法和可视化工具探索数据之间的关系和趋势。
在对数据有了初步认识后,可以构建数据模型,并进行实验和分析。
最后,根据分析结果进行结果解释和业务推断。
2. 数据可视化有哪些优点?数据可视化可以帮助人们更直观地理解和解释数据。
它能够将抽象的数据转化为图表或图形,使得数据更易于理解和分析。
通过数据可视化,人们可以更清楚地看到数据之间的关系和趋势,并能够更好地发现隐藏在数据背后的信息。
此外,数据可视化还能够帮助人们更好地与数据进行沟通和共享,促进团队合作和决策的制定。
四、编程题请使用Python编程语言,根据给定的数据集,计算数据的均值、中位数和标准差,并将结果打印输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均数是 11,则这组数据的众数是_____.
15.一组数据的方差为 S2,将该数据每一个数据,都乘以 4,所得到的一组新数据的方
差是_________。
16.已知一组数据:17,18,20,17,x,18 中唯一的众数是 18,则这组数据的平均数
为_________.
17.小明有五位好友,他们的年龄(单位:岁)分别是 15,15,16,17,17,其方差是 0.8,
精品
.
关于这 15 名同学所捐款的数额,下列说法正确的是(
)
A. 众数是 100 B. 平均数是 30 C. 极差是 20 D. 中位数是 20
7.九(2)班体育委员用划记法统计本班 40 名同学投掷实心球的成绩,结果如
图所示:则这 40 名同学投掷实心球的成绩的众数和中位数分别是(
)
A. 8,8 B. 8,8.5 C. 9,8 D. 9,8.5
D. 一组数据 3,5,4,5,5,6,10 的众数和中位数都是 5.
11.一组数据:a-1,a,a, a+1,若添加一个数据 a,下列说法错误的是( )
A. 平均数不变 B. 中位数不变 C. 众数不变 D. 方差不变
12.若一组数据 2,3,4,5,x 的方差与另一组数据 25,26,27,28,29 的方差相等,
则 x 的值为( )
A. 1 B. 6 C. 1 或 6 D. 5 或 6
二、填空题 40 分 13.甲乙两种水稻试验品中连续 5 年的平均单位面积产量如下(单位:吨/公顷)
精品
.
经计算, x甲 =10, x乙 =10,试根据这组数据估计_____中水稻品种的产量比较稳定.
14.某校六个绿化小组一天植树的棵树如下:10,11,12,13,8,x.若这组数据的平
(1)参加调查测试的学生共有
人;请将两幅统计图补充完整.
(2)本次调查测试成绩的中位数落在
组内.
(3)本次调查测试成绩在 80 分以上(含 80 分)为优秀,该中学共有 3000 人,请估计
全校测试成绩为优秀的学生有多少人?
26.为了让同学们了解自己的体育水平,初二 1 班的体育康老师对全班 45 名学生进行
位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.
24.某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:
年龄组
13 岁
14 岁
15 岁
16 岁
参赛人数
5
19
12
14
(1)求全体参赛选手年龄的众数、中位数; (2)小明说,他所在年龄组的参赛人数占全体参赛人数的 28%.你认为小明是哪个年 龄组的选手?请说明理由. 25.我市某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样) 进行了一次相关知识的测试(成绩分为 A、B、C、D、E 五个组,x 表示测试成绩), 通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的 信息解答以下问题. A 组:90≤x≤100 B 组:80≤x<90 C 组:70≤x<80 D 组:60≤x<70 E 组:x<60
了一次体育模拟测试(得分均为整数)成绩满分为 10 分,成绩达到 9 分以上(包含 9
分)为优秀,成绩达到 6 分以上(包含 6 分)为合格,1 班的体育委员根据这次测试成
绩,制作了统计图和分析表如下:
精品
.
初二 1 班体育模拟测试成绩分析表 平均分 方差
男生
2
女生
7.92
1.99
中位数 8 8
众数 7
C、平均数=
,所以此选项不正确;
D、S2= ×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)
2]= =0.2825,所以此选项不正确;
精品
,故选
. 故选 D. 7.C
精品
.
