温度二次仪表计量标准技术
关于温度二次仪表不确定度的评定方法
关于温度二次仪表不确定度的评定方法解宏阳温度二次仪表被广泛应用于社会生产的名个领域,对准确反映温度、实现温度控制具有直接的作用。
做好对温度二次仪表的检定工作十分重要,不确度的评定是其中的一项重要工作,现根据几年来的工作经验,总结出二次仪表不确度的分析方法,与大家一起探讨。
1、检定方法根据JJG617-96数字温度指示调节仪计量检定规程的规定,采用转换点法或标称电量值法对配K型热电偶用数字温度指示调节仪进行检定。
现以输入基准法,在本所现有仪器设备的技术条件下,用CST3006热工仪表校验仪作为标准器,在环境温度为(20土5)℃的恒温室内进行检定时,对配K型热电偶、型号为XMZD-101、测量范围为0~1300℃、分辨力为1℃、准确度等级为0.5级的数字温度指示调节仪检定结果的不确定度进行评定。
2、测量过程1)、按JJG617-96中“输入基准法”进行检定。
在测量范围内选择5个测量点,包括上限值和下限值在内基本均等。
本仪表为0,300,700,1000,1300℃。
2)、从下限值进行两个循环的测量,以两个循环测量的平均值计算示值误差,作为测量结果。
3、数学模型根据JJG617-96数字温度指示调节仪计量检定规程的规定,仪表的指示基本误差为:△t=td-〔ts+e/(■)ti〕±b (1)式中:td——仪表显示的温度值,℃;ts——标准仪器输入的电量值所对应的被检温度值,℃;e——对具有参考端温度自动补偿的仪表,表示补偿导线在20℃时的修正值mV;不具有参考端温度自动补偿的仪表,e=0;(△A/△t)——被检点的电量值一温度变化率,mV/℃;±b——b为仪表显示的分辨力,℃;±符号应与前面两项的计算结果的符号相一致。
在检定点f 附近,式中补偿导线的修正值除被检点的电量值一温度变化率一项为补偿导线的修正值对应于该点的温度值,可用te表示,所以式中e项变为te。
则公式(1)变为:△t=td-[ts+te]±b (2)4、不确定度的来源1)、检定工作中,输入量td是多次重复测量获得的,被检仪表的重复性测量将引入不确定度分量。
温度二次仪表检定装置操作规范
温度二次仪表检定装置操作维护规程1 设备简介Fluke 741B过程仪表认证校准仪(以下简称校准仪)是由电池供电,测量和输出电参数和物理参数的一种手持便携式仪器。
该仪器可使你对过程仪表进行故障诊断,校准,鉴定以及文件档案记录。
详见本手册后面的技术指标。
ZX54直流电阻箱是通过改变电阻值,然后将改变的电阻值信号输送给二次仪表,二次仪表检测到收到的电阻值变化信号,换算成温度。
2 主要技术参数ZX54直流电阻箱(0.01-111111.11)Ω3 操作规程3.1输入和输出插孔表2 输入/输出插孔和连接器3.2 按键校准仪按键如图所示,表3解释它们的功能,有4个未带标记的兰色按键,紧挨在显示屏幕下面称之为功能键。
其功能由操作过程中菜单中出现的定义所确定。
功能键和其显示内部在本手册中用黑体字标明,表3 键的功能序号性能说明1 MEAS SOURCE键测量、输出、测量/输出同时显示方式的循环转换键2 mA键选择mA(电流)测量或输出功能,其回路电源通/断由SETUP 键确定3 SETUP键进入和退出设置方式以调整操作参数4 功能键执行显示于屏幕最下一行菜单所定义的功能5 键背景灯开关6 键选择压力测量或输出功能7 TC RTD键选择TC(热电偶)或RTD(铂电阻)测量或输出功能8 RANGE键在自动量程,固定量程和量程改变之间进行选择,每当按下3.3.1测量范围正常情况下校准仪会自动改变至测量的量程。
显示屏幕右下角“Range”或“Auto Range”取决于量程状态。
自动量程开关要按RANGE键,量程被锁定,再按一次转换到下一个较高量程。
按住此键2秒钟可以换至Auto Range自动量程。
如果量程被锁定,超过量程的输入显示为……,有自动量程,超过量程的输入显示为!!!!!!。
3.3.2测量温度1)使用热电偶校准仪支持11种标准热电偶,每一种都标有美国国家标准协会确定的第一个字母表示:E,N,J,K,T,B,R,L,U或S,或工业标志C。
温度二次仪表计量标准技术
由于td1和td2相互独立,因此,U(td)= Veff=u4(td)/[u4(td1)/V1+u4(td2)/V1]
a.分辨力为0。1℃的仪表:U(td2)=0.030℃ V=57;b。分辨力为1℃的仪表:U(td2)=0。29℃。V=50.
输入量td的标准不确定度U(ts)的评定
RTD类型
测量(输出)信号
范围t(℃)
U(ts)(℃)
Cu50
—50≤t<0
0.01
0≤t<100
0.02
100≤t<150
0.02
Pt100
—200≤t<—50
0。01
—50≤t<0
0。01
0≤t<200
0。02
200≤t<400
0.03
400≤t<600
0.05
600≤t<800
0.07
本例仪表各测量点的U(ts):
0。005
2。5E—5101源自0.02—0。0150.000225
x-
100。035
实际标准差s(x)=0.011℃
即:s(x)﹤0.04
0.011℃﹤0.04℃
结论:s(x)小于测量结果的合成标准不确定度.