【解析】试题解析:投掷实心球的成绩最多的是 9,共有 14 人, 所以,众数是 9, 这 40 名同学投掷实心球的成绩从小到大排列,第 20,21 人的成绩是 8, 所以中位数是 8. 故选 C. 【点睛】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数 和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找 中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众 数有时不止一个. 8.B 【解析】试题分析:A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将 这组数据从小到大重新排列,求出最中间的 2 个数的平均数,即可得出中位数;C、根据加 权平均数公式代入计算可得;D、根据方差公式计算即可. A、由统计表得:众数为 3,不是 8,所以此选项不正确; B、随机调查了 20 名学生,所以中位数是第 10 个和第 11 个学生的阅读小时数,都是 3,故 中位数是 3,所以此选项正确;
合格率 95% 96%
优秀率 40% 36%
根据以上信息,解答下列问题: (1)在这次测试中,该班女生得 10 分的人数为 4 人,则这个班共有女生______人; (2)补全初二 1 班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上; (3)补全初二 1 班体育模拟测试成绩分析表; (4)你认为在这次体育测试中,1 班的男生队、女生队哪个表现更突出一些?并写出 一条支持你的看法的理由; (5)体育康老师说,从整体看,1 班的体育成绩在合格率方面基本达标,但在优秀率 方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班 的优秀率达到 60%,若男生优秀人数再增加 6 人,则女生优秀人数再增加多少人才能 完成康老师提出的目标?
精品
.
参考答案 1.B 【解析】试题分析:根据平均成绩越好,成绩越好,可知乙、丙的平均成绩高;根据方差越 小,成绩越稳定,可知乙的成绩最稳定,由此可知应选择选手 B. 故选:B. 2.C 【解析】试题解析:总人数为 6÷10%=60(人), 则 94 分的有 60×20%=12(人), 98 分的有 60-6-12-15-9=18(人), 第 30 与 31 个数据都是 96 分,这些职工成绩的中位数是(96+96)÷2=96; 98 分出现次数最多,故众数是 98 分. 故选 C. 【点评】本题考查了统计图及中位数的定义:将一组数据按照从小到大(或从大到小)的顺 序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数 据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解题的关键是从统计图 中获取正确的信息并求出各个小组的人数. 3.C 【解析】根据中位数的意义可知,该生能否进入决赛,只需要再知道这 25 名同学成绩的中 位数即可. 【点睛】解决这类题的关键是能够正确理解平均数、中位数 、方差的意义. 4.C 【解析】中位数是一组数据从大到小或从小到大排列,最中间的数据或最中间的两个数据的 平均值是中位数,故 A 错误;8,9,9,10,10,11 这组数据的 9 和 10 出现的次数最多,众 数是 9 和 10,故 B 错误;在一组数据中,如果每一个数据都扩大为原来的两倍,那么平方 后将扩大为原来的 4 倍,所以方差是原来的 4 倍,故 C 正确;为了了解生产的一批节能灯的 使用寿命,应选择抽样调查,故 D 错误. 故选 C. 5.B
8.李老师为了了解学生暑期在家的阅读情况,随机调查了 20 名学生某一天的阅读小时 数,具体情况统计如下:
阅读时间(小时)
2 2.5
3 3.5
4
学生人数(名)
12
86
3
则关于这 20 名学生阅读小时数的说法正确的是( )
A. 众数是 8 B. 中位数是 3
C. 平均数是 3 D. 方差是 0.34
9.某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一
.
2017-2018 学年度莘县翰林学校
数学试卷
满分 120 分;考试时间:100 分钟 一、单选题 36 分 1.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射
靶 10 次,他们各自的平均成绩 x 及其方差 S2 如下表所示:
如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是( ) A. 甲 B. 乙 C. 丙 D. 丁 2.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和 条形统计图,根据图中提供的信息,这些职工成绩的中位数和众数分别是( )
A. 94 分,96 分 B. 96 分,96 分 C. 96 分,98 分 D. 96 分,94 分 3.某校有 25 名同学参加某比赛,预赛成绩各不相同,取前 13 名参加决赛,其 中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这 25 名同学成 绩的( ) A. 最高分 B. 平均数 C. 中位数 D. 方差 4.下列说法正确的是( ) A. 中位数就是一组数据中最中间的一个数 B. 8,9,9,10,10,11 这组数据的众数是 10 C. 如果 x1,x2,x3 的方差是 1,那么 2x1,2x2,2x3 的方差是 4 D. 为了了解生产的一批节能灯的使用寿命,应选择全面调查 5.已知一组数据 a,b,c 的平均数为 5,方差为 4,那么数据 a﹣2,b﹣2,c﹣2 的平 均数和方差分别是( ) A. 3,2 B. 3,4 C. 5,2 D. 5,4 6.为了帮助本市一名患“白血病”的高中生,某班 15 名同学积极捐款,他们捐款数额 如下表:
班级
平均分
众数
方差
甲
101
90
2.65
乙
102
87
2.38
你认为哪一个班的成绩更好一些?并说明理由. 答:_____班(填“甲”或“乙”),理由是_____________________________1 [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那 10