b)对一块性能稳定的测量范围0—100℃,分辨力为1℃数字温度指示调节仪,在100℃测试点作10次等精度重复性测量
4
100。05
2011.08.17
5
100.02
2011.10。16
6
100。03
2011.12.21
Pmax﹣Pmin﹤U
100.05﹣100.02=0.03℃﹤U
0。03℃﹤0.08℃
结论:计量标准的稳定性小于计量标准扩展不确定度。
二次仪表分类及计量方法
二次仪表分类及计量方法
当前二次仪表被广泛应用于化工、食品、冶金等各行业领域,在企业生产过程中发挥重要作业。
基于其使用量较大现状,如果进行拆卸送检的容易发生拆卸损坏,耗时耗力,增加运行成本等情况。
因而多数采取现场计量温控仪表、现场整体计量温度测控系统这两种方式,但后者在实践中运行成本高,最常用的还是现场计量温控仪。
现场计量检定时,环境的复杂使计量工作常面临不同挑战,计量数据时有发生误差较大的情况。
1、二次仪表分类
二次仪表按照不同标准进行分类,从控制方式角度分类,主要分为动圈式温控仪表和数显式温控仪表,其中动圈式温控仪表按其功能分为指示型、指示调节型、记录型。
数显温控仪表粗略分为指示型和指示调节型;从测温方式角度分类,分为接触式和非接触式温控仪表。
2、二次仪表计量方法
温控仪的计量方法主要是以下四种,现场计量温控仪、现场整体计量温度测量控制系统、实验室计量温控仪、实验室计量温控仪表探头。
计量温控仪的检定方法有两种:一是寻找转换点法;二是输入被检点标称电量值法。
对于分辨力值小于其允许基本误差1/5的仪表,其量化误差对仪表基本误差影响很小,故可采用输入被检点标称电量值法进行检定。
除此以外,都应采用寻找转化点法进行检定。
温度二次仪表
计量标准技术报告
计量标准名称温度二次仪表检定装置计量标准负责人冯世伟
建标单位名称(公章) 句容市计量所
填写日期2009年9月
目录
一、建立计量标准的目的………………………………………………( 1 )
二、计量标准的工作原理及其组成……………………………………( 1 )
三、计量标准器及主要配套设备………………………………………( 2 )
四、计量标准的主要技术指标…………………………………………( 3 )
五、环境条件……………………………………………………………( 3 )
六、计量标准的量值溯源和传递框图…………………………………( 4 )
七、计量标准的重复性试验……………………………………………( 5 )
八、计量标准的稳定性考核……………………………………………( 6 )
九、检定或校准结果的测量不确定度评定……………………………( 7~9 )
十、检定或校准结果的验证……………………………………………( 10 ) 十一、结论………………………………………………………………( 11 ) 十二、附加说明…………………………………………………………( 11 )。
二等标准温度计
二等标准温度计二等标准温度计是一种用于测量温度的仪器,它是非常重要的温度测量工具之一。
二等标准温度计的准确性和可靠性对于许多领域的实验和生产过程都至关重要。
本文将介绍二等标准温度计的基本原理、结构和使用方法,希望能够帮助读者更好地了解和使用这一重要的仪器。
二等标准温度计是一种基于热膨胀原理的温度测量仪器。
它通常由温度敏感元件和显示装置组成。
温度敏感元件可以是气体、液体或固体,当温度发生变化时,它们会产生相应的热膨胀或收缩,从而引起显示装置的指针或数字发生变化,以反映当前的温度值。
二等标准温度计的结构精密,使用了高精度的材料和工艺,因此具有较高的测量精度和稳定性。
在使用二等标准温度计时,首先需要将其放置在待测温度环境中,使其与环境温度达到热平衡。
然后可以通过观察指针或数字来读取当前的温度数值。
需要注意的是,在测量过程中要尽量避免外界因素对温度计的干扰,比如阳光直射、风吹等,以确保测量结果的准确性。
二等标准温度计广泛应用于实验室、工厂、医疗机构等各个领域。
在化工生产中,二等标准温度计常用于监测反应釜、反应槽等设备的温度,以确保生产过程的安全和稳定。
在医疗领域,二等标准温度计被用于测量体温,帮助医生判断病人的健康状况。
在科研实验中,二等标准温度计则是不可或缺的温度测量工具,用于保证实验数据的准确性。
总之,二等标准温度计是一种非常重要的温度测量仪器,它在各个领域都发挥着重要作用。
我们应该充分了解其原理和使用方法,以确保其准确性和可靠性。
希望本文能够帮助读者更好地理解和使用二等标准温度计,为各个领域的温度测量工作提供帮助。
二次仪表检定系统
温度二次仪表检定系统
概述:
系统由微机、打印机、标准信号源等组成,检定方法与数据处理符合JJG74-2005、 JJG186-1997 、JJG 617-1996等国家现行相关计量检定规程。
系统特点:
✧ 系统组态灵活,兼容多种不同的硬件配置。
✧ 能够检定配以下信号的二次仪表:K 、N 、E 、J 、T 、S 、R 、B 、EA-2热电偶,Pt100、Pt10、
Cu100、Cu50型热电阻,0-10V 、1-5V 、0-10mA 、4-20mA 、0-2mV 、0-5mV 、0-10mV 等标准信号。
✧ 自动保存检定记录,并将相关信息存入数据库。
用户可按型号、统一编号、分度号、检
定日期等信息查询历史记录。
✧ 具有检定过程中误差不合格提示功能。
✧ 配带有通讯功能的信号源时,系统会自动控制信号源,辅以微机键盘简单操作即可完成
需要的信号输出。
满足条件后,按回车键即可完成此点的检定
✧ 系统兼容自动检定与手动检定,手动检定数据可录入微机进行数据处理与报表输出。
✧ 规范的报表输出功能,且可将记录表和证书导出至EXCEL 中。
硬件配置方案:
打印机
笔记本电脑
热工仪表校验仪PR230
温度显示仪表。
二次仪表通用技术参数输入输出信号
二次仪表通用技术参数输入输出信号二次仪表定义: 接受由变送器、转换器、传感器(包括热电偶、热电阻)等送来的电或气信号,并指示所检测的过程工艺参数量值的仪表二次仪表通用技术参数一.主要电性能参数1. 正常工作条件:1.1 使用电源:默认值220V±10% 50HZ±5% ;功耗约5W(高可靠TM电源)(开关电源型90~260V 50~60HZ 功耗约5W)可定制使用AC380V DC24V等电源规格的品种)1.2 环境温度:0~50℃1.3 环境湿度: ≤85%RH1.4 大气条件:无腐蚀性气体或粉尘的场合1.5 外磁场: ≤400A/m2. 与测量有关的参数:2.1 数显式仪表显示码:0~99、-199~999、-1999~1999、-199.9~399.9、-199.9~999.9、-150.00~399.99、-100.000~499.999等可选2.2 数显式仪表基本误差:≤±(1%F.S+1d)、≤±(0.05%F.S+1d)、≤±(0.2%F.S+1d)、≤±(0.05%F.S+2d)等可选2.3 磁电系仪表基本误差:≤±1.5%F.S 、≤±2.5%F.S可选2.4 24小时示值飘移: ≤±(0.3×基本误差限)2.5 输入串模干扰影响: ≤±0.5×基本误差2.6 输入共模干扰影响: ≤±0.5×基本误差2.7 温度系数:在0℃~50℃范围内偏离20℃±2℃时≤(0.05×基本误差限)/ ℃2.8 热电偶冷端补偿范围: 0℃~50℃2.9 热电偶冷端补偿误差: ≤±1℃、≤±2℃可选3. 与控制输出有关的参数3.1 继电器触电输出:AC250V/5A(阻性负载)或AC250V/5A(感性负载)3.2 驱动可控硅脉冲输出:幅度≧3V,宽度≧40us的移相或过零触发脉冲3.3 驱动固态继电器信号输出:驱动电流≧15Ma 电压≧9V3.4 内装可控硅输出:600V/1A(仅供用于可控硅阳极触发)3.5 模拟量输出:0~10Ma (负载≤1KΩ); 4~20Ma (负载≤500Ω)0~5V (负载≧100KΩ); 1~5V(负载≧100KΩ)3.6 声报警输出:频率为2300Hz的断续声,讯响器声压约80Db/10mm4. 与附加输出有关的参数:4.1 馈电输出:DC 5V±5%、12V±5%、24V±5%(负载电流≤30Ma)4.2 变送模拟信号输出:4.2.1 输出电压:DC 0~1V、0~2V、0~5V、1~5V、0~10V等4.2.2 输出电流:DC 0~10Ma 、4~20Ma等4.2.3 变送信号非线性校准误差: ≤±0.2%F.S、≤±0.5%F.S、≤±1%F.S可选4 .2.4 变送输出幅度误差: ≤±0.2%F.S除非申明,输入信号与变送输出的模拟信号之间不作直流隔离4.3 通讯输出:RS-232或RS-485 ;5. 与调节有关的参数:5.1 设定点偏差:模拟处理的数显仪表≤±2d5.2 设定误差:刻度盘或拨码设置的仪表≤±1%F.S; ≤±1.5%F.S可选5.3 可设置范围:刻度盘或拨码设置的仪表≧1~100%F.S模拟处理式数显仪表≧1~100%F.S数字处理式仪表≧1~100%F.S5.4 回差:模拟处理的仪表≤0.5×基本误差;数字处理的仪表0.2~20间可调5.5 周期时间:模拟式时间比例控制仪表40s±10s数字处理式仪表等周期时25s±5s驱动固态继电器及可控硅2s±0.5s5.6 PID调节仪表出厂参数设置值:P=5%;I=210s D=30s6. 与报警有关的参数6.1 跟随式上限报警值:控制值+(4%~6%F.S)(默认)6.2 跟随式下限报警值:控制值-(4%~6%F.S)(默认)6.3 报警值可设置时的范围: ≧1~100%F.S6.4 报警回差:模拟处理的仪表≤1.5%F.S;数字处理的仪表为1d67. 其他:7.1数据断电保护时间:使用E2PROM时超过十年,使用内置电池时间说明书7.2 重量:0.1KG---1.0KG二. 输入信号及范围输入名称分度号测量范围(℃)热电偶镍铬- 铜镍 E 0~200;0~300; 0~400; 0~600镍铬-镍硅K 0~300;0~400; 0~800; 0~1300铂铑10-铂S 0~1600;700~1600铜-铜镍T -200~50;0~200; 0~300; 0~400铁-铜镍J 0~300;0~500; 0~800铂铑30-铂铑6 B 400~1800;700~1800铂铑13-铂铑R 0~1800;700~1800钨铼3-钨铼25 WRe3-WRe25 0~2300热电阻铜电阻Cu50 0~50.0;0~99.9;0~150;-150.0~150.0铜电阻Cu100 0~50.0;0~99.9;0~150;-150.0~150.0铂电阻Pt100 0~99.9;0~199.9;0~300;-50.0~50.0;-200~600;0~399.9;0~399.99;-100.000~300.000铂电阻Pt1000 0~99.9;0~199.9;0~300;-50~400WFT-202 辐射感温器F2 700~2000AD590类半导体传感器PN -50~5002.其他输入信号:以电压、电流、电阻、频率、无源触点、相位差等作输入信号,可以用压力、流量、湿度、物位、液位、重量、溶氧、PH值、糖度、酸碱度等作计量单位.输入名称单位输入范围电压mV 0~20 Mv;0~50 mV, 0~100 mV;与霍尔、湿度传感器等配套电压V 0~5V(与DDZ-Ⅱ等配套);1~5V(与DDZ-Ⅲ等配套)电流mA 0~10Ma(DDZ-Ⅱ等配套); 4~20Ma(DDZ-Ⅲ等配套) 电阻30~350Ω与YTZ-150等远传压力变送器配套频率 F 0~10KHZ; 0~20KHZ; 0~50KHZ;*~100KHZ等无源触点K ON OFF用户指定/。
温度计二等标准-概述说明以及解释
温度计二等标准-概述说明以及解释1.引言1.1 概述概述:温度计作为一种用来测量温度的仪器,在科研、工业生产、医疗等领域具有广泛的应用。
为了确保温度计的准确性和可靠性,各国和组织制定了一系列的标准来规范温度计的制造和使用。
二等标准是其中重要的一个标准,它要求温度计在测量精度、标定和校准等方面符合一定的要求。
本文将着重探讨温度计二等标准的定义、历史以及其在实际应用中的重要性,以期为读者深入了解温度计二等标准提供一定的参考和指导。
1.2 文章结构本文将分为引言、正文和结论三个部分,以清晰地介绍温度计二等标准的相关内容。
在引言部分中,将对本文的目的和结构进行概述,引出温度计二等标准的重要性。
在正文部分,将分别介绍温度计的历史、二等标准的定义以及温度计二等标准的重要性,阐述其在现代社会中的作用和意义。
在结论部分,将对温度计二等标准的意义进行总结,展望未来的发展方向,并简洁地结束全文,强调该标准在未来的应用和推广中的重要性。
通过这样的结构安排,读者将能够系统地了解温度计二等标准的相关知识,并对其重要性有更清晰的把握。
1.3 目的本文旨在探讨温度计二等标准的重要性以及其在现代科学领域中的应用。
通过研究温度计的历史和二等标准的定义,我们可以更深入地了解温度计的发展和进步。
同时,分析温度计二等标准的重要性,可以帮助我们认识到其在科学实验、工业生产等领域中的重要作用,并强调二等标准的必要性和准确性。
通过本文的研究,我们可以更好地认识温度计二等标准,进一步推动其在实践中的应用和发展,为提高温度计的准确性和稳定性作出贡献。
2.正文2.1 温度计的历史温度计的历史可以追溯到古代文明时期。
早在公元前2世纪,古希腊人就开始使用简单的温度计来测量温度变化。
然而,真正的温度计是在17世纪由意大利物理学家伽利略发明的。
他利用水和空气伸缩的性质设计出了第一只温度计。
随着时间的推移,科学家们不断改进和发展温度计的设计。
在18世纪,德国物理学家亨利克·华士发明了现代温度计的基本原理,他提出了华氏温标。
温度二次仪表检定操作流程
温度二次仪表检定操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!温度二次仪表检定操作流程。
1. 准备工作。
校准标准,精度等级不低于被检仪表,且经过有效性验证。
温度二次仪表技术报告2014改后的概要
计量标准技术报告计量标准名称计量标准负责人建标单位名称(公章)填写日期目录一、建立计量标准的目的……………………………………………………( )二、计量标准的工作原理及其组成…………………………………()三、计量标准器及主要配套设备………………………………………( )四、计量标准的主要技术指标………………………………………()五、环境条件……………………………………………………………( )六、计量标准的量值溯源和传递框图………………………………………( )七、计量标准的重复性试验………………………………………………( )八、计量标准的稳定性考核…………………………………………………( )九、检定或校准结果的测量不确定度评定…………………………………( )十、检定或校准结果的验证…………………………………………………( ) 十一、结论……………………………………………………………………( ) 十二、附加说明………………………………………………………………( )一、建立计量标准的目的配毫安、毫伏、欧姆用指示仪表是发电厂、电缆厂等热力设备的主要检测仪表,为确保该类仪表的准确可靠、量值统一,特此建立该项计量标准。
该标准装置是我县最高计量标准,适用于检定测量范围(0~75)mV 、 (0~30)V 、 (0~30)mA 、 (0~4000)Ω准确度等级为0.5级及以下各类热工二次仪表。
二、计量标准的工作原理及其组成采用多功能温度校验仪作为标准器,向数字温度指示仪输出电阻或电压信号,记录二次仪表的显示值并根据检定规程判断其是否合格。
(配热电偶原理图)补偿导线 冰槽 铜导线(配热电阻原理图)铜导线(配三线制热电阻)+ 多功能温度 - 校验仪被检仪表多功能温度校验仪被检 +仪表 -三、计量标准器及主要配套设备计量标准器名称型号测量范围不确定度或准确度等级或最大允许误差制造厂及出厂编号检定或校准机构检定周期或复校间隔多功能温度校验仪ConST316(0~75)mV、(0~30)V、(0~30)mA、(0~4000)Ω直流电压:U=1.2×10-5V(k=2),直流电流:U=3.1×10-6A(k=2),直流电阻:U=1×10-4Ω(k=2)北京康斯特仪表科技股份有限公司316A130300941年主要配套设备绝缘电阻表ZC-7 (0-250)ΜΩ10.0级北京远东仪表有限公司101117031年耐压测试仪CX2672CX(0~5000)V5.0级南京长盛仪器有限公司1406055-0191年秒表J9-2 1s-1h0.01s上海手表五厂0141401年补偿导线冰瓶三根导线四、计量标准的主要技术指标1、测量范围:(0~75)mV、(0~30)V、(0~30)mA、(0~4000)Ω2、不确定度:直流电压:U=1.2×10-5V(k=2),直流电流:U=3.1×10-6A(k=2),直流电阻:U=1×10-4Ω(k=2)五、环境条件序号项目要求实际情况结论1 温度(20±5)℃21℃符合要求2 湿度(45~75)%RH 50%RH 符合要求3 防振无振动不影响检定符合要求防磁无强磁场不影响检定符合要求4六、计量标准的量值溯源和传递框图上一级计量器具标准器名称:多功能校准仪、直流电阻箱不确定度:热电偶源和测量:U99=(0.14~0.84)℃; 直流电压电源U99=(1~5)×10-5v;U99=(0.15~3.75)V;直流电流源:U99=(0.2~3.2)×10-6A;直流电阻箱:0.01级保存机构:比较法本级计量器具计量标准名称:多功能温度校验仪测量范围:(0~75)mV、(0~30)V、(0~30)mA、(0~4000)Ω不确定度:直流电压:U=1.2×10-5V(k=2),直流电流:U=3.1×10-6A(k=2),直流电阻:U=1×10-4Ω(k=2)直接测量法下一级计量器具计量器具名称:配工业用电压、电阻信号的各类热工二次仪表测量范围:(-200~1800) ℃不确定度:0.5级及以下七、计量标准的重复性试验取一台数字温度指示仪表(配K型电偶)精度为0.5级做被测对象,对其在600℃检定点上进行连续测量10次,结果如下:序号测量值X(mV)u i = x i-u i21 24.900 -0.007 0.0000492 24.9100.003 0.0000093 24.9100.003 0.0000094 24.904--0.003 0.0000095 24.905-0.002 0.0000046 24.9120.005 0.0000257 24.9120.005 0.0000258 24.9080.001 0.0000019 24.903-0.004 0.00001610 24.9080.001 0.000001 24.907 ()()112--=∑=nxxxsnii= 0.004该计量标准的测量重复性S = 0.004mV,符合技术要求。
温度二次仪表检定装置建标技术报告
相对误差%
比对结果最大差值为+0.18%,符合要求。
6
彩 精 走 越 路 道 便 醒 提 中 活 和 作 工 后 以 在 会 将 破 突 所 望 渴 识 认 步 进 了 有 生 己 自 对 书 这 。 人 个 终 最 要 重 此 如 是 竟 完 时 按 并 划 计 份 惯 习 好 良 、 态 的 达 豁 心 用 种 , 丈 万 情 豪 我 让 》 败 成 定 决 节 细 《 本 一
二、选用的计量标准器及主要配套设备
名 称 型号规格 编 号 准确度等级 0.05 0.05 检定证书号
直流电位差计
计
直电阻箱
量 标 准 器
玻 璃 温 度 计 秒 表
0-50℃
0.1℃
交 流 稳 压 器
配 套 设 备
调 角
压 度
箱 板
2
彩 精 走 越 路 道 便 醒 提 中 活 和 作 工 后 以 在 会 将 破 突 所 望 渴 识 认 步 进 了 有 生 己 自 对 书 这 。 人 个 终 最 要 重 此 如 是 竟 完 时 按 并 划 计 份 惯 习 好 良 、 态 的 达 豁 心 用 种 , 丈 万 情 豪 我 让 》 败 成 定 决 节 细 《 本 一
1
彩 精 走 越 路 道 便 醒 提 中 活 和 作 工 后 以 在 会 将 破 突 所 望 渴 识 认 步 进 了 有 生 己 自 对 书 这 。 人 个 终 最 要 重 此 如 是 竟 完 时 按 并 划 计 份 惯 习 好 良 、 态 的 达 豁 心 用 种 , 丈 万 情 豪 我 让 》 败 成 定 决 节 细 《 本 一
三、检定方法及原理
采用补偿法检定电子自动电位差计和动圈式仪表(配热电偶) (一)电子自动电位差计的检定 ~220V 交流稳压器 电子自动电位差计 (被检) 电位差计 (标准)
二等标准温度计
二等标准温度计二等标准温度计是一种用于测量温度的仪器,它是通过一定的物理原理和技术制造而成的。
二等标准温度计通常用于实验室、工业生产和科学研究等领域,是确保温度测量准确性和可靠性的重要工具。
二等标准温度计的制造和使用受到严格的国际标准和规范的约束,以确保其精准度和稳定性。
它通常由一个长而细的玻璃管内充满了一定量的气体或液体,通过温度的变化来测量温度。
在制造过程中,需要精密的技术和严格的质量控制,以保证其精度和可靠性。
二等标准温度计的使用需要注意一些重要的事项。
首先,它需要经过定期的校准和检验,以确保其测量结果的准确性。
其次,在使用过程中需要避免剧烈的震动和碰撞,以免对其精度造成影响。
此外,还需要注意保持其清洁和干燥,避免污染和损坏。
在实际的温度测量中,二等标准温度计通常需要与其他仪器和设备配合使用,以确保测量结果的准确性。
例如,在实验室中,常常需要将二等标准温度计与温度控制设备和数据记录仪配合使用,以实现对温度的精确控制和记录。
在工业生产中,二等标准温度计通常需要与温度传感器和自动控制系统配合使用,以实现对生产过程中温度的精确监测和控制。
总的来说,二等标准温度计是一种非常重要的温度测量仪器,它在科学研究、工业生产和实验室等领域都起着至关重要的作用。
通过严格的制造、校准和使用,可以确保其测量结果的准确性和可靠性,为各种温度测量提供了重要的保障。
因此,我们在使用二等标准温度计的过程中,需要严格遵守相关的操作规程和标准,保证其正常的使用和精确的测量结果。
只有这样,才能充分发挥二等标准温度计的作用,为我们的工作和生活提供准确可靠的温度数据。
配热电阻测温二次仪表不确定度评定分析
() 入量 t 3输 的标准 不确 定度 u( 的合成 t. t t) 和 独立无 关, 以 : 所 u( = t ) +u ( : . 3 0 2 9 t)u ( t 0 0 5+. 8 U t)= 0 2 1 ℃ (d .9
}l C }:u(d t )=o 2 1℃ .9
。
14被 测对 象 . 以 1 0 级配 热 电偶 ( K分度) (  ̄4 0 ℃、分辨 力 为 1 . 0 0) ℃为例 , 许 允 误 差 △ =5℃。 1 5测 量 过程 . 按 J 6 7 — 1 9 的检定方 法 , JG 1 96 在测 量范 围 内选择 5个测量 点 , 括 包 上 、下 限值 在 内基 本均 等 。从 下限 开始进 行上 、 下行程 3 个循环 的 测量, 以 3 个测 量循 环 中 同一行 程 中 的最大 误 差作 为示 值 误差 的测 量结 果 。 2数拳 模 型 根据 检定 规程 , 数学 模 型为
△ tt ( e k ) 2 dt+ / () 1
式 中 :△ 一 被检 仪表 的示 值误 差 : ~ 被 检仪 表 的示 值 : 一 校准 仪 t t 的输 出值对应 的实际温 度 : 一 补偿 导线 2 ℃ 时的修 正值 :, 热 电偶各 温 e 0 k~ 度 测 量 点的 斜率 ,可视 为 常数 。 3方差 和夏 敏 系数 根据方 差合 成定 律, 出量 的估计 方差 是 由各输入 量 的估计 方差 合成 的 。 输 式 中各 输入量 独 立不相 关 。对公 式 () 的各输 入量 求偏 导, 1中 可得 输 出量估 计
5 3 输入 量 e 的标准 不确 定度 u ) 的评 定 . (e 输 入 量 e 的来源 是 补偿 导线 本 身修 正 值不 确定 度 。 根据 上 级机构 出具的补偿 导 线校准 报告 可得知 , 补偿 导线 在2 0℃时修 正 值 e 的扩 展不 确定 U 3 z , 含 因子 k 2 O, : 。 . 8u V 包 = = . l则 u( )=32 /20 e 1 .8 . 1=16 从J 15 .3uV, JF 0 9— 19 《 9 9 测量不确定度 评 定 与表 示 》附录 A 中可查 得置 信概 率 p = . 5 2 0 时 自由度 为 0 9 、k: . l
二次仪表(安科瑞)
空表-表示平均值测量
三、立体车库系统解决方案分享
升降横移式车库 四、发展前景
随着中国进入汽车大国,停车难 就时刻伴随着我们。特别是近十几年 的发展,再加上现在寸土寸金,可利 用的土地资源相当有限。这就需要我 们向空间发展。立体车库在这样的大 环境下 只能是越来越好。 基于升降横移类的立体车库的优 越性能以及超高的性价比,目前升降 横移类约占70%的市场份额。由此可 见其发展前景。
ARC功率因数自动补偿控制仪
CL系列数显电测表 DT系列嵌入式安装电能表
电力仪表选型
以下选型用CL 系列为例 1、仪表外形
电力仪表选型
2、功能代号
直流电流 直流电压 功率因数 有功功率 交流电流 交流电压 频率 无功功率
3、显示方式
单排数码代码 T-表示真有效值测量 M-表示模拟量输出
二次仪表分类
二次仪表接受的标准信号一般有三种: 1、气动信号 2、Ⅱ型电动单元仪表信号 3、Ⅲ型电动单元仪表信号 也有个别的不用标准信号,一次仪表发出电信号,二 次仪表直接指示,如远传压力表等。 二次仪表通常安装在仪表盘上.按安装位置又可分为 盘装仪表和架装仪表.
仪表单元类介绍
一次仪表包括: 1 变送单元类 二次仪表包括: 1 转换单元类 3 运算单元类 2 调节单元类 4 显示单元类 2 执行单元类
昆山 启航城 项目现场实景
福建中海创集团有限公司
5 给定单元类
6 辅助单元类
二次仪表的性能参数
正常工作条件: 1.使用电源 2.环境温度 4. 大气条件 5.外磁场 与测量有关的参数: 1. 数显式仪表显示码 3. 温度系数 3. 环境湿度
2.数显式仪表基本误差 4. 热电偶冷端补偿范围
与控制输出有关的参数: 1. 声报警输出 2.模拟量输出 3. 内装可控硅输出 4. 驱动固态继电器信号输出
浅析温度二次仪表的自动化校准
浅析温度二次仪表的自动化校准摘要:随着我国社会经济的发展进步,尤其是科学技术的发展进步,使得我国的温度二次仪表的自动化校准技术与过去相比较出现了较大的发展,但是与西方发达国家相比,我国温度二次仪表的自动化校准还存在着较多的问题,所以本文主要是针对我国温度二次仪表的自动化校准出现的问题进行分析研究,针对存在的问题提出改进的措施,使得我国温度二次仪表的自动化校准满足社会实际工作的需要。
关键词:温度;二次仪表;自动化;校准一.温度二次仪表概述。
我们所说的温度二次仪表其实是一种就是手传感器电信号,并且在这个过程中指示出其所测量出的一些参数量值的一种仪表设备。
由于温度二次仪表在我国各个行业中发挥着胡重要的作用,所以这就使得其在我国社会中的应用是比较普遍的。
我们在应用温度二次仪表的过程中,由于其工作性能的好坏对测量的温度以及控制等各个方面的情况有着重要的影响,甚至严重的时候还可以大大的降低产品的质量,所以我们需要定时定期的对温度二次仪表的自动化校准进行检查,一旦出现问题我们就可以及时的采取措施,改进温度二次仪表自动化校准,使之符合我国社会社会各个方面的实际工作需求。
二.存在的问题分析。
我国温度二次仪表检测校准的发展是比较晚的,大约起步于20世纪90年代的中后期,经过近几十年的发展,虽然出现了一些数字式和电子式的温度计量检测校准设备,但是在实际应用的过程中,计量的校准方法还主要是以手工操作为主。
手工计量检测校准的时候,首先我们需要确定标准信号源,在这个过程中我们一般都是使用直流电位差计和直流电阻箱。
其次是我们需要使用模拟传感器传输出相关的电信号,并且还需要通过人工手工的调节标准信号源设备,这样就会使得相关的信号出现增加或者是减少的趋势,在这个基础上我们还需要查找热工分度表中的温度一电量值,并且还需要在这个基础上记录上儿童次温度仪表所显示出来的一些温度数值的原始数据,除此之外,我们还需要计算出在这个过程中出现的人工误差,这样才能够使得我们判断的校准结果。
一次仪表与二次仪表
一次仪表与二次仪表:在生产过程,对测量仪表按换能次数来分,能量转换一次称为一次仪表,转换两次或2次以上称为2次仪表。
热电偶测温时,若直接将热能转换为电能,称一次仪表;若再将电能用电位计转换为指针移动的机械能,进行了2次能量转换就称为2次仪表。
模拟信号表、数字信号的本质区别:数字信号只能取有限个数值,只能断续的表达连续的时变信号,它的分辨能力决定于所取增量的大小.模拟测量系统测量过程是连续的,它能给出被测变量的瞬时值.数字测量系统的测量过程则是断续的,它给出的数值是被测量在一段时间内的平均值。
测量仪器都包括感受件、中间件和效用件三部分。
热电偶用热电动势的形式来感知温度,构成测量仪器的感受件(传感器)。
热电动势用补偿导线完成信号的传递作用,构成仪器的中间件。
热电动势由电压计指针的偏转位置或数字显示给出指示,构成测量仪器的指示和记录件称效用件.测量仪器的分类按其用途可分为范型仪器和实用仪器两类:范型仪器是准备用以复制和保持测量单位,或是用来对其他测量仪器进行标定和刻度工作的仪器。
这类仪器的准确度很高,对它的保存和使用有较高的要求。
测量系统系统常用的技术性能指标:预定的测量任务能否完成,测量精度能否满足要求,很大程度上取决于测量系统的性能指标,测量系统的性能指标包括六方面内容1.测量仪表的输入量性能指标【量程、测量范围、过载能力】2测量仪表的静态性能指标【精确度、恒定度、灵敏度、灵敏度阻值、指示滞后时间、分辨率、阈值、稳定性、漂移、线性度、重复性等】静态性能指标决定了测量结果的可靠程度。
3测量系统的动态性能指标【系统响应的时间常数、上升时间、响应时间、超调量、阻尼、固有频率、频率特性、频宽范围、稳态误差、临界速度、采样频率等参数。
】决定了测量系统响应的稳定性、快速性、和准确性。
4对环境和配接要求【工作温度范围、温度误差、温度漂移、灵敏度温度系数、热滞后、抗潮湿、抗腐蚀、抗电磁干扰能力、抗冲振要求等。
】5可靠性指标【平均寿命、平均无故障工作时间、故障率、疲劳性能、绝缘耐压、耐温、保险期、时间稳定性、抗过载能力等】6经济指标:性能/价格比量程是指测量系统测量上限和测量下限的代数差。
检定温度二次仪表时参考端温度补偿的处理
检定温度二次仪表时参考端温度补偿的处理左丹摘要:配热电阻、热电偶使用的温度二次仪表在众多行业得到广泛应用。
本文就配热电偶使用的温度二次仪表的检定方法进行概述,以供参考。
关键词:温度二次仪表;检定;参考端;温度补偿1.温度二次仪表简介温度二次仪表是一种工业过程测量和控制仪表,在化学、石化和石油工业,发电、食品、纺织和造纸、冶金工业以及环境保护、空调设备等众多行业得到广泛应用。
与一次仪表不同的是二次仪表本身并不能单独测量温度,必须与温度传感器相配、接受其信号才能测量温度[1]。
温度二次仪表通常按输出特征分类,可分为模拟仪表和数字仪表2大类,在这2大类仪表中均可按输入信号的类型分为热电偶输入仪表、热电阻输入仪表和标准信号输入仪表[2]。
二次仪表通常有温度记录仪、温度显示仪、温度调节仪等。
温度二次仪表属于非电量电测仪表,无论是模拟仪表还是数字仪表均可以由以下几部分构成:测量电路、信号放大和处理单元、显示单元和供电单元。
具有控制作用的仪表还应有设定、比较单元和控制模式单元。
测量电路将输入的温度传感器信号转换为可识别的信号,并按显示单元的要求必须将此信号进行放大和处理,最后以仪表的显示方式给出被测温度值。
一般实际工作中,我们见到的温度二次仪表,都是配热电偶或者热电阻等温度传感器,辅以相应的执行、处理机构组成温度控制系统,接受可识别的信号就可以测量、显示温度。
2.配热电阻温度二次仪表的检定检定温度二次仪表时,首先应该分清该被检仪表是什么类型的仪表,如果是配热电阻或电阻型传感器使用的仪表,检定时所用的标准器和接线如图1所示。
图1 配三线制热电阻热电阻与被检仪表的连接方法通常采用三线制接法,即用三根导线将热电阻和仪表连接起来。
这种接法的优点是:热电阻引出的三根导线截面积和长度都相同,导线的电阻值就相同,把热电阻的一根导线接到电源端,不会造成测量误差,另两根导线分别接在全等臂电桥的电路中,当桥路平衡时,导线电阻的变化对测量结果没有影响,也消除了线路电阻因环境温度变化带来的测量误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结果如下:
序号
测量结果(℃)
测量日期
1
100.02
2011.02.14
2
100.03
2011.04.13
3
100.04
2011.06.15
2.2.分辨力为1℃的仪表Uc(△t)=
Uc(△0)=Uc(△100)=Uc(△200)=Uc(△400)=Uc(△600)=0.3
合成标准不确定度的有效自由度
Veff=u4c(△t)/{[c1u(td)4]/V1+[c2u(ts)4]/V2}
1.分辨力为0.1℃的仪表Veff=105-143,取整100
0.21℃﹤0.6℃
结论:计量标准的稳定性小于计量标准扩展不确定度。
九、检定或校准结果的测量不确定度评定
见附件 数字温度指示调节仪(配热电阻)示值误差测量结果的不确定度评定
测量依据:JJG617-1996《数字温度指示调节仪检定规程》,按其中“输入基准法”进行测量。测量环境:温度(20±5)℃:相对湿度45%-75%RH。
4
100.05
2011.08.17
5
100.02
2011.10.16
6
100.03
2011.12.21
Pmax﹣Pmin﹤U
100.05﹣100.02=0.03℃﹤U
0.03℃﹤0.08℃
结论:计量标准的稳定性小于计量标准扩展不确定度。
b)对一块性能稳定的测量范围0-100℃,分辨力为1℃数字温度指示调节仪,在100℃测试点作10次等精度重复性测量,取其平均值,每两个月进行一次测量,共测6次.
本次评定对象为:
a.分辨力为0.1℃的仪表:规格为pt100分度、测量范围为0-200℃,最大允许误差△d=±(0.3%FS+0.1)=±0.7℃
b.分辨力为0.1℃的仪表:规格为pt100分度、测量范围为0-600℃,最大允许误差△d=±(0.5%FS+1)=±4℃
测量过程
a. 按JJG617-1996中“输入基准法”进行检定。在测量范围内选择五个测试点,包括上限 值和下限值在内基本均等。
计量标准技术报告
计 量 标 准 名 称温度二次表检定装置
计 量 标 准 负责人
建 标 单 位 名 称
填 写 日 期
一、建立计量标准的目的
为适应社会与科技发展的需要,加强对温度二次仪表的检定,确保量值传递的准确一致,特建立温度二次仪表检定装置。
一、计量标准的工作原理及其组成
该标准装置是通过特携式效验仪模拟各温度对应的标准电阻值、标准电压值进行信号输出,由配电阻式或配热电偶式数字温度指示调节仪测量出输入的信号所对应的温度值来进行对比校准。
测量标准:用特稳携式校验仪作为测量标准,选用JY821特稳用特稳携式校验仪。它的主要技术指标如下表:
JY821特稳用特稳携式校验仪主要技术指标 表一
RTD类型
测量(输50
-50≤t<0
±0.02
0≤t<100
±0.02
100≤t<150
±0.02
Pt100
校验仪示值误差
按测量点查{U(ts)}
-1
b=0.1
0.02
0.02
0.02
0.02
0.03
b=1
0.02
0.02
0.03
0.05
0.07
100
合成标准不确定度的计算
输入量td和ts相互彼此独立,所以合成标准不确定度可按下式计算:
Uc(△t)=
1.分辨力为0.1℃的仪表Uc(△t)=
Uc(△0)=Uc(△50)=Uc(△100)=Uc(△150)=Uc(△200)=0.04
数字模型:△t=td-ts
式中:△t指仪表的示值误差;td指仪表的显示值;ts指标准器电阻示值对应的温度值。
输入量td的标准不确定度评定:
输入量td的标准不确定度来源主要有两部分:测定重复性和仪表的分辨力。
测量重复性导致的标准不确定度u(td1),u(td1)可以用(示值基准法)在同一个转换点上通过连续测量得到的测量列,采用A类方法进行评定。不同分辨力的仪表具有不同的测量重复性。
分辨力为0.1℃的仪表:U(0)=U(50)=U(150)=0.02,U(200)=0.03(℃);分辨力为1℃的仪表:U(0)=U(100)=0.02,U(200)=0.03,U(400)=0.05,,U(600)=0.07(℃).
1、合成标准不确定度的评定
数字模型 △t=td-ts
灵敏系数C1=λ△1/λtd=1 C1=λ△1/λts=-1
合格
4
电源频率
50(1±1%)Hz
50(1±1%)Hz
合格
六、计量标准的量值溯源和传递框图
上级社会公用计量标准
标准名称:数字多用表
多功能标准源
准确度等级:8位1/2
溯源单位:宜昌计量检测所
直接比较法
本级社会公用计量标准
计量标准名称:特稳携式检验仪
测量范围:0-80.000mv
0-500.0Ω
准确度等级:±0.02%FS
输入量td的标准不确定度U(td)计算
由于td1和td2相互独立,因此,U(td)= Veff=u4(td)/[u4(td1)/V1+u4(td2)/V1]
a.分辨力为0.1℃的仪表:U(td2)=0.030℃ V=57;b.分辨力为1℃的仪表:U(td2)=0.29℃.V=50.
输入量td的标准不确定度U(ts)的评定
标准不确定度汇总表
标准不确定度分量U(Xj)
不确定度来源
标准不确定度(℃)
Cj
|Cj|U(Xj)(℃)
Vj
U(td)
1
b=0.1
0.030
b=1
0.29
57
50
U(td1)
测量重复性
0.006(b=0.1)
0.010(b=1)
U(td2)
仪表分辨力
0.029(b=0.1)
0.29(b=1)
U(ts)
0≤t<200
±0.02
200≤t<400
±0.03
400≤t<600
±0.03
600≤t<800
±0.03
TWX-II特稳式检验仪主要技术指标
五、环境条件
序号
项目
要求
实际情况
结论
1
温 度
(20±5)℃
(20±5)℃
合格
2
湿 度
(45~75)%
(45~75)%
合格
3
电源电压
220(1±1%)V
220(1±1%)V
-200≤t<-50
±0.02
-50≤t<0
±0.02
0≤t<200
±0.02
200≤t<400
±0.03
400≤t<600
±0.03
600≤t<800
±0.03
被测对象:配热电阻数字温度指示调节(以下简称仪表)。总的测量范围从-200℃-800℃,配以不同类型的热电阻,测量范围可以有多种;仪表的允许误差通常以±(a%FS+b)表示,其中a可以有0.1,0.2,0.3,0.5,1.0几种,FS为仪表的量程,b为仪表的分辨力,以b=0.1℃和1℃为常见。
-0.015
0.000225
2
100.03
-0.005
2.5E-5
3
100.04
0.005
2.5E-5
4
100.04
0.005
2.5E-5
5
100.05
0.015
0.000225
6
100.03
-0.005
2.5E-5
7
100.05
0.015
0.000225
8
100.03
-0.005
2.5E-5
9
100.04
0.000144
8
100.18
0.028
0.000784
9
100.17
0.018
0.000324
10
100.12
-0.032
0.001024
x-
100.152
实际标准差s(x)=0.019℃
即:s(x)﹤0.3
0.019℃﹤0.3℃
结论:s(x)小于测量结果的合成标准不确定度。
八、计量标准的稳定性考核
自由度V1=
B.分辨力为1℃的仪表
按上述方法进行实验,得到的结果为何成样本标准偏差Sp=0.021℃,由于λ(s)≤sp/4,因此可以Spd代替所有同类仪表的实验偏差。
实际测量 =0.010℃;自由度V1=81.
仪表分辨力导致的便准不确定度U(td2)
U(td2)采用B类方法进行评定。由仪表分辨力B导致的示值误差区间半宽为a=b/2;包含因子K=3-2可靠性90%,自由度为50.因此,a.分辨力为0.1℃的仪表:U(td2)=0.05/k=0.029℃;b.分辨力为1℃的仪表:U(td2)=0.5/k=0.29℃。
结果如下:
序号
测量结果(℃)
测量日期
1
100.12
2011.02.14
2
100.13
2011.04.13
3
100.24
2011.06.15
4
100.15
2011.08.17
5
100.22
2011.10.16
6
100.33
2011.12.21
Pmax﹣Pmin﹤